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Preface 

It is a matter offact that in Europe evolution strategies and in the U.S.A. genetic algorithms have 
survived more than a decade of non-acceptance or neglect. It is also true, however, that so far 
both strata of ideas have evolved in geographical isolation and thus have not led to recombined 
offspring. Now it is time for a new generation of algorithms wh ich make use of the rich gene pool 
of ideas on both sides of the Atlantic. 

It is certain that today there are three different schools whose roots have deve!oped independently 
from each other: 

• Evolutionary Programming (EP) 

• Evolution Strategies (ESs) 

• Genetic Aigori thms (G As) 

Genetic Programming (GP) and Classifier Systems (CSs) are both special subbranches of the GA 
philosophy. 

First roots of EP were established with A rtificial Intelligence through Simulated Evolution by 
L. .1. Fogei, A. J. Owens and M .. 1. Walsh, 1966, of ESs with Evolutionsstrategie - Optimierung 
technischer Systeme nach Prinzipien der biologischen Evolution by I. Rechenberg, 197:3, and Nu­
merische Optimierung von Computer-Modellen mittels der Evolutionsstrategie by H.-P. Schwefel, 
1977, and of GAs with Adaption in Natural and Artificial Systems by J. H. Holland, 1975, and An 
Analysis of Behavior of a Class of Genetic Adaptive Systems by K. De Jong, 1975. 

Only since 1990 contacts between these different schools take pi ace regularly. In 1991, on the fifth 
International Conference on Genetic Aigorithms the generic term Evolutionary Algorithms (EAs) 
for EP, ES and GA was agreed on. The journal Evolutionary Computation published by MIT Press 
since 1993 is supported by all three groups. 

EC does not abandon traditional methods. None of the EAs would do the job better or even as 
good as those. EC should be taken into consideration if good old and weil underpinned methods 
either do not exist, are not applicable, or fai\. 
Evolutionary approaches playa considerable role in Artificial Life, a divergence from classical 
Artificial Intelligence, control, planning, combinatorial optimization and many other areas. This 
workshop surveys the state of the art, presents examples and case studies as weIl as attempts at 
systematization. In addition, due to this workshop, a research area which has already tackled 
real-world problems with considerable success receives more attention. 

This year the first workshop on Evolutionary Computation (EC) will take place on the German 
Annual Conference on Artificial Intelligence (KI-94). 
It starts with two invited lectures: Quantitative Experimental Studies of Darwinian Evolution by 
Christof K. Biebricher; Max-Planck-Institute for physical Chemistry, one of the leading research er 
in evolution and Tlle Sciellce of Breedülg and its Application to tlle Breeder Gelletic Algoritllm 
by Heinz Mühlenbein, German National Research Center for Computer Science (GMD), a leading 
research er who covers both, fundamental research and real applications. This is followed by two 
tutorials: Artificial Life alld Selforganisatioll by Wolfgang Banzhaf, Dortmund University and 
Gelletic Programming by Frank Klawonn, University of Braunschweig. 
I hope that this gives a little overview and motivation for more reasarch in this field. On the basis 
of a very good national and international participation our workshop includes the following main 
topics: 

• Theory of Evolutionary and Genetic Computation 

• Biological Principles 



• Genetic Programming 

• Artificial Life 

• Genetic Algorithms for Neural Network Design 

• and many Applications 

Finally, I want to thank the authors for their contributions, as weil as all those, especially Hans­
Jiirgen Appelrath (University of Oldenburg) , Wolfgang Banzhaf (Dortmund University), Volker 
Claus (University of Stuttgart), Heinz Miihlenbein (GMD, St. Augustin) and Lothar Thiele (Uni­
versity of Saarbrücken), who all helped me in organizing this workshop. 
I have to thank Hans-Pau] Schwefel (Dortmund University), who gave me historical information 
for this preface and support to the workshop even though he will not be able to take part. 
It is desireable and al ready foreseeable that the part of AI presented with this workshop will gain 
ground on this side of the Atlantic, too. 

Saarbrücken , August 1994 Jörn Hopf 
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Quantitative Experimental Studies of Darwinian Evolution 

Christof K. Biebricher 
Max-Planck-Institute for physical Chernistry 

37077 Göttingen, Gerrnany 

Evolution is a highly efficient self-organization 
process where optimal solutions are obtained by 
iterative mutation and selection. The underly­
ing molecular phenomena for the biological re­
production, mutation and selection have been 
identified: The genetic program is encoded as 
a linear sequence of nucleotides in the genomic 
double helical DNA, where the two strands are 
held together by the base-pairing of comple­
mentary nucleotides. DNA is reproduced by 
unwinding of the double helix and completion 
of both strands to double helices. The accu­
racy of copying is limited and occasional errors 
or mutations take place. 

The genetic program is decoded by a compli­
cated decoding apparatus. Eventually, this 'ex­
pression' of the genotype leads to certain ob­
servable properties of the organism in the per­
taining environment, Le. to a ph enotype whose 
'fitness' is evaluated globally. During reproduc­
tion, the genetic program and the decoding ap­
paratus must be copied. Darwinian evolution is 
not bound to li ving organisms, DU t takes place 
in any process comprising metabolism, repro­
duction and mutation. Indeed, the only sys­
tem where evolution could be studied experi­
mentally has been a system (Spiegelman et al., 
1965) where RNA molecules are replicated by 
an enzyme called replicase. For the quantita­
tive description of the evolution process in this 
system we used the expressions in the quantita­
tive theory of molecular evolution developed by 
Eigen and coworkers (Eigen & Schuster, 1977; 
Eigen & Biebricher, 1988). In this system, evo­
lution can be studied in the test tube, because 
the sequence complexity is low, the mutations 
rates are high, the population sizes are very 
high, and the expression of the genotype into 
the phenotype is simple: the phenotype of a 
species is simply its efficiency in replication. 

The mechanism of RNA replication has been 
investigated in detail and is weil understood 
(Biebricher et al., 1981, 1982,1983, 1984, 1985, 

1991). Replicase binds a single-stranded RN A 
template, synthesizes a complementary replica 
and releases the template. While replicase is 
present in excess, the RNA grows exponentially. 
When the replicase is saturated with template, 
linear growth results. Single-stranded comple­
mentary strands may react to double strands 
that are unable to replicate. Different species 
growing in the same solution compete with each 
other and the selection behaviour can be in­
vestigated. In the exponential growth phase, 
RNA species are selected for their fecundity, 
i.e. the overall replication rate. In the early 
linear growth phase, replicase is limited and 
species that bind replicase most efficiently have 
the highest selection value. At still higher 
RNA concentrations, species are also selected 
for minimizing the loss by double strand for­
mation. Quantitive selection values can be cal­
culated predicting precisely the complicate se­
lection behaviour. 
Mutations occur during replication and the 
mutants produced compete with each other. 
A mutant distribution called quasispecies is 
formed where each mutant has acertain relative 
population according to its rate of formation 
by mutation and by its selection value. Due 
to compensating mutations, a quasispecies con­
tains multi-error mutants that are nearly selec­
tively neutral. When the environment changes, 
the quasispecies adapts rapidly by selecting the 
best mutant and building a new quasispecies 
around it. Evolution is very effective in lead­
ing to the optimum in a contiguous mountain­
ous region in the fitness landscape, but can not 
reach the global optimum when this optimum is 
lying in a well-separated mountain. By raising 
the population size and by increasing the step 
size of mutational jumps, the optimization can 
be improved. 
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A Predictive Theory of the Breeder Genetic Algorithm 

Heinz Mühlenbein, Dirk Schlierkamp-Voosen 
GMD Schloss Birlinghoven 
D-53757 Sankt Augustinl 
e-mail: muehlen@gmd.de 

Abstract-The Breeder Genetic Algorithm 
BGA models artificial selection as performed by 
human breeders. We show how the response to 
selection equation and the concept of heritabil­
ity can be applied to predict the behavior of the 
BGA. The theoretical results are obtained under 
the assumption of additive gene effects. For gen­
eral fitness landscapes advanced statistical tech­
niques for estimating the heritability are used to 
analyze and control the BGA. 

1 Introduction 

Evolution of natural organisms is based on three ma­
jor components - reproduction, variation and selection. 
Some reproductions of natural organisms occur with 
"failures" called mutations. A more systematic variation 
of the genetic material happens in sexual reproduction. 
Each parent contributes half of its genetic material to 
the offspring. This method of variation is called recom­
bination. The offspring will be identical to the parents 
if the parents are genetically equal. 

Variation is necessary to allow selection to work. Se­
lection in nature is very difficult to define precisely. The 
term was introduced by Darwin (5] very informally. "The 
preservation 0/ /avourable variations and the rejection 0/ 
injurious variations, I call Natural Selection." But how 
can an observer predict which are the favorable varia­
tions? The favorable variations are the variations which 
are preserved! The variations can only be judged after 
they have competed in the "struggle for life." Natural 
selection is no independent force of nature, it is the result 
of-the competition of natural organisms for resources. 

In contrast, in the science of breeding the above prob­
lem does not exist. The selection is done by human 
breeders. Their strategies are based on the assump­
tion that mating two individuals with high fitness more 
likely produces an offspring of high fitness than two ran­
domly mating individuals. The Breeder Genetic Algo­
rithm BGA introduced in [13] is based on the science of 
breeding. The science is part of applied statistics. A ma­
jor component is the regression of parent and offspring. 

In this paper we deal mainly with a rather simplified 
model. We assurne additive gene contributions and uni­
form crossover. Nevertheless five parameters are needed 
to describe the initial state of the population and the 

selection process. The necessary parameters are 

• the population size N 

• the initial frequency of the desirable allele Po 

• the number of loci n 

• the mutation rate m 

• the intensity of selection I 

For this model we have computed the expected number 
of generations until convergence. It would be futile to 
investigate the model with all five parameters variable. 
Therefore we will investigate the model with one or more 
parameters fixed. The outline of the paper is as follows. 

First we will investigate evolution without selection, 
also called genetic drift (I = 0). If there is no muta­
tion the population will converge to a unique genotype. 
In section three we will analyze selection and recombi­
nation in large populations. The analysis is based on 
the response to selection equation and on the concept 
of heritability. Then the major theoretical results are 
summarized. 

The above theory gives a dear picture about the be­
havior of the major evolutionary components. For the 
breeder genetic algorithm this theory plays the same role 
as the ideal gas . theory for dassical thermodynamics. 
The "ideal gas" in evolutionary algorithms are simple 
additive fitness functions. For these simple fitness func­
tions the behavior of the breeder genetic algorithm is 
already complex. 

In section 5 it is shown how the theory can be ex­
tended to arbitrary fitness functions. The key problem 
is to estimate the heritability. In section 6 the theory is 
applied to a number of fitness functions. 

The theory presented here is based on dassical live­
stock breeding and population genetics. Some of the re­
sults presented in this paper are also of interest for pop­
ulation genetics. Our models are restricted to haploid 
organisms. But in this area our models and equations 
are sometimes more precise than the ones used in pop­
ulation genetics. Examples are the analysis of genetic 
drift and the analysis of the genetic variance. For a re­
cent survey about predicting the response to selection in 
livestock productions see [17). 



2 Evolution without selection - genetic 
drift 

It has been known in population genetics for quite some 
time that a finite population converges to a single geno­
type, even if selection is not applied. The mutation rate 
is assumed to be negligible. The fixation of the popu­
lation is a result of its finite size. This effect has been 
called genetic drift by Wright [18]. The importance of 
genetic drift for explaining evolution in nature has been 
emphasized by Kimura [8]. He developed a neutral the­
ory of molecular evolution, claiming that natural selec­
ti on is not as important for evolution as previously sur­
mized. Kimura used a very complex diffusion equation 
approach to quantify genetic drift [4]. We will generalize 
his results. Two chance models will be distinguished 

1. no selection, no recombination 

2. no selection, but with recombination 

The first model is just sampling with replacement. 
The second model is an adaptation of Mendel's genetic 
chance model to haploid organisms. For the analysis of 
genetic effects the following cases will be distinguished if 
necessary: 

• one gene with two alleles 

• n genes each with two alleles 

• n genes with an infinite number of alleles 

The last case roughly models the genetic representation 
used by the BGA for continuous functions of n variables. 
In all cases, recombination is done by randomly choos­
ing an allele from one of the parents. For binary repre­
sentations this recombination scheme is called uniform 
erossover [16]. 

The next three theorems have been derived in [2]. The 
proofs are based on a Markov chain analysis for one gene 
with two alleles. The formulas have been obtained by 
numerically fitting the data. 

Theorem 1 Let there be a gene with two alleles. Let 
half of the initial population have allele 0, the other al­
lele 1. Then in a randomly mating population of size N 
without mutation and reeombination, the expected num­
ber of generations until equilibrium GENe is given by 

E(GENe) ::::: 1.4· N (1) 

If the number of genes or the number of alleles is very 
large, GENe is only slightly larger. This is shown in the 
next theorem. 

Theorem 2 Let the number of genes or alleles be large 
enough, that the genotypes of the initial population are 
all different from eaeh other. Then in a randomly mat­
ing population of size N without mutation and reeombi­
nation, the expected number of generations until equilib­
rium GENe is approximateIy 

E(GENe)::::: 2· N (2) 

N 16 32 64 128 256 512 
GENe 29.4 60.3 128.0 245.2 546.0 1131.1 
SD 16.7 33.5 72.1 121.1 294.9 736.5 

Table 1: Gene for a large number of genes 

In table 1 numerical results from simulations are given. 
They are averages over 10,000 runs. Note the very large 
standard deviation SD. 

The theorems are in agreement with the results of 
Crow and Kimura [4]. They obtained for diploid chro­
mosomes twice as large values, i.e GENe = 2.8N and 
GENe = 4N. 

The next theorem gives the convergence time if re co m­
bination is applied. lt is restricted to binary representa­
tions. This theorem is new. 

Theorem 3 Let eaeh gene have two alleles. Let the size 
of the ehromosome be n, the size of the population be N. 
Let the initial population be randomly generated. Then 
for a randomly mating population with no seleetion, but 
with uniform erossover, the expeeted number of genera­
tions until equilibrium is approximately 

E(GENe) ::::: 1.4· N . (0.5In(n) + l)!.l (3) 

Table 2 gives some results of BGA simulations. One 
clearly observes that GEN. increases linearly with the 
popsize N and only logarithmically with the size of the 
problem n. This result shows that recombination is not 
able to substantially reduce the inßuence of genetic drift. 
We wililater show that genetic drift is indeed an impor­
tant factor if small selection intensities are used. 

N 
n 16 32 64 

32 67.1 131.0 261.9 
64 77.6 160.2 334.2 

512 107.7 224.0 475.4 
1024 123.6 247.6 504.3 
4096 141.6 289.0 

Table 2: GENe for different n and N = 16,32,64 with re­
combination (two alleles) 

The results for an infinite number of alleles case are 
qualitatively similar . To summarize some results ob­
tained by simulations, they show that GENe scales as 
N . ln(n), similar to the binary case. It seems that the 
value of GENe for an infinite number of alleles is about 
the value of GEN. for the binary case with twice as 
many genes. The popsizes are held equaI. 

In the next section we will analyze selection and re­
combination in large populations. 

3 Response to selection 

In this section we summarize the theory presented in 
more detail in [13],[14]. The change produced by selec­
tion that mainly interests the breeder is the response to 
seIeetion, which is symbolized by R. R is defined as the 



difference between the population mean fitness of gen­
eration t + 1 and the population mean of generation t. 
R(t) measures the expected progress of the population . 

R(t) = M(t + 1) - M(t) (4) 

where M(t) denotes the average of the population at 
generation t. Breeders measure the selection with the 
selection differential, which is symbolized by S. It is de­
fined as the difference between the mean fitness of the 
selected parents M. (t) and the mean fitn ess of the pop­
ulation. 

S(t) = M.(t) - M(t) (5) 

Breeders often use truncation selection or mass selection. 
In truncation selection with threshold T , the T % best 
individuals will be selected as parents. T is normally 
chosen in the range 10% to 50%. 

The prediction of the response to selection starts with 

R(t) = bt . S(t) (6) 

bt is called realized heritability in quantitative genetics. 
The breeder either measures bt in previous generations 
or estimates bt by different methods. Two popular meth­
ods based on the regression of parents to offspring will 
be explained later. It is normally.assumed that bt is 
constant for a certain number of generations. This leads 
to 

R(t) = b· S(t) (7) 

There is no genetics involved in this equation. It is sim­
ply an extrapolation from direct observation. The pre­
diction of just one generation is only half the story. The 
breeder (and the GA user) would like to predict the cu­
mulative response R. for s generations of his breeding 
scheme. 

R. = L R(t) = b LS(t) (8) 
t=1 t=1 

The response to selection is the product of the heritabil­
ity and the selection differential. For predicting the re­
sponse to selection band the selection differential have 
to be estimated. 

If the fitness values are normal distributed , the selec­
tion differential S(t) in truncation selection is approxi­
mately given by 

S(t) = I· O"p(t) (9) 

where O"p is the phenotypical standard deviation. I is 
called the seleciion intensity. The formula is a feature 
of the normal distribution. A derivation can be found in 
[3]. 
The seien ce of artificial selection consists of estimating b 
and O"p(t). Wejust cite the following theorem [13]. It was 
proven for the ONEMAX function under the assumption 
that O"p(t) has a binomial distribution 

O"p(t) = Jn . p(t) . (1 - p(t)) 

p(t) is the probability of the advantageous allele in the 
population at generation t. 

Theorem 4 Let the breeder genetic algorithm be run 
with uniform crossover. If the population is large enough 
that it converges to the optimum and if the selection in­
tensity I is greater than 0, then the response to seleciion 
is given for the ON E M AX funciion by 

R(t) = I . Jn. p(t)(1- p(t)) (10) 
The number of generations needed until equilibrium is 
approximate 

GENe = (~- arcsin(2po - 1)) . v: (11) 

Po = p(O) denotes the probability of the advantageous bit 
in the initial population. 

We next compare the analytical results with simula­
tions. In figure 1 the mean fitness versus the number of 
generations is shown for three popsizes N = 1024,256, 
and 64. The selection intensity is I = 0.8, the size of the 
problem n = 64. The initial population was generated 
with Po = 1/64. 

A doser look at the simulation results show that the 
phenotypic variance is slightly less than given by the 
binomial distribution. The empirical data is better fitted 
if the following estimate is used 

Up(t) = .!!..-Jn . p(t) . (1- p(t)) (12) 
4.3 

Using this variance one obtains the equations 

R(t) = .!!..- . I · Jn . p(t)(1 - p(t)) 
4.3 

G - 4 .3 (7r . ( )) vn EN e = - - - arcsm 2po - 1 . -7r 2 I 

MeanFit 
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Figure 1: Mea.n fitness for various N (T = O.S, po = 1/64). 
N = 64 converges first. 

The fit of equation 13 and the simulation run with 
N = 1024 is very good. For N = 256 and N = 64 the 
population does not converge to the optimum. These 
popsizes are less than the critical popsize N*(I,n , po) . 
The critical popsize is defined to be the minimum pop­
size that the BGA converges with high probability to 
the optimum. The problem of determining the critical 
popsize will be discussed later. 



We have not been able to prove a similar theorem for 
an infinite number of alleles. The difficulty lies in es­
timating the variance of the population. We will give 
sorne simulation results in the next section. 

For proportionate selection which is used by the simple 
genetic algorithm we extend the theorem already proven 
in [1:3]. 

Theorem 5 For a genetie algorithm using proportion­
ate selection the seleetion differential is given by 

0"; (t) 
S(t) = M(t) (15) 

For the ON EM AX function of size n the response to 
seleetion ean be eomputed /rom 

R(t) = 1 - p(t) (16) 

1f the population is large enough, the number of genera­
tions until p( t) = 1 - f is given for large n by 

1 - Po GEN1_ t ~ n ·In-- (17) 
f 

Po is the probability of the advantageous allele in the ini­
tial population. 

Proof We will only prove 17. For ON EM AX(n) we 
have R(t) = S(t). As before we approximate the varianee 
by. the variance of the binomial distribution 

O";(t) ~ np(t)(1 - p(t)) ( 18) 

Beeause M(t) = np(t), equation 16 is obtained. From 
R( t) = n(p( t + 1) - p( t)) we get the differenee equation 

1 1 
p(t + 1) = - + (1 - - )p(t) 

n n 
(19) 

This equation has the solution 

() 1( (1) l)t_l) I t pt = - 1 + 1 - - + ... + (1 - - + (1- -) Po 
n n n n 

This equation ean be simplijied to 

p(t) = 1 - (1 - .!. )t(1- Po) 
n 

By setting p(GEN1- t ) = 1 - f equation 17 is easily ob­
tained. 

This theorem shows the problem of proportionate se­
lection. It selects too weak if the population approaches 
the optimum. 

Both theorems of this section assurne large popsizes. 
Due to space limitations we will just summarize our ma­
jor theoretical results in the next section .. 

4 Summary of the major theoretical 
results 

In this seetion we willjust survey the major results which 
can be found in [9],[13],[14], [2J,[I]. They are valid for 
fitness functions with additive gene effects. Let n denote 
the number of genes, N the size of the population. 

We first consider populations with recombination and 
no mutation. Any finite population of size N will con­
ver ge to a single genotype, even if selection is not ap­
plied. This effect is called genetie drift. The number of 
generations until convergence GENe is surprisingly low. 

GENe oe N · In(n) no_sei, ree, no_mut (20) 

We now turn to truncation selection. If the size N of 
the population is larger than the eritieal popsize N*, the 
minimum popsize to converge to the optimum with high 
probability, then we have 

GENe oe Vn 
1 

trunc..,sel, ree, no_mut, N ~ N* (21) 

Note that GENe is independent of N. The estimation 
of the critical popsize is very difficult. The dependence 
of N* from 1 is nonlinear. Simulations have shown that 
N* increases for large selection intensities and for small 
selection intensities [14]. For small selection intensities 
this behavior seems surprisingly. But the reason is the 
genetie drift which reduces the variance of the popula­
tion . We conjectured 

N* = Vn .In(n) . I1 (Po) . !2(I) (22) 

Proportionate selection as used in the simple GA [7] se­
lects too weak when the variance of the population gets 
smalI. The expected number of generations GEN1_ 1/ n 
until the favorable allele is distributed in the population 
with probability of 1 - l/n is given by 

GEN1- 1/ n oe n ·In(n) prop_sel, ree, no_mut, N ::}> 0 
(23) 

This number is much larger than with truncation selec­
tion. The analysis of recombination in small populations 
is difficult. We have shown in [14J the results in phase 
diagrams relating the posize and GENe. The phase dia­
grams can be divided into two areas. The border is given 
by the critical popsize N*. 
We now turn to populations using only mutation. Mu­
tation is a random search operator especially efficient in 
small populations. The most important result concerns 
the mutation rate. The mutation rate is defined as the 
probability of mutating a gene. 

Rule of thump: The mutation rate m = l/n where n 
is the size of the ehromosome is almost optimal [10]. 

For the above mutation rate the expected number of 
generations G ENopt until the optimum is found has been 
computed for the (1 + 1 )-strategy (one parent, one otf­
spring; the better of the two survives). 

GENopt oe n ·In(n) sei, no_rec, mut, N = 2 (24) 

Mutation in large population is inefficient. The scaling 
remains the same as for N = 2. But it is still twice as 
efficient as proportionate selection with recombination 
[14]. 



GEN1- 1/ n IX n ·In(n) sei, no_rec, mut, N ~ 0 (25) 

For binary fitness functions, populations using either re­
combination or mutation are able to locate the opti­
mum. Moreover, the asymptotic order of the number 
of trials needed (F Eopt ) , seems to be the same, namely 
O(n ·In(n)). For recombination this nu mb er is obtained 
by multiplying GEN by the critical popsize N*. There­
fore the question which of the two operators is more ef­
ficient is difficult to answer. The comparison needs an 
exact expression for N*, which we have not yet obtained. 
But we can easily make a qualitative comparison. The 
major difference between mutation and recombination is 
their dependence on Po, the percentage of the desired 
allele in the initial population. 

Let us take Po = l-l/n as example. Then just one bit 
of a chromosome is wrong on the average. Mutation will 
need about O(n) trials to change the incorrect bit. Uni­
form crossover of two strings, each with one bit wrong, 
will generate the optimum string with prob ability 1/4, 
independent of the size of the problem. Therefore the 
critical popsize N* is also independent of n. Thus re­
combination is much more efficient than mutation. But 
the determination of the exact N* is also difficult in this 
simple case. It will need on the average 4 trials to gen­
erate the optimum. But the probability that a popsize 
of 4 will not generate the optimum is 0.754 = 0.31. It 
needs 16 trials in order to obtain the optimum with 99% 
probability. 

Ifwe take Po = l/n the situation is reversed. Here only 
one bit is correct on the average. Now mutation is much 
more efficient than recombination which needs a huge 
popsize in order to locate the optimum. It is obvious that 
mutation is more successful than recombination when far 
from the optimum. Recombination has too few building 
blocks to generate better offspring. But recombination 
is more effective than mutation near the optimum. Here 
the success of a mutation is the lowest. 

A more detailed comparison between mutation and 
recombination, also by means of a competition between 
populations can be found in [12]. We now turn to general 
fitness functions. 

5 Statistics and genetics 

In this section we will present two methods for estimat­
ing the heritability. The first one will use the concept of 
regression 01 offspring to parent and the second one the 
concept of genetie varianee. Both methods have been 
of great importance in the development of statistics and 
population genetics. Therefore we will first give a short 
historical survey. 

Genetics represents one of the most satisfying appli­
cations of statistical methods. Modern statistics starts 
with Galton and Pearson who found at the end of the last 
century a striking empirical regularity. On the average a 
son is halfway between his father and the overall average 
height for sons. They used data from about 1000 farn i­
lies. In order to see this regularity Galton and Pearson 
invented the scatter diagram, regression and correlation 
[6]. 

Independently Mendel found so me other striking em­
pirical regularities like the reappearance of a recessive 
trait in one-fourth of the second generation hybrids. He 
made up a chance model involving what are now called 
genes to explain his rules. He conjectured these genes 
by pure reasoning - he never saw any. 

At first sight, the Galton-Pearson results look very dif­
ferent from Mendel's, and it is hard to see how they can 
be explained by the same biological mechanism. Indeed 
Pearson wrote an article in 1904 claiming that his re­
sults cannot be derived by Mendel's laws. About 1920 
Fisher, Wright and Haldane more or less simultaneously 
recognized the need to re cast the Darwinian theory as 
described by Galton and Pearson in Mendelian terms. 
They succeeded in this task, but unfortunately much of 
the original work is abstruse and very difficult to fol­
low. The difficulty lies in the exact definition of genetie 
variance and its connection to heritability. We will in 
this section adapt the classical methods to haploid chro­
mosomes. Furthermore we will precisely define the con­
cepts. 

The first theorem connects the realized heritability 
bt = R(t)/S(t) with the regression coefficient between 
midparent and offspring. Let li, /i be the phenotypic 
values of parents i and j, then 

f -:·_li+/i 
',) - 2 

is called the midparent value. Let the stochastic variable 
F dimote the midparent value. 

Theorem 6 Let F(t) = (11, ... , IN) be the population 
at generation t, where Ii denotes the phenotypie value 01 
individual i. Assume that an offspring generation O(t) 
is ereated by random mating, without seleetion. 11 the 
regression equation 

f-+I· 
Oij(t) = a(t) + bFO(t) . T + €ij (26) 

with 

E(€ij) =0 

is valid, where Oij is the fitness value 01 the offspring 01 
i andj, then 

(27) 

Proof From the regression equation we obtain lor the 
expeeted averages 

E(O(t)) = a(t) + bFo(t)M(t) 

Beeause the offspring generation is ereated by random 
mating without seleetion, the expeeted average fitness re­
mains eonstant 

E(O(t)) = M(t) 

Let us now seleet a subset as parents. The parents will 
be randomly mated, produeing the offspring generation. 
11 the subset is large enough, we may use the regression 
equation and obtain lor the averages 

M(t + 1) = a(t) + bFo(t) . M$(t) 



H ere M(t + 1) is the average fitness 0/ the offspring gen­
eration produced by the selected parents. Subtracting the 
above equations we obtain 

M(t + 1) - M(t) = bpo(t) . (M.(t) - M(t)) 

This proves b Po (t) = bt . 

The importance of regression for estimating the heri­
tability was discovered by Galton and Pearson. They 
computed the regression coefficient rather intuitively by 
scatter diagrams of midparent and offspring [6]. The 
problem of computing a good regression coefficient is 
solved by the theorem of Gauss-Markov. We just cite 
the theorem. The proof can be found in any textbook 
on statistics [15] . 

Theorem 7 A good estimate for the regression coeffi­
cient of midparent and offspring is given by 

b 
_ () _ cov(O(t), F(t)) FO t - _..!..-~~.:..:... 

var(F(t)) 

The covariance of 0 and F is defined by 

(28) 

cov(O(t) , F(t)) = ~2)oi,j-av(O(t))){fi ,j -av(F(t))) 
i,j 

av denotes the average and var the variance. Closely 
related to the regressiQll coefficient is the correlation co­
efficient cor(F,O). It is given by 

- (var(F(t)) 1/2 
cor(F(t) , O(t)) = bf'o(t)· var(O(t))) 

The above theorem enables us to estimate the heritabil­
ity by a second method . It works as folIows. For a 
large sampie population F the offspring have to be cre­
ated by random mating. Then the regression coefficient 
bpo can be computed by equation 28. This procedure is 
more robust than dividing R(t) by S(t). First, it works 
also in the case of small selection intensity. Second, the 
trustworthiness of the computation can be estimated by 
statistical techniques. 

By the above method an average value for the her­
itability is computed. The average is taken over the 
whole domain . For the breeder genetic algorithm we 
decided to proceed slightly differently. The regression 
coefficient is only computed for the selected parents and 
their offspring. This local approximation makes it pos­
sible to compute regression coefficients which depend on 
the given population and the local fitness landscape. 

The next theorem shows the connection between mid­
pa'rent and parent regression. 

Theorem 8 Midparent and parent regression are con­
nected by 

bFO(t) = 0.5· bf'o(t) (29) 

fl -
cor(F(t), O(t)) = V '2 cor(F(t), O(t)) (30) 

Proof We have 

cov(O(t), F(t)) = cov(O(t), F(t)) 

var(F(t)) = 0.5· var(F(t)) 

From (28) the theorem is obtained. 

We now describe a method for estimating the co­
variance. This method connects a microscopic genetic 
chance model and the macroscopic phenotypic covari­
ance. It is restricted to discrete genes. In this paper we 
only give the necessary definitions and the fundamental 
theorem. The interested reader is refered to [1] where 
the proof can be found . A detailed computation is given 
for a diploid chromosome with two genes in [4]. 

Let a haploid chromosome with n binary genes Xi be 
given, f(x) its fitness. Let the genetic chance model be 
defined by uniform crossover. This model can be con­
sidered as Mendei's chance model restricted to haploid 
chromosomes. We will decompose the fitness value f(x) 
recursively into an additive part and interaction parts. 
Let p(x) denote the probability of x, p(XIXi) the con­
ditional probability of x given Xi. First we extract the 
average. 

f(x) = av(f) + ro(x) (31 ) 

Then we extract the first order (additive) part from the 
residual ro(x). 

n 

ro(x) = L f(i)(Xi) + rl(x) (32) 
i=1 

where f(i)(Xi) are given by 

f(i)(Xi) = L p(xlx;)ro(x) = L p(XIXi)f(x) - av(f) 
Xlri Xlri 

Here LXlri means that the i-th locus is fixed to the 
value Xi. The fCi)(Xi) minimize the quadratic error 
Lx p(x)rl (X)2. 
If rl (x) :;E 0, we can proceed further to extract the second 
order terms from rl(x): 

where 

rl (x) = L fCi ,j) (Xi , Xj) + r2(x) (33) 
(i.1) 
i<j 

fCi,j)(Xi,Xj)= L p(Xlxi,Xj)rl(x) 
Xlri,rj 

= L p(XIXi, Xj) f(x) - fCi)(Xi) - fcn(xj) 
Xlri,rj 

lf we have n loci, we can iterate this procedure n - 1 
times recursively and finally we get the decomposition of 
fas 

f(x) J+ Lf(i)(Xi) + Lfci,n(Xi,Xj)+'" 

+ 
Ci,j) 

L f(i, .... ;n_,)(Xi" ... , Xi n_,} + rn_l(x) 
(i11···,in_tl 
i, < ... <i n _ 1 



Let Vk for k = 1 to n - 1 be defined as 

and 

(i., .... i k ) X"l""'X'k 

i 1<···<ik 

x 

(34) 

(35) 

We are now able to formulate the fundamental theorem. 

Theorem 9 Let the population be in linkage equilibrium 
Z. e. 

n 

p(x) = I1Pi(Xi) (36) 
;:::1 

Then the variance of the population is given by 

var(F) = VI + V2 + ... + Vn - 1 + Vn (37) 

The covariance of midparent and ojJspring can be com­
puted from 

_ 1 1 1 n 1 
cov(F,o) = 2VI + 4V2 + ... + 2n Vn = L 2k Vk (38) 

k:::1 

Prom theorems 7 and 9 we obtain 

Corollary 1 1f the fitness function zs additive that is, 
f(x) = l:i fi(Xi), then 

cor(F,O) = yTf2 bpo = 1 (39) 

The above theorem plays an important role in the science 
of breeding. Breeders conjecture that the additive ge­
netic variance VI is the most important factor of the her­
itability. The higher order interactions contribute much 
less to the heritability. Therefore they can be neglected. 
We will test this conjecture in a forthcoming paper. 

Numerically, decomposing the variance is computa­
tionally far too expensi ve to be of use for the breeder 
genetic algorithm. But the regression technique is very 
simple to implement. We will show in the next section 
that the regression technique can be used to control and 
guide the breeder genetic algorithm. 

6 Numerical applications of the theory 

From statistics and population genetics it is known that 
the regression coefficient should be a reliable estimate 
for heritability in the case of continuous fitness functions 
and large populations. Therefore as a first example we 
take the minimization of the hypersphere. The BGA for 
continuous functions has been described in [13]. It uses 
a floating point representation. In figure 2 scatterdia­
grams of midparent and offspring at generation 1 and 30 
are shown. In this example only discrete recombination 
is used, no mutation. It is easily seen that the whole pop­
ulation is moving towards the global minimum, which is 
o in this example. The regression coefficient is almost 
exactly one in both diagrams as predicted by the theory. 

In figure 3 the numerical values of the two different es­
timates for the heritability are shown (R(t)j S(t) and the 
regression coefficient). Both estimates oscillate around 
1 as predicted . The correlation coefficient is about 0.5. 
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Figure 2: Scatter diagrams for generations 1 and 30 
for the hypersphere. Only discrete recombination is used 
(N=1024,T=0.5). 

This is less than the maximum value possible, which is 
v'Q.5. The reason for this difference is the selection. The 
selection reduces the variance of the parents and there­
fore the correlation coefficient. 
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Figure 3: Heritability estimates (regression coefficient solid 
line, R(t)/S(t) dashed line) and correlation coefficient r for 
the hypersphere (N =1024,T=0.5). 

We just report the results for a simulation run without 
selection. In this case the R(t)jS(t) estimator cannot be 
used because S(t) is about O. The regression coefficient 
can be computed as usual and remains 1. Furthermore 
the correlation coefficient is about v'Q.5 as predicted by 
the theory. 

The above results are not restricted to simple uni­
modal functions. As the next example we take the highly 
multimodal function which is known as Schwefel's func­
tion F7 [13]. 

n 

F7 = L -Xi sin ( JIxJ) - 500 ::; Xi ::; 500 (40) 
1 

The theory predicts that the multimodality of this 
function can be considered more or less as noise for the 
BGA . It should have no major influence on the regression 
coefficient. Indeed, with random mating, the regression 
coefficient is 1 and the correlation coefficient between 
midparent and parent is about v'Q.5, just as for the hy­
persphere. Figure 4 shows areal BGA simulation run 
with selection, recombination and mutation . One clearly 
observes that the search is first driven by recombination, 
then by mutation. Prom generation 17 on , the regression 
coefficient substantially differs from the ratio estimator 
R(t)jS(t). Now the search is mainly driven by the ran­
dom operator mutation. The BGA mutation scheme is 
described in [13]. 
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Figure 4: Heritability estimates b with mutation and re­
combination (N = 256). The correlation coefficient r drops 
to zero. The regression coefficient (solid line) and the ratio 
estimator (dashed line) are almost equal at the beginning. 
Then the ratio R(t)fS(t) goes to zero whereas the regression 
coefficient remains high till generation 22. 

Next we turn to binary functions. We take as examples 

• ONEMAX(n) 

• PLATEAU(20,3) 

• DECEP(1O,3) 

PLATEAU(20,3) has astring length n of 60. An in­
crease in fitness is allocated only if three consecutive 
bits at loci 1,3,6, .. are 1 's. In each case, the fitness is 
increased by 3. DECEP(10, 3) is the deceptive function 
defined by Goldberg [9]. 

In figure 5 the results of a BGA run are shown for 
ON EM AX(64) with a truncation threshold of T = 0.5 
and uniform crossover, but without mutation. The two 
heritability estimates coincide fairly weil . They are 
about 1, as predicted. The correlation coefficient is 
about 0.5 till generation 14. This is less than the correla­
tion coefficient without selection, which is .JQ.5. At the 
end of the run the correlation coefficient increases. This 
behavior indicates that the genotypes of the selected par­
ents are becoming very similar. Therefore the offspring 
are very similar to both parents. 
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Figure 5: Heritability b estimates (regression coefficient solid 
line, R(t)fS(t) dashed line) and correlation coefficient r with 
recombination only for ONEMAX(64) (N = 128, T = 0.5) 

Our next example is the PLATEAU function . We 
will discuss PLATEAU(20,3) and PLATEAU(20,5). 
PLATEAU(20,5) has a plateau of size 5, therefore it 
is more difficult to optimize. Without selection the re­
gression coefficients for the two functions are about 0.7 
and 0.4, the correlation coefficients are ab out 0.5 and 
0.3. In figure 6 we have used a truncation threshold 
of T = 0.5. For both functions the regression coeffi­
eients are substantially higher than without selection. 
This indicates that selection is very effective for this fit­
ness function. But note that the realized heritability 

R(t)f S( t) is considerably smaller than the regression co­
efficient. For PLATEAU(20,5) it substantially increases 
during the run. 
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Figure 6: Heritability b estimates (regression coefficient solid 
line) for PLATEAU(20,3) and (20,5) 

The last example is the deceptive function DE­
CEP(1O,3) . This function is called deceptive, because 
the search is guided into the local optimum (0,0,0). The 
global optimum is at (1, 1, 1). Without selection, the re­
gression coefficient is about 0.5 and the correlation coef­
ficient about 0.35. This is shown in figure 7. 
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Figure 7: Heritability b and correlation r estimate with re­
combination for DECEP(10,3), no selection (N = 256) 

The behavior radically changes with selection. If selec­
tion is applied, both the regression coefficient and the 
ratio estimator become erratic. Half of the time they 
are negative. This shows selection with this fitness func­
tion works against crossover and vice versa. 

For binary functions the heritability can also be esti­
mated by decomposing the genetic variance. We have 
already used this method for the ONEMAX function. 
But the numerical implementation for the general case 
is prohibitive. The method of decomposing the variance 
will numerically be useful if the first term, the additive 
genetic variance VI is sufficient for estimating the heri­
tability. We must postpone this investigation. 

To summarize this section: The theory presented is es­
pecially applicable for continuous functions. For many 
continuous fitness functions the regression coefficient will 
be 1, the maximum possible. For binary functions the re­
gression coefficient and the realized heritability give use­
ful information about the complexity of the fitness land­
scape and how to guide the search of the breeder genetic 
algorithm. 

7 Concl usion 

Efficient evolutionary algorithms for optimization should 
be based on the science of breeding rather than on nat­
ural selection. The breeder genetic algorithm BGA con-



nects the theory of genetic algorithm with classical pop­
ulation genetics and statistics. Some of the results, al­
ready known in the science of breeding, have been ex­
tended or made more precise. Several possible improve­
ments need further study. One example is to use nonlin­
ear regression techniques for estimating the heritability 
in complex fitness landscapes. 

We believe, that it has been a big mistake in the theory 
of genetic algorithms, that researchers tried to develop a 
new theory without looking into the theory already de­
veloped in population genetics. It took the most famous 
statisticians and population genetics researchers alm ost 
half a century to derive at the theory presented here. 
The so called schema theorem [7] which is the starting 
point of the conventional GA theory is either a tautol­
ogy or it is incorrectly used. The fundamental theorem 
of section 5 is a generalized version of Fisher 's fundamen­
tal theorem of natural selection . It correctly describes 
the development of a genetic population. By comparing 
this theorem with the schema theorem one easily detects 
why the schema theorem has no predictive power. 

The BGA solves the problem of how to scientifically 
breed a population. We hope that genetic algorithm re­
search in the future concentrates on the real problem 
remaining - how to find a good representation for the 
given application . For combinatorial optimization prob­
lems the representation problem is discussed in [9],[11]. 
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(Eds.), MIT Press, Cambridge, MA, 1994 and 
refers to the second part of my talk. 

Abstract 

We discuss a system of autocatalytic sequences 
of binary numbers. Sequences come in two 
forms, a 1-dimensional form (operands) and a 
2-dimensional form (operators) that are able to 
react with each other. The resulting reaction 
network shows signs of emerging metabolisms. 
We discuss the general framework and examine 
specijic interactions for a system with strings 
of length 4 bits. A self-maintaining network 
of string types and parasitic interactions are 
shown to exist. 

1 Introduction 

Sequences of binary numbers are the most primitive 
form of information storage we know today. They are 
able to code any kind of man-made information, be it 
still or moving images, sound waves and other sensory 
stimulations, be it written language or the rules of math­
ematics, just to name a few. As the success of von­
Neumann computers has shown over the last 50 years, 
binary sequences are also suflicient to store the com­
mands that drive the execution of computer programs. 
In fact, part of the success of the digital computer was 
due to the universality of bits and their interchangeabil­
ity between data and programs. 

It is not far-fetched to expect that the physical iden­
tity between operators (programs) and operands (data) 

mayaiso play an essential role in self-organisation. We 
have proposed to consider a simple self-organising sys­
tem [1], in which sequences of binary numbers are able 
to react with each other and sometimes even to repli­
ca te themselves. This ability of binary strings was a 
result of the proposition to consider binary strings simi­
lar to sequences of nucleotides in RNA. RNA sequences 
which presumably stood at the cradle of life [2, 3], seem 
capable of self-organisation and come in at least two al­
ternative forms, a one-dimensional genotypic form and a 
two or three-dimensional phenotypic form. We proposed 
to consider binary strings in analogy and to provide for 
a second, folded and operative form of strings. Techni­
cally, we considered as this alternative a two-dimensional 
matrix form that is able to perform operations on other 
one-dimensional binary strings. 

2 Reactions between binary strings 

The fundamental ideas of this model have been out­
lined elsewhere (see ref. [1],[4],[7] for details). Here we 
only give abrief overview of what has been learned so 
far. 

Let us consider sequences 

s= (Sl,S2, ... ,Si, . .. ,SN). (1) 

of binary symbols Si E {O, I}, i = 1, ... , N organised in 
I-dimensional strings. 

Then we ask the question: Does there exist an alter­
native form of these strings, that is (i) reversibly trans­
formable into the form (1), and is (ii) operative on form 
(1)? The answer is surprisingly simple and weil known 
from mathematics: Yes, there are operators with the 
above capabilities, known as matrices. 

Thus, we require the existence of a mapping M 

M: s-+Pr (2) 

which transforms sinto a corresponding 2-dimensional 
matrix form Pr of the sequence which should be unique 
and reversible. This mapping is simply a spatial reorgan­
isation of the information contained in a sequence and 
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Figure 1: Some two-dimensional compactly folded forms of 
astring in an example with N = 16 binary numbers: s = 
(1101001011001000) . 
(a): non-topological folding, (b) and (c) : topological foldings. 

may be termed a fo/ding , in elose analogy to the notion 
used in molecular biology. 

The most compact realization of such a 2-dimensional 
form would be a quadratic matrix. For astring with 
a quadratic number of components N, N E Nsq with 
Nsq = {I , 4,9 , I6 , 25, ... }, the procedure is straightfor­
ward: Any systematic folding (examples are shown in 
Figure 1) would do. Since folding is not yet very sophis­
ticated, and different configurations may be obtained by 
a renumbering of string components , we shall consider 
here the topological folding of Figure 1 (b) only. 

In the more general case of N being a non-quadratic 
number, different generalizations are reasonable. Here 
we shall only discuss a compact folding 1 in non-square 
matrices, where 

(3) 
In order to treat non-quadratic cases similar to the 
quadratic case, a bias should be used in the direction 
of the most compact solution, i.e. 

Ni = VN + Ci, 

with I ci lassmall as possible. 

i = 1, 2 (4) 

Table 1 gives the resulting 2-dimensional form for 
strings up to N = 10. One can see that strings with a 
length corresponding to a prime number are somewhat 
special as they do not allow any compactification in the 
2-dimensional form. 

The inter action between a 2-dimensional form of a 
string and a I-dimensional form can be considered a re­
action between the two strings. As an example, let us 
assurne an operator Ps was formed from string s. This 
operator might now "react" with another string, s', pro­
ducing thereby a new string s": 

Ps s' => s" (5) 

The notion here is that some sort of raw material (analo­
gous to energy-rich monomers in Nature) is continuously 
supplied to allow the ongoing production of new strings 
based on the information provided by the cooperation of 
Ps and s' . 

1 Compact foldings do not have any spacing between ad­
jacent string elements 

Length Compact folded form 

1 (sJ) 

2 ( SI S2 ) 

3 ( SI S2 S3 ) 

4 i SI S2 ) 
S4 S3 

5 ( 81 S2 83 S4 85 ) 

6 ( SI S2 S3 ) 
S6 85 S4 

7 ( SI S2 S3 84 S5 S6 87 ) 

8 ( 81 S2 S3 84 ) 
S8 S7 86 85 

( SI 
S2 

S3 ) 9 S6 S5 S4 

S7 S8 S9 

10 ( SI S2 S3 S4 S5 ) 
S10 8 9 88 S7 S6 

Table 1: Compact topological string folding with length up 
to N = 10. Each folding comes also with the transposed 
matrix. 

A typical example of an interaction is given in Figure 2 
for the simple case of strings of the same quadratic length 
N . s' might be considered as concatenated from VJii 
segments with length .JN each. The operator Ps acts on 
each of these segments sequentially, and performs semi­
local operations. In this way, it moves down the string 
in steps of size .JN until it has finally completed the 
production of a new string s". 

The particular algorithm for assembling new compo­
nents "0" and " 1" into strings that we have examined in 
more detail , is: 

i=I, ... ,VJii k = 0, ... , VJii - 1 

with u[ ] being the squashing function 

u[x] = {I for x ~ 0 
o for x < 0 

(6) 

(7) 

and e used as an adjustable threshold. Eq. (6) may 
be interpreted as a combination of Boolean operations, 
applied separately in each segment k of the string if e = 
1. 

The consistent generalization of eq. (6) for interac­
tion of non-quadratic strings and for strings of differ­
ent length is straightforward: Suppose a matrix of size 
NI x N2 is interacting with astring of length N3 • The 
operator locally interacts with NI elements of the sec­
ond string in order to generate one component of the 
new string. This operation will be repeated N2 times, 
then the operator moves on to interact with the next 



-lN-

tri] 1+ 1+ 
0 

N 0 >- N 

I 

1 
Operator Ps String s' String s" 

Figure 2: An operator Pt of matrix dimension v'N x v'N (derived from string S) acts upon astring s' consisting of .JN 
segments of length v'N each to produce a new string s" . 

NI elements of the second string. The newly produced 
string will thus consist of N4 elements with 

N3 
N4 = r NIl x N 2 . (8) 

where r x 1 are Gaussian parentheses giving the next 
larger integer to x. 

In mathematical terms, the interaction reads: 

with 

S~'+kN2 = (J' :L: PiiS'j+kN, - e 
[

i=Nl 1 

z=I, ... ,N2 

;=1 

N3l _ 1. k = 0, ... , r NI 

(9) 

This interaction is generally length-changing - either 
resulting in a shorter or a longer product strings. The 
particular direction of this length-change depends on the 
relation of NI to N2 : lf NI > N 2 then N4 < N3 , and 
the new string is shorter. If, however, NI < N 2 then 
N4 > N3 , and the new string is longer. 

The different types of possible reactions between 
strings are listed in Table 2. For a given N , say N = 4, 
the reactions form areaction network, and we shall ob­
serve in the next Section the behavior of such a network. 

3 Dynarnics of a sampIe system 

Every reaction vessel is only able to keep a finite num­
ber of strings, say M. The reactions discussed in Section 
2, however , continuously produce new strings. There­
fore, a competitive dynamics has to be implemented by 

Reactants Product Description 
I 

s + s' s" Heterogeneous reaction 
I 

s + s' s Replication I 

s+ s' s' Replication 

s+s s' Heterogeneous self-reaction 

s+s s Self-replication 

Table 2: Characterization of different polymerization re ac­
tions. 

providing for an overflow mechanism for the reaction ves­
seI. Since at present we would like a well-stirred reaction 
vessel without any spatial structure for reactions, the re­
moval of strings will be a random process, hitting each 
sort of strings with a probability proportional to its con­
centration. For each newly produced string, one string is 
removed from the vessel. Whereas this random process 
does not influence in any way the constitution of the ves­
seI content, due to different re action channels producing 
new strings, a change in the composition of the content 
will happen over time. 

There are, however, some potentially "lethai" strings 
in such systems. Astring is said to be lethai ifit is able to 
replicate in an unproportionally large number in almost 
any ensemble configuration. For eq. (6), this happens to 
be the case for two self-replicating string types 2, s(O) = 

(2 N-l) . (O,O, ... ,O,O)ands =(1,1, ... ,1,1). Theformeris 
able to replicate with every other string, the latter with 
most of the other strings. 

2We shall name strings with decimal numbers correspond­
ing to their binary sequence 



In order to balance this tendency of the system we 
prohibit production of s(O) and discourage production of 
s(2

N
-

1
). In other words, s(O ) will not be added to the 

vessel , if the reaction product should be s(O) . Instead, 
a randomly selected string will be copied. We deal with 
s(2

N
-

1
) in a more gentle way by providing a means of 

non-deterministic string removal due to decay processes. 
The fewer the number of "1" 's astring contains, the 
more stable it becomes. The chance to decay therefore 
depends on the string feature 

N 
I (k) = ~ s(l:) 

~, ' 
i=1 

k = 1, ... , M . (10) 

I(k ) measures the number of" 1" 's in string k and deter­
mines a probability 

( 11) 

which determines whether astring should be removed . 
Usually, we set the parameter n to n = 1. In any case, 
the decay probability of s(2

N
-

1
) is 1. Once astring de­

cays, its place might be filled 
(i) with a later reaction product or 
(ii) with a copy of a randomly selected string in the ves­
seI. The latter method has the advantage of allowing a 
constant string nu mb er M in the vessel and is adopted 
here . 

One sweep through the algorithms hence consists of 
the following steps: 

STEP 1: 

Generate M random binary strings of length N each 

STEP 2: 

Select astring and fold it into an operator by forming 
a compact matrix 

STEP 3: 

Select another string and apply the operator gener­
ated in STEP 2 

STEP 4: 

Release the new string, the old string and the oper­
ator (as string) into the reaction vessel , provided it 
is not an s(O). Otherwise go to STEP 2. 

STEP 5: 

Remove one randomly chosen string in order to com­
pensate for the addition of astring in STEP 4 

STEP 6: 

Select one string and substitute it according to the 
prob ability of (11) with the copy of a randomly se­
lected string 

STEP 7: 

Go to STEP 2 

M sweeps through this algorithm are called a genera­
tion. 

For a discussion of the system's dynamic behaviour 
we use as observables the concentrations Xi (t) of all the 
different string types s(i) with: 

Xi(t) = mi(t)/M (12) 

where mi(t) is the number ofactual appearances ofstring 
type s(i) in the vessel at time t. 

lf we run a system by seeding it with an initial com­
position of M random strings, we regularly observe a 
transition into a (mostly fixed point) attractor. Due to 
different rates of production of different sorts , an initial 
composition will change until an equilibrium is reached . 
During the transition, new sorts are produced, already 
present sorts disappear, and every now and then a co­
existence between sorts is reached for some time. As long 
as new sorts are created by interactions between already 
present sorts, the network has to reorganise itself in order 
to incorporate the newly emerging reaction channels be­
tween the different sorts. After some time, however, no 
new string sorts arrive , and the system reaches a steady 
state. Thus, the system behaves as one of the metabolie 
networks that are discussed in Bagley et . al. [5 , 6] . As 
long as we have a small number of sorts, we can easily 
describe the system by a set of deterministic differential 
equations for the time development of string sort con­
centrations. 

Deterministic rate equations were derived in [1] and 
are given he re as a summary: We assume continuous 
non-random concentration functions Yi(t) of the differ­
ent string types i, 1 ~ i ~ ns, which are considered to 
approximate the time averaged concentrations <Xi>t : 

o ~ Yi(t) ~ 1 (13) 

The deterministic rate equations in Yi(t) read: 

Yi(t) = A(t)Yi(t) + [BiYi(t) + f: GikYk(t) - Di] Yi(t)+ 
k~i 

( 14) 

where Bi, Gib Wijk are coupling constants derived 
from areaction table containing all sorts l...ns . Di de­
termines a selection term 

(15) 

and A(t) reflects the addition of strings due to. random 
copies 

where 

a .. - {1 
'1 - 0 

ns ns 

A(t) = L aijYi(t)Yj(t) + L DiYi(t) 
iti 

(16) 

if the reaction of s(i ) and sU ) produces s(O) 

otherwise . 
(17) 



String 

Operator 1 2 3 4 5 6 7 8 9 I 10 11 12 I 13 I 14 I 15 

1 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3 

2 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3 

3 1 1 1 2 3 3 3 2 3 3 3 2 3 3 3 

4 0 4 4 0 0 4 4 8 8 12 12 8 8 12 12 

5 1 4 5 2 :3 6 7 8 9 12 13 10 11 14 15 

6 0 5 5 0 0 5 5 10 10 15 15 10 10 15 15 

7 1 5 5 2 3 7 7 10 11 15 15 10 11 15 15 

8 4 0 4 8 12 8 12 0 4 0 4 8 12 8 12 

9 5 0 5 10 15 10 15 0 5 0 5 10 15 10 15 

10 4 1 5 8 12 9 13 2 6 3 7 10 14 11 15 

11 5 1 5 10 15 11 15 2 7 3 7 10 15 11 15 

12 4 4 4 8 12 12 12 8 12 12 12 8 12 12 12 

13 5 4 5 10 15 14 15 8 13 12 13 10 15 14 15 

14 4 5 5 8 12 13 13 10 14 15 15 10 14 15 15 

15 5 5 5 10 15 15 15 10 15 15 15 10 15 15 15 

Table 3: Reactions table for the simulations of a N = 4 system. It was generated using a variant of (6) with topological 
folding. 

Finally, 4>( t) is a flow term that enacts competition be­
tween the various string sorts sei) by enforcing constancy 
of the overall sum of concentrations. 

The reaction table listing the interactions between 
string types (cf. Table 3) can be used to derive inter­
action graphs for various situations. In Figure 3 we have 
depicted all interaction graphs that can be generated 
from Table 3 if we start the reaction vessel with one out 
of 2N -I string types (here N = 4). Functionally iden­
tical graphs are not depicted. Figure 3 illustrates the 
variety of interactions emerging from astart with dif­
ferent string types. It ranges from self-replication over 
parasitic interaction to entire metabolisms. From an in­
teraction graph it is evident, what kind of attractor may 
be approached . 

The dynamics of the parasitic interactions of Figure 3 
is examined by integrating eq. (14) . Figure 4 - 6 show 
the results of a simulation. The transition of the string 
composition is clearly visible. In [1 ; 4] we have shown 
that simulations on the reaction level agree completely 
with the integration of rate equations used here . 

A simple metabolism emerges if we do not start with 
one sort only, but with two or more from the outset. Fig­
ure 7 shows the interaction graph of this self-maintaining 
network of reactions. This graph is somewhat special 
as each reaction channel is of nearly equal strength. A 
search through the space of all combinations of 2 initial 
sorts uncovers that the self-replicator s(12) plays some 
special role. Usually, as soon as even a spurious concen­
tration of s(12) is present, together with one other sort 
(except s(I)), the metabolie attractor emerges. Figure 8 
gives two examples. 

It is interesting to note that there are many closed 
subsets of elements within even a simple N = 4 system. 
In Tables 4, 5 we give a complete list of them, ordered 
according to their complexity in terms of participating 
string sorts. Following [8], a closed subset is defined as 
the set A* of elements from the ensemble of string types 
Ns = {s(l),s(2) , . .. ,.S(2

N
-

1
)}, 

A* ~ N s (18) 

that might be produced by aB different sequences of n 
reactions, 

Rn(A) = U?=orn(A) (19) 
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Figure 3: Interaction graphs of the system with N = 4. These graphs include all string sorts that are produced if the 
upper left string sort is used as the one and only initial sort in the reaction vesseL Solid lines connect the two string sorts 
participating in areaction. Dashed lines indicate operator sort. (a) Self-replicator, also realized by sorts s(7), s( 12) and s(15). 

(b) - (f): Simple and complicated parasitic interactions, (b) also realized by pairs (S(1I),S(15)), (s(13),s(15)) and (S(14),S(15). 
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Figure 7: Reaction graph of the metabolism of N = 4. 
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starting from an initial set A ~ Ns, for 11 -+ 00, with 

ro(A) = A (20) 

rn(A) = U?;ol ri (A) 0 rn-i-l(A) : (21) 

A* = lim Rn(A). (22) 
n-oo 

Closed sub sets are important organisational struc­
tures, especially in the light of the fact , that we can 
only populate part of sequence space, once the compo­
nent number strings increases. 

We should keep in mind, that we have dealt here with 
a system consisting of 4-bit components. The complex­
ity of interactions in such a simple system as Figure 3 
demonstrates, is astonishing. We expect the two basic 
behavioral classes, parasitic interaction and metabolism, 
to emerge in a variety of forms in systems with longer 
strings. 

4 Evolution 

As we have· seen, the dynamics in this small system 
quickly settles into one of its attractor states. The ques­
tion, however, arises, whether there is a perspective for 
evolution, that is, for a sequential exploration of possibil­
ities. For evolution to happen, an occasional mutation of 
one string into another should lead to a cascade of newly 
produced string types, that lead to a new equilibrium. 
We have shown this to happen in a N = 9 system [7], 
and will adopt the results learned there. 

We have been using a mutation as a motor for oc­
casional change. A mutation hits each string with a 
probability depending on its size. We define q to be 
the probability that one element of a randomly selected 
string changes to another symbol, here "0" to "1" and 
vice versa. Since each element may be hit, this is a length 
dependent change and the prob ability that at least one 
error occurs in astring is Q(I) = Nq, with the provi­
sion that q < < *. Evidently, this mutation probability 
depends linearlyon the concentration of string sorts in 
the re action vessel. That is to say, a more successful 
string sort will spawn more variations. Two-bit muta­
tions are then Q(2) = (N q)2 where we neglect the fact 
that sometimes back-mutation may happen . In Nature, 
at least on instance of this type of mutations occurs in 
mutations caused by cosmic radiation. 

Mutation does open up new transformation pathways 
between string sort, something Bagley et al. term a 
stochastic metadynamies [6]. 

Suppose we start our system by sort S(7). Since this 
is a self-replicating string sort, nothing interesting will 
happen, unless the mutation process intro duces one of 
its nearest neighbors s(3),s(5),s(6),8(15). The reaction 
table shows, that the appearance of s(6) will have no 
consequence, whereas the appearance of s(3), s(5), 05(15) 

allows the system to switch to another attractor. Fig­
ure 10, left, shows the effect of introducing 05(5). As a 
result, the interaction graph of Figure 3 (d) comes into 
play, and s(l) dominates. Figure 1O,right, is the evo­
lution from selfreplicator s(l5) to the metabolism con­
sisting of s(l) 05(2), s( 4 ) , 5(8). This has been achieved by 
introducing 5(12), a two-bit mutation from 5(15), in spu­
rious concentration . 

5 Conclusion 

We have examined a very simple self-organising sys­
tem. The main idea was to introduce a second form 
of the information carriers of our system, the sequences 
of binary numbers. This has been accomplished by us­
ing an operative matrix form for the strings. We then 
have defined a particular interaction between matrices 
and strings and considered the interaction itself as some 
sort of areaction with input and output. The low-level 
(" atomic") computations in the system have thus been 
likened to chemical reactions in the real world. 

lt has been shown that closed subsets of strings ex­
ist which can be considered as organisations. Under the 
assumption of one particular folding, these subsets of 
strings might be studied in their 2-dimensional matrix 
form alone, effectively yielding an interesting dass of 
mathematical objects that are dosed under the proposed 
non-linear interaction. 

We also dealt with the dynamics of the competitive 
system naturally emerging, with reactions going on be­
tween different species of strings. As in other artificial 
systems [5, 6, 9, 10, 11] an attractor state was reached 
relatively quickly, beyond which nothing interesting hap­
pened any more. However, we al ready demonstrated 
powerful evolutionary effects brought about by the in­
clusion of a mutation or the potential of length changing 
interactions. Systems with longer strings will certainly 
possess different metabolie networks, and it is dear that 
the behavioral flexibility in such systems will be enor­
mous. 



2 3 4 5 6 7 8 11 

1 (1,2) (1,2,3) (1,2,3,4) (1,2,3,4,5) (1,2,3,4,5,6) (1,2,3,4,5 ,6,7) (1,2 ,3,4 ,5,8 ,10,12) 

(4) 1,3 (1,2,4) (1,2,4,8) (1,2,3,4,8) (1,2,3,4,5,7) 1,3,5,7,11,13,15 1,3,5,7,9,11,13,15 

7 (4,8) 1,3,5 1,3,5,7 (1,2,4 ,8, 12) (1,2,3,4,8,12) 

(8) 7,15 (4,8,12) 1,3,5,15 1,3,5,7,15 

15 (8,12) 7,11,15 7,11,13,15 1,3 ,5,9,15 

1:3,15 13,14,15 7,11,13,14,15 

14,15 

Table 4: Closed subsets of elements with up to 8 members. First column: Self-replicators. In parenthesis: Subsets which 
occasionally prod uce the destructor. 

9 11 13 15 

(1,2 ,3,4,5,8,10,12,15) (1,2,3,4,5,6,8,9,10,12,15) (1,2,3,4,5,7,8,10,11,12,13,14,15) (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 

Table 5: Closed subsets with more than 8 members. All subsets occasionally produce the destructor. 
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Abstract 

Evolutionary computation comprises problem 
solution techniques that are based on ideas in­
spired by the process of natural evolution. Ge­
netic programming, one of the branches of evo­
lutionary computation, provides a framework 
in which solutions to a problem are generated in 
the form of a strategy in a LISP-like notation, 
instead of a parameterized form, which is used 
by most ofthe algorithms in evolutionary com­
putation. This paper gives a short introduction 
to the basic techniques in genetic programming 
and abrief overview of possible applications. 

Keywords: Evolutionary computation, genetic pro­
gramming 

1 Introduction 

The process of natural evolution provides the basic ideas 
for evolutionary computation techniques. Most of these 
techniques encode the possible solutions to a problem in 
the form of a real-valued vector, like in evolution strate­
gies or sometimes in evolutionary programming, or in 
the form of astring of fixed length. Such codings are 
weil suited for parameter optimization and for problems 
where solutions have a canonical representation in very 
restricted and fixed form. 

However, for many complex problems the solution can­
not be given in a parameterized form, but only in terms 
of a strategy or a computer program. In order to apply 
the ideas of evolutionary computation to the evolution 
of optimal strategies or programs, an appropriate formal 
framework has to be found. In [2, 6] modified genetic al­
gorithms are applied in order to leam the rule base of a 
fuzzy controller in the form of if-then rules. Such a rule 
base can be interpreted as a simple program or strategy. 
However, these rules are still very restrictive and a more 
general framework for formulating solution strategies is 
needed. 

J.R. Koza, who developed the genetic programming 
paradigm [7, 8], chose for various reasons LISP as the 
language in which the solutions have to be encoded. Of 
course, the genetic operators have to be adapted to the 
framework of LISP-programs as chromosomes. 

The paper is organized as folIows. After a short intro­
duction to a LISP-like notation in section 2, we explain 
the basic methodology in genetic programming in section 
:3. The fourth section reviews brießy some application 
areas of genetic programming. Although the theoretical 
analysis of genetic programming is still in a very early 
state, we point out some approaches in this direction in 
section 5. 

2 Coding of a Solution in a LISP-Like 
Style 

What kind of programming language should be chosen 
for coding possible solutions? It should have a very sim­
ple syntax and substructures or subroutines must be eas­
ily identifiable. LISP (LISt Processing) offers these fea­
tures. 

Therefore, let us shortly review the basic constructs 
of LISP, slightly modified for our purposes. In LISP 
one distinguishes between symbols for functions and for 
terminals (constants or variables). Besides these symbols 
only brackets are needed. Let:F and / denote the set 
of function symbols and terminals, respectively. 

An S-expression or a list is defined as folIows. 

1. t is a list for any t E 7. 
2. If f E :F is a function symbol for a func­

tion of n arguments and i 1 , .•• , in are lists, then 
(J i 1 •.• in) is also a list. 

:3. No other strings than those defined in 1. and 2. are 
lists. 

We can associate to each list i a function in the fol­
lowing canonical way. 

1. If i = t where t E /, then we identify i with the 
function taking the constant value t, whenever t is 
a terminal standing for a constant. In the case that 
stands for a variable, then i is the identity function 
(in that variable). 

2. If i is of the form i = (J i 1 • •• in) as described 
above and the list i j is associated with the function 
gi(x~i), ... , xii)) where i = 1, ... n, then we identify 
i with the function 



Figure 1: The tree representation of the list (1). 

Example. Assume:F = {+, *, -, sin} and T 
{x,y,z,O,l,7r}. Then the list 

( + (sin x) (* 7r y)) 

is associated with the function 

!(x, y) sin(x) + 7r' y. 

(1) 

Note that we understand the functions +, *, and - as 
functions of exactly two arguments, i.e. we do not al­
low a list like (+ x y z). In order to express the 
function !(x, y, z) = x + y + z, we have to use either 
(+ x (+ y z)) or (+ (+ x y) z). This restric­
tion makes the definition of genetic operators more easy. 

sin is of course a function of one argument. 

lt is not necessary that the functions in :F operate on 
real numbers. Boolean functions, functions on strings, or 
on arbitrary abstract domains are also thinkable. How­
ever, what we require is that each function in :F is defined 
for any possible input. If this is not the case like for ex­
ample for the logarithm, one has to choose an arbitrary 
fixed value as the output for those values for which the 
function is not defined. lt might be reasonable to en­
rich the set of terminals T with an extra constant error, 
which is chosen as output if a function is not defined 
somewhere. 

The representation of a list as astring over the alpha­
bet of function symbols, terminals, and brackets is very 
convenient for storing them in a computer. But for the 
way in which the list was defined as a composition of 
functions, trees seem to be more suitable. A list can be 
transformed into a tree in the following way. The no des 
are the terminals and function symbols appearing in the 
list. Anode representing a function symbol is connected 
to its 'argument' nodes. In this way, the terminals be­
come the leaves of the tree. The tree corresponding to 
the list (1) is shown in figure 1. 

The tree representation of a list is also appropriate 
for genetic programming, since in this coding genetic 
operators can be defined easily. 

3 Description of Genetic Programming 

The principal idea in the genetic programming paradigm 
is to evolve a population of LISP-programs or lists as 
they are introduced in the previous section in order to 
find a solution to a given problem. Based on a problem 
dependent fitness function that evaluates the members 

of the population with respect to their capabilities to 
solve the problem, selection can be defined in the usual 
manner. Even more than in genetic algorithms, the 
most important genetic operator for genetic program­
ming is crossover. Of course, crossover has to be rede­
fined for lists to guarantee that the recombination of two 
list yields again a list. The principle scheme of genetic 
programming is as folIows. 

1. Choose suitable sets :F and T of functions and ter­
minals. 

2. Create a random initial population of lists. 

3. Determine the fitness of the lists in the population. 
The fitness of a list should reflect how weH its cor­
responding function solves the given problem. 

4. Carry out selection based on fitness. 

5. Apply crossover. 

Repeat steps 3. - 5. until the termination criterion is 
satisfied. 

The termination criterion is as usual in evolutionary 
computation defined on the basis of a maximal number 
of generations, desired quality of the best chromosome 
(list), no improvements of the fitness in the last genera­
tions, etc. 

In the following, we describe more detaiIed the single 
steps to be carried out when solving a problem by genetic 
programming. 

3.1 Function Set and Terminal Set 

First of all , suitable finite sets of a functions, and termi­
nals have to be determined. lt is clear that at least the 
input variables for the problem (if there are any) have to 
be included in the set ofterminals. But in addition usu­
ally so me constants are also needed. IfBoolean functions 
are considered then the only constants ° and 1 can be 
added to the terminals. However, for real-valued func­
tions it is impossible to include all real numbers in the 
set of terminals. In this case only a few 'representative' 
numbers should be considered as terminals. Other con­
stants can be represented indirectly by iterated applica­
tion of functions from the function set to those constants 
that belong to the terminals. 

The closure property of the function set and the ter­
minal set is very important in genetic programming. lt 
requires that any terminal and any value or data type 
returned by any function is accepted by each function 
of the function set as its argument. This seems to be 
quite a restrictive postulate. But it can be easily met by 
extending partially defined functions simply by choosing 
an arbitrary fixed output for those arguments for which a 
function is not defined. For example, the division opera­
tion may yield the usual quotient unless the denominator 
is zero. Then we define for instance the zero as the result 
of the division. Another possibility is to introduce the 
value undefined, which then can also appear as an argu­
ment of function leading again to the result undefined. 
Various approaches to the solution of this problem are 
discussed in Chapter 6 of [7]. Another idea using types 
is proposed in section 3.6. 



Besides the c10sure property, the choice of the func­
tions and terminals should guarantee for sufficiency, Le. 
the lists that can be constructed from the functions and 
terminals must be capable of solving the given problem, 
or at least include a satisfactory approximate solution. 
For instance, when one is looking for a Boolean function, 
it is weil known that the function set {AND,OR} is not suf­
ficient for constructing an arbitrary Boolean ftinction, in 
opposition to the set {NAND}. Sufficiency is, of course, a 
must. But it is not required that the function set is min­
imal in the sense that without one of the functions the 
sufficiency property would be lost. Extraneous functions 
may lead to solutions that can be better interpreted bya 
human. For example, expressing a Boolean function only 
on the basis of NAND usually does not help to understand 
the character of the function. Nevertheless, it cannot be 
recommended to use too many extraneous functions and 
especially extraneous terminals, since it leads to larger 
search spaces. 

3.2 The Fitness Function 

The fitness of a list should indicate how weil or how bad 
its corresponding function solves the given problem. The 
raw fitness of a list is usually defined on the basis of a 
number of test cases. The test cases should be a rep­
resentative set of inputs. For each test case the desired 
result and the output given by the function associated 
with the list are compared and the (absolute value of 
the) error is calculated. The sum of these errors is the 
raw fitness of the list. For some problems there might 
be no fixed desired output. Instead of this, the solution 
is required to obtain as many score points as possible. 
In this case the sum over all score points collected in the 
test cases gives the raw fitness. 

The standardized fitness is defined in such a way that 
the goal is the minimization of the standardized fitness 
which should only take non-negative values. lf the raw 
fitness measures the errors then the raw fitness can be 
chosen as the standardized fitness. lf the raw fitness 
counts the scoring points, the standardized fitness can 
be defined as the maximal number of obtainable scoring 
points minus the raw fitness. 

Koza [7, 8] proposes to introduce the adjusted fitllesS 
which transforms the standardized fitness into the unit 
interval by 

a(l) 
1 + s(l) 

where s(l) and a(l) are the standardized and the nor­
malized fitness values of the list (chromosome) l. 

Finally, the normalized fitness n(l, t) of the list l in the 
population of generation t, on which selection is based, 
is given by 

a(l) 
n(l, t) = 

L:l'EP(t) a(l') 

where P(t) is the population of generation t. 

3.3 The Initial Population 

The initial population is created by producing a number 
of random lists. In principal, this is done by selecting 

randomly one of the elements of the set C = :F U T. If a 
function f E :F of n arguments was chosen then again n 
elements of C have to be selected at random. The pro­
cess is continued recursively, until finally only terminals 
were selected and thus the creation of a random list is 
completed. 

This simple procedure can lead to lists whose corre­
sponding trees have a high depth and might be very un­
balanced. To avoid this effect, a maximal initial depth of 
the trees is specified (usually 6) and for each depth from 
two to the maximal initial depth equally many trees are 
generated randomly. Moreover, 50% of the trees should 
be full, Le. the length of the path from the root to each 
leaf is the same for allleaves of the tree. Finally, dupli­
cate lists should be avoided. 

A typical population size is 500, however, for very 
complex problems a larger population size is recom­
mended. 

3.4 Selection 

Usually roulette wheel selection based on the normal­
ized fitness is carried out. When dealing with larger 
populations it might enhance the performance of genetic 
programming when fitter lists gain an additional bonus 
during selection. 

3.5 Crossover 

Crossover is the main genetic operator within the frame­
work of genetic programming. The crossover operator 
has to be modified with respect to lists. Allowing ar­
bitrary crossover points would in general lead to incor­
rect lists. The idea is that crossover should exchange 
'sub-functions' of lists, meaning that in the tree repre­
sentation subtrees are exchanged. Therefore, crossover 
is better explained on the level of trees than on the level 
of lists. When two lists are selected for crossover, for 
each of them anode in their tree representation is chosen 
randomly. In each list the chosen node marks a subtree. 
These subtreesare then exchanged by crossover. 

Consider the list (1) with its corresponding tree shown 
in figure 1 and the list 

(sin (+ (sin (+ :x y)) z)) (2) 

with its associated tree illustrated in figure 2. 
Assurne that these two list were selected for crossover 

and that for list (1) the *-node was chosen as crossover 
point whereas for list (2) the second (lower) sin-node 
was chosen. In figures 3 and 4 the respective nodes are 
marked by a dashed box and the induced subtrees are 
framed in a box. 

After crossover the subtrees are exchanged resulting in 
the trees illustrated in figures 5 and 6 that correspond 
to the lists 

(+ (sin :x) (sin (+ :x y))) 

and 
(sin (+ (* 'Fr y) z)), 

respecti vely. 
It is very important to note that in opposition to ordi­

nary genetic algorithms, the application of the crossover 



Figure 2: The tree representation of the list (2). 

Figure 3: The crossover point and the corresponding 
su btree in list (1). 

Figure 4: The crossover point and the corresponding 
subtree in list (2). 

Figure 5: The first tree after crossover. 

Figure 6: The second tree after crossover. 



operator to two identical lists (trees), does here in gen­
erallead to two new lists that do both not coincide with 
their parents. Therefore, where in genetic algorithms 
the mutation operator is needed to maintain a certain 
variety in the gene pool, in genetic programming a rich 
variety is already produced by crossover alone. There­
fore, crossover (together with selection) is considered as 
the primary operator in genetic programming, whereas 
mutation as well as other additional genetic operators are 
of minor importance. In the next subsection we shortly 
discuss some of these secondary operators. 

Typically, a crossover rate of 90% is chosen. The 
crossover point is usually selected in such a way that the 
terminal nodes, Le. the leaves, get only a 10% chance 
of being chosen. The remaining 90% of the crossover 
points are distributed equally among the internal nodes 
representing functions. 

Crossover can create more and more complex lists. To 
reduce the size of the search space it is recommended to 
limit the depth of trees and to cancel a crossover opera­
tion when a tree is generated that exceeds the maximal 
allowed length of for instance 17 nodes. 

3.6 Other Operators and Modifieations 

The definition of mutation for trees is straight forward. 
An arbitrary node is chosen randomly and the whole 
subtree below this node is replaced by a random tree. 

Permutation is inspired by the inversion operator for 
genetic algorithms. A random internal (function) node 
is chosen and its arguments are permutated randomly. 

More important than mutation and permutation is 
editing which simplifies lists on the basis predefined rules 
like 

Replaee (NOT (NOT x)) by x. 

Editing leads to shorter solutions and helps also pro­
tecting good but clumsily stated solutions like (NOT (NOT 
(NOT (NOT x)))), co ding simply the solution x, against 
destruction by crossover. 

Another way to avoid the disruptive effects of 
crossover is the application of encapsulation which re­
places a subtree by a single newly defined node which 
cannot be destroyed by crossover. Kinnear [4] discusses 
a similar concept called module acquisition which not 
only encapsulates a subtree or composed function, but 
also adds it to a module library which can be used by 
other lists by module acquisition. 

We introduced types into genetic programming for ap­
plications in medical diagnosis. Here we have the prob­
lem of a large number of different measurement values of 
different types (real, integer, boolean, and even linguis­
tic values). Moreover, it is very common to deal with 
missing values in medical diagnosis. To overcome these 
problems and to obtain solutions that are easier to inter­
pret, we defined types for the arguments of the functions 
and admitted only those list in which each function had 
its correct types as arguments. 

4 Some Application Areas 

Genetic programming is a very flexible technique and 
can therefore be applied in many fields. In this section 
we mention some standard application areas of genetic 
programming. Large collections of examples are included 
in [7, 9] where also details can be found. 

4.1 Symbolie Regression 

A very common problem is that of identifying an un­
known function which reflects some input-output be­
haviour on the basis of some given data. The idea of 
symbolic regression is to find a suitable function as a 
composition of some basic functions like polynomials 
or trigonometrie functions. These functions and some 
standard operations like addition, multiplication etc. are 
then considered as the function set for genetic program­
ming. The terminals should include the input variables 
and very few typical constants. The lists engendered 
by genetic programming are then interpreted as input­
output functions. The fitness of such a list is defined on 
the basis of the sum of (squared) errors that is produced 
by the corresponding input-output function when it is 
applied to the given data set. Symbolic regression can 
also be used for solving differential or integral equations. 
The lists or the respective functions are interpreted as 
possible solutions of the equations. The fitness is again 
computed on the basis of the errors caused by the list as 
a solution for some typical points. 

4.2 Optimal Control 

Related to symbolic regression is the problem of optimal 
control where we are looking for a transfer function of a 
controller. In some cases there might be data available 
obtained from observing an operator. Then the control 
problem reduces to symbolic regression. If only the pro­
cess itself or a simulation of it is available, fitness has 
to be defined on the basis of how well the transfer func­
tion defined by a list can cope with the process or the 
simulation. 

4.3 Planning, Emergent Behaviour, and 
Game-Playing 

In opposition to symbolic regression and optimal con­
trol, planning, emergent behaviour, and game-playing 
are usually based on strategies that are not described 
in terms of a real-valued input-output function. The 
strategies are usually more complex and thus a prob­
lem dependent function set has to be defined for genetic 
programming. Also the definition of fitness may vary 
strongly from problem to problem. 

5 Theoretical Analysis of Genetic 
Programming 

Although there are a lot of activities in evolutionary 
computation directed to theoretical analysis, for many 
algorithms such a theoretical analysis is missing com­
pletely or only a few investigations were made that give 
some hints about the power of the methods. Most re­
sults were of course obtained in the older fields of genetic 
algorithms and evolution strategies. 



For the young discipline of genetic programming only 
a few attempts for a theoretical analysis were made now, 
wh ich do not explain the behaviour of genetic program­
ming satisfactory. 

Koza [7] discussed the notion of schemata in .genetic 
programming on an informal basis. He defines a schema 
as a subtree. Although his arguments seem to be in­
tuitively appealing, he does not carry out any compu­
tat ion regarding schemata and does not even mention 
Mühlenbein'ss criticism [10] of wrong interpretations of 
the schema theorem. 

Altenberg [1] examines the capability of evolvability 
for genetic programs, i.e. the ability of a population to 
produce variants fitter than any yet existing. He points 
out that the high recombination rates in genetic pro­
gramming do usually not support the evolvabilty, al­
though they might be necessary for finding good solu­
tions quickly. 

Most of the investigations on genetic programming are 
more experimental as for example in [4, 5] than based 
on a rigorous theoretical background. Until now one 
must rely on heuristics, when one wants apply genetic 
programming. Nevertheless, the successful applications 
show that genetic programming is a technique worth a 
closer examination. 
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Abstract 
The Cenetic Programming optimization method 
(CP) elaborated by John Koza [Koza, 1992] is 
a variant of Genetic Algorithms. The search 
space of the problem domain consists of com­
puter programs represented as parse trees, and 
the crossover operator is realized by an ex­
change of subtrees. Empirical analyses show 
that large parts of those trees are never used or 
evaluated which means that these parts of the 
trees are irrelevant for the solution or redun­
dant. This paper is concerned with the iden­
tification of the redundancy occuring in G P. It 
starts with a mathematical description of the 
behavior of G P and the conclusions drawn from 
that description among others explain the "size 
problem" which denotes the phenomenon that 
the average size oftrees in the population grows 
with time. 

1 Introduction 

A growing range and variety of probl.ems are sol~ed u~­
ing the Genetic Programming Paradlgm. Especlally I.n 
control systems the ability of GP to generate symbohc 
solutions makes it an interesting optimization tool for a 
plenty of problems. But to achieve good solutions in rea­
sonable time a lot of parameters have to be adjusted, and 
often only heuristics can help to set these parameters. 

It is weil known that the representation of the possi­
ble solutions as parse trees allows the trees to grow with 
time often without improving the current best solution 
("siz~ problem" or "bloating"). This problem is often ad­
dressed in connection with some kind of "schema theory" 
for GP: to overcome the decrease in efficiency caused by 
bloating some mechanism is introduced to keep track of 
the freq~ency and saliency of subtrees (named "schema") 
[Tackett, 1994; Rosca and Ballard, 1994]. These infor­
mations are used to select "better" subtrees for crossover 
to achieve a better convergence. 

Another method to avoid "oversized" solutions is to 
add some penalty to the fitness function for too big trees: 

I it (i) = Cl! rawfi t( i) + ß sizeof( i) 

• blickle@ee.uni-sb.de 
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If the fitness is to be minimized, larger trees are "pun­
ished", because they get a higher fitness than small~r 
ones. The adjustment of the parameters Cl! and ß JS 
the main problem of this approach because they de­
pend heavily on the problem and the r~wfit functi~n. 
Examples can be found in [Koza, 1992; Kmneth E. Km­
near 1993]. Conor Ryan recently suggested a special 
case' of multi-modal fitness functions named "Pygmies 
and Civil Servants" [Ryan, 1994] where he uses two cri­
teria to determine the fitness: one list keeps track of 
the best rawfit individuals, in a second list the sorting 
criterion is the size of the individuals. 

In this paper both the phenomenon of bloating and 
the unsatisfying convergence of the search process are 
explained by means of the redundancy in .the trees. An 
exact analysis of these phenomena requues a mathe­
matical description of the evolutionary process du ring 
a generation. This description is given in the nex~ sec­
tion where also a simple theorem for convergence IS de­
rived. The subsequent section elucidates some effects of 
redundancy and explains the "size problem". Section 4 
suggests a control mechanism to reduce .redun~ancy. A 
discussion of the results and a companson wJth other 
approaches follows in Section 5. 

2 Generational Behavior of GP 

To describe the behavior of trees during a GP run one 
needs an analysis of both the reproduction and the 
crossover phase. In the following we assurne that re­
production and crossover are done sequentially: first 
a reproduction phase creates an intermediate pop~la­
tion and crossover is then performed on the fractlOn 
Pe of this inter mediate population to get the p~p~la­
tion for the next generation. This kind of descrlptlOn 
differs form that of the Genetic Programming Paradigm 
in [Koza, 1992] but is mathematically equivalent. 

2.1 Reproduction Phase 

Definition 2.1 The reproduction rate s'(I) denotes the 
expected number 01 individuals with fitness value I afl:er 
the reproduction phase. s(l) denotes the number 0/ m­
dividuals with fitness value I be/ore reproduction. 

The reproduction rate s' depends on the fitness value, 
the fitness distribution of the population, and the repro­
duction method chosen . Using this definition a classi-



fication of the reproduction methods is possible. The 
ratio :Hl gives the expected number of copies of one 
individual with fitness f. A reasonable selection method 
should of course favour good individuals by assigning 

them a ratio ·.'(H > 1 and punish bad individuals by a 

. iJJl 1 ratio ""iUT < . 
Weil known is for example the reproduction 

rate for fitness proportionate selection sfp (I) = 
s(l) i:t L.T;P /it(T) where M is the size of the popula­

tion P and fit(T) represents the fitness value of the 
individual T (see e.g. lGoldberg, 1989)). 

We concentrated our work on tournament selection 
[Goldberg and Deb, 1990], that works as folIows: Ran­
domly choose a certain number t of individuals (with 
or without replacement) from the population and take 
only the best individual for the next population. This 
process is repeated as often until the desired population 
size is reached. The tournament size t strongly affects 
the behaviour of the reproduction method. 

The expected number of best individuals for tourna­
ment selection (with replacement) can be exactly derived 
(see [Rheinert, 1994]). 
Theorem 2.1 Let M be the population size, s(/6) the 
number of current best individuals with fitness /6. Then 
the expected number of best individuals after performing 
tournament reproduction with tournament size t is 

SI(/6) = M (1- (1- SCf;)) t) (1) 

Proof: For each tournament t individuals are ran­
domly chosen from the population. The probability 
that no best individual participates in such a tourna-

ment is given by (1 - ''1;») t, as 1 - ''1;) is the prob­

ability to select a non-best individual. The probability 
that at least one best individual is in a tournament is 

then 1 - (1 - • (lt) ) t. In this case the best-fit individual 

will win the tournament. As exactly M tournaments are 
held the expected number of best individuals is given by 
Equation 1. 0 

Theorem 2.2 For a small number s(/6) ~ M of best 
individuals with fitness /6 the reproduction rate of tour­
nament with tournament size t is given by 

.s'(/6) ::::: t s(/6) (2) 

Proof: 

S/(/6,P) = M(l-(l-
S
Cf;)Y) 

::::: M(sCf;)=ts(/6) 

o 
The choice of the tournament size depends on the pop­

ulation size and the current number of individuals with 
best fitness. If the tournament size is too high there will 
be too many best individuals and the GP will perform 
badly and get stuck at a local optimum. 

2.2 Crossover Phase and Redundancy 

Definition 2.2 The edge A in tree T is called redun­
dant if for all values of the leaves (terminals) the func­
tion represented by tree T is independent of the subtree 
located at edge A. 

Note: 

• If the edge A is redundant it follows imme­
diately that all edges in the subtree located 
at edge A are redundant , too. 

• The redundancy of en edge A in general 
depends on the context. 

• All nodes located at redundant edges are 
redundant nodes. 

• The non-redundant no des are also called 
"atomic" [Tackett, 1994]. 

Definition 2.3 The proportion of redundant edges in a 
tree T is given by 

r(T) = number of redundant edges in T (:3) 
P number of all edges in T 

Definition 2.4 The redundancy dass T* is the set of 
all trees T that only differ from subtrees at redundant 
edges, i. e. for any two trees Tl, T2 E T*, Tl can be 
transformed into T2 only by changing subtrees at redun­
dant edges of Tl. 

A tree can only belong to one redundancy dass, and all 
members of the dass have the same fitness value denoted 
by fit(T*). 

Now it is easy to compute the probability p,(T) that 
a tree T of the redundancy dass T* survives crossover, 
i.e. it remains in the dass T*. 

Theorem 2.3 Let Pe be the probability of crossover and 
T a tree of the redundancy class T*. The probability of 
tree T to remain in class T* after crossover is given by 

p.(T) ~ 1 - Pe + PePr(T) (4) 
Proof: With probability 1 - Pe the tree does not par­
ticipate in crossover and with probability PePr (T) the 
crossover is performed at a redundant edge. In both 
cases the tree Tremains in the dass T*. The "~" sign 
takes into account that a tree also survive if crossover is 
performed at a non-redundant edge when a "matching" 
subtree is inserted. But the probability of that event to 
occure is very smalI. 0 

The average probability of an arbitrary member ofthe 
redundancy dass T* to survive crossover is 

p.(T*) ~ 1 - Pe + PePr(T*) (5) 

with Pr(T*) = LTW:jr(T) the average proportion of 

redundant edges in the trees of dass T*. 
lt follows from Equation 4 that within a dass the more 

redundant trees are more likely to survive. On the other 
hand it is very difficult to predict whether the redun­
dancy of a tree will increase or decrease once a redundant 
crossover si te has been chosen as this depends on the size 
of the new subtree being inserted. But this size is inde­
pendent of the redundancy, so in average the selection 
mechanism will dominate and the redundancy within a 
dass is expected to increase. 



Theorem 2.4 Let Pr(T*) be the average redundancy of 
the redundancy class T* before reproduction. The aver­
age redundancy Pr(T'*) after reproduction is in average 
independent of the reproduction method and Pr(T'*) = 
Pr(T*). 

Proof: As the reproduction of any tree of the dass 
T" is independent of the redundancy and each tree has 

. .' fit TO .. the equal reproductlOn rate • fit(TO)) no tree IS gIVen 
preference to. Tberefore, the redundancy will in average 
remain constant after reproduction. 0 

As aB statistical considerations in this paper Theorem 
2.4 is only valid in average and the effective redundancy 
during a GP run may significantly differ. 

2.3 Generational Behavior 

Now we are able to describe the behavior of the Genetic 
Program over a whole generation. 

Theorem 2.5 (Generational Behavior) Let f be the fit­
ness value of the trees of the redundancy class T* with 
IT*I members and s(f) the total number of individuals 
with fitness value f. The expected number of members 
of T* in the next generation is given by 

IT'" I ;::: IT* I ~(~1 (1 - Pe + PePr(T*)) (6) 

Proof: IT*I';U? gives the expected number of members 
of the redundancy dass T* after reproduction and before 
crossover. Using this and combining 5 with Definition 
2.1 Equation 6 is obtained. Actual Pr(T*) denotes the 
average redundancy in the dass T* before reproduction 
but it is used in Equation 6 as average redundancy after 
reproduction. But in average these two values are equal, 
as shown by Theorem 2.4. 0 

Theorem 2.5 shows that the redundancy classes with 
high redundancy will be given preference to. Condusions 
from that will be drawn in Section 3. 

In the following two different trees are compared. 

Theorem 2.6 Let Tt and T; be two redundancy classes 
with the same fitness value f but a different redundancy 
(Pr(Tn = Pr(Tt) + a, a > 0). The ratio r of trees of 
class Tt to trees of class T; after crossover is given by 

Proof: 

= 

= 

ITtl~ p.(Tt) 

IT;I:H? p.(Tn 

177lp.(Tt) 
IT;I p.(Tn 

ITtl p.(Tt) 

IT;I P.(1'i) + Pea 

(7) 

o 
lf we use Theorem 2.6 in the special case of only one 

individual in each redundancy dass (i.e. we look at the 

moment of appearance of these trees) it is possible to 
trace the ratio r for k generations : 

(k) ( p.(Tt) ) k 

r ~ p.(Tt) + pca 
(8) 

It is assumed that the proportion of redundant edges 
in average remains constant for the trees of the same 
class T* over the generations. An exact reflection must 
consider that this proportion varies (increases) with 
time, e.g. p.(Tt) and aare a function of k. But the 
basic statement of Equation 8 remains valid: the ratio 
will approximately rise exponentially in k. 

2.4 Convergence 

"Good convergence" is one of the most desirable prop­
erties of an optimization method. To achieve tbis, it is 
demanded that the current best individuals in a popula­
tion shall be in the generation at least once. By this the 
current best solution will never be lost. 

Theorem 2.7 (Convergence Theorem) Let Tb" be a re­
dundancy class with current best fitness /b and redun­
dancy Pr (Tn, s(/b) the total number of individuals with 
fitness fb and s'(/b) the reproduction rate. At least one 
member of the class Tb will in average be contained in 
the next generation if the following inequality holds: 

IT;I~fJ:1 (1- Pe + PePr(Tn) ;::: 1 (9) 

Proof: This is directly obtained from Theorem 2.5. 0 

If this statement is specialized for the case that only 
one best individual shall survive, regardless from which 
redundancy dass, the following inequality is obtained 

s'(/b) --
s(/b) (1 - Pe + PePr(Tb)) ;::: 1 (10) 

. -- 1 
wlth Pr(Tb) = 'üb) L:T;lfit(T;)=fb Pr(T;) the average re-
dundancy of all trees with fitness /b. 

Limiting oneself to a further specialization of Equation 
10 with Pr(Tb) = 0, i.e. the current best trees are free 
of redundancy, the condition that at least one best-fit 
individual survives is tightened to 

s' (/b) 
s(/b) (1 - Pe) ;::: 1 (11) 

This inequality gives a lower bound on the adjustment 
of the reproduction rate. Using tournament reproduc-

tion the tournament size should be t = '.'8:? ~ 1 ~Pc . 
The parameters of a GP run C~~:~ and Pe) should 

be adjusted according to this theorem to achieve good 
convergence. 

3 Effect of Redundancy 
In the previous section a mathematical description of the 
Genetic Programming was carried out by introducing the 
term of redundancy. Now some effects of this theory are 
derived and experimentally verified. The 6-multiplexer 
problem from [Koza, 1992] served as test problem. The 



6-multiplexer problem was chosen because it allows to 
determine the total redundancy in the trees. To achieve 
this sequentially in each edge of every tree a boolean 
NOT was inserted. If the insertion does not change 
the function table of the tree this edge is redundant 
according to Definition 2.2. This is a time consuming 
mechanism but an easy way to determine the total re­
dundancy. 

In the experiments the population size was M = 200 , 
and the probability of crossover Pe = 0.9 . The reproduc­
tion method was tournament, and the maximum tree 
size was limited to 50 nodes. All data given are the av­
erage over 100 runs. Note that the fitness measure is the 
number of errors in the function table of a tree , i.e. the 
optimal individual has a fitness value of O. 

According to Theorem 2.5 the redundancy in the trees 
of a certain (not only the best) fitness value will increase 
over time, because the trees are treated equal during re­
production phase but more redundant trees have a higher 
chance to survive crossover. This expectation is verified 
by Figure 1: in this single run, the GP was stuck at a 
local optima from generation 4 to 15 and an increasing 
redundancy is observed for all fitness values. 

Fitness 15 

4 

o . f edundancy 

Figure 1: The redundancy increases with time (6-
multiplexer problem , tournament size t = 10). 

Another way to observe the increasing redundancy is 
to continue a GP run even if a best solution is found . 
[Koza, 1992] reported the phenomenon that after some 
generations there are almost 70-80% best-fit individuals, 
but almost all best trees are different . This can be ex­
plained straightforward with redundancy : the trees are 
all different but belong to only a small number of differ­
ent redundancy classes. A very high redundancy makes 
the trees robust against crossover. Figure 2 shows the 
course of redundancy versus time. 
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Figure 2: Redundancy versus time after occuring of a 
best-fit individual 

For a given fitnessvalue this increasing redundancy 
can only be achieved by increasing the tree size, because 
some "minimal size" in the atomic part of the tree is 
necessary to reach this fitness. By this the tree size will 
grow with time and the "size problem" can be explained 
with redundancy. Figure 5 shows that the average tree 
size for a given fitness value is smaller, if a higher repro­
duction rate is chosen. A comparison with the results 
in [Tackett, 1994] is given in the next section. So if the 
redundancy can be reduced the average tree size will be 
reduced at the same time. 

One way to achieve a reduction of redundancy is of­
fered by Theorem 2.5 : If the reproduction rate s' is too 
low Theorem 2_5 implies that non-redundant trees have 
a too small chance to survive and redundancy-free trees 
will often vanish . Therefore a higher reproduction rate 
should lead to lower redundancy. The results of the cor­
responding experiments with tournament reproduction 
are shown in Figure 3 for a tournament size t of 2, 5 and 
10. It can be seen that the redundancy decreases with 
increasing selection pressure, e.g. the redundancy at gen­
eration 50 for tournament size 2 is alm ost twice as high 
as the redundancy using tournament size 10. As the 
convergence time is very different for various selection 
pressure the relation between the average redundancy in 
a population versus the average population fitness gives 
a more meaningful description. In Figure 4 it can be 
seen that ·the higher the selection pressure the lower the 
redundancy. Note that a fitness value of zero is optimal. 

The increasing redundancy makes it less likely to 
choose a non-redundant edge as crossover site and 
thereby hinders the evolution of new individuals. It 
follows from this consideration that the probability to 
escape a potential local optimum decreases with time. 

Iftwo partial solutions with the same fitness score but 
different redundancy occur at the same time, the less re­
dundant might be lost after few generations (Equation 
8). If the GP is not able to combine the two partial solu­
tions during a limited time the loss of important genetic 
material (i .e. one partial solution) is probable. 

Looking at the redundancy from an individual 's point 
of view it is advantageous to maximize the redundancy, 
because it increases the probability of the individual to 
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with tournament reproduction 

survive. From the viewpoint of GP as an optimization 
method, the redundancy is unfavorable because it aggra­
vates the optimization process. 

These considerations show the importance of redun­
dancy for the performance of the Genetic Programming 
optimization method . One suggestion to control the re­
dundancy is given in the next section . 

4 Control of Redundancy by Marking 

The idea of marking is to avoid crossover at redundant 
edges by marking all edges that are traversed during 
evaluation of the fitness function: First the marking flags 
of all nodes are cleared and if anode is evaluated dur­
ing the fitness calculation the corresponding flag is set. 
After calculating the fitness function, only at redundant 
no des the f1ags are still cleared . The crossover is then 
restricted to edges with the flag set, i.e. non-redundant 
edges. By this useless crossover sites are avoided. 

The additional time consumption caused by setting 
the marking flag is very low and the additional mem­
ory demands is one bit per node for the marking flag. 
The method implies that some subtrees are not evalu-
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Figure 5: Higher selection pressure leads to smaller tree 
sizes for the same fitness value (maxtreesize = 50) 

ated if some "run-time" condition is met. That can only 
be achieved by a suited implementation of the GP. Also 
the "total" redundancy can not be discovered, because 
it depends on the ordering of the evaluation of the sub­
trees. Consider for example the boolean ANO function 
and the tree ARO(FALSE,SUBTREE) where FALSE is a tree 
that always returns the value false and SUBTREE is an 
arbitrary tree . If the implementation evaluates the first 
subtree at first, the second subtree SUBTREE is not tra­
versed because the result will be false anyway. By this 
the SUBTREE will be discovered as redundant. But if the 
implementation evaluates the second argument at first, 
in some cases SUBTREE will be true in some cases false. 
So both subtrees will be evaluated and the redundancy 
will not be discovered. 

The marking method also depends strongly on the 
function set used to solve the optimization problem. 

Experimentally we investigated the effect of the mark­
ing method for three problems taken from [Koza, 1992]. 

For the 6-multiplexer problem the performance was 
almost doubled, as can be seen in Figure 6. The parame­
ter setting was the same as in the experiment described 
above with a tournament size of 10. This problem is weIl 
suited for the marking method because the usage of the 
function set IF AND OR NOT allows an easy discovering 
of the redundant edges. 

Using the marking method for the truck backer up­
per problem an improvement in convergence of 20 % was 
measured. The third example was the artificial ant prob­
lem, where the almost no improvement occurred . 

5 Discussion 

In Section 3 we explained the size problem using re dun­
dancy. In [Tackett , 1994] Walter Tackett states that the 
average growth in size is proportional to selection pres­
sure, and he gives an example of a deceptive problem 
solved with several selection methods to verify his state­
ment. We think that it is better to analyze the depen­
dency between the average population fitness and the 
average tree size, rat her than between the time (num­
ber of generations) and the average tree size as done by 
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Figure 6: Improving performance of the 6-multiplexer 
problem using marking 

Tackett. As a higher selec.tion pressure mostly leads to 
higher fit individuals at an earlier generation and higher 
fit individuals mostly are bigger it is natural that the 
average tree size will grow faster under higher selection 
pressure. But the relation between average fitness and 
size has a higher meaningfulness. Figure 5 shows that 
under higher selection pressure (tournament size 10) the 
average tree size for given average fitness value is smaHer 
than under lower selection pressure (tournament size 2). 
Analyzing the tree size over time yields the same results 
that Tackett has reported, but we do not think that this 
correlation gives a valuation of a good parameter setting. 

Another observation reported by Tackett is that no 
"bloating" at all occurs if there is no selection. This can 
easily be deduced from the theory of redundancy: with­
out selection all edges in all trees are redundant (accord­
ing Def. 2.2). From Pr(T) = 1 follows p.(T) = 1 for all 
trees, i.e. every tree will "survive" crossover. 

6 Conclusions 

In this paper the main emphasis was put on the mathe­
matical description of the behavior of the Genetic Pro­
gramming optimization method by introducing the term 
of redundancy. The theory showed that high fit and high 
redundant trees will spread exponentially in the popu­
lation. The conclusions drawn gave an explanation of 
the "size problem" and showed a dependency between 
selection pressure and redundancy. 

Further the new crossover operator "marking" was in­
troduced that can improve the convergence by avoiding 
redundant crossover sites. Though this method may not 
be suited for many problems it demonstrates the influ­
ence of redundancy on the evolvability of a program. 
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Racial Harmony in Genetic Algorithms 

Conor Ryan* 

University College Cork, Ireland 

1 Introduction 

This paper extends the work orginally presented in (Ryan,1994) which described 
a new selection scheme, the Pygmy Algorithm, designed for multi-objective prob­
lems. The extensions not only improve the performance of the Pygmy Algorithm, 
but show that, in certain cases, the mating of phenotypically similar parents can 
benefit evolution. The extended Pygmy Algorithm also demonstrates the power 
of evolving the parameters that control a population in parallel with the evo­
lution of the population. Finally, the paper also examines the issue of taking 
paralleis not only from nature, but also from sociological phenomenon. 

2 Background - Pygmies and Civil Servants 

The Pygmy Algorithm was orginally applied to the problem of evolving minimal 
sorting networks, which must not only be able to sort numbers, but also in as 
few steps as possible. The Pygmy Algorithm employs two fitness functions and 
maintains two lists of parents, one for each criterion of the problem. Traditional 
methods which use a single fitness function and try to balance the reward for 
each criterion force the implementor to choose how important each criteria is 
and run the risk of individuals trading off parts of the fitness function for each 
other. Neither of these problems arise with the Pygmy Algorithm. 

One of the lists contains very efficient individuals, known as Civil Servants, 
while the other contains very short individuals, known as Pygmies. When select­
ing parents for a new individual, the Pygmies and Civil Servants were treated as 
though they were morphologically different, one parent being drawn from each 
list. As a population evolved, it was found that each list contributed pressure to 
direct the evolution in its particular direction, i.e. Civil Servants ensured that 
individuals were efficient at sorting, while Pygmies exerted pressure towards 
individuals being short. It was found that, when using the Pygmy Algorithm 
for selection, individuals could not trade off various parts of the overall fitness 
function for other, less important parts, and that populations using the Pygmy 
Algorithrn were more likely to converge on an optimal solution than those that 
use a fitness function which is a surn of the two criteria. 

To aid comparison between the work presented here and previous work, the 
same problems will be examined in this paper. 

* This work is supported in part by Memorex Telexlreland Limited. Thanks to Gordon 
Oulsnam for suggestions on this paper. 



3 Gender or Race? 

Due to the fact that all the individuals were looked upon as belonging to one 
of two genders, inbreeding between individuals with similar performance was 
prevented. It was still possible, however, for individuals to breed with elose 
relatives - siblings perhaps, or even a parent of the opposite sex. In the Pygmy 
Algorithm, such incestuous behaviour did not appear to cause problems because 
of the diversity of parents maintained in each of the two lists. 

The nature of multi-objective problems is such that individuals must solve 
two or more smaller problems in order to solve the main problem. However, 
despite the fact that the Pygmy Algorithm maintained groups of individuals 
who were good at each of the sub-problems, neither group explicitly attempted 
to produce individuals who excelled at its own sub-problem, simply because 
individuals in the same group could not mate with each other. 

One of the motives behind this work is to investigate whether or not it would 
be better to try to solve the main problem together with each sub-problem all in 
parallel. The only way aGA can solve a problem is, of course, through evolution, 
so individuals in the same lists, up to now physically unable to do so, would have 
to be permitted to mate. For this reason, individuals are no longer of a given 
gender, but are assigned arace, which allows every individual to mate with every 
other, but still makes an individual's membership of a list readily identifiable. 

3.1 Racial Preference Factor 

If the original Pygmy Algorithm is taken to be using races, then each race would 
always outbreed. The descriptive name chosen for an individual's tendency to 
outbreed is Racial Preference Factor (R.P.F.) - which is simply a measure of 
the probability that an individual will choose an individual from the other race 
when selecting a mate. In the case of the original Pygmy Algorithm, individuals 
display behaviour characteristic of having an RPF of 100%, i.e. always outbreed. 

Initial experiments were designed to investigate whether or not it was worth­
while using RPFs of different values - which would permit inbreeding within 
each race to a certain degree. As there was no way of knowing in advance which 
value of RPF (if any) would be the optimal, several experiments varying the 
value of the RPF were carried out. The first experiment was to evolve a minimal 
sorting network with six inputs using a population of 100 individuals. The RPF 
was varied from 0% (always inbreed) to 100% (always outbreed), and yielded 
the results as shown in figure 1. 

Although experiments for each value of RPF were repeated on 3000 different 
initial populations - the same 3000 for each value to aid comparison - there was 
no one value for the RPF which was obviously better than the rest . However, an 
important result was that all of the higher results were in the range 20% to 40%, 
which shows that always outbreeding in this case was not the optimal strategy, 
and that inbreeding to quite a significant extent improves performance. To what 
extent is, at this stage, still unelear. 
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Figure 1: Varying the RPF with a population of 100 

To further test the result of there being no optimal value for the RPF, the 
same experiments were carried out on a number of other population sizes, ranging 
from 150 to 300 individuals, and yielded the results as in figure 2. 

These experiments served to add to the confusion over the value for the 
RPF: not only were there several different possible optimal values, but these 
also changed when the population size changed. The only consistent results were 
that always inbreeding, not surprisingly, yielded poor results, and that a RPF 
of around 80% also tended to produce poor results. 

The conclusion can only be that there is no single optimal value for the RPF, 
rather that it is dependent on the initial state ofthe population. It is certain that 
an RPF of somewhere between 15% and 75% would be best, but such vagueness 
would be useless when using the Pygmy Algorithm on different problems - how 
could one choose the value of RPF in advance'? If there is some uncertainty about 
the optimal value, as there is here, which value should one choose? 

4 Tuning the RPF 

The conclusions of the previous section show how dependent on the initial state 
of a population the RPF iso An ideal situation would be to choose aseparate 
value RPF for each population, which would be dependent on that population. 

A similar view was taken by (Baeck,1991) when trying to select an optimal 
value for mutation rate for a population. Trying to find an optimal value for 
mutation rate (De Jong,1975), (Grefenstette,1986), (Schaffer et al,1989) yielded 



'" '" CI> 

8 
~ 
ö 
.g 
Q: 
~ 

8S i _.~.#_ ... _... ........ i . 

~~-~ --------__ Population 150_-=-=-_ 

/
~~ - ------------ Populatio 00 ---. 

80 
--...... Popu 'on 250 ..... 

'-R ation 300 -' 

7S ~ ................. . ... . . . . ...•.••..•••..•••... 
.... 

'" >" /------_/~ -----------------------, /~---
6S ~ /------ ....... 

-_// 

80 

55 

50 

45 ~I----------~~----------~----------~------------~----------~ o 20 40 60 80 100 
APF 

Figure 2: Varying the population over a number of RPF values 

much the same conclusions as the early experiments in this paper on RPF: the 
optimal value of mutation rate varies from problem to problem, and even from 
population to population within a single problem. The approach taken was to 
incorporate mutation rate as part of an individual's genes and allow it to evolve 
as the population evolved. Like other genes, an individual's mutation rate could 
be subjected to crossover and mutation. This strategy meant that each individual 
had its own mutation rate which it would examine when testing to see ifmutation 
was to be performed. Baeck found that this improved the performance of his GAs 
over those GAs for which he arbitrarily selected a value for mutation rate. 

Applying this strategy to RPF, each individual was assigned its own personal 
RPF which reflected its attitude to outbreeding. This attitude was shaped by 
the experience of its parents and ancestors - an individual who was the product 
of outbreeding would be more inclined to outbreed , reasoning that if it worked 
for its parents, then it should help it produce children with good performance. 

4.1 Meta-GA 

Three approaches were taken to the tuning of RPF . All three involved individuals 
having their own RPF which could evolve in the same manner as any other gene. 
The three approaches are as follows : 

Species Average (SA) 
Racial Average (RA) 
Individual Average (lA) 



The SA experiments maintained a single value for RPF which was simply 
the average of the entire species. While this does incorporate the overhead of 
calculating the average of the parent population - 20% of the entire population 
- it does have the advantage of allowing one to keep track of the effective RPF 
as the population evolves . 

The RA experiments maintained two values for RPF - one for each race, 
with each RPF being the average of that race. As a run progressed, the two 
values deviated considerably from each other and even changed at different rates , 
showing that , depending on the current state of the population, different amounts 
of inbreeding and outbreeding suited each race. 

Finally, the IA experiments maintained a seperate RPF value for each indi­
vidual, and individuals did not consult or examine the RPF of other individuals 
w hen choosing a mate. This approach is the dosest to that of (Baeck, 1991) but 
had the slight disadvantage of making it impossible to figure out what exactly 
was happening to the value of the RPF. 

To maintain a balance, half of the parents were chosen from each race, and 
these parents then chose from which race they wanted their mate. 

The results are shown in figure 3. 
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Despite the advantages of being able to track the effective value of RPF in 
both the SA and RA experiments, the IA yielded the best results, and at the 
smallest computational cost. Clearly, allowing individuals their own RPF is the 
best method. 
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Figure 4: A comparison of evolving RPF and fixed RPF 

Figure 4 shows the best of the evolving RPF experiments compared to two 
of the fixed RPF results , against an average of the top three results for each 
population and against the top band for each population , typically in the region 
15% to 75%. Although the results appear practically identical from the graph, 
the evolving RPF, henceforth known simply as "lA", slightly outperformed all 
of the fixed experiments, with the bonus that using IA did not involve many 
runs to try and find the optimal value for RPF. The IA experiments did not 
perform better than the best result found by brute force , but as the values for 
brute force involved some 39,000 experiments it was feit that using an average 
of the top results gave a fair enough impression. 

4.2 Sociological Modelling 

So far , as in all previous implementations of meta-GA, the RPF of an individual 
is looked upon solely as being a genetic feature. However, because of what this 
paper is modelling - the behaviour of individuals in races - it was felt that 
treating the RPF as an attitude rather than simply as a phenotypic trait would 
be more appropriate. As weIl as usig RPF , individuals used a variety of methods 
for calculating their own RPF . Some individuals were incapable of making up 
their own minds and simply followed the prevailing opinion , the same as SA 
above, while others were a bit more tribai in their attitudes, following the general 
opinion of their race , in the same manner as RA. A final , independently-minded 
group were the same as IA, in that they made up their own minds when deciding 
their RPF . 



Taking RPF to be an attitude loses none of the ability to perform the exper­
iments outlined above, but, like any opinion, RPF can be influenced or swayed 
by other opinions, and this observation led to another suite of experiments. 

Free Choice Model(FCM). 
Independence from Prevailing Opinion. 
Influence by other individuals. 
Opinion reinforcement. 

The first set of experiments, the free choice model, influenced by (Todd, 1991), 
allowed individuals the choice of whether or not to accept another individual as 
a mate. This was implemented as below: 

1. Select father from one race. 
2. Select, according to father's RPF, which race to choose a mate from. 
3. Select individual (mother) probabilistically from that race. 
4. Test, according to mother's RPF, if she wants to mate with an individual 

from the father's race. 
5. If she accepts the father's overtures, then mate, otherwise select another 

mother. 

If, after trying nine attempts, an individual cannot persuade any others to 
mate with hirn, he is deemed too unattractive and is rejected. 
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Figure 5 above shows that allowing individuals free choice of whether or not 
to mate w,ith a potential suitor didn't give any improvement over the original 
IA experiments. Several other experiments were tried, varying from allowing 
individuals of type RA and SA some degree of independence from the racial or 
species average, to permitting individuals to influence each other to some extent. 
As the most interesting results have all come from the IA type experiments, only 
the extensions to these will be discussed. 

4.3 Influential Partners 

Like any opinion , RPF can also be subject to change. In this section, individ­
uals were influenced by (potential) partners, which allowed their RPF to vary 
depending on that of those around them. The implementation was as follows: 

1. Select father from one race. 
2. Select, according to father's RPF , which race to choose a mate from . 
3. lf father's RPF>mother 's RPF, then let her effective RPF be the geometric 

mean of the two. 
4. Test, according to mother's ejJective RPF, if she wants to mate with an 

individual from the father 's race. 
5. lf she accepts the father 's overtures, then mate, otherwise select another 

mother. 

The reasoning behind this experiment is rooted more in sociological than bi­
ological thought. lf the probability of the father choosing the mother is greater 
than the prob ability of her accepting his advances, then her RPF is adjusted 
upwards - reflecting the influence his enthusiasm has on her. Two different ver­
sions of this experiment were run - in the first , the mother 's RPF returned to 
its initial value after each mating, whereas in the second, the value of her RPF 
remained at the new value, reflecting a situation where a mate had a lasting 
effect on her . 

The rat her easily led individuals in this experiment did not fare too weil 
relative to the IA experiments , as can be seen in: Figure 6, and resulted in lower 
performance under every circumstance. Clearly, relying on other individuals for 
information about how to behave to other races does not help the society as a 
whole. 

4.4 Opinion Reinforcement 

The final experiment concentrated solelyon the IA experiment , as this had 
yielded the best results so far . Again , individuals were allowed to change their 
RPF during their lifetime , and any changes were permanent. All changes were 
based on their own experiences and, based on the results of the experiments 
in which individuals were influenced by each other, did not concern themselves 
with the opinions of anybody else. This was implemented as folIows : 
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1. Select father from one race. 
2. Select, according to father's RPF, which race to choose a mate from. 
:3. Produce child. 
4. Test child. 
5. lf child is fit enough to enter parent population, adjust father's RPF so he 

is more likely to make the same decision the next time he mates, otherwise 
adjust the RPF so the father is less likely to make the decision. 

Of all the experiments which exploited the fact that RPF was an opinion, 
the Opinion Reinforcement fared best, giving the same performance as IA. This 
serves to confirm that allowing individuals to make up their own minds, whether 
through evolution or from personal experience, leads to better performance than 
either forcing a value on them, or by letting them infiuence each other. 

5 Conclusion 

An extension to the Pygmy Algorithm, the use of races, has been introduced 
and is shown to outperform the Pygmy Algorithm in multi-objective functions. 
The increase in performance is due solely· to the fact that individuals are allowed 
to inbreed when it suits them, and hence allow the algorithm to break up the 
problem and concentrate on solving separate parts of it in parallel. 

Also demonstrated is the power of meta-GA, the evolving of the control 
parameters of aGA, and it is shown that when in doubt about the value of a 
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Figure 7: A comparison of the Reinforcement Model, IA and the top 3. 

parameter, it is better to evolve it, which allows the parameter to change as the 
population changes. 

The final set of experiments investigated were those that involved sociological 
modelling on a coarse level and , in a curious parallel with human societies, 
experimental results showed that situations where individuals are allowed make 
up their own minds and judge from their own experiences produce much better 
performing societies than those where individuals are easily led , and give more 
weight to the prevailing opinion of their society than to their own feelings. 
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Abstract 

This paper motivates for, and introduces a 
macro genetic operator called selectively de­
structive re-start. This operator uses a conver­
gence evaluation function to determine when 
computing resources would likely be better 
used in re-initializing the population and be­
ginning the search process in a new area of 
the search space. Genes are re-initialized ac­
cording to so me probability; this has the result 
of keeping so me genetic information from the 
converged run, at the same time as introduc­
ing new genetic diversity. The use of this new 
operator is demonstrated for two problems of 
Quadratic Assignment and Dynamic Control. 

1 Introduction 

A Genetic Algorithm (GA) is a search process that is 
motivated by natural selection and other concepts from 
natural evolution. While its search is not guaranteed to 
produce an optimal solution, it is often characterized by 
finding good solutions in a reasonable time, using a rea­
sonable amount of resources. Thus, any comparison of 
the performance of two genetic algorithms over a prob­
lem domain depends on both the quality of solution and 
the execution resources. 

Consequently, algorithms may be compared on the ba­
sis of solution quality while holding the number of eval­
uations constant, or on the basis of resources used until 
a certain quality of solution is found. 

In both cases, resources may be wasted by an algo­
rithm searching an area not containing a solution of suf­
ficient quality, where any possible improvement in the 
solution quality is not justified by the resources used. 

The macro genetic operator re-start - well-known to 
practitioners and researchers in the field - observes the 
level of genetic convergence of a population and decides 
when resources would be better utilized in re-starting 
the search in a new area, with a new population. 

This involves a tradeoff between the probability of dis­
covering sufficiently better individuals within the current 
area of the search space, and the use of extra resources in 
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creating a new population and improving it to a similar 
level as the previous converged population. 

An extension to the re-start operator is proposed 
here, which allows for different rates of population re­
initialization. On re-starting the population after con­
vergence, we introduce a probability of re-initialization, 
for each gene of an individual. We call the resulting 
operator selectively destructive re-start. This operator 
improves on the unselective version of re-start consider­
ably although this improvement is highly dependent on 
the selection rate parameter. 

The remainder of this paper is organized as follows: 
the next section motivates for and explains the re-start 
operator, and describes the approaches used for compar­
ing GAs using re-start. Section 3 introduces the selec­
tively destructive re-start operator. The fourth section 
describes the test-bed of problems, analyses the differ­
ences between the two re-start operators on these prob­
lems, and briefly presents results. Section 5 discusses 
related and future work, while the last section draws our 
conclusions. 

2 The Re-start Operator 

A genetic algorithm generally consists of a number of 
iterations of a loop which pro duces new individuals and 
inserts them into the population, subject to certain con­
straints (see Figure 1). 

Initialize population 
While termination condition false 
{ 

Produce ne~ individuals, 
Insert these into the population 

} 
Report on results 

Figure 1: Outer Joop structure of a Genetic AJgorithm 

In terms of the inner loop, a Generational Replace­
ment GA pro duces many new individuals during one in­
ner loop, while a Steady State GA produces few new indi­
vi duals, relative to the size of the population. This work 
is based on an elitist Steady State GA with unsophisti­
cated real number crossover, mutation and termination 



conditions. 
Regardless of the approach, the normal behaviour of 

the GA is such that the amount of genetic diversity de­
creases as fitter individuals are discovered; the area of 
search becomes more concentrated and the possibility 
of chancing on new genetic material is limited. This is 
called convergence: the GA has likely settled on some 
local optimum in the search space of the problem. 

In order to deal with this characteristic, we utilize 
the genetic operator re-start which, in order to continue 
the GA's search, intro duces new genetic information and 
moves the GA into another solution region. 

Re-start is a macro genetic operator. In contrast to 
the micro genetic operators of crossover, mutation and 
others, which function at the gene and chromosome level 
in producing new individuals, the re-start operator func­
tions at the population level. 

The re-start operator uses an evaluation function to 
decide when the population has likely converged. The 
population is then re-initialized, and the convergence 
process begins again. 

Why is this operator necessary? As a population's 
genotypic diversity decreases, it is less likely to produce 
strikingly different individuals, and may be wasting re­
sources searching an area of which the genetic possibil­
ities have been exhausted. At some point it is neces­
sary to abandon the population and utilize computing 
resources more efficiently (see [3], [4] and [7]). It has 
been shown, moreover, that a GA with optimal popu­
lation size and the appropriate number of re-starts, ex­
hibits better performance than the same GA functioning 
without the re-starts, and an appropriately larger popu­
lation size( [6]). 

The re-start operator functions outside the main loop 
ofthe GA (see Figure 2) and is reliant on some definition 
of convergence. 

While termination condition talse 
{ 

} 

Initialize population 
While population has not converged. 

and termination condition is talse 
{ 

Produce new individuals. 
Insert these into the population 

} 

Report on results 

Figure 2: Outer Joop structure of a Genetic Algorithm 
with re-start operator 

Determining the "when" of re-start, the extent of ge­
netic convergence, is exceedingly costly: this would in­
volve the variance analysis of every gene within the pop­
ulation. However, this may be estimated by observing 
the relative improvement of the population's best indi­
vidual, also called the best-of-generation individual, as a 
function of the number of iterations. A relatively steep 
curve indicates much exploration of new genetic mate-

rial, while genetic convergence tends to imply a fiattish 
curve. In Figure 3, it is fairly easy to determine when it 
is necessary to re-start the execution. 
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Figure 3: Using the cost improvemellt curve to determine 
convergence 

The calculation of the extent of convergence is a func­
tion of: 

• The number of evaluations since the last improve­
ment of the best-of-generation individual. Longer 
gaps between updates implies greater convergence. 

• The relative magnitude of the improvement. Larger 
improvements often affect the process more than 
smaller improvements. 

• The population size. A larger population will gen­
erally widen the gap between best-of-generation up­
dates. 

Note that the evaluation function is relatively 
problem-specific. 

Note also that convergence does not imply that 
the best-of-generation individual would not improve. 
Rather, it is probable that the resources used in attempt­
ing to improve the best-of-generation individual would 
be better used in re-starting the population and contin­
uing the execution from there. 
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For example, we compared the functioning of the GA 
with re-start against the original GA, on the bal-14 prob­
lem. The prob ability distribution graph of solution costs 
is shown in Figure 4. 



Running for 20000 evaluations, the GA with re-start 
produced a mean result of 0.0428 , with standard devia­
tion 0.026. The normal GA without re-start , produc.ed 
a mean result of 0.0697 with standard deviation 0.045 
(n = 2.50). Despite the extra resourees invested in re­
starting the new population , the re-start operator pro­
duces better , more stable results. 

It is possible to approximate the behaviour of the GA 
with re-start by observing the probability distribution of 
the GA without re-start. Each sub-run, from reinitial­
ized population to convergence, constitutes a unit within 
the distribution, and is independent of sub-runs before 
and after. Thus the re-start operator effectively re-starts 
the execution with a new initial population, whose out­
come is unrelated to the previous outcome. 

3 The Selectively Destructive Re-start 
Operator 

We investigated an extension to the operator: instead of 
completely destroying the genetic material present in the 
population at convergence and thereby wasting the re­
sults of mueh eomputation, the re-start probabilistically 
reinitializes genes in the creation of new individuals. 

The resulting operator is called selectively destructive 
re-start (SDR) because it does not eompletely destroy, 
and re-initialize, the converged population before be­
ginning the convergence process, in the manner of the 
normal re-start operator; a percentage of the converged 
genes will survive untouched to begin the next conver­
gence stage. The resulting GA 's structure is outlined in 
Figure 5. 

While termination condition false 
{ 

} 

Initialize population : 
for each gene, for each individual, 
qi th probability = selection rate, 
the gene is reinitialized 

While population has not converged, 
and termination condition is false 

{ 
Produce neq individuals, 
Insert these into the population 

} 

Report on results 

Figure 5: GA witll seleetively destructive re-start oper­
ator 

This percentage is the rate 0/ selectivity of the opera­
tor: the higher the rate , the more genes are reinitialized. 

It is fairly easy to compare GAs whieh use re-start 
and SDR: the difference in the re-initialization process 
is hidden from any comparison . 

4 Results 

4.1 Problems 

Two problems are selected for testing . One , bal-14, a 
Quadratie Assignment problem, and one, J Mi, a Dy­
namic Control problem. 

The Quadratic Assignment problem ([1]) involves 14 
dimensional quadratic minimization, which has many 
applications in dynamics (though the dimensionality 
may vary) . 

Given a structure whieh is not dynamieally balanced 
around its rotation al axis Z (centre of gravity is not on 
the Z axis) , and n locations in the structure in which 
mass can be added or subtracted, find that combination 
of mass changes that minimizes the yaw and pitch move­
ments and the total mass added. 

min(CßW + (1 - C) 11 M 11) 

where ßW is the net weight added, C is some con­
stant , and 11 M 11 is the resulting Z right angle moment . 

The upper and lower bounds for the point m ass es , 
the cylindrical coordinates Zi, ri and I{); (representing 
distance along the Z axis, radius , and angle from some 
reference radius , respectively) for each of the n points, 
and the initial mass of the structure are given. 

At low dimensions, the problem may be solved using 
the Simplex method which guarantees optimality. How­
ever , numerical problems are encountered at high dimen­
sions which cause convergence to a local optimum and a 
GA approach beeomes attractive. 

Each individual is coded as containing a chromosome 
of 14 real numbers, a total mass, moment , cost and a 
fitness value. The solution space size is of the order of 
10287. 

The Dynamic Control problem is from [5] : 

( 

N-l ) 
min xÄr + {; (x~ + u~) 

where 

XI:+1 = XI: + Uk, k = 0, 1, ... , N - 1, 

where Xo is the initial state, XI: E 'Tl is astate, and i1 
is the solution vector. 

We call the following problem JM1: a fixed domain 
of (-200,200) is assumed for each Ui , with Xo = 100 
and N = 45. In similar fashion to the bal-14 problem, 
each individual is represented by a 45-ary vector of real 
numbers, a cost and a fitness value. 

4.2 Analysis 

In order to eompare GAs using re-start , the following 
approaches were used: 

• In the evaluational approach, the number of evalu­
ations is held constant, and the GAs are compared 
by using the mean result obtained . 

• The good-enough approach searches until an accept­
ably good solution is found , and GAs are compared 
by observing the mean number of evaluations re­
quired to arrive at the solution. 



The new operator was tried on the above test-bed of 
functions and proved successful , in comparison to the 
original re-start operator, albeit at different selectivity 
rates for different problems. 
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Figure 6: Comparative performance of different re-start 
operators on JMl, using the good-enough and evalua­
tional approach es 

Figures 6 and 7 compare the mean and standard de­
viation results of the normal re-start operator and the 
SDR operator on the different problems, under differ­
ent selection rates, using both the good-enough and the 
evaluational approaches. Figure 8 gives specific results. 

The monotonie J M 1 problem was chosen specifically 
for its behaviour under the normal re-start operator . 
Figure 6 shows that a GA using re-start (100% selec­
tion rate) is less effective than a GA without re-start 
(0% selection rate) . Thus, even where using the re-start 
operator may not be advisable, the SDR operator im­
proves on the core GA not using re-start. 

The choice of a selection rate of 15% results in an im­
provement of 72% over the number of evaluations needed 
to produce a good-enough result using the normal re-start 
operator. The corresponding standard deviation is less 
than one tenth of the standard deviation of the re-start 
operator. 

Using the evaluational approach, the optimal selection 
rate is closer to 10%, and results in an large mean solu­
tion improvement over the re-start operator GA, using 
100000 evaluations. The standard deviation is also con­
siderably lower than that of the re-start GA. 
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Figure 7: Comparative performance of different re-start 
operators on bal-14, using the good-enough and evalua­
tional approach es 

For the 14-dimensional bal-14 problem (Figure 7) , a 
40% rate of selection is preferred using the good-enogh 
approach: it results in a performance improvement of 
over 65% compared to the re-start approach's mean num­
ber of evaluations used, and the stability also improves 
considerably. 

Using the evaluational approach, the same selection 
rate produces a mean result which is one third ofthe re­
start GA's mean result . The standard deviation is also 
improved. 

We noticed that low selection rates on the Quadratic 
Assignment problem produce very poor results - the 
slight change in genetic material as a result of re-start 
introduced by the SDR operator is not sufficient to move 
the algorithm to a new search area. 

The new operator results in impressive savings in re­
source utilization: it finds good-enough solutions quicker, 



and produces considerably better and more stable results 
given a fixed number of evaluations . These evaluation al 
results seem more striking, but it is not possible to quan­
tify the improvement, because of the nonlinearity of this 
relationship . Note also that the optimal selection rate 
is not necessarily the same for good-enough and evalua­
tional executions (see Figure 8) . 

Problem (1) (2) (3) (4) (5) (6) 

iMl 19950(5478) 71525(66728) 15"'(72"') /7376(382) 28306(2369) 10"" 

baJ·14 52656(32/ /7) 152002(144413) 40'10(65"') O.OO3/(O.O()47) 0.013(0.01) 40"" 

(1) Good-enough: mean evaluations (std. UWzti<>n) - Selectively Destruct;ve Re-start 

(2) Good-enough: mean evaluations (std. deviation) - Re-sun 

(3) Best Seleclion rate for good-enough approach (improvemenl) 
(4) Evaluational: "",an result ("tl. deviation) - Selectively Destructive Re-s14r/ 

(4) Evaluational: mean =ult (std deviation) - Re-start 
(6) Best Seleclion rale for evaluational approach 

Figure 8: Optimal selection rates for different problems 
(n = 250) 

Different problems have different optimal rates of se­
lection; additionally, one problem may have different op­
timal rates of selection using different comparison ap­
proaches. It is an open question which feature of the 
problem influences this parameter. 

In terms of computing resources used, in most cases 
the SDR operator uses slightly more resources than the 
normal re-start operator: apart from a call to the ran­
dom number generator to determine if a gene is to be 
re-initialized, another random number call is necessary 
to produce the new value, although fewer stores are used 
by the new operator. 

Selectively destructive re-start is superior to normal 
re-start and provides us with an improved method of 
renewing genetic diversity in genetic algorithm search. 
Intuitively, the complete reinitialization of the popula­
tion ''forgets'' the previous solutions, and the chance of 
arriving at the same result, or even the same general area 
of search, is minimal. 

In contrast, the use of a selective rate of reinitializa­
tion keeps the previous solution within the convex hull of 
the new population, even though it is unlikely that the 
previous solution be a member of the new population. 
The new run will in most cases improve on the previous 
result, in contrast to the normal re-start operator which 
has no memory of previous solutions. 

This apriori analysis is mostly borne out by obser­
vation of executions of the model running the SDR op­
erator on different populations: the function of best re­
sult , per new re-started population, against number of 
re-starts is almost monotonically improving, whereas the 
normal re-start produces the expected erratic curve of 
statistically independent intermediate results. 

The apparent monotonicity of the new operator is not 
provable, however. The stochastic nature of the pro­
cess will produce unexpected results in response to the 
slightest difference in a crossover or mutation, exactly as 
in nature. 

5 Related and Future Work 

Eshelman ([2]) introduced a similar operator as part 
of his nontraditional genetic algorithm . His operator, 
called restart or partial initialization, is used as a more 
global substitute for mutation, where mutation is moved 
from inside the reproduction-recombination loop to out­
side of the loop. It was not analyzed separately from 
Eshelman 's other new operators, with the result that its 
performance improvement has been mostly unknown. 

In understanding the reasons behind the superiority of 
selectively destructive re-start over normal re-start, we 
have not attempted a theoretical analysis. A more thor­
ough mathematical investigation of the genetic reasons 
for this new operator's workings is necessary. 

6 Conclusions 

The re-start operator provides an effective mechanism 
for continuing the execution of a converged population . 
A simple and computationally inexpensiveextension to 
the operator produces the selectively destructive re-start 
operator, where the selection of an effective rate of re­
initialization results in impressive improvements in exe­
cution performance as weil as solution quality. At low 
selection rates, where the converged population is re­
started by changing relatively few genes, certain prob­
lem domains react adversely and have difficulty in im­
proving their result. Additionally, selectively destructive 
re-start benefits problems where the normal re-start op­
erator provides no improvement over the GA without 
re-start. 
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Abstract. The Quadratic Assignment Problem 
(QAP) is a tough standard operations research 
problem with relevance to different practical ap­
plications, particularly in facility layout. In this 
paper it serves as a vehicle to compare the per­
formance of different types of Evolutionary AI­
gorithms (EAs). A migration model Genetic AI­
gorithm (MMGA), an Evolution Strategy (CES) 
and Evolutionary Programming (CEP) are com­
pared on a set of QAPs. The strictly mutation­
based CES- and CEP-heuristics generally out­
perform the crossover-based GA-approach. This 
may be explained by reference to recent re­
sults concerning the relation of fitness landscape 
and design of evolutionary operators. CES and 
CEP are competitive to implementations of Ta­
bu Search and Simulated Annealing as described 
in the literature. The results demonstrate that 
even highly epistatic problems can successfully 
be approached with pure (non-hybridized) EAs 
when the search operators are designed accor­
dingly. 

1 Introd uction 

The Quadratic Assignment Problem is one ofthe 
toughest combinatorial optimization problems. 
It can be formalized as follows [5]: Given a set 
N = {I, 2 ... n} and real numbers Ci 1: , ai1:, bi1: for 
i, k = 1,2 ... n, find a permutation Cf' of the set 
N which minimizes: 

n n n 

Z = L: CiIP(i) + L: L: aikbIP(i),IP(k) 
i=1 i=11:=1 

where (assuming a facility layout problem) 

n: number of facilitiesjlocations 
Cij: fixed cost of locating facility j 

at location i 
aik: cost of transfering a material unit 

from location i 
to location k 

bjl: flow of material !rom facility j 
to facility 1. 

The QAP is characterized by a high degree of 
epistasis (non-linear interaction between soluti­
on elements). Even swapping the assignment 
of two facilities might affect the quality of vir­
tually all other assignments, depending on the 
flow-matrix. As a generalization of the TSP the 
QAP is NP-hard, and only moderately sized pro­
blem instances (approx. n = 18) can be solved to 
optimality with exact algorithms within reaso­
nable time limits. One, therefore, concentrates 
on developing effective QAP-heuristics. Exten­
sive reviews of the QAP and associated solution 
techniques can be found in [15, 5]. 

The QAP is of practical relevance in such 
diverse areas as facility layout, machine schedu­
ling and data analysis. Vollmann and Buffa [28] 
introduced the concept of flow-dominance, mea­
suring the variation of values in the flow matrix. 
It is given by 100 * std.dev ./mean of the matrix 
elements. Simply stated, high flow-dominance 
indicates that few facilities with high interacti­
on tend to dominate the problem. Burkard and 
Fincke [4] were the first to prove the asympto­
tic behavior of large randomly generated QAPs. 
This means that the relative difference between 
the worst and the optimal solution becomes ar­
bitrarily small with a prob ability tending to 1 
as the problem size tends to infinity. Hence, 
for any QAP-heuristic test-suite design becomes 
an issue. Here, a . set of 7 QAPs varying in si­
ze between n = 15 and n = 64 with different 
structure (flow-dominance) have been employed. 
They were taken from the QAP-library collected 
by Burkard et a1. [6]. 

In this paper, the performance of different 
variants of Evolutionary Algorithms (EAs) is 
compared on a test-suite of QAPs. EAs are 
general purpose search and optimization tech­
niques with heuristic character that imitate ba­
sic principles from evolution theory. They differ 
from more conventional optimization methods in 
the following aspects: 

• They operate on astring or vector repre­
sentation of the decision variables. 

• They, generally, process a set (population) 
of solutions (individuals), exploring the 
search space from many different points si­
multaneously. 

• In their search operators, EAs imitate 
the evolutionary mechanisms of replicati­
on, variation and selection of individuals. 



• They require only information on the qua- 2 
lity (fitness) of solutions derived from ob­
jective function values but no auxiliary 
knowledge such as derivatives. However, 
incorporating available domain knowledge 2.1 

Description of the imple­
mented EA-variants 

A Migration Model Genetic 
Algorithm (MMGA) in solution representation, initialization, 

operators or decoding function may sub­
stantially increase the competitiveness of 
an EA at the cost of a reduced scope of 
application. 

• Stochastic elements are deliberately em­
ployed. This means no pure random 
search, though, but an intelligent explo­
ration of the search space. 

The most prominent EA-variants are: 

- Genetic Algorithms [11], 

- Evolution Strategies [24], 

- Evolutionary Programming [9]. 

Readers unfamiliar with these techniques are 
refered to Bäck and Schwefel [2] for a concise 
overview and Nissen [19] for a more detailed pre­
sentation. 

Few authors developed evolutionary approa­
ches to solve QAPs. Typically, when high­
quality results were achieved, the EA had been 
massively hybridized with other problem solving 
techniques such as Simulated Annealing (SA) 
[3, 18] It is, therefore, difficult to assess the per­
formance of 'pure' EAs (i.e. non-hybridized) on 
the QAP. This question is of particular interest 
when one recalls the recent debate on the power 
of Genetic Algorithms in combinatorial optimi­
zation. 

Here, in a set of experiments the following 
types of EAs are compared on the QAPs: 

- migration model Genetic Algorithm (MM­
GA), 

- Combinatorial Evolutionary Programming 
(CEP), 
Combinatorial Evolution Strategy (CES). 

Since none of the EA-types was originally 
intended for combinatorial optimization certain 
adaptations of the methodology were unavoi­
dable. However, in the authors view all EA­
types should be treated as variants under a com­
mon evolutionary paradigm, and they together 
constitute a set of design elements from which 
problem-specific EAs should be constructed that 
best solve the actual problem. So adaptations 
of the basic EA-concepts to combinatorial pro­
blems are even desirable. 

The migration model Genetic Algorithm uses a 
straightforward permutation co ding (figure 1) as 
solution representation . This representation is 
also employed by the other two evolutionary ap­
proaches to be discussed later. 

Assuming a facility layout problem, each po­
sition on a solution vector represents a facility 
location and integer values are assigned to these 
positions as numbered facilities. With this in­
formation, objective function values can be cal­
culated from the given problem matrices and are 
taken as fitness information for the implemented 
EAs. 

MMGA is a Genetic Algorithm which pro­
cesses 6000 individuals (solution trials) in 200 
subpopulations of 30 individuals each. Thereby, 
selection and recombination of mating partners 
are performed only locally to prevent premature 
convergence. All subpopulations evolve inde­
pendently. During each GA-cyde the worst indi­
vidual in each subpopulation is replaced (steady­
state GA). 

I apply deterministic binary tournament se­
lection to determine mating partners. This 
means, two individuals are randomly drawn 
from a subpopulation, and the better is kept 
as the first mating partner. This is repea­
ted to determine the second mating partner. 
The recombination-operator is partially mat­
ched crossover (PMX) as introduced by Gold­
berg and Lingle [10], since it is a rather con­
servative form of crossover and tends to inherit 
absolute string positions. In my implementati­
on, strings are treated as rings to overcome the 
bias against end-positions. The better ofthe two 
offspring is kept. 

For PMX to be effective identical mating 
partners must be avoided. Therefore, a subpo­
pulation is blocked from further genetic action 
when identical mating partners are consecutive­
ly drawn twice. It is then assumed that this sub­
population has reached astate of relative conver­
gence. Once all subpopulations are blocked, ran­
domly drawn individuals are exchanged between 
randomly determined subpopulations (emigra­
tion phase). 750 such exchanges are performed, 
refreshing the subpopulations with locally new 
solutions. Afterwards all subpopulations are re-



leased and the GA-process continues as before. 
A copy of the best solution in the entire po­

pulation is always kept in a seperate storage and 
updated whenever a better solution has occur­
red. 

This solution is output as the final MMGA­
result and can optionally be improved by a 
hillclimber (2-0pt). 2-0pt is a simple local 
search heuristic that sequentially considers pair­
wise exchange (2-swap) between the positions 
of facilities. The swap is made whenever this 
results in a lower objective function value and 
the search starts again' from the new solution. 
This procedure continues until no exchange in 
the current solution results in a further impro­
vement. 

Figure 2 gives an overview of MMGA in 
pseudo-code. As for the other evolutionary heu­
ristics presented here, the MMGA strategy pa­
rameters are determined experimentally and no 
claim is made as to their optimality. The para­
meters are kept constant over all testproblems 
since a heuristic that requires problem-specific 
tuning of strategy parameters is not particular­
ly user-friendly. 

2.2 An approach based on Evolu-
tionary Programming (CEP) 

In this approach 25 children are generated from 
five parents in each generation by copying each 
parent five times and mutating the resulting 
offspring. No crossover is applied following stan­
dard practice. Mutation is based on 2-swaps 
of solution elements. In standard Evolutiona­
ry Programming mutation of a solution element 
means adding a normally distributed random va­
riable where the standard deviation depends on 
the parent's fitness value. This is sensible when 
the global optimum is known in advance and 
fitness measures some error term such as the 
squared difference of current objective functi­
on value and global optimum. This is not the 
case for the QAP. However, to keep the ba­
sic idea of standard Evolutionary Programming 
CEP utilizes the parental fitness value when de­
termining the mutation intensity (number of 2-
swaps on the current solution). Additionally, the 
current generation number influences the muta­
tion intensity. More formally, the number of 
2-swaps exchange# during mutation of a par­
ticular offspring is determined by the following 
formula: 

ezchange# = round(abs(N(O, 0"))) + 1 

with 0" (In (In (maxgen/ gen) + 1)) . 

where: 
N(O, 0") : 

maxgen: 

gen: 
fit: 

worstfit : 

0': 

fit 2 

.( worstfit) . 0' 

normally distributed random 
variable with expectation 0 
and standard deviation 0" 
maximal number of CEP­
generations 
current CEP-generation 
parental fitness value of 
current child 
worst objective function 
value in startpopulation 
scalar (0' = ~l 

Note that mutation intensity is high at the 
beginning of the search process and decreases 
on a logarithmic scale. The current state of the 
optimization influences the mutation intensity, 
firstly, by the factor maxgenjgen that decrea­
ses solely with time. Secondly, the parental s0-

lution quality in relation to the worst element 
of the startpopulation is taken into considera­
tion. As a general tendency, the offspring of a 
mediocre parent will undergo a stronger muta­
tion than children of a good parent (minimizati­
on!). Sigma decreases with continued optimiza­
tion, focussing the search process. This may be 
compared with the cooling schedule of Simula­
ted Annealing. The constant term in the above 
formula ensures that at least one 2-swap is per­
formed to avoid apremature termination of the 
search process. 

Following mutation, five new parents are se­
lected from the population of parents and child­
ren (30 individuals). This is done via a stocha­
stic tournament in which the fitness (objective 
function value) of each individual is compared to 
the fitness of seven randomly determined "op­
ponents". An individual scores a "win" when 
its fitness is at least as good as the fitness of 
the opponent. The best five individuals resul­
ting from a ranking based on individual wins 
(not fitness) are taken to be the new parents for 
the next CEP-generation. Thus, imitating bio­
logical processes , selection is stochastic (as in 
MMGA) and even bad individuals have a cer­
tain chance of surviving the competition. The 
best solution based on fitness is always kept in a 
seperate storage and updated when required. It 



is the final CEP-result that is output at the end 
of each run. An optional postprocessing with 
the 2-0pt local hillclimber is possible. 

Figure 3 presents the general outline of CEP 
as pseudo code. Again, the strategy parameters 
of CEP are determined experimentally. They 
are held constant over all QAP-experiments. 

bilization in the context of ES is also described 
in [1] but realized differently. During this pha­
se, the counter is set to zero and A children are 
created with increased mutation intensity. The 
number of swaps randomly lies in the interval 
[3, .. , 8] now. Thereby, individuals which differ 
more strongly from previous solutions are gene­
rated and the search shifts to a new area in the 

2.3 A combinatorial variant 
Evolution Strategy (CES) 

of solution space. This helps to escape from local 

CES was first presented in [20]. It uses a simple 
population concept and is basically a (I,A)-ES. 
This means, in each generation A children are 
generated from one parent solution by first co­
pying the parent and then randomly swapping 
integer values on the coding string via mutati­
on. The mutation operator from standard-ES, 
which is based on adding normally distributed 
random variables to the elements of the current 
solution, is not adequate for such a permutati­
on problem since it would yield invalid results. 
Crossover of solutions is not employed. A equals 

optima and counters the strong selection pres­
sure in CES. Again, CES determines the best 
child to become the new parent. Procedure de­
stabilization is then terminated and the search 
continues as before until the termination criteri­
on holds. 

As for the other EAs, CES starts from a ran­
domly generated (rather poor quality) initial so­
lution. The best solution discovered by CES is 
stored separately and is continuously updated 
during the search. This is the final result of the 
heuristic. It can optionally be improved with a 
local hillclimbing technique (2-0pt). Figure 4 
gives an overview of CES in pseudo code. The 
CES parameters are empirical and constant over 
all QAP-experiments again. 

50 for the smaller test problems NUG 15, NUG20 
and ELSI9. For the other problems A equals 
100. The parent is eliminated after each genera­
tion. This allows for an occasional deterioration 3 
of the parent solution. The concept has expe­
rimentally proved slightly more successful than 
having parent and children compete for survival. 

Empirical Results 

MMGA, CEP and CES were run on seven test­
problems taken from [22] (NUGI5, NUG20, 
NUG30), [26] (STE36a, STE36c), [8] (ELSI9) 
and [25] (SK064) with numbers of facilities n 
varying between 15 and 64. NUGI5, NUG20, 
NUG30, and SK064 are randomly generated 
problems with low ßow-dominance. The other 
three appear to be practical applications with 
high (STE36a, STE36c) and very high (ELSI9) 
ßow-dominance values. Hence, the seven pro­
blems are very different in size and structure ma­
king them a good test-suite. The search space 
size (number ofsolution alternatives) varies from 
roughly 1.31 . 1012 for NUG 15 to 1.27· 1089 for 
SK064. Ten trials are performed in each expe­
riment. Results are given in tables 3-5. Data 
for generation 0 refers to the starting solutions 
used. 

The number of 2-swaps during mutation is 
randomly chosen to be either one or two. It can 
occasionally be zero however, should the algo­
rithm by chance choose the same position for 
a swap twice. This then preserves the parent 
solution. In accordance with the standard ES­
scheme, it would have been possible to use a nor­
mally distributed random variable for adapting 
the number of swaps during mutation, but it was 
decided to keep the number of swaps small. In­
tensive swapping of facilities generally deteriora­
tes the objective function value of a given QAP­
solution due to massive interactions between the 
facilities. Generating normally distributed ran­
dom numbers is also more time consuming. 

The best child becomes the new parent solu­
tion (deterministic selection). If its fitness value 
is not better than the former parent's value, a 
counter is increased. The counter is reset to zero 
whenever a CES-generation is successful. After 
round {n/l0+2} consecutive unsuccessful gene­
rations, an empirically determined value, a pro­
cedure called destabilization is executed. This is 
a non-standard operator. The concept of desta-

The well-known conventional combinatorial 
heuristic 2-0pt serves as a benchmark to com­
pare the quality of solutions generated by CES 
with a more traditional QAP-heuristic (table 2). 
The starting solutions of CES and 2-0pt are 
identical. MMGA, CEP, CES and 2-0pt were 
all implemented in Pascal on a workstation IBM 
RS 6000/320 H. Also, for orientation purposes, 



results of the excellent TABU search implemen­
tation (TS) of Taillard [27] are given (table 1), 
but one should bare in mind that TS was run on 
different hardware (parallel transputer system) 
and the evaluations of individual solutions in TS 
have a lower time complexity as in the heuristics 
presented in this article. 

Examining the results for MMGA first (ta­
ble 3) it is clear that the GA-approach is neither 
competitive with TS nor with 2-0pt when both 
solution quality and CPU-requirements are ta­
ken into consideration. An exception to be dis­
cussed later is ELS19. The general increase in 
solution quality due to continuing search efforts 
with rising generation number is no surprise. 
However, the number of solution evaluations and 
CPU-requirements rise only underproportional­
ly in case ofthe larger test problems. This means 
that with time subpopulations are blocked mo­
re frequently here, and the emigration operator 
loses part of its power. Processing the MMGA­
result with an additional 2-0pt hillclimber is 
useful for short MMGA-runs to overcome the 
well-known weakness of GA in finetuning the fi­
nal solution. 

Because of the chosen 2-swap based search 
operators in CEP and CES both heuristics al­
low for an especially efficient form of solution 
evaluation that cannot be applied to the PMX­
based MMGA (see [19] for details). The number 
of CEP- and CES-generations are chosen as to 
produce roughly equivalent numbers of solution 
evaluations during runs, since the time comple­
xity to evaluate individual solutions is very si­
milar in both heuristics. 

Results for CEP and a hybrid, where the 
CEP-solution is postprocessed by 2-0pt, are gi­
ven in Table 4. Generally, the optimal solution 
is approached in an asymptotic manner, while, 
simultaneously, the reliabilty of the optimization 
process increases with rising generation number 
as can be seen in the reduced standard deviati­
on. For ELS19 the paradoxical situation occurs 
that the shortest run produces the second best 
CEP-result. One should bare in mind, though, 
that depending on the max. generation number 
the search process for CEP proceeds differently 
for runs of varying length. This is due to the 
intluence ofthe factor maxgen/gen on the muta­
tion intensity. 

Very good or optimal values are quickly iden­
tified for the smaller test problems NUG15 and 
NUG20 as can in the Best-Gen. column. Con­
trary to this, CEP is weaker on ELS19, the pro-

blem instance with the highest flow-dominance. 
This phenomenon will be discussed later. 

Improving the final CEP-result by 2-0pt is 
useful only for the largest test problem SK064. 
In all other cases CEP-solutions are already (at 
least nearly) locally optimal. The hybrid strat­
egy of CEP and 2-0pt may be described as hill­
finding (CEP) and hillclimbing (2-0pt). That 
such a combination is sensible can be seen when 
comparing with the pure 2-0pt results (table 
2). After 2500 generations the hybrid pro du­
ces on average much better solutions with grea­
ter reliability (lower std.dev.) and lower CPU­
requirements. Examining the additional CPU­
seconds for 2-0pt, it is interesting to note, how 
search-Ioad shifts from the hillclimber to CEP 
as the length of the CEP-run increases. 

On large problem instances CEP is more ef­
ficient than 2-0pt when solution quality and 
CPU-time are considered simultaneously. Com­
pared to TS the hybrid of CEP and 2-0pt pro­
duces results on a similar level. 

Various authors have asserted that in com­
plex search spaces low selection pressure is ap­
propriate to avoid premature convergence of an 
EA (e.g. [13]). For CEP, selection pressure can 
be influenced by altering the ratio of parents to 
children as weIl as by varying the number of in­
dividual tournaments during the stochastic se­
lection phase. Results for the second alternative 
are given in table 6. More results can be found 
in [19]. CEP is mildly influenced by the number 
of individual tournaments during selection. The 
most successful selection pressure is still compa­
ratively high (Seven tournaments for each indi­
vidual = 23 percent of the entire population). 
This is slightly surprising and demonstrates the 
difficulty to give general recommendations for 
strategy values that are independent of the par­
ticular EA-design and the application in questi­
on. 

CES, as the last EA-variant to be discus­
sed here, quickly identifies good solutions on 
all seven problem instances (table 5). Not sur­
prisingly, average solution quality and standard 
deviation improve with the number of genera­
tions because more solution trials are perfor­
med. Destabilization proves to be an import­
ant heuristic element. It counters the negati­
ve effects (tendency to premature convergence) 
of the extreme selection pressure in CES. The 
average number of destabilizations Can be cal­
culated from the number of function evaluati­
ons, because without destabilization there would 



only be A x generations + 1 function evaluati­
ons. On larger QAPs there is a tendency for fe­
wer destabilization phases. One reason for this 
phenomenon is the way the allowed number of 
consecutive unsuccessful CES-generations befo­
re destabilization is computed. The larger n the 
higher this maximum value. Also, as the pro­
blem dimension increases, it becomes easier to 
leave a local optimum. But because the size of 
the search space (n!) rises drastically, though, 
the search process requires more time to identify 
high quality solutions than on smaller problem 
instances. 

CES quickly produces on average far bet­
ter solutions with more reliability than 2-0pt. 
Even after only 100 generations CES often ge­
nerates better mean values, thereby challenging 
the speed-advantage of more conventional heu­
ristics on larger problems. It also converges to 
better solutions with higher reliability as shown 

parents to children, as in the 2-swap based mu­
tation, lead to a certain correlation of their fit­
ness values. Even such comparatively conserva­
tive crossover-forms as PMX frequently produce 
behavior close to random search by changing so­
lutions too much at a time when population di­
versity is reasonably high. In general, the fitness 
landscape for CEP and CES is smoother than 
for MMGA due to the different search operators 
employed. However, some search behavior dose 
to random search is also present during the ear­
ly phases of CEP and it is deliberately employed 
during the destabilization phases ofCES. On the 
other side, when How-dominance values are ve­
ry high, 2-swap-based heuristics have difficulties 
in overcoming pronounced local sub optima, so 
that crossover is advantageous. All three EAs 
discussed here can in principle be parallelized. 
For more details see [1.9]. 

in table 7. CES also competes well with TS in 4 
terms of solution quality and efficiency. Conclusions 

Table 5 shows that postprocessing CES­
results with a local hilldimber can lead to impro­
ved solutions on larger problems. Aß with CEP, 
to achieve results ofvery high quality, though, it 
is necessary to allow for a reasonably long search 
phase of the evolutionary component before in­
voking 2-0pt. Also, on smaller problems the 
CES-solutions are usually (nearly) locally opti­
mal so that a 2-0pt becomes superHuous. 

CES appears to be an effective, easily im­
plementable heuristic that yields good results 
without problem-specific parameter tuning on 
QAPs of very different size and structure. It has 
acceptable CPU-requirements even on aserial 
computer. In [21] the authors extend the CES­
heuristic to include practica11y relevant con­
straints of facility layout. 

Finally, comparing the algorithmic perfor­
mance of MMGA, CEP and CES on the QAPs 
leads to the following results and conclusions: 

The strictly mutation-based ES- and EP­
approaches outperform the crossover-based GA 
on a11 instances but the problem with the hig­
hest How-dominance value ELS19 (see efficiency 
comparison in figures 5, 6 and 7). This may be 
explained by reference to results of Manderick et 
al. [17] and Lipsitch [16] concerning the relation 
of fitness landscape and design of search ope­
rators. On the one side, when How-dominance 
is low or medium, a highly multimodal QAP 
fitness-Iandscape results from the epistatic na­
ture of the problem. Only small changes from 

Overall, the combinatorial variant of an Evolu­
tion Strategy (CES) is the best EA presented 
here. The non-standard destabilization opera­
tor in the ES-implementation is useful in over­
coming local optima when selection pressure is 
high as in CES. It is also effective on problem 
instances with high How-dominance that prove 
difficult for other heuristics purely based on pair­
wise exchange of solution elements. 

Despite the high degree of epistasis of the 
application, CES and CEP (possibly combined 
with an additional 2-0pt) are successful opti­
mization techniques for Quadratic Assignment 
Problems. CEP and in particular CES are com­
petitive to implementations of Tabu Search (or 
Simulated Annealing) as described in the lite­
rature. Contrary to some TS-implementations, 
they require no tuning of strategy parameters on 
individual problem instances, thus making the 
EAs particularly user-friendly. 

On larger problem-instances a postproces­
sing of the final EA-solution with a simple 2-
Opt hillclimber can improve the quality of re­
sults slightly at very low cost. One has to be 
careful, however, to allow for sufficient explora­
tion of the search space by the EA first before 
the hillclimber is invoked. 

While the general notion is that problems of 
mild epistasis are most suited for EAs [7], the 
results demonstrate that even highly epistatic 
problems, such as the QAP, can successfully be 
approached with pure EAs when one takes care 



to design the search operator accordingly (pre­
ference for small changes). 

At first glance, the empirical results also 
seem to indicate that pure, non-hybridized GA 
are not very successful for tough combinatorial 
problems. This may be so. One must remember, 
though, when assessing the performance espe­
cially of MMGA, that the design ßexibility of 
EAs allows for many more variants of evolutio­
nary approaches to be implemented than could 
possibly be tested here. Moreover, non of the 
three EA-mainstream techniques was original­
ly invented to solve combinatorial optimization 
problems. Thus, I have freely adapted the va­
rious EA-types to suit the needs of this appli­
cation. Nevertheless, for the QAP is is fair to 
conclude that crossover is not required for an 
EA to be successful. 

A more detailed description of the experi­
mental setup, results of sensitivity analysis as 
weIl as results for a messy-GA approach based 
on Goldberg et al. [12] is given in Nissen [19], 
together with other applications of EAs, and an 
in-depth presentation of all major EA-types, in­
cluding hybrid-systems. 
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Appendix A: Figures 

Location #3 

4 3 6 2 5 1 7 

Facility #6 

Figure 1: Solution representation in MMGA, CEP, and CES (n=7). 

6 start 
10 generate 200 subpopulations of 30 individuals each randomly 
15 choose best solution 
20 generationcounter = 1 
25 repeat 
30 subpopulationcounter = 1 
36 repeat 
40 if subpopulation not blocked. then 
46 tournament selection of two non-identical parents 

(PMI-partners. max. 2 attempts) 
50 if identical PMl-partners consecutively drawn twice. 

then block subpopulation. else 
65 PMI =? 2 offspring 
60 replace worst individual of subpopulation by best offspring 
66 update best solution if required 
70 end 
75 increment subpopulationcounter 
80 until subpopulationcounter > 200 
85 if all subpopulations blocked. then 
90 exchange 750 randomly determined individuals between 

randomly determined subpopulations (emigration) 
96 release all subpopulations again 
100 reduce generation counter by 1 
106 increment generationcounter 
110 until max. generation 
115 output best solution 
120 improve solution by 2-0pt (optional) 
125 output improved solution (optional) 
130 stop 

Figure 2: MMGA pseudo code 



5 start 
10 generate and evaluate random population of five parents 
15 population = parents 
20 vorstfit = vorst objeetive funetion value of 

startpopulation (* used tor mutation *) 
25 best solution = best start-individual 
30 repeat 
35 eopy eaeh parent 5 times (* replieation *) 
40 determine number ot 2-svaps tor eaeh ehild; 

mutate and evaluate ehildren 
45 hold seven tournaments for eaeh of the 30 individuals 

against randomly determined opponents in the population 
and keep nuaber ot individual vins 

50 sort population in deseending order based on vins (* quicksort *) 
55 ehoose tive top individuals ot this ranking as nev parents 
60 eompare best individual based on objeetive tunet ion value 

trom entire population (30) vith best solution and update 
best solution it required 

65 until max. generation 
70 output best solution 
75 improve solution by 2-0pt (optional) 
80 output improved solution (optional) 
85 stop 

Figure 3: CEP pseudo code 



5 start 
10 generate and evaluate random starting solution 
16 best solution = start solution 
20 failurecounter = 0 
26 repeat 
30 save the objective function value o~ parent 
36 copy parent to produce 100 children 
40 determine number of 2-svaps from interval [1,2] for each child 

and mutate 
46 
50 

65 

evaluate children 
choose best child based on objective function value to be 
nev parent 
if nev parent not bett er than old parent then increment 
failurecounter 
else 

set failurecounter = 0 
if nev parent bett er than best solution 
then update best solution 

60 if failurecounter = round (njlO) + 2 then go to 1000 
65 until aax. generation 
70 output best solution 
76 improve solution vith 2-0pt (optional) 
80 output improved solution (optional) 
85 stop 

1000 procedure destabilization 
1005 copy parent to produce 100 children 
1010 determine increased number of 2-svaps from interval [3,8] 

for each child and mutate 
1015 evaluate children 
1020 choose best child based on objective function value to be 

nev parent 
1025 if nev parent better than best solution 

then update best solution 
1030 set failurecounter = 0 
1035 end procedure 

Figure 4: CES pseudo code 
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Figure 5: Efficiency graph for the testproblem NUG30. 
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Figure 6: Efficiency graph for the testproblem STE36a. 
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Figure 7: Efficiency graph for the testproblem ELS19. 



Appendix B: Tables 

Best known Average objective function value· after i TS-iterations 

Testproblem solution i = 4n AFEt i = n2 AFE~ i = 1000 AFEo 

NUG15 1,150 1,162 6,300 1,152 23,625 1,150 105,000 
NUG20 2,570 2,606 15,200 2,580 76,000 2,573 190,000 
NUG30 6,124 6,228 52,200 6,148 391,500 6,142 435,000 
SK064 48,498 49,225 516,096 48,692 8,257,536 48,837 2,016,000 
ELS19 17,212,548 21,154,221 12,996 19,174,778 61,731 17,780,562 171,000 

STE36a 
'---- 9,~ 

-
10,145 90,720 9,869 816,480 9,917 630,000 

AFE = average function evaluations. 
-The values are approximate. Taillard gives pars per mille above best known solutions. 
t 4n . n . (n - 1)/2. 
~n2.n·(n-1)/2. 
o 1000. n . (n - 1)/2. 

Table 1: Numerical results of the TS-implementation by Taillard [27]. TS was ron on a 10-
node T800C-G20S transputer system. CPU-time per iteration is given by approx. 6,2· n2ps. 

Test- Best known Mean Std.dev. 0-solution 0-CPU 
problem solution evaluations Jsec.} 
NUG15 1,150 1,194.4 24.69 745.7 0.06 
NUG20 2,570 2,670.6 35.90 2,001.6 0.22 
NUG30 6,124 6,321.8 66.93 10,321.9 2.19 
SK064 48,498 49,524.0 321.27 188,649.8 241.57 
ELS19 17,212,548 21,798,726.0 2,571,051.42 3,593.8 0.36 

STE36a 9,526 10,447.4 265.18 17,838.8 5.20 
STE36c 8,239.1 8,902.6 318.18 20,188.4 5.89 

0-solution evaluations = average number of solution evaluations. 

Table 2: 2-0pt results (on IBM RS 6000/320 H). 



MMGA + 2-0pt 
Testpr./ Gene- Mean Std.dev. Best 0-so1.- 0-CPU Mean 
b.k.so1. ration gen. eva1. (sec .) 

NUGI5/ 0 1317.0· 16.35 
1150 500 1181.0 8.06 416.1 65933 16.49 1167.8 

1000 1154.0 4.47 804.4 111030 29.25 1154.0 
3000 1154.0 4.47 804.4 182117 99 .92 1154.0 

NUG20/ 0 2969.2· 21.23 
2570 500 2713.0 20.90 439.1 67754 26.35 2648.4 

1000 2635.0 16.81 937.1 113419 46.09 2623.4 
3000 2608.0 22.91 1283.3 195976 145.16 2608.0 

NUG30/ 0 7343.2· 78.80 
6124 500 6784.8 52.38 378.1 68192 49.36 6297.0 

1000 6596.8 60.53 957.5 112037 84.64 6294.0 
3000 6297.8 67.42 2220.6 243544 220.54 6266.6 

SK064/ 0 56235.0* 195.86 
48498 500 54033.8 189.69 405.5 74437 251.30 49385.0 

1000 53411.0 178.22 905.5 115277 392.46 49637.6 
3000 50768.6 409.58 2893.7 307058 1092.36 49556.2 

10000 50562.0 455.36 3633.5 555534 2506.98 49554.2 
ELSI9/ o 26373875.2* 1502325.23 

17212548 500 17735390.4 279257.96 457.9 68992 24.96 17384514.2 
1000 17215921.4 6648.02 916.9 121786 46.22 17212548.0 
3000 17212548.0 0.00 944.9 251729 101.12 17212548.0 

STE36a/ 0 16805.0* 217.72 
9526 500 12907.6 365.34 475~2 72280 72.73 10423.8 

1000 11940.4 324.72 941.2 114427 119.39 10182.4 
3000 10158.6 286.58 2628.4 286285 313.68 10042.0 

STE36c/ 0 13826.3* 125.23 
8239.1 500 10878.1 194.80 478.5 71456 77.20 8672 ~6 

1000 10111.6 120.06 920.1 113693 127.45 8642.3 
3000 8697.9 180.04 2664.6 290367 340.89 8530.0 

*Datum refers to the best start-individual in each of the ten runs. 
Testpr. / b .k.so1. = Testproblem / best known solution. 
Best gen. = average generation of the best solution found . 
0-sol.eval. = average number of solution evaluations. 
Add. CPU (sec.) = average additional CPU requirements for 2-0pt. 

Table 3: MMGA results (on IBM RS 6000/320 H). 

Add. 
CPU 

0.01 
0.01 
0.01 

0.06 
0.03 
0.02 

1.12 
0.85 
0.29 

212.01 
186.20 
96.83 

101.43 

0.07 
0.02 
0.02 

2.97 
2.58 
0.42 

3.21 
3.07 
0.76 



Testpr./ 
b.k.sol. 

NUG15/ 
1150 

NUG20/ 
2570 

NUG30/ 
6124 

SK064/ 
48498 

ELS19/ 
17212548 

STE36a/ 
9526 

STE36c/ 
8239.1 

CEP + 2-0pt 
Gene- Mean Std.dev. Best 0-801.- 0-CPU Mean 
ration gen. eval. (sec.) 

0 1497.2* 53.96 
500 1160.8 10.81 219 .8 12505 3.14 1160.8 

2500 1155.2 3.92 788.9 62505 15.67 1155.2 
5000 1154.2 3.84 1281.1 125005 31.35 1154.2 

15000 1151.2 0.98 3688.1 375005 93.94 1151.2 
50000 1151.0 1.00 5886.2 1250005 313.14 1151.0 

0 3241.0* 99.83 
500 2608.2 26.75 356.3 12505 3.79 2607.8 

2500 2590.6 15.52 1423.3 62505 18.88 2590.2 
5000 2582.4 9.79 1834.0 125005 37.68 2582.4 

15000 2579.8 10.06 2761.7 375005 112.98 2579.8 
50000 2571.8 5.40 10699.7 1250005 376.47 2571.8 

0 7898.2* 124.93 
500 6312.8 48.64 406.7 12505 5.38 6280.0 

2500 6221.6 42.93 2061.0 62505 26.58 6215.2 
5000 6178.6 18.97 4102.9 125005 53.07 6168.6 

15000 6153.6 14.14 10784.4 375005 159.01 6149.0 
50000 6142.8 11.32 34062.7 1250005 529.59 6139.6 

0 58052.2* 305.84 
500 50385.2 302.67 477.6 12505 20.83 49581.8 

2500 49681.6 189.36 2193.4 62505 103.06 49189.4 
5000 49374.4 152.40 3481.9 125005 205.12 49016.2 

15000 49157.2 96.59 12184.8 375005 614.28 48920.6 
50000 49062.6 82.64 35895.3 1250005 2056.00t 48820.6 

250000 48912.6 34.42 196225.8 6250005 10300.00t 48687.0 
o 48655026.0* 5080681.91 

500 20668140.2 2350732.40 245.9 12505 3.55 20668140.2 
2500 22587649.8 2688617.62 384.5 62505 17.63 22587649.8 
5000 21142317.0 1928873.91 546.7 125005 35.24 21142317.0 

15000 20871435.2 2437603.24 1601.2 375005 105.67 20871435.2 
50000 20375940.4 1882263.08 5714.2 1250005 349.22 20375940.4 

0 19825.6* 560.74 
500 10522.0 276.68 403.9 12505 6.25 10351.8 

2500 10183.2 259.50 1782.2 62505 30.96 10119.2 
5000 10031.6 243.80 2357.9 125005 61.81 9992.6 

15000 9845.4 141.48 11728.9 375005 185.19 9825.8 
50000 9923.0 106.98 23667.8 1250005 617.58 9614.4 

0 16281.4· 464.31 
500 8807.1 144.06 396.8 12505 6.30 8720.5 

2500 8553.3 102.28 1555.0 62505 31.19 8506.3 
5000 8544.5 264.34 3413.4 125005 62.30 8513.7 

15000 8443.0 97.70 7640.5 375005 186.60 8425.4 
50000 8327.4 81.90 34411.4 1250005 621.47 8310.9 

-- '- - -

*Datum refers to the best start-individual in each of the ten runs. 
t Appox. values. 
Testpr. / b.k.sol. = Testproblem / best known solution. 
Best gen. = average generation of the best solution found. 
0-sol.eval. = average number of solution evaluations. 
Add. CPU (sec.) = average additional CPU requirements for 2-0pt. 

Table 4: CEP results (on IBM RS 6000/320 H). 

Add. 
CPU 

0.01 
0.01 
0.01 
0.01 
0.01 

0.02 
0.02 
0.02 
0.02 
0.02 

0.26 
0.15 
0.14 
0.14 
0.11 

52.52 
44.30 
29.01 
27.60 

26.20t 
24.30t 

0.02 
0.02 
0.02 
0.02 
0.02 

0.65 
0.41 
0.39 
0.29 
0.27 

0.62 
0.39 
0.38 
0.29 
0.26 



Testpr./ 
b.k.sol. 

NUG15/ 
1150 

NUG20/ 
2570 

NUG30/ 
6124 

SK064/ 
48498 

ELSI9/ 
17212548 

STE36a/ 
9526 

STE36c/ 
8239.1 

CES 
Gene- Mean Std.dev. Best 0-so1.- 0-CPU 
ration gen. eval. (sec. ) 

0 1564.2 79.80 
200 1162.0 10.24 90.2 10811 1.46 

1000 1153.2 3.49 415.7 54446 7.36 
2000 1150.8 0.98 712.1 108976 14.73 
6000 1150.2 0.60 1583.2 327086 44.23 

20000 1150.0 0.00 2225.0 1090281 147.26 
0 3442 .0 73.10 

200 2626.4 23.78 89.5 10641 2.10 
1000 2591.8 13.22 607.5 53276 10.47 
2000 2586.8 13.48 1014.7 106626 20.96 
6000 2574.0 6.20 2311.0 320096 62 .93 

20000 2570.0 0.00 5447.8 1067451 209.63 
0 8127.4 182.19 

100 6310.2 66.92 73.8 10291 3.62 
500 6202.4 46.38 317.2 52281 18.49 

1000 6165.6 23.13 651.8 104701 37.03 
3000 6144.8 10.09 1789.2 314691 111.39 

10000 6135.0 9.31 4680 .6 1050181 372.35 
0 58947.2 737.28 

100 50195.6 284.02 95 .7 10001 19.08 
500 49565.4 277.49 458.9 50271 95.85 

1000 49379.6 181.38 761 .0 100781 192.30 
3000 49044.2 123.12 2344.0 302591 583.12 

10000 48906.0 80.61 6423.0 1009211 1927.53 
50000 48815.2 52.04 31158.5 5045471 9640.00t 

0 59725819.2 9244110.12 
200 19218336.8 2094638.95 136.7 10486 1.92 

1000 18128394.0 1398977.87 451.5 52916 9.71 
2000 18128394.0 1398977.87 451.5 105851 19.41 
6000 17517830.0 915846.00 1127.5 317621 58.21 

20000 17517830.0 915846.00 1127.5 1058841 193.87 
0 22754.8 1930.78 

100 10650.0 203.66 72.2 10171 4.79 
500 10103.0 110.50 402 .3 51461 24.37 

1000 9979.0 111.46 801.0 102981 48.78 
3000 9811.8 103.26 1879.5 309561 146.80 

10000 9701.2 87.92 6628.2 1032511 489.23 
0 18890.2 1804.01 

100 8923.2 175.76 82.6 10131 4.79 
500 8713.1 187.60 325.5 51301 24.43 

1000 8581.9 165.04 755.3 102901 49.07 
3000 8402.9 93.40 1638.7 309141 147.59 

10000 8337.7 85.76 7268.3 1031451 492.26 

t Appox. values. 
Testpr. / b.k.sol. = Testproblem / best known solution . 
Best gen. = average generation of the best solution found . 
0-sol.eval. = average number of solution evaluations. 

+ 2-0pt 
Mean Add. 

CPU 

1160.0 0.01 
1153.2 0.01 
1150.8 0.01 
1150.2 0.01 
1150.0 0.01 

2623.6 0.03 
2591.4 0.02 
2584.2 0.03 
2572.8 0.02 
2570.0 0.02 

6283.8 0.18 
6195.4 0.11 
6158.8 0.13 
6144.4 0.10 
6134.8 0.09 

49607.6 42.09 
49332.0 25.20 
49193.0 21.40 
48924.8 17.56 
48804.2 13.42 
48697.6 16.60t 

19209755.4 0.02 
18128394.0 0.02 
18128394.0 0.02 
17517830.0 0.02 
17517830.0 0.02 

10548.0 0.54 
10079.2 0.29 

9944.6 0.29 
9797.2 0.26 
9689.8 0.21 

8859.4 0.57 
8698.5 0.25 
8568.3 0.30 
8392.7 0.23 
8332.0 0.26 

Add. CPU (sec.) = average additional CPU requirements for 2-0pt . 

Table 5: CES results (on IBM RS 6000/320 H). 



Average objective functions values 
for different selection pressure 

(Standard) 
Gen. w=5 w=7 w = 10 

500 6351.4 6312.8 6294.0 
1000 6343.0 6234.2 6265.2 
2500 6276.8 6221.6 6249.6 
5000 6253.8 6178.6 6262.2 
15000 6237.4 6153.6 6182.2 
50000 6210.8 6142.8 6186.4 

Gen. = Generation 
w = number of individual competitions 

in the stochastic selection 

Table 6: Varying the selection pressure for CEP on NUG30. 

10 x CES (10,000 generations) 1700 x 2-0pt 

Best Worst Mean Std. dev. Best Worst Mean Std. dev. 

6124 6150 6135.0 9.31 6128 6702 6351.0 83.94 

Table 7: Comparison ofCES and 2-0pt solution quality at approx. 
identical CPU-requirements (IBM RS 6000/320 H) on NUG30. 
All starting solutions are randomly generated. 
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Abstract 

Botb tbe system theory of evolution and tbe epistemology of radical constructivism provide fertile inspi­
ration for enbancements of artificiallife. Within this paper I will demonstrate that (a) one can move tbe 
empbasis on sensory information processing to a more expectation-(Jriven algoritbm; and (b) tbat a sep­
aration between tbe operational elosed brain on tbe one band and sensors and motor elements on tbe other 
band will enable the study of cognitive mecbanisms independent of the actual environment 

1. Introduction 

1.1 Constructivist Artificial Life (CUle) 

Constructivist arti/icial life is an enhancement of 
artificiallife models with mechanisms provided by 
(radicallcognitive) constructivism (sections 2.3 and 
2.4) and the system theory of evolution (section 
2.2). eLife employs expectation-driven bebavior, 
bierarcbical structure of fuzzy representational ele­
ments, and aseparation between cognitive process­
es within an agent and its sensor and effector surfac­
es. 

1.2 Active Perception 

According the constructivist point of view, autono­
mous agents have their own bypotheses about the 
world wbicb do not necessarily correspond directly 
with pbysical events. Ibis concept reverses the tra­
ditional bottleneck arcbitecture of perception: No 
longer is the entire available 'information from out­
side' used to control the bebavior of a agent. In­
stead, agents are viewed as autonomous entities 
wbicb construct their own 'reality' 1. Tbis construc­
tivist-anticipatory principle (cf. section 3.4) is im­
plemented by chaining and ramifying fuzzy interval 
schemata. Once a bypothesis is selected, the algo­
rithm needs to test only a few perceptual events 
wben the condition parts of the rules require it. Tbis 
reduces the computational need for performance. 

1.3 Separation between cognitive apparatus 
and physiology 

Apriori assumptions and anthropocentric ascrip­
lions (e.g., wbat is food, wbat is a predator, etc.) are 
avoided. eLife strictly separates the cognitive ap­
paratus from the pbysiology of sensors and motors 
(see Fig. 1 and section 4). Tbis implements the ope­
rational closure o/the brain (as described by radi­
cal constructivism). Due to this modular structure 
the cognitive apparatus can easily be excbanged for 
different experiments and tasks. 

1.4 Hierarchical Representation 

System theory of evolution provides the functional 
couplings within representational Wlits. Sucb adap­
tive predispositions lead to a canalization 0/ devel­
opment, wbere building blocks of representational 
units and their bierarcbical relationsbip increase the 
speed of evolution by orders of magnitudes. I will 

1. As argued in [12], tbe notion of reality may be dif­
ferentiated into: Realität, wbich connotes tbe onto-
10gically given environment every realist makes 
reference to, and Wirklichkeit, wbicb designates tbe 
"constructed" world in our minds, as the construc­
tivist position proposes. Thus, Wirklichkeit con­
notes a sequence of "effects" (perturbations) wbicb 
may appear at any time and place. The reference el­
ements for "knowledge acquisition", whicb we term 
"pbenomena" or "facts", are tberefore spatially and 
temporally constrained configurations of effects. 
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Figure 1: Operational closure within the cognitive apparatus. SS denotes the sensory surface, MS is the motor swface. 

point out that the drawbacks of interdependent and 
hierarchical systems (genetic loads), as we know 
from biological evolution, can be avoided within 
artificial systems (for an overview see section 3.5). 

2. Theoretical Background 

2.1 Building Blocks ofBehavior in Biology 

Konrad Lorenz [6] used the notion ofjixed action 
patte ms to connote the basic building blocks of be­
havior. He cbaracterized them as rather stereotypie 
patterns. Many fligbt behaviors are of this kind of 
behavior. The egg-retrieving behavior of the grey­
lag goose provides an example for a sligbtly im­
proved version of a fIXed action behavior: If an egg 
falls out of the nest the incubating goose roUs the 
egg back into the nest with its bill. If the egg is re­
moved midway througb this action pattern the bird 
continues until its bill has reached the border of the 
nest. It seems that during this process the goose ne­
glects environmental events: if an action pattern has 
been triggered, the processing of sensor informa­
tion is reduced until the pattern terminates. During 
egg retrieving it is necessary to compensate for any 
sideward rolling of the egg. This behavior is called 
a behavioral sequence and consists of the interac-

tion between effectors and sensor feedback. We can 
compare this behavior with walking in a dark um­
nel: whenever we bump against the wall we slightly 
change the direction 10 suit the circumstances. In 
eUfe, such action chains are easily implemented: 
they are just a sequence of procedures whose execu­
tion is ultimately stopped by a criterion to be satis­
fied. In biology, such a criterion is called a consum­
matory act or, if it is merely astate, an end siruation. 

In most cases fixed action patterns are triggered 
by stimuli from the environment, but they are inde­
pendent from these stimuli during their execution2. 

Such sign stimuli correspond to conditions in eu­
fe. A group of conditions, which I refer 10 as con­
cepts in eUfe, can be identified as sign situations, 
Le., a certain configuration of sign stimuli. 

The distinction between phylogenetic and on-
10genetic elements in eUfe mirrors the difference 
between an innate releasing mechanism (IRM) and 
an acquired releasing mechanism (ARM) in bio-

2. Since this definition does not apply to all fixed pat­
terns of action, the notion of modal action pattern 
was introduced. It connotes a specific characteristic, 
spatially and temporally ordered pattern of behav­
ior, which can be identified by its typical proceed­
ing. 



logical systems. Releasing mecbanisms can be 
cbaracterized as neurosensory filter mecbanisms 
related to certain patterns of bebavior. They specity 
tbe response to sign stimuli by selecting out ineffec­
tive stimuli. In CUfe, tbis filtering is turned bot­
tom-up in tbat individuals do not filter out irrelevant 
information. Rather, tbey actively test tbe condi­
tions witbin tbeir scbemata. wbicb decreases com­
putational costs for computing all perturbations 
from tbe environment. 

2.2 The System Theory of Evolution 

According to tbe system tbeory of evolution, living 
beings are bierarcbically organized and may tbere­
fore be cbaracterized by super- and sub-systems. 
Any explanation is incomplete as long as only a few 
elements of organization levels are examined [15] . 

The mechanisms explained witbin tbe system tbeo­
ry of evolution sbed a new light on evolutionary 
processes wbicb are not in a line witb traditional 
Darwinistic ideas about evolution: from a system 
tbeoretical point of view, tbe framework. (Gefüge, 
i.e., tbe construction and functional coDditions) of 
an organism itself is already defined as conditions 
of internal selections. 

The relation between system-internal and ex­
temal selection is comparable to tbe relationsbip 
between selection witbin an industrial plant and se­
lection on tbe market In a plant tbere are issues 
such as standardization and management tbat in­
crease productivity: 

[1]t would be disastroiJs for a company ... to have to 
rely only upon its customers to find out whether the 
engine was properly put into a car or whether the cyl­
inders are equal in size. [11] 

2.2.1 Order Principles 

In his morpbological analysis of living systems, 
Ried! [11] outlined tbe order bebind tbese systems. 
He noted tbat tbe evolution of organisms is cana­
lized and attempted to answer several open ques­
tions tbat could not be answered witb tbe lraditional 
syntbetical tbeory of evolution. We must distin­
guish four basic order principles of living systems 
whicb are responsible for tbe internal selection in 
organisms. 

• Norms connote tbe uniformity of structures. 
Therefore, in CLife simple uniform elements 
(conditions and actions) are used. 

• Interdependence of norm elements. 

• Dependent structures are mutually subordinat­
ed to form ranks, grades, or classes, i.e., a hier­
archicaI organization. In CLite, uniform ele-

ments may be arranged to form blocks of bigh­
er order. 

• Tradition adds a time scale to tbe previous 
principles. No organic state exists witbout trib­
ute to its ancestry, so tbat all building states are 
subsequent series of coordinations. 

2.2.2 Functional Coupling 

An increase of evolutionary speed can be achieved 
by junctional coupling, a mechanism tbat obeys tbe 
principle of interdependence and hierarchy. If we 
examine tbe evolution of joints we recognize tbat 
tbe joint socket and tbe condyle must evolve in tbe 
same direction and to tbe same degree in order to 
maintain functionality3 . Functional couplings have 
tbe advantage of dramatically increasing tbe chanc­
es of adaptation by several orders of magnitude. In 
biological systems, clustering of independent ge­
nomes is irreversible, yielding constraints and ca­
nalizations wbich render adaptations to changing 
environments more difficult. Such genetic loads 
[11] are tbe reason wby a giraffe has tbe same num­
ber of neck bones as a dolpbin al tbough it could use 
more in order to increase its pliancy. CUfe bas to 
answer tbe question: Can artificial systems gain tbe 
advantages of functional coupling witbout inberit­
ing tbe disadvantage of genetic loads? 

2.3 Epistemological Constructivism 

Epistemological Constructivism (as formulated by 
Heinz von Foerster [3] and Ernst von Glasersfeld 
[4]4) primarily asks for what we know about tbe 
world. The main point is tbe concept of tbe observ­
er, i.e., starting witb tbe assertion tbat observing is 
tbe only access to tbe 'world'. This is based on tbe 
fact tbat an observer is a so-called operationally 
closed system, wherein nervous signals are unspec­
ified, e.g., visual stimuli affect tbe same kind of in­
ternal signals as tactile onesS• Following an exam­
pie ofMaturana and Varela [8], tbe situation isanal­
ogous to a navigator in a submarine: He relys on tbe 
readings from his instruments when he operates tbe 
levers and buttons. The instruments do sense 
"sometbing" outside tbe submarine, but tbis fact is 
completely irrelevant to tbe navigator. His only 
task is to maintain certain relationsbips between the 

3. In the terminology of Genetic Algorithms this 
would be called context preserving. 

4. For a more detailed description see [12]. 
5. Since observing-in the sense of having experienc­

es-is a coherent coordination of actions in a com­
munity of observers, Radical Constructivism is not 
a solipsistic philosopby. 



indicators constant, independent of what this indi­
cators measure and what effect the buttons and 
wheels have. Within CLüe, the cognitive apparatus 
does not know anything about an environment. It 
merely operates on cells whose "semantics" (for an 
observerofCLüe) aredefmed within the interpreta­
tive shell around the cognitive apparatus. This shell 
maps perturbations from the environment onto the 
cells, but this is irrelevant for the operation of the 
cognitive apparatus. 

Furthermore, Maturana and Varela argue that 
the ratio sensors:brain:motors in human beings are 
10: 106: 1 (the "Heinz von Foerster ratio"). This does 
not imply that sensors and effectors are unimpor­
tant, but emphasizes that behavior is notjust a set of 
pure taxes and reflexes. Sensors only perturb the 
brain but do not determine behavior. The way sche­
mata are processed in CLüe employs this construc­
tivist-anticipatory principle: Sequences of condi­
tions and concepts may only test the state of internal 
ceHs in order to generate action patterns. During the 
execution of action patterns the state of single per­
ceptive cells may be tested in order to direct or to 
halt the action patterns. 

2.4 Cognitive Constructivism 

Cognitive Constructivism (e.g., Jean Piaget [10]) 
emphasizes the cognitive development of beings, 
especially human beings. Its starting point is a psy­
chOlotcal one: the to some extent mentally 'naked' 
child . Hence, cognition must not be perceived as a 
static ability but rather as a dynamic process that 
has its origin in the sensorimotor stage of early 
childhood. 

In the sensorimotor stage, within wh ich cogni­
tion is linked to the content of specific sensory in­
puts or motoric actions, the key question is how 
cognitive creatures obtain 'symbolic ideas' about 
their world. For the coordination of cognitive sche­
mata, increasing intermodal coordination is very 
important-e.g., grasping implies the concurrent 
use of visual and tactile sensors. Working with in­
termodal experience, the infant constructs the idea 
of invariant, permanent objects. Generally, there 
are 3 levels of coordination: (1) In the monomadal 
mode, cognition is guided mainly by a single mo­
dality, as is the case within most Artificial Intelli­
gence systems; (2) Multimadality connotes the se­
quential non-overlapping usage of different modal­
ities, as shown in animals up to and including rep-

6. Ibis does not imply the child's cognition to be a 
labula rasa when it is born. Of course, the child in­
herits the phylogeny of its ancestors. 

tiles (see example below); butonly (3) intermodali­
ty enables the interaction of different modalities we 
find in animals from the mammallevel upwards. 

= k :ize rrs:~c 
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Figure 2: The fuzzy "concept" of apple. The differences 
in tbe heigbt of the Gaussian curves mirror tbe 
importance of each curve. In this example, size con­
tributes more than color to the concept. 

In CLüe, the notion of concept mirrors the in­
term odal characteristics of things. See Fig. 2 for an 
illustration: In order to classüy an object as a mem­
ber of the concept "apple", it is necessary to test 
whetherits size, its color, andsoon are within acer­
tain range. 

3. The Cognitive Apparatus 

This component is often interpreted as the connec­
tion 7 between sensors and effectors. The construc­
tivist aspect of CLüe, however, requires separating 
the cognitive apparatus from the physiology of the 
senses (see Fig.I): The nervous system in biologi­
cal systems is operationally closed. It does not dis­
tinguish between perturbations from outside and in­
ternal perturbations, since nervous signals are un­
specified with regard to their origin. As shown by 
Maturana et al. [9], there is no correlation between 
physical stimulus on the outside of the agent and the 
subjectively experienced perception. Indeed, sig­
nals from the perceptual surface are only triggers to 
the cognitive apparatus. The nervous system is or­
ganized as a closed network of interacting neurons 
within which each state of relative neuronal activity 
leads to another state of relative neuronal activity 
[7]. 

In CLüe, neurons are substituted with schema­
ta wh ich include elements from fuzzy logic. From 
their point of view, they do not deal with informa­
tion from the environment either, but operate exclu­
sively on a set of ceHs8 which are all equivalent to 

7. As shown by Valentin Braitenberg [2]. such con­
nections need not be complicated in order to exhibit 
complex emergent behavioral patterns. Simple con­
nections between two sensors and two locomotion 
elements exhibit forms of attractive behavior, sucb 
as pboto- and chemotaxis. 

8. The notion of "cell" has no biological implications. 
A cell is merely a storage of a number with a unique 
address. 



them. The advantages over neural networks, wbicb 
seem to be biologically more plausible, are evident 
It is mucb easier to track the chain of rules (schema­
ta) in order to explain why a particular bebavioral 
pattern bas ultimately emerged. In neural nets, one 
can only observe patterns of activity that lead to 
some bebavior. Eacb role uses a more sopbisticated 
computation than a single neuron in a net In combi­
nation with the constructivist-anticipatory method­
ology (see section 3.4), there is no strict demand for 
parallelism. Finally, roles may serve as better vebi­
eIes for some kind of Piagetian scbema mecbanism 
(cf. section 2.4), as their data structures are quite 
similar to scbemes. 

Due to its operational closure of the cognitive 
apparatus need not (and indeed does not) assume 
any outside world in order to function. It consists of 
a number of uniform cells wbicb are consequently 
numbered so that they can be addressed by manipu­
lating mecbanisms. These mecbanisms are en­
banced scbemata wbich consist of a condition and 
an action component. Each of these components 
may be constituted (a) by single query elements or 
action elements. and (b) by groups of such single el­
ements. I will refer to the groups of single queries as 
concepts. 

3.1 Conditions and concepts 

In section 2, I pointed out the reasons to use con­
cepts and gave an illustration (cf. Fig. 2). GeneraUy, 
the appearance of things are somewbat fuzzy in that 
an object that is very light-red and measures five 
centimeters is less likely to be an apple than another 
object with glaring red color and a beigbt of eigbt 
centimeters. Due to this fact, I cbose a modified 
kind of scbema9 that fulfills tbis requirement The 
basic element of the condition part of scbemata are 
fuzzy interval conditions (see Fig. 3 for a simplified 
version): The value to be tested is matcbed against 
an interval wb ich is defined as a Gaussian curve 
with left and rigbt boundaries and an optimal peak. 
If the value is exactly the optimum, then the query 
answers with the optimal response. Any deviation 
from the optimum will lead to lower response until 
the value is outside the interval. In tbis case, the an­
swer is zero. It sbould be empbasized that within the 
cognitive apparatus the value of cells has no special 
meaning. The set of cells is just a set of variables, 
eacb of wbicb is set to a certain number. 

Each condition bas a unique number and is 
stored in either the pbylogenetic or ontogenetic 

9. See [13] for a more detailed description of the fuzzy 
interval schema. 

100% 

max 

..... ---- interval ---I~~ 

Figure 3: A single query is a fuzzy interval. Due to per­
formance reasons, a triangular approximation with 
left = right is used instead of a Gaussian curve as 
described in the text. 

condition library. The phylogenetic condition Li­
brary (pcLib) represents the cOIrunon knowledge 
whicb bas accumulated during evolution 10. Tbeo­
retically, every organism can access tbis library and 
use its entries as building blocks for its bebavior. 
The pcLib is created and enlarged by pbylogenetic 
mecbanisms, i.e., mutation and crossover. The on­
togenetic condition libraries (ocLib) reflect the in­
dividual experiences and are therefore private to 
eacb individual. 

At the second level of bierarcby, conditions 
may be grouped to form condition blocks or con­
cepts as described above. Eacb concept consists of 
indices that refer to entries of the libraries at the flTSt 
level of bierarcby. This allows the usage of a condi­
tion in several concepts without multiplying the 
condition11 . As for conditions, there are pbyloge­
netic and ontogenetic concepts. Wbile pbylogenetic 
concepts exclusively refer to pbylogenetic condi­
tions, ontogenetic condition blocks may combine 
both kinds of conditions. This is due to the fact that 
every experience may build upon inherited ele­
ments. Both kinds of concepts are collected within 
libraries: The phylogenetic condition block librar­
ies (PCBLib) collect all pbylogenetic concepts. 
Analogously, the same bolds true for the ontogenet­
ic condition block Library (oCBLib). 

From the system theoretical point of view, the 
introduction of condition blocks implements a 
functional coupling in that the activation of a single 
block in turn activates several action elements tbat 
are associated with this block. 

10. Philosophically, we may refer 10 it as the Kantian 
aprioris. 

11 . This is similar 10 the usage of calling-by-reference 
in bigher programming languages: The subprocedu­
re only receives apointer 10 the variable instead of 
the variable itself. 



3.2 Actions and Action Patterns 

Action patterns are groups of single actions. For in­
stance, an escape bebavior may include "turn 
around!" and "start running!" as single actions. Due 
to its operational closure the cognitive apparatus 
does not know anything about turning around or 
running 12. It merely manipulates the values of the 
cells (all cells being viewed as equal). Indeed, there 
are only four kinds of action an action element can 
perform (see Fig. 4): 

[ action e {O, 1>?~_3} data1 data2 

o = set ce 11 da ta 1 to value data2 

1 = call the elementdata2 of type data 1 

2 = send to background 

3 = stop 

Figure 4: A single action element which can (0) manip­
ulate the value of a cell, or (1) establish a hierarchi­
cal organization by calling another structure 
element, (2) initiate background tasks, or (3) stop 
the execution of a action sequence (both in fore­
ground and background). 

• SET a certain cell to a certain value; 

• CALL another structural element (such as an­
other action element or action pattern) as a sub­
routine, i.e., after the execution of the subrou­
tine has ended, the execution of the calling ac­
tion pattern continues; 

• send the execution of the current action se­
quence into BACKground. This feature en­
ables the simultaneous execution of several 
tasks. That is, the agent may look for food 
(waiting for acertain cell to be set within acer­
tain range) while walking around (background 
task). 

• STOP the execution of the action pattern, 
which also causes the stoppage of the execu­
tion of any other patterns that have called the 
current pattern as subroutine. This action is 
also the only possibility to stop a background 
action sequence. 

Note tbat only the fIrst instruction is effective in the 
sense tbat it manipulates something. The back­
ground operator enables parallelism within a CLife 
model. The call and stop operators are only provid­
ed to establish a recursive and hierarchical relation-

12. Attributing a meaning to the cells takes place in the 
interpretative shell (see section 4). 

ship between action patterns and other structural el­
ements. 

As in the case with conditions and concepts, ac­
tion elements are also stored in libraries. The phylo­
genetic action library (pALib) contains the evolu­
tionarily created actions, while the ontogenetic ac­
tion libraries (oALib) consist of individual experi­
ences. At the second level of hierarchy, phylogenet­
ic and ontogenetic action block libraries (pABLib, 
oABLib) collect all groups of action elements by re­
ferring to the entries of libraries at the fIrst level. 
Again, this implements a functional coupling in that 
the activation of a single block in turn activates sev­
eral action elements. 

3.3 Schemata 

The actual representational elements are schemata. 
Schemata have a condition and an action part. Each 
consists of reference pointers to libraries either on 
the grouped element level or on the single element 
level. Individuals phylogenetically inherit schema­
ta in form of indices which point to the phylogenetic 
schema library, i.e., the innate knowledge. Genetic 
operators change the indices during the simulated 
evolution. 

3.4 Constructivist-Anticipatory Schema~ 
Processing 

The constructivist-anticipatory schema-processing 
algorithm (CASP) works as folIo ws. The behavior 
is controlled by schemata which, once invoked, ask 
for sensory or internal data only when it becomes 
necessary [14]. In other words, the algorithm ne­
glects environmental events except the current ac­
tion pattern demands to check a certain cell' s value 
(which, from the viewpoint of the interpreter shelI, 
may beasensoror aninternal value). This leads to a 
significant decrease in performance costs since the 
simulation algorithm need not provide the full envi­
ronmental information to the agent at every time 
step13. The outline of the algorithm-which per­
forms the process of assimilation in the Piagetian 
sense-is as folIows: 

• POlling, i.e., pattern matching triggers a flISt 
schema. Pattern matching is successful when 
the conditions of a schema, i.e., the sum of the 

13. Of course, this type of processing does not render 
feature extraction obsolete (especially in a more 
complex structured environment than in the exam­
pIe environment of section 5.2) . Rather than com­
puting intensive reduction of compiexity at every 
time step, feature extraction is only necessary to 
trigger a hypothesis or if a condition asks for a par­
ticular feature. 
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Figure 5: The hierarchical organization of eUfe. On each level, all elements of the same sort are summarized in a 
library so that elements on the next level only need to refer to the library index of elements they consist of: Ontoge­
netic blocks may consist of both phylo- and ontogenetic elements, while phylogenetic blocks are built up only by 
phylogenetic components. The condition and action part of a schema may contain both single conditions/actions 
and conditionlaction blocks. Note that in addition to this diagram there are also phylogenetic reflexes that imple­
ment a kind of interrupt. 

fuzzy matching results of each condition in the 
schema, are satisfied to a certain percental de­
gree, i.e., the global variable threshold. 

• Subsequently, the action part is executed; it in­
cludes setting cells, calling other elements 
(both actions and conditions, as well as blocks 
and schemata, thus forming an action se­
quence), sending the current action sequence to 
background, or stopping the execution. If a 
condition is required to be fulfilled during the 
execution of an action pattern, this checks if the 
pattern is still on the right track. 

• After a foreground action sequence has termi­
nated the algorithm again tries to trigger anoth­
er schema. 

3.4.1 Interrupt Handling 

So far, constructivist-anticipatory schema-process­
ing implements an exclusively expectation-driven 
behavior. But how does an agent respond to unex­
pected stimuli, e.g., a suddenly appearing situation 
which threatens the agent's life? For this purpose, 

we need some sort of interrupt which stops the exe­
cution of any action pattern immediately and starts 
a short action instead, e.g., a jump action to escape 
the dangerous situation. 

To attain these requirements the CASP alge­
rithm poIls a smaIl set ofphylogenetic single condi­
tions each time cycle. Each of these conditions coc­
responds to a situation of highest priority that re­
quires an immediate response. Each condition is as­
sociated with an action which is an appropriate re­
sponse to the given situation. 'Ibis implements a 
kind of interrupt line. For example, a dangerous ob­
stacle appears in front of the agent and causes the 
interpreter shell to change the value of a certain cello 
The interrupt element that asks for the value of that 
specific cell now becomes activated and changes 
the value of another cello The content of the second 
cell is translated by the interpreter shell as a back­
ward jump the agent has to perform in order to es­
cape the obstacle. After this interrupt (or reflex in 
biological terms) the CASP algorithm again polls 
possible interrupts (e.g., the obstacle may still be in 



front of the agent). If no interrupt is triggered the 
algorithm polIs normal scbemata. 

3.4.2 Types 01 behavior 

Wemaynow distinguisb between 3 types ofbebav­
iors that mirror the biological equivalents as de­
scribed in section 2.1. The more complex a bebav­
ioral type is the more it contributes to bigber cogni­
tive abilities of the agent. On the other hand, simple 
types are mucb more rapidly executed and bave 
bigher priority since they bave the function of pre­
serving the agent's life. 

• lnterrupt elements (or simple reflexes) consists 
of a single condition and a single action. As 
they bave the bigbest priority and their activa­
tion bas precedence over all other types, they 
implement interrupt lines in the otherwise 
completely expectation-driven eASP algo­
rithm. 

• Fixed action patterns without "cbeckpoints". 
These are stereotypic patterns wbicb, once trig­
gered, are executed without any further refer­
ence to environmental events. 

• Action sequences with free positions wbicb re­
quire the agent to examine wbether the pattern 
is still appropriate in the current situation. 

3.5 The Overall Hierarchy 

The bierarchical structure of schemata within eLife 
is sbown in Fig. 5. Tbe actual representational ele­
ments are scbemata. Individuals pbylogenetically 
inberit scbemata in form of indices wbicb point to 
the pbylogenetic scbema library, i.e., the innate 
knowledge. Indices are ordinary numerical values 
(sucb as integers) wbicb range from 1 to the nmnber 
of entries of this library. Genetic operators as 
known from genetic algorithms change the indices 
during the simulated evolution. 

3.6 &caping genetic loads 

How can artificial systems gain the advantage of 
structural coupling without inberiting the disadvan­
tage of inflexibility? The key is to break open a pby­
logenetic element, i.e., to make grouping of ele­
ments reversible14. New individuals only bave the 
pbylogenetic repertoire of bebavior schemata. 
Newly added ontogenetic scbemata may consist of: 

14. This is comparable to the compression and expan­
sion feature of Angeline's module acquisition ap­
proach [I] 

• ontogenetic elements wbose cbaracteristics are 
found by trial-and-error or more sopbisticated 
learning algorithms (see below); 

• new arrangements of pbylogenetic elements; 

• ontogenetic copies of pbylogenetic elements 
within wbicb one or more values are cbanged 
(broken open). For instance, an ontogenetic 
copy of the concept "apple" may expand the in­
terval for the color so that it also includes yel­
low apples. From this point on, the experiences 
of the individual will decide whether the new 
concept is superior to the traditional pbyloge­
netic one. The advantage of breaking open 
pbylogenetic elements is to escape canaliza­
tions wbicb in the long run make adaptations to 
new envirorunents more difficult. 

3.7 Ontogenetic Learning 

From the viewpoint of constructivism, success and 
failures are not ontological,observer-independent 
criteria but are only real in the domain of reality 
brougbt fortb by operationally coherent actions. To 
make amistake merely means that the reality ex­
pected by the observer is different from the reality 
within wbicb the 'unsuccessful' action takes place. 
For these reasons, no explicit fitness function ex­
cept survival need be cbosen (wbicb is indeed tbe 
only criterion in an ecological system). 

Thus, there is no need for any rewarding at all. 
Instead, schemata compete in the following way: 
&eb scbema is labeled with a measure of the scbe­
ma's degree olgenerality, i.e., the sum over all in­
terval differences in its condition part. The wider a 
condition interval the higber its generality. If the 
conditions of two or more schemata are satisfied, 
the algorithm cbooses the scbema with the lower 
generality. The frequency of calls is stored so tbat 
scbemata wbich have been called more often than 
others have a higher priority. Also, there is some 
kind of random noise tbat influences the decision 
between competing schemata. 

3.8 Phylogenetic Learning 

The genotype of each individual consists of indices 
that refer to the respective phylogenetic Iibraries. 
This requires a higher-cardinality alphabet, namely 
the set of integers. Each genome is prefixed with a 
tag that indicates the kind of library it refers to. Due 
to this characteristic, eLife uses a position-inde­
pendent encoding, Le., genes code for phenotypic 
elements regardless of where they are located. 

eLire emphasizes the importance of introns. It 
can be argued that such introns provide a better 



chance to capture apart of the genotype intact if op­
erators such as mutation and crossover are applied. 
This propeny of preservation is especially impor­
tant in later generations where genetic operators can 
easily destroy sequences of the genotype with 
above-average fiOless. Each gene is assigned with a 
weight that indicates its mutability. The weights de­
crease the chance of the respective genes being al­
tered through mutation or crossing over. This is the 
exact reverse of introns in biological systems, 
where the only possibility to achieve different de­
grees of mutability within a genotype is to replicate 
genes. Introns are also important to maintain estab­
lished chains between condition and action ele­
ments, blocks, and schemata. 

4. Interpreter Shell 

Within this shell, the sensory and motor surfaces are 
defmed as subsets of the cells of the cognitive appa­
ratus. This is done by mapping certain environmen­
tal perturbations onto the sensory surface, and by 
mapping the values of the cells within the motor 
subset into environmental effects (cf. Fig. 1). 

4.1 The Sensory Surface 

This component is capable of perceiving environ­
mental perturbations of various kinds. In a typical 
artificial life environment this includes visual, 
acoustic, tactile, olfactory and proprioceptive per­
turbations. A technical task may use only a subset of 
these modalities. 

4.2 The Motor Surface 

The effectors can be thought of as locomotion, 
acoustic and visual utterances (in order to develop 
various types of communication through building 
consensual domains between several agents), lay­
ing trails (which will offer the possibility to estab­
lish social relationships between agents), and mat­
ing (in ALife environments). 

5. Environments 

In this section I provide two examples of environ­
ments to test the Q..ife approach. 

5.1 Classical Artificial InteHigence 
Environment 

Tic-Tac-Toe provides a simple environment for 
testing the CLife model with respect to its ability to 
build up condition and action hierarchies, i.e., func­
tional couplings. A player has 9 sensors, each con­
nected to the corresponding field of the 3x3 

squares. These sensors deliver values between 0 
and 2 depending on whether the field is empty (0), 
belonging to oneself (1), or belonging to the oppo­
nent (2). The interpreter shell writes the values of 
the sensors into the first 9 ceHs of the cogniti ve ap­
paratus that consists of 9 + n + 9 ceHs, where n is a 
variable which may be varied in different runs. The 
last 9 cells are interpreted as effectors which place 
a piece on the board. Due to the rules of Tic-Tac­
Toe these "effector ceHs" may only be written once. 

As a flfSt step, the system creates a set of ran­
dom conditions, actions, blocks, and schemata, 
each schema assigning a random degree of general­
ity. Now the CASP algorithm compars the condi­
tion parts of the schemata with the current situa­
tion-initially there is an empty board. The trig­
gered schema may then write values in various 
ceHs. The interpreter now reads the value of the frrst 
cbanged effector cell of the cogniti ve apparatus and 
places a piece according to this cell. There are inter­
esting variants of this configuration: (a) The sensor 
cells are restricted to boolean values which indicate 
whether a field is empty or not but which say noth­
ing about the owner of a piece. To determine the 
owner the agent must refer to the state of the effec­
tor ceHs. This implements proprioceptive knowl­
edge; (b) In addition to (a), the state of the board is 
considered as 9bit integer (where 0 refers to an 
empty board and 511 represents a board where all 
pieces are set) rather than using 9 sensors and 9 ef­
fectors. Comparing the results from this experiment 
with the original representation throws light on in­
teger representation. 

Games are played generation after generation. 
Each agent contributes to the phylogenetic library 
by adding new rules which can potentially be used 
by its descendants. Each schema keeps book on the 
number of times it is called; analyses of these fre­
quencies explain the usefulness of the phylogeneti­
cally evolved hierarchy. 

5.2 Artificial Life Environment 

Originally, Q...ife rilodelling was designed for arti­
ficiallife environments, i.e., computational ecosys­
tems. Its purpose is to investigate the emergence of 
higher cogniti ve structures from building invariants 
in simple sensorimotor beings. The environment 
within which the creatures act is assumed to be two­
dimensional and both spatially and temporally dis­
crete. A strict one-object-per-position rule is fol­
lowed, i.e., a creature can move to an already occu­
pied position Ü the creature either eats the object 
(whether non-living or living) or moves it to an ad­
joining space. 
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1 Introduction 

In the steel industry problems frequently occur when 
the need to stamp polygonal figures from a rectangular 
board arises. The aim is to maximize the use of the 
contiguous remainder of the board . Similar problems 
exist in the textile industry, when clothes are cut out of 
a rectangular piece of material. 

In order to solve these problems let us consider the 
following simpler approach. Given a finite number of 
rectangles ri, i=l..n, and a rectangular board, an or­
thogonal packing pattern requires by definition a dis­
junctive placement of the rectangles on the board in such 
a way that the edges of ri are parallel to the x- and y­
axes, respectively. The computation of the orthogonal 
packing pattern with minimal height is called orthogo­
nal packing problem (OPP). 

The magnitude of the search space of the orthogo­
nal packing problem is infinit, because for every time 
you move a rectangle in a packing pattern in a possi­
ble direction, a new packing pattern is created. In order 
to effectively reduce the number of possible orthogonal 
packing patterns the so called bottom-Ieft-condition 
(BL-condition) is introduced. The orthogonal packing 
pattern fulfills the BL-condition if no rectangle can be 
shifted further to the bottom or to the left. In addition, 
the complexity of the problem is NP-complete. 

2 Genetic Algorithm 

The data structure is important for the genetic algo­
rithm (GA). The first genetic algorithms worked with 
bit-strings. Over the last few years, GAs have been de­
veloped which work on the basis of different structures of 
data. Here each packing pattern is represented by a per­
mutation 'Ir. The permutation represents the sequence in 
which the rectangles are packed. The advantage of this 
data structure is the facile creation of new permutations 
by changing the sequence. A consequence of the variable 
data structure is the fact that every permutation has to 
be assigned to a unique packing pattern. This decoding 
of the genotype is realized by a deterministic algorithm 
called BL-algorithm. 

3 Extension to polygons 

One approach for the extension to polygons is based on 
the use of a deterministic algorithm to convert the per­
mutation of polygons into a packing pattern. The cost 
of existing algorithms is greater than O(n 2 ) . In the GA 
for each step one permutation has to be converted. For 
this reason it is not advisable to use this approach. The 
embedding-shrinking algorithm offers a faster alter­
native. It consists of three steps: 

Step 1: Embed the polygons into rectangles. 
Step 2: Apply the GA to the embedded rec­
tangles. 
Step 3: Move the polygons in the packing pat­
tern doser together 

4 Conclusions 

The aim is not the presentation of an optimal packing 
algorithm. It adresses the problem of improving deter­
ministic packing algorithms. In pra.ctice the combination 
of deterministic and genetic algorithms provides a pos­
sible escape out of local minima. A further advantage 
is the fast and easy implementation of the combination. 
If a deterministic packing algorithm based on permuta­
tion is known, the algorithm could be improved by the 
genetic algorithm presented here. 
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lntroduction 
The minimum vertex cover problem (mvcp) belongs to 
the dass of NP-hard problems. The maximum clique 
problem can be reduced to it [3]. Thus, the search for an 
optimal solution is intractable (unless of course P = NP). 
Due to its numerous applications, especially in various 
matching problems, the problem is not abandoned. The 
goal is to find heuristics: approximation algorithms that 
have polynomial running tim es that return near-optimal 
solutions. 

In this work we describe the results of applying a ge­
netic algorithm [6, 4] to the mvcp . The latter is a highly 
constrained combinatorial optimization problem. Unlike 
traditional approaches that use domain-specific knowl­
edge, and specialized genetic operators, the approach 
presented here makes use of a graded penalty term in­
corporated in the fitness function to penalize infeasible 
solutions. The fitness function itself is quite simple and 
needs to be added to GENEsYs, the genetic algorithm 
software package we use in this work. This package is 
based on Grefenstette's widely used GENESIS [5]. 

Following the formal introduction of the mvcp, the 
best known heuristic algorithm for that problem is in­
troduced. The study then focuses on the genetic-based 
heuristic. Several problem instances are used with both 
algorithms and the results are compared . Our work con­
cludes with so me observations about our findings, and 
some suggestions on the use of evolutionary heuristics 
for other combinatorial optimization problems. 

The Minimum Vertex Cover Problem 

The mvcp of an undirected graph G = (V, E) where V is 
the set of vertices and E denotes the set of edges, consists 
in finding the smallest subset V' ~ V such that V(i, j) E 
E, we have i E V' or jE V' (or both). V' is said to be a 
vertex cover of G . The following is a formal definition of 
the mvcp in which we make use of Stinson's terminology 
for combinatorial optimization problems [14]: 
Problem instance: A graph G = (V, E), where V = 

{I, 2, . .. , n} is the set of vertices and E ~ V x V the 
set of edges. An edge between vertices i, j is denoted 
by the pair (i, j) E E. We define the adjacency 
matrix (eij) according to 

e .. _ {I , if (i, j) E E 
') - 0, otherwise 

Thornas Bäck 
University of Dortmund 
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Figure 1: Construction of the regular graph after Papadim­
itriou and Steiglitz. 

Feasible solution: A set V' ofnodessuch that V(i,j) E 
E: i E V' V jE V' . 

Objective function: The size IV' I of the vertex cover 
V'. 

Optimal solution: A vertex cover V' that minirnizes 
IV'I· 

Since we are interested in covering all the edges of the 
given graph by using as few nodes as possible, one might 
be tempted to use a greedy-based heuristic to tackle the 
mvcp. The algorithm consists in repeatedly selecting a 
vertex of highest degree (the node that covers as many 
of the remaining edges as possible), and removing all 
of its incident edges. This is not a good strategy as 
was demonstrated by Papadimitriou and Steiglitz ([10], 
p . 407). They considered regular graphs, each of which 
consists of three levels. The first two levels have the same 
number of nodes while the third level has two nodes less 
than the number of nodes found on the previous two 
levels. More precisely, each graph consists of n = 3k + 4 
(k ~ 1) nodes; k + 2 nodes on the first level, labeled 
1, ... , k + 2; followed by k + 2 nodes on the second level, 
labeled k + 3, ... , 2k + 4, while the k nodes of the third 
level are labeled 2k + 5, .. . , 3k + 4. 

The regular graph for k = 3 can be found in [10] 
(p. 407) and is reproduced in figure l. 

A minimum ver tex cover is obtained by choosing all 
the nodes of the second level, but the greedy strategy 
would start with the nodes of the third level, since these 
have highest degree. Consequently, the greedy strategy 



mvcplOO-OI mvcp100-02 mvcpIOO-03 mvcpIOO-04 mvcpIOO-05 PSIOO 

h10~(X) N h10~(X) N h10~(X) N h10~(X) N h10 4 (X) N h10 4 (X) N 

53 1 55 34 55 77 55 96 55 99 34 65 

54 1 57 3 56 1 67 1 83 1 66 35 

55 3 59 2 59 6 68 1 

56 6 60 3 63 :3 75 1 

57 4 61 10 64 3 90 1 

58 4 62 1 66 1 

59 9 63 8 67 1 

60 4 64 1 68 1 

61 6 65 1 70 1 

62 12 66 6 71 1 

63 5 67 6 74 1 

> 63 45 > 67 25 > 74 4 

! = 62.61 ! = 62.75 ! = 57.62 ! = 55.80 ! = 55.28 ! = 45.20 

Table 1: Experimental results obtained by the genetic algorithm for five random graphs of size n = 100 with edge density 
d = 0.1 ("mvcpl00-0l"), d = 0.2 ("mvcpl00-02"), d = 0.3 ("mvcpl00-03" ), d = 0.4 ("mvcpl00-04") and d = 0.5 ("mvcpl00-
05") and the regular graph of size n = 100 from Papadimitriou and Steiglitz ("PSI00"). 

finds a solution of size 2k + 2 (since it has to select k + 2 
nodes in addition to the nodes of the third level), while 
the optimal solution has size k + 2. 

It can be shown that the greedy algorithm never pro­
duces a solution which is more than ln(n) times the op­
timum, where n is the number of vertices ([9], p. 323). 
More precisely, the algorithm performs with a relative 
error In~n) (which grows as fast as ln(n)) ([10], p. 408) . 

The following simple algorithm is surprisingly the 
best approximation algorithm known for the mvcp ([9], 
p. 301). It can be shown that the size ofthe ver tex cover 
it returns is guaranteed to be no more than twice the 
size of an optimal vertex cover ([1], p. 968). 

ALGORITHM 1 (vercov) 

C:= {}; 
{C con tains the vertex cover being constructed} 

E' := E; 
while E' ::I 0 do 

od 

randomly choose (u, v) E E'; 
C:=Cu{u,v}; 
E' := E' - {(x, y) I x = u V y = v}; 

{remove from E' every edge incident on 
either u or v}; 

returnC; 

To compare the performance of the above algorithm 
with the genetic algorithm, a cover V' is represented by 
a binary vector x = X1X2"'Xn where Xi = 1 ifthe ith 

node is in V', and Xi = 0 if it is not. Using this repre­
sentation, we developed the following fitness function to 

be minimized by the genetic algorithm: 

fex) = t (Xi + n· (1- Xi) ' t(1- Xi)eii) 
.=1 ;=. 

The term L:7=1 Xi of fex) determines the size of the 
potential vertex cover represented by x, while the term 
n . L:7= 1 L:j =i(1- Xi) . (1 - X j ) . eij penalizes sets V' that 
are not covers by adding a penalty of magnitude n for 
each edge eij for which i rt. V' and j rt. V'. Consequently, 
the second term drops to zero for feasible solutions. 

The fitness function was developed according to the 
following design principles that are important for a suc­
cessful penalty function approach [11 , 13, 7]: 

• The penalty should be graded, i.e., fitness values 
should improve as solutions approach (in terms of 
the Hammingdistance) feasible regions ofthe search 
space. 

• Infeasible binary vectors are guaranteed to yield fit­
ness values which are inferior to fitness values of 
even the worst feasible solutions. 

Experimental Results 

The experiments reported in this seetion are performed 
by using a genetic algorithm with a population size 
J1. = 50, a mutation rate Pm = I/n, crossover rate 
Pe = 0.6, proportional selection, and two-point crossover. 
As reported in [2, 12], the latter is expected to perform 
better than the tradi tional one-point crossover . In order 
to apply the genetic algorithm to the minimum ver tex 
cover problem, no component of this general genetic al­
gorithm - except, of course, the fitness function - has 
to be modified. This fact refiects the wide applicability 



mvcpl00-0l mvcpl00-02 mvcpl00-03 mvcpl00-04 mvcpl00-05 PSI00 

f(x) N f(x) N f(x) N f(x) N f(x) N f(x) N 

80 6 80 80 80 1 80 66 100 

82 17 82 1 82 82 82 1 

84 23 84 2 84 1 84 1 84 

86 20 86 4 86 6 86 86 5 

88 17 88 18 88 12 88 5 88 7 

90 14 90 17 90 15 90 13 90 10 

92 1 92 31 92 18 92 24 92 21 

94 2 94 20 94 28 94 34 94 27 

96 96 4 96 16 96 19 96 17 

98 98 1 98 4 98 3 98 9 

100 100 100 100 100 3 

f = 86.46 f = 89.22 f = 92.22 f = 92.96 f = 93.12 

Tab1e 2: Experimental results 0 btained by the vercov heuristic for fi ve random graphs of size n = 100 with edge density d = 0.1 
("mvcplOO-Ol"), d = 0.2 ("mvcplOO-02"), d = 0.3 ("mvcplOO-03"), d = 0.4 ("mvcplOO-04") and d = 0.5 ("mvcplOO-05") and 
the regular graph of size n = 100 from Papadimitriou and Steiglitz ("PSI00"). 

and robustness of genetic algorithms when compared to 
pro blem-specific heuristics. 

For the exp~rimental tests, random graphs of size 
n = 100 with different edge densities d, d E {0.1, 
0.2,0.3,0.4,0.5}, are used. For example, an edge den­
sity of d = 0.1 means that an edge is placed between two 
no des with a probability of 0.1. For each of these prob­
lems, a total of N = 100 runs of the genetic algorithm 
is performed. The results are summarized in table 1 for 
the best results that were encountered during the 100 
runs for each test problem. For each problem instance, 
we record the different fitness values that were obtained 
and their frequencies. Furthermore, the average fitness 
value f over all 100 runs is indicated at the bottom of 
the table. The total number of function evaluations per 
single run is chosen to be 2 . 104, such that only an ex­
tremely sm all fraction of the search space is tested by 
the genetic algorithm. 

In addition to the randomly constructed graphs, the 
regular graphs introduced by Papadimitriou and Stei­
glitz ([10], pp. 406-409) and described in the previous 
section of this paper, are used to compare the behavior 
ofthe genetic algorithm with the vercov heuristic. 

Recall that these graphs contain n = 3k + 4 (k 2: 1) 
nodes distributed on three levels. They can bescaled 
up by choosing high values for k. We choose problem 
instances of the regular graph of sizes n = 100 (k = 32) 
and n = 202 (k = 66). 

For each of the problems a total of N = 100 indepen­
dent runs of the vercov heuristic is performed, and the 
results are summarized in table 2. 

The same experiments were also performed for graphs 
of size n = 200 in order to test the behavior of the ge­
netic algorithm as weil as the vercov heuristic for an even 
larger problem size. In this case, the genetic algorithm 
was allowed to run for 4 . 104 function evaluations per 

experiment. The corresponding results obtained by the 
genetic algorithm are shown in table 3, while the results 
from the vercov heuristic are presented in table 4. 

From these tables, a number of interesting conclusions 
can be drawn. For the random graphs, which were used 
to compare the genetic algorithm and the vercov heuris­
tic, it is known by construction that an optimum of qual­
ity 55 (respectively 110) exists, which is likely to be the 
global optimum. This optimum is found by the genetic 
algorithm at least on ce within the N = 100 runs that 
were performed. 

Moreover, the randomly constructed problems quickly 
become simpler for the genetic algorithm when the edge 
density is increased. For an edge density of d = 0.5, the 
genetic algorithm almost surely finds the global optimum 
of the problems. 

In case of the regular graph after Papadimitriou and 
Steiglitz, the genetic algorithm is able to find the global 
optimum in about 2/3 of all runs, while the remaining 
runs identify a solution of quality 2k + 2. 

On the other hand, the vercov heuristic performs 
poorly. For the randomly constructed problems, the 
heuristic finds best solutions of quality 80 (for graphs 
of size 100) and 172 (for graphs of size 200), respec­
tively. Surprisingly, the average performance of the ver­
cov heuristic decreases as the edge density is increased, 
i.e., the problems become even harder for the vercov 
heuristic while they become much simpler for the genetic 
algorithm when the edge density increases. 

For the regular graph instances, the vercov heuristic 
fails in all of the 100 runs that were performed for each 
of the graphs. Recall that the graphs are constructed 
so as to force the vercov heuristic into yielding solutions 
of quality 2k + 2. The random choice of edges in the 
while-loop of the algorithm implies that nodes from ei­
ther layers one and two, or from layers two and three 



mvcp200-01 mvcp200-02 mvcp200-03 mvcp200-04 mvcp200-05 PS202 

h1O'(i) N h1O'(i) N h104(i) N hlO·(i) N hlo.(i) N h10.(i) N 

110 2 110 55 110 95 110 99 110 100 68 60 

113 1 120 10 128 1 140 1 134 40 

116 4 121 7 129 6 

117 2 122 2 130 2 

119 3 123 7 134 1 

120 1 125 1 

121 2 126 1 

122 3 127 1 

124 3 129 1 

125 6 132 2 

126 2 134 1 

> 126 71 > 134 12 

j = 132.50 f = 119.07 f= 111.01 f = 110.30 j = 110 .00 j = 108.00 

Table 3: Experimental results obtained by the genetic algorithm for five random graphs of size n = 200 with edge density 
d = 0.1 ("mvcp200-01"), d = 0.2 ("mvcp200-02"), d = 0.3 ("mvcp200-03"), d = 0.4 ("mvcp200-04") and d = 0.5 ("mvcp200-
05") and the regular graph of size n = 202 from Papadimitriou and Steiglitz ("PS202"). 

of the graph are involved in the solution constructed , 
which in turn implies that two layers have to be part of 
the solution found by the heuristic [10] . 

Conclusion 

In this work, we have demonstrated that genetic algo­
rithms can be used in a straightforward way to find 
good approximate solutions ofthe minimum vertex cover 
problem . Moreover, the results found by the genetic al­
gorithm are better than those obtained from the best 
known traditional heuristic, the vercov algorithm. These 
findings, in addition to other good results obtained on 
different, highly constrained combinatorial optimization 
problems such as the subset sum [7], minimum tardy 
task [7], and multiple knapsack problems [8], give strong 
evidence that genetic algorithms can yield good solu­
tions for a wide range of hard combinatorial optimiza­
tion problems for wruch solutions can be represented by 
binary strings. 
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Abstract 

Scheduling data flow graphs is a critical 
task in high-level synthesis and is an NP­
Complete problem. In this paper we present 
the application of Genetic Algorithm, a 
general optimization technique, to the problem 
of scheduling and Allocation. The method 
schedules under a variety of constraints like 
resource, time, interconnect constraints. It 
can schedule multicycle, chained and mutually 
exclusive operations. With minor modifications 
to cost functions we can take care of functional 
pipelining. 

Also, if a better heuristic for the problem is 
found we can always integrate that heuristic with 
this method with a guarantee that this method 
performs equally well or better than the heuristic 
found. This technique can be easily parallelized 
which makes it very promising for application 
in large designs. Complexity of the procedure is 
O(S*N) where S is number of control steps and 
N is number of nodes 

1. Introduction 

Input to a High-Level Synthesis system is a high level 
specification of a digital system which is called as behavior 
of the system, along witb constraints on hardware, timing 
etc., Output of a High-Level synthesis system is the structure 
which realizes the specified behavior of the system. 

The tasks involved in the high level synthesis are 

Compilation - Behavioral description in a hardware 
description language like VHDL is compiled into 
optimized data fiow andJor control fiow graphs. 
For optimization, several techniques like dead-code 

elimination etc., are borrowed from compilation of 
programming languages. 

• Scheduling -is the assignmenr of each operation to 
a control step which generally corresponds to a clock 
cycle in synchronous systems. This is considered to 
be tbe most critical task in high level synthesis. 

• Allocation & binding - Allocation is determining the 
number of each type of hardware modules, registers 
and buses required. Binding is the assignment of 
each operation to a specific functional unit (hardware 
resource), assignment of variables to registers and 
transfers to buses and is termed data patb synthesis. 

• Controller generation for tbe resulting schedule. 

• Output the structural representation of the design. 

Scheduling without operation chaining and multicycle 
operations: Let us assurne addition operations take 50 time 
units and multiplication operations take 100 time units. 
In fig l.a we need to have a clock cycle time of 100 
time units, time taken by the longest operation. Here 
the implementation needs two control cycles and total 
execution time will be 200 time units. 

Scheduling with operation chaining: When tbe 
consecutive running time of several operations is less 
than the clock cycle time we can scheduJe all of tbem in 
a single clock cycle and tbis is called operation chaining. 
Here (fig-l.b) the two add operations can be executed in a 
single cycle of 100 time units as their total execution time 
is less then or equal to tbe clock cycle time. Schedule 
takes only 100 time units and one control step (instead of 
two control steps as in earlier schedule) which simplifies 
controller. 

Scheduling with multicycle operations: If we reduce 
the clock cycle time to 50 time units tben multiplication 
operation takes two clock cycles. The scheduJe (fig-l.c) 
requires two control steps and we need a total execution 
time of 100 time units. Here the multiplication operation 
is scheduJed in two control steps and hence takes two 
clock cycles. 



(a) Scheduling without operator 
chaining or multicycle operation 
Process takes two control 
steps of 100 time units each. 
i.e., total process time is 
200 time units. 

(b) Scheduling with operator 
chaining. This results in 
only one control step of 
100 time units - Aesults 
in simpler control and 
laster operation. 

(c) Seheduling with mtiticycle 
operations. Proeessing time 
is same as ease (b) i.e., 100 
time units. But has two control 
steps of 50 time units each. 

Figure 

Bus requirement of a schedule: Minimum bus 
requirement of a schedule is the maximum number of 
concurrent data transfers taking place in the schedule. 

Register requirement of a schedule: For a scheduled 
control data fiow graph (CDFG) the register requirement 
is given by the maximum number of graph edges crossing 
a control step boundary. 

2. Genetic Algorithms 
Paulin et al. , [1] give an excellent survey of 

scheduling techniques in the context of high level synthesis, 
along with their own force directed scheduling methods. 
Applicationof general optimization methods like simulated 
annealing for schedulingJallocation problem can be found 
in SALSA[2] and in [3]. Genetic Algorithm has been 
applied to scheduling in [4] wherein two strings are used 
to encode the problem. Our approach which uses only one 
string encoding is different from this work. 

Genetic algorithms, like simulated annealing are 
stochastic search algorithms for optimization problems. 
Excellent introduction to genetic algorithm theory and 
applications can be found in [5-6]. To apply genetic 
algorithms to a optimization problem we should have 

• A way of encoding the solutions of the problem 
-Here Chromosome is a string of genes. A position 
on the chromosome can be occupied by one of the 
genes from a set of possible genes (called allelIes) for 
that position. It is possible that presence of one gene 
at a particular position and another gene at another 
position make the genotype (solution) illegal. Tbat 
means a cenain combination of genes may be illegal. 

• A way of creating an initial population - Tbis 
may be a random generation of solutions to the 

problem or solutions provided by other algorithms or 
a combination of both. 
A way of evaluating the fitness of each solution 
(genotype) of the population. 

• A way of generating the next generation by the 
members of the present population by 

o Cloning - Cenain members of the present 
generation may be allowed to survive for the next 
generation or copied into the next generation. 

o Crossover - TWo parents from the present 
generation are selected , with an exponentially 
increasing probability of selection for fitter 
parents. Chromosomes of each parent exchange 
pan of their information and form two new 
chromosomes which constitute two new children 
into the next generation. Tbe parents may or 
may not be mutated (altering of chromosomal 
infonnation) before crossing them with a low 
probability. 

Determine the way of chromosomal infonnation 
exchange (crossover), rate of crossover, percentage 
of cloning, mutation rates. 

• Termination conditions 

3. Chromosomal Representation 

We have integer based representation rather than a 
binaty representation for the chromosome. To illustrate 
the representation let us consider the control fiow graph 
in fig-2(a). Let us assume that we are considering a time 
constraint of five control steps, hardware constraints of one 
adder unit and one multiplier unit and we are trying to 
get an optimal schedule where bus and register costs are 
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(b) AlAP schedule 

o Add operation • Execution in one oontrol step 

o """"'00 _00· ""''"" '" ~ ~"~, '''' 

1 Allelle list tor node 1 (1,2,3,4) 
3 Allelle list tor node 3 (1, 2) 
2 Allelle list tor node 2 (2, 3, 4, 5) 
4 Allelle list tor node 4 (2, 3, 4) 
6 Allelle list tor node 6 (2, 3) 
5 Allelle list tor node 5 (4, 5) 

~ogically sorted node list (breadth tirst ) 

(c) Topoiogically sorted node list and allelle list ot each node. 
Allelle list ot anode is the list ot rts ASAP and ALAP oontrol 
steps and the oontrol steps in between ASAP and AlAP steps. 

Figure 2 

minimum. It may not be possible to meet all the constraints 
in wh ich case the algorithm should indicate this possibility. 

We will find ASAP (fig-2.a) schedule and ALAP 
(fig-2.b) schedule for the given CDFG and note down the 
ASAP step and ALAP step for each of the nodes of the 
graph. Then the possible allelle values for anode are its 
ALAP and ASAP steps and the control steps in between. 
An Allelle list of anode can be any permutation of the 
corresponding allelle set. In any legal schedule, anode can 
be scheduled into one of the control step corresponding 
to a member of the allelle list, if such a scheduling 
does not contradict precedence relations as indicated by the 
graph. Allelle lists forms the units of information exchange 
during crossover of two schedules. 

Nodes of the graph are topologically sorted such that 
in the sorted list anode is entered only after all its 
predecessors are already entered. Fig-2.c shows one such 
sorting of the nodes. 

4. Initial Population Generation 
If the population of a generation is decided as N, then 

N copies of the sorted node list along with allelle set for 
each of the nodes are made. The allelle set of each node 
is randomly permuted in each of the copy. 

A Scheduler takes each of these permuted copies and 
forms corresponding schedules. Scheduler builds schedules 
which meet precedence constraints (hard constraints) 
always and tries to meet the hardware constraints (soft 
constraints) as far as possible. Timing constraints because 
of the nature of the method are always met. 

Scheduler scans the node list ( which is sorted in 
topological order) and schedules each node in order. For 
each node it scans corresponding allelle list from left to 
right. It schedules the node to the first allelle (control 
step) in the list wh ich meets the precedence constraints and 

also hardware constraints. If it is not possible to meet the 
hardware constraints, scheduling will be done to the first 
allelle in the list which does not contradict any precedence 
relations. Then that allelle is interchanged with the first 
allelle in the allelle list. Thus after scheduling is complete, 
the first allelle in each of the allelle list reftect the contro! 
step to which the corresponding nodes are scheduled. 

For example let us assume anode X has a associated 
allelle list ( a, b, c, d, e ), and after scanning the allelle 
list, it was found that c is the first allelle in the list to 
wh ich scheduling of X, meets precedence and hardware 
constraints. Then we schedule the node X into control step 
c and update the allelle list as ( c, b, a, d, e ). As soon 
as we schedule anode into a control step we should also 
update the corresponding control step's usage of hardware 
and the freedom of the subsequent nodes in the sorted list 
of nodes. Fig-3 shows a random permutation of the allelle 
list, the corresponding schedule developed by the scheduler 
and updating of the allelle list to reftect the actual schedule. 

After scheduling all the nodes the scheduler checks 
to see if any of the control step is empty i.e., none of the 
nodes have been scheduled to that control step. In that 
case all the nodes scheduled to control steps later to this 
empty control step are "pulled-up" by one control step. 
For example anode X has an associated allelle list (after 
scheduling) of (12, 14, 10, 11, 13) and is scheduled to 
control step 12. Suppose if the control step 5 is found to 
be empty, then all the nodes scheduled to control step 6 or 
more have to be pulled up by one control step. Therefore 
node X has to be rescheduled to control step 11 and its 
allelle list updated as (11, 14, 10, 12, 13), by interchanging 
positions of 11 and 12 in the list. If there are more empty 
control steps in the schedule the process has to be repeated 
and this process of filling the empty control steps starts 
from the empty steps at the end of the schedule to those 
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node 1 (4, 3, 2, 1) 
node 3 (1, 2) 
node 2 (5, 2, 3, 4) 
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node 1 (1 , 4, 2 , 3) 
node 3 (1 , 2) 
node 2 (5, 3, 2, 4 ) 
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node 1 (1, 4, 2, 3) 
node 3 (1, 2) 
node 2 (4, 3, 2, 5) 
node 4 (2, 4 , 3 ) 
node 6 (2, 3) 
node 5 (4, 5) 
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(b) Schedule modified 10 lill 
the empty control slep 4 
and Ihe updated allelle list. 
Nole changes in lila allele tists 
01 nodes 2 and 5. 

Figure 4 

towards beginning of the schedule. For the given example 
this is illustrated in fig-4. 

We can seed initial population with ASAP • ALAP or 
schedules generated by other heuristics and it is guaranteed 
that genetic algorithm generates schedules at least as good 
as the best of these schedules. In our trials. we seeded 
the initial population with only ASAP. ALAP schedules 

and randomly generated schedules. We did not make use 
of any other heuristics. 

5. Cost Calculation for schedules 
After creating schedules in each generation we have 

to find the cost of each of the schedules. Measuring fitness 
of a schedule depends on what we are trying to optimize. 



For example, if we are trying to get an optimized schedule 
for some hardware constraints and time constraints, then 
the following can be a good cost function for the schedule. 

Let 

X = Number of control steps allowed. 
Y = Actual length of the schedule in number 

of control steps. 
P = Penalty for generating shorter 

schedules. 
B = Cost of each bus. 
b = Actual number of busses 

used for the schedule. 
R = Cost of each register. 
r = Actual number of registers 

used for the schedule. 
Ci = Cost of the hardware unit 

of type i. 
Hi = Allowed number of hardware units 

of type i. 
chi = Actual number of hardware units 

of type i, used in control step c. 

Then cost of the schedule is equal to 
(X - Y) * P + B * b + R * r + L, L, (Hi - chi) * Ci 

i c 

The cost of the schedule is the objective function that 
has to be minimized. It should be noted that schedules 
shorter than the maximum specified length should be 
penalized as shorter schedules have a higher prob ability of 
breaking hardware constraints. 

6. Sorting, Cloning, Crossover and Mutation 
At each generation we calculate the cost of each 

schedule and we sort the schedules of the generation, in 
ascending order of their costs. If two schedules have 
same cost, schedules having longer length come before the 
schedules of smaller length, to encourage the schedules to 
exactly meet the time constraints rather than developing 
.short stubby schedules. It is possible to use other criterion 
like cost of registers, or cost of buses etc., as a secondary 
field for sorting ( in addition to cost of the schedule as 
the primary sorting field) to encourage schedules which 
are better in those aspects. 

To produce next generation, a certain percentage of 
present population is calculated and we copy that many 
top schedules of the present generation to next generation. 
This is Cloning. 

The remaining members of the next generation are 
formed by cross over of the present generation members. 
The probability of participation in crossover for a member 
of present generation increases exponentially with its fitness 
( which is inversely proportional to cost of schedule ). For 

this purpose we use a random number generator with an 
exponential distribution. 

Generation of exponential distribution: If RNG is 
output of a uniformly distributed random number generator, 
then X , a random variable with exponential distribution 
is given by 

X = 1. - 10 * loge(RNG) 1. 

This random number generator generates number one with 
high probability and the numbers two and onwards the 
probability of generation exponentially decreases. The 
numbers after thirty are practically never generated. Thus 
if we use a population size of 100, only the top thirty 
members participate in crossover. 

To choose two parents from the sorted population list, 
we ron the random number generator ( one with exponential 
distribution ) twice. Suppose the numbers generated are 
X and Y, then the parents chosen for crossing are the Xth 
and Yth schedules in the sorted population list. These 
two parents exchange the genetic information by swapping 
allelle lists at specific nodes determined by a random 
number generator of uniform distribution, wh ich generates 
a string of Os and 1 s. Length of this string is equal to 
number of nodes. This is illustrated in fig-5 for the example 
we considered above. This type of crossover is called 0-1 
crossover. It should be noted that in crossover we are 
not exchanging the genes themsel ves but permutations of 
genes corresponding to the node involved in crossover. 

As each child is generated we can make it undergo 
mutation also, which is choosing one or more of its nodes 
with a very low probability and randomly permuting the 
allelle lists at those selected nodes. The process is repeated 
until the required number of children for the next generation 
are created. Scheduler then processes each children and 
generates schedules. 

Then the process of finding cost of each schedule, 
sorting, building next generation by cloning, crossover and 
mutation is repeated for a predetermined fixed number of 
iterations or until a whole generation converges towards 
solutions of equal fitness. 

Complexity of the procedure is of the order of 
O(P*G*S*N) where P is the population size, G is the 
number of generations, S is number of control steps and 
N is the number of nodes in the data ftow graph. Since 
P and G are constants the procedure is of the complexity 
of O(S*N). 

7. Experimental Results 
The algorithm is implemented in C language and 

benchmark studies were done on SUN SPARC workstation. 
The benchmark we used is the popular fifth-order elliptic 
wave filter. This benchmark can be particularly challenging 
for a stochastic algorithm when scheduling for 21 control 



node 1 
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1 Allelle list (1, 4, 3, 2) 
3 Allelle list (1, 2) 
2 Allelle list (2, 5, 4, 3) 
4 Allelle list (2, 3, 4) 
6 Allelle list (2, 3) 
5 Allelle list (4, 5) 
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Genetic Algorithm 
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Nodes at which allelle lists are exchanged is determined 
by random binary string generated. In this example 
the two parents exchange the genetic information 
by exchanging the allelle lists of nodes 3, 2, and 6. 

Figure 5 

17 control steps 18 control steps 19 control steps 21 control steps 

Add - 3 Add - 3 Add - 2 Add - 2 
Mul- 3 Mul- 2 Mul- 2 Mul- 1 
Reg - 12 Reg - 12 Reg - 12 Reg - 12 
Bus - NA Bus - NA Bus - 6 Bus - NA 

Add - 3 Add - 3 Add - 2 Add - 2 
Mul- 3 Mul- 2 Mul - 2 Mul - 1 
Reg - 11 Reg - 11 Reg - 11 Reg - 11 
Bus - 6 Bus - 6 Bus - 4 Bus - 4 

Table 1 
steps as seven multiplication operations have to be irrespective of whether we are scheduling to 17, 18, 19 
scheduled end to end, if we have only one multiplier. or 21 control steps. 

We used a population size of !OO, cloning ratio of 
50% and 50 generations. The algorithm, in all the runs 
took nearly 25 CPU seconds for scheduling this benchmark 

Table-l gives the results obtained and the comparison 
with HAL [1] , Genetic algorithm gave beuer results than 
HAL in terms of registers and busses used for the schedule. 



8. Conclusion 
This paper presented, application of genetic algorithms 

for schedulinglallocation problem with timing, hardware 
and mutual exclusion constraints. The Genetic Algorithm is 
a robust optimization technique and by integrating problem 
specific knowledge to genetic algorithm we have obtained 
promising results. The approach can be easily parallellized. 
We are extending this work to schedule CDFGs with loops. 
Even though there are integer programming methods which 
always generate optimal solutions for this problem they 
will not be suitable for large graphs because of their 
exponential time complexity. 
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The task of production scheduling is the temporal and capacity oriented scheduling 
of a set of orders for manufacturing products. The manufacturing of a product is 
accomplished by the execution of a set of operations in a predefined sequence on 
certain machines. The goal of scheduling is the construction of a schedule (temporal 
assignment of production processes to machines), which minimizes a chosen evalu­
ation function. Apart from some theoretical cases of little practical importance, the 
determination of an optimal solution to a scheduling problem belongs to the class of 
NP-complete problems. In addition to the combinatorial complexity, when dealing 
with real-world scheduling problems the requirements imposed by numerous details 
of the particular application domain, e.g. alternative machines, make the scheduling 
task even more difficult. In spite of a large number of developed scheduling 
methods (in Operations Research and, more recently, in Artificial Intelligence), only 
a few practical applications have entered into everyday use in industrial reality. 

Almost aB previous GA-based approaches to scheduling have only addressed sim­
plified versions of scheduling problems so far, e.g. flow-shop problems, and have 
made use of a domain-independent problem representation, e.g. the list of all orders 
to be scheduled [Cleveland 89, Syswerda 91]. However, in addressing more com­
plex scheduling problems the previous domain-independent representation schemes 
seem to have the disadvantage that the genetic algorithm is restricted to perform a 
search only on apart of the search space, e.g. only on the space of all permutations 
of orders. The rest of the search task has to be accomplished by a transformation 
procedure which has to search for information not provided by the representation 
scheme. 

2 GAP· A Genetic Algorithm for Scheduling 

The objective of the project GAP (Knowledge-augmented Q.enetic Algorithm for 
Eroduction Scheduling [Bruns 93]) is the development of a genetic algorithm for the 
effective solution of real-world production scheduling problems. The approach is 
based on the augmentation of the genetic algorithm with problem-specific 
knowledge of the application domain. 

A new direct representation of candidate solutions to the scheduling problem has 
been designed: the complete and consistent schedule itself is used as an individual. 
Thus, the GAP-algorithm operates directly on a population of schedules. This 
complex representation contains all information relevant for the description of a 



schedule, i.e. all operations of alJ orders with associaled machine assignments and 
time intervals of production as weil as the selected process plan for each order. 

Knowledge-augmenled crossover and mutation operators have been designed to take 
advantage of the information included in the non-standard representation scheme. 

The advanced crossover operator chooses a partial schedule of each selected parent 
schedule and creates a new offspring schedule by combining the two partial sched­
ules. A suitable partial schedule of the first parent is determined by the random 
selection of a subset of the orders, their machine assignments and production 
intervals build a consistent partial schedule for the offspring. In the next step the 
assignments of the missing orders are chosen from the second parent and have to be 
inserted into the offspring schedule currently under creation. Occurring capacity 
conflicts are solved by delaying the machine assignments of orders. The 
performance of the system was further improved by the integration of heuristics for 
the selection and combination of the partial schedules. 

In order to consider all alternatives specified in the scheduling problem, three 
separate operators have been developed for mutation, which randomly alter (a) the 
selected process plan of an order, (b) the selected machine of an operation, or (c) the 
selected time interval of an operation. 

To circumvent the problem of illegal sol utions each operator creates offspring 
schedules in a manner that guarantees that all constraints speCified in the scheduling 
problem remain satisfied. In order to consider all constraints the genetic operators 
have (parts of) the functionality of knowledge-based scheduling algorithms. By 
means of (he operators an offspring inherits from its parent schedules the machine 
assignment and the production interval (perhaps deferred) of each operation and, 
implicitly, the selected process plan of each order. Thus, all relevant scheduling 
information is subject to inheritance and the genetic algorithm can operate on the 
entire search space. Moreover, the integration of additional requirements of real­
world applications, e.g. cleaning times, is possible due to the direct representation 
scheme and the knowledge-augmented genetic operators. 

3 Experimental Results 

Extensive experiments with an extremely complex instance of a real-world problem 
were performed with the GAP-system and a genetic algorithm based on a domain­
independent representation (individual = list of orders). All experiments with differ­
ent parameters showed the same typical behaviour, namely that the problem-specific 
GAP-approach generated much better schedules than the domain-independent one. 
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Abstract. An adaptive Information Filtering System is deseribed whieh 
extraets e-mail messages from on-line resourees. Adaptation is obtained by 
applying (1) linguistie analysis to get eonsistent representations of the eontents 
of interesting e-mails, (2) an evolutionary algorithm for prioritizing 
morphologieally parsed messages and (3) a monitor to simulate a user's 
eognitive behavior. 

1. Introduction 
More and more users of e-mail and other on-line communication systems are faced 
with the problem of selecting relevant information in aspace of different 
information-sources. Participants of on-line conferences, members of office­
information systems, and network-diary makers get in trouble with an endless stream 
of messages. To overcome this information overload problem [1] information 
filtering techniques are being developed to deli ver information to users. 

State of the art IFS, e.g. Information Lens System [2], EDS Template Filler [3] or 
Isceen [4] offer a static behavior. A cognitive information system should have the 
ability to learn and adapt itself to the user's behavior. First steps in this direction 
have been proposed in [5] where interface agents employ AI techniques to provide 
active assistance to a user with computer-based tasks. 

The system presented - Cognitive Information Filtering System (CIFS) - applies 
genetic adaptation to learn from user feedback and user behavior. CIFS distils e­
mails from the input stream depending on user's interests and evaluation judgements 
which are used to rank e-mail information. 

With regard to efficiency the linguistic analysis ofthe e-mails is performed by use of 
a cascading architecture. The filtering proceeds by stepwise refinement of analysis 
techniques leading to a consecutive reduction of the problem of space. Therefore, 
only a very small fraction of the incorning e-mails must be analysed by time­
consurning linguistic methods. 
This paper is organized as folIows. In Section 2 and Section 3 we will introduce the 
basic concepts of information filtering and cognitive models. The linguistic analysis 
applied performed by the indexer/parser module is presented in Section 4. Finally, 
Section 5 gives a view of the architecture of the cognitive information filtering 
system and an example of the actual filtering process. 



2. Information fIltering 

Information Filtering (IF) describes the processes of distribution and delivery of 
information to users of communication systems. Information filters assist users in 
finding relevant information but are also used to target information to potentially 
interested users. Information Filtering Systems (IFS) handle primarily unformated 
textualdata like documents, semi-structured like electronic-mail messages (e-mail), 
NetNews articles, NewsWire stories or more complex structures like hypertext 
documents containing voice, graphics, and pictures. IFS process streams of incoming 
data based on descriptions of a single user or groups of users. These user "profiles" 
typically describe long-term interests [6] and individually depend on the fact how the 
user reacts on an incoming stream of information. The user can either select 
information items (positive kind of filtering) or remove items (negative kind of 
filtering). 

The following state of the art prototype IFS are compared in Table 1. 

Scisor 
The System for Conceptual Information Summarization, Organisation, and Retrieval 
(SCISOR) [7] is a prototype system that performs text analysis and question 
answering on financial news selecting and analysing stories about corporate mergers 
and acquisitions from an on-line financial service (dow jones). The filter component 
selects stories about mergers and acquisitions and performs the lexical analysis of 
names, dates, numbers, and other special inputs. The natural language components, 
using a combination of language-driven and conceptual analysis, process the take­
over texts, identifying key roles such as targets, suitor, and price, as weil as other 
features like financing, company products, or legal complications. The result of this 
analysis is a single representation of each story that the program adds to a central 
knowledge base. The conceptual retrieval component accesses information in this 
knowledge base by analysing questions and matching them to the story repre­
sentations stored in the knowledge base. 

lnference Network 
The Inference Net model [8] is based on Bayesian inference networks. The network 
consists of an object network and a query network. The object network contains 
object nodes (o"s) and concept representation nodes (rm's) that contain a 
specification of ilie conditional probability associated with that node P(rmloß, given 
its set of parent object nodes. An incoming stream of objects is compared to profiles 
at the same time by computing for every incoming object the probabilities associated 
with all profile nodes. The object is filtered by removing it from the stream for a 
given profile or selecting an object for a profile. 



Information Lens System 
Working with the Information Lens System [9], [10] e-mail senders must specify a 
finite list of receivers and usually know how these people are. The system permits 
senders to structure their messages by templates which represent a particular 
message type and header components. Message receivers are allowed to construct 
filters - by using a - that find messages matching certain structures. Filters are built 
up of production mIes where the condition part contains selection specifications (e.g. 
message types or characteristics) for different message fields and the action classifies 
messages in specific folders or deletes messages. A disadvantage of Lens is that it 
works weIl in small environments like companies but not in global environments. 
Typical senders are often not willing to structure their messages and know very little 
or nothing who or how many readers receive their messages. 

Infoscope System 
The Infoscope system [1] is an extension to parts of the Information Lens System and 
consists of three parts: 
(1) A graphically based user interface for accessing news messages. This "browser 
tool" allows users to Jearn the existing structure of baskets containing selected e-mail 
messages. Messages are organized into conversations that consist of a message node, 
all responses to the message in that node, and similariyali responses to the responses 
untilleaf nodes are reached. 
(2) Virtual newsgroups represent areas of special interest to an individual user. The 
comp.lang.lisp node is a Usenet newsgroup and the comp.lang.lisp.dos node is a 
virtual basket containing selected messages filtered trom the newsgroups 
comp.lang.lisp and cu.co.commonloops. Using this new virtual basket users have a 
repository for information about dos that is displayed using the name semantically 
attached to that information by the user who defined that basket. 
(3) Agents are collections of mle based heuristics that utilize information resulting 
trom the analysis of user behavior to make suggestions to the user. Agents are a 
feedback mechanism, helping the user modify the message structure based on their 
own system usage patterns. Relevant messages may be missed by filters because 
Infoscope does neither analyse the contents of a message nor does the vocabulary in 
the header field match the vocabulary in the message body. 

Iscreen system 
Iscreen [4] is a mle-based system for screening text messages. Users provide 
instructions in the form of mies, which include a list of conditions and actions. 
Conditions describe values associated with attributes of messages (e.g. who the 
message is from, what it is about). Actions describe what is to be done with messages 
that match the specified conditions (e.g. forward, save, delete). A special purpose 
editor is used to define these mies. The system makes decisions regarding what 
should be done with them based on mies provided by each of the recipients. To do 
this it matches conditions specified in mies against the contents and envelopes of 
messages. Variable references in mIes are resolved e.g. if users specify that messages 



from their managers are to be saved in an important box, the system is able to 
detennine whether a message is from the users' managers. 

LyricTime 
LyricTime is a personalized music system [11] in which songs are played at the 
listener's workstation. A listener profile provides listener specific preference 
information to the filter. The listener is free to stop and start playing at any time, 
step forward and backward through the list of selected songs, change the volume and 
enter his 'mood' (cheerful, romantic, calm, sad, curious). Listener feedback is used to 
update the profile based on the listener's opinion of songs that have been played. 

Pasadena 
The Pasadena System [12] is a W AN subscription service that actively and 
aperiodically queries diverse information sources (e.g. NewsNet news and mailing 
lists) and maintains a local database of current information iterns, deleting older 
information and adding new iterns continually. Each subscriber has one profile 
which contains one or more queries. Each query is composed of a comparison text 
and parameters like list of databases to be searched or pattern for document 
exclusionlinclusion. The filtering process involves categorisation, exclusion patterns 
and vector space ranking and text comparing algorithms. Those documents that fall 
into the categories contained in the query and which do not contain the queries 
exclusion pattern are ranked by their calculated retrieval status value [15] for each 
query. 

Tapestry 
Tapestry [13] is an experimental mail system that supports collaborative jiltering. 
Collaborative filtering means that users collaborate to help one another perform 
filtering by recording their reactions to documents they read. These reactions or 
annotations e.g. the document was uninteresting, can be accessed by others' filters. 
Incoming documents are indexed and added to a document store. An annotation 
store provides storage of annotations associated with documents. A filter component 
repeatedly runs a batch of user-provided queries over a tbe set of documents and 
those documents matching a query are placed in the little box of the query's owner. 
The system applies TQL (Tapestry Query Language - based on SQL) to specify filters 
as queries. A TQL query is a böolean expression to select those documents that 
satisfy a user's current need. 

Datacycle 
The Datacycle system model [14] includes access managers acting on a single large 
set of shared data items (storage pump). They perform retrieval and update 
operations, complex searches, and support for queries that function as database 
triggers. Data items are made available to the access managers by repetitive 
broadcast of the entire storage pump. The broadcast stream is filtered by custom 
VLSI filters within the access managers. 



Criteria Typeof Constructio Rule-based / User support for Queries? 
infonnation n - filter Query-based rules/queries 

objects 

Datacycle Documents User Fuzzy queries Filter: SQL 
andFuzzy 

Queries 

Lens Documents User rule-based Templates -
Inference Documents User query-based - -

Net 

Infoscope Documents User/agents rule-based Heuristics -
Iscreen Documents User rule-based Conflict What-If 

detection, queries 
explanation 

Lyric time Music System rule-based - -
Pasadena Documents User query-based User dialogue Filter: Queries 

Scisor Documents User Query-based - -
Tapestry Documents User/System query-based User comments, Filter: TQL-

TQL Queries 
Table 1: Information Filtering Systems 

IF is ciosely related to Infonnation Retrieval (IR) which is concemed with the 
representation, storage, organisation, and accessing of information items such as 
documents [15]. The fundamental problem in m is to identify the relevant 
documents from non relevant ones according to a particular user's request. Three 
domains classifying m research: indexing, retrieval and evaluation. 

The document representation or indexing process performs the task of assigning 
information items to documents for purposes of retrieval. An indexing language 
maps the contents of docurnents on a textual representation. 

The three main retrieval models in m - boolean, vectorspace and probabilistic 
model - differ with respect to the matching process between user queries and 
document representations. 

The Boolean model [15] compares queries and document descriptions by exact 
matching of the index terms with the help of boolean operators. A disadvantage of 
the exact match model is that the whole document space is divided into two sets of 
relevant and non relevant documents with a ranking of documents according to a 
query. 

In the Vector Space model [15] queries and documents are represented as vectors in 
a multi-dimensional space and compared with the help of statistical methods e.g. the 
eosine, Dice or Jaccard function [16]. 

The Probabilistic IR model estimates the probabilities of a document's relevance by 
using the Bayes' theorem. The model is based on the probabilistic ranking principle 
(pRP) [17] which states that optimum retrieval is achieved when documents are 



ranked according to decreasing values of their probability of relevance with respect 
to the current query. 

Differences between IF and IR are described in Table 2. 

Information Filterin/! Information Retrieval 
System illQut clynamie datastream statie database 

User goals long-term periodie desires short-term intentions 

User behavior to reaets to aetively searehing 
ineoming data 

Information removing finding (seleetion) 
processing 

Information flow distribution and organization representation and organization 

Use of the system repeated single 

Representation of profiles queries 
user interests 

Environment more or less privacy more or less publie 

User-groups undefined well-defined 

Table 2: Information filtering vs. information retrieval 

Simple Keyword Matching deterrnines whether the user's information interests 
match the incoming information items of the system. 

Before we present the cognitive models incorporated in CIFS, it is most important to 
state that the process of filtering that the indexing component consists of: 

• a lexical scanner, 
• a morphological component, and 
• a component for generating postings. 

3. Cognitive models 

In each electronic information source there can be so much detail that the 
information presented to the reader may be of lower quality and less relevant than 
traditional approaches. The ability to select relevant information to a user is essential 
to the viability of such services and requires an individual user model [18]. In our 
approach we have incorporated the following cognitive aspects to improve our 
system's ability for filtering e-mails. 
Given the diversity of IFS users, the fact that they will not have the same problems or 
needs, and that the user's level of expertise and interests is likely to change in the 
cause of time, it is desirable that profiles be able to adapt to and support the 
requirements of individual users. 
Monitoring data collection techniques, think-aloud protocols, tape recording of 
interaction, interviews, and questionnaires are helpful to understand the filtering 



process of an individual user [19]. The user's behavior is mapped on the behavior of 
the system. 

The system must also have a model of itself, in order to foresee its possible future 
actions and thus be able to choose the best way to do. Therefore we apply techniques 
similar to those used for debugging to give us a trace of system actions during the 
filtering process. If no user interrupt occurs, in case of a relevant message, the 
system analyses any observations so that it can choose what to do with the next 
incoming similar message. Observation is needed to detect system actions during the 
filtering process. The observation me be passive or active depending on whether it 
memorizes what happened or makes experiments to find out autonomous new topics 
that may be interesting for the user. In the first prototype we only use passive 
observation. 
As long as the system has not noticed abnormal behavior, reacts exactly alike 
without observing itself but simultaneously creates a trace of its actions and results; it 
may correct what goes wrong immediately or analyze it later. this observation may 
be continuous or occasional. In our approach we use continuous observation. 
Similar experimental e-mail assistants like Maxims [20] are learning by 
continuously "looking over the shoulder" of the user as he/she deals with e-mail [5]. 

CIFS is a two step learning system. In a first step, the user may specify a catalogue of 
relevant topics (interest-domains). By rating the keywords of each incoming e-mail 
and assigning them to one or more interest-domains, the system creates a polarity 
profile for each domain out of a set of ratings. In this (training)-phase the system 
learns the basic structure of the user's cognitive style. 
Of course, learning has to be an incremental process and the system has to learn on 
the job. In this (adaptive) phase, the monitor memorizes all user (re-)actions as 
situation-action pairs for the genetic algorithm to work with (Chapter 5). 
A complete cognitive user model has to represent the user's cognitive style and 
personality factors, the user's goals and plans, his/her capabilities and preferences, 
and the user's beliefs and knowledge. 

4. Linguistic analysis 

Within CIFS linguistic analysis is performed by the index er/parser module. 
Additionally, apre-filter reduces the amount of relevant e-mails. For this purpose, 
the pre-filter contains a set of keywords and phrases that initially describe the user's 
current interests. These descriptors weed out e-mails that are not about a topic of 
interest. 



4.1. Indexer 

As a second step within the filtering process the documents selected from the pre­
filter are assigned to the appropriate interest domains on the basis of an indexation 
module. The document texts are first transformed to a sequential word list. In order 
to retrieve the individual word boundaries welI-approved heuristics are applied and 
abbreviations, compound words and special formats (e.g. time, date, or currency) are 
treated correctly by the use of a morphological pre-processor. 
After generating the word list, all words that do not contribute to the meaning of the 
document (e.g. grammatical particles or expletives) are removed on the basis of a 
stop word list. Now, an index is created which assigns each entry with a list of 
postings, that is, the positions of its occurrences. In order to check the equality of two 
words we do not apply an exact string match but we designed a special comparison 
module which applies simple techniques from morphological analysis to lemmatise 
the concerned words. 
The developed tool is multilingual in the sense that techniques which are valid for 
any language are strictly separated from language-specific features . Furthermore, the 
latter are to a high degree rnapped to parameters so that the adaptation to a new 
language can be very easilyperformed. Although we applied mostly approximate 
methods, we achieved a very high accuracy without losing too much speed. The 
following important morphological phenomena are analysed by our comparison 
module: 

• spelling errors: Obviously, we do not consider all possibilities for the 
appearance of spelling errors but restrict ourselves to correct the most 
frequent error patterns like the insertion of one wrong character, the 
permutation of two letter or the omission of one character. 

• vowel-gradation: This is a irregular morphological variation which occurs 
in many languages during the formation of inflexions (e.g. the ablaut in 
German) and can be resolved using techniques from spelling error 
correction. 

• endings and suffixes: The distinct final part of two words are compared with 
lists of legal inflexions and derivations which gives also a first evidence for 
the word category, an information which is essential for later syntactic 
analysis. 

• elision: Elision is the omission of the unstressed e-sound, a frequent 
phenomenon in German and in Scandinavian languages. 

• binding sounds: Finally, binding sounds tie together the individual parts of 
the word in the formation of derived or compound words. 

For a more detailed discussion of morphological analysis in computational 
linguistics, especially for inflective languages, we refer to [21]. 
The resulting document index is matched against the domain descriptors by applying 
statistical similarity measures adopted from the vector space paradigm of 
information retrieval [15] . 



4.2. Parser 

Only those documents which are evaluated as relevant to one of the interest domains 
of the user are subject to a more sophisticated syntactic and semantic analysis. Due to 
the requirements of information filtering with regard to processing time, natural 
language analysis can only be performed by information extraction and not by text 
understanding. This implies that only fractions of the document text are analysed, 
the retrieved information is mapped to some target representation, and a11 other 
subtle aspects of meaning are left out of consideration [22]. 
Therefore, a cascaded architecture is required which does not perform a complete 
linguistic processing for the whole document but narrows the scope by first retrieving 
text segments of special interest which can then be analysed more carefu11y. Within 
our filtering system this task of selecting interesting text segments is performed by 
the indexing module and is made available to the parser as result of the match 
against the user's profile. 
The contexts of these so-ca11ed trigger words are further analysed by use of a simple 
but efficient parsing algorithm in order to detect syntactic constructs (e.g. noun 
phrases, verb phrases or prepositional phrases). Only straight-forward syntactic 
analysis is performed, all more tedious linguistic issues are ignored, according to the 
'golden rule' of information extraction: 'to do the right amount of syntax, so that 
pragmatics can take over its share of the load' [22]. 
Pragmatics is mode11ed within our knowledge base by the use of frames as 
conceptual representation scheme. The interesting pieces of information contained in 
the analysed contexts are mapped to the slots of these frames during semantic 
analysis [23]. As consequence of our main research objectives, the adaptive behavior 
of our information filtering tool, this knowledge base cannot be implemented by use 
of a static structure but on the contrary the represented knowledge must change 
dynarnically in response to changes of the user's interests. 
Finally, during discourseanalysis a11 resulting frames are merged to obtain one 
consistent representation of the contents of an e-mail document. One difficult and 
important task of this merging process is to unify various interpretations, that is, to 
eliminate local ambiguities [24]. The final semantic representation is used for 
valuating the subjective relevance of the document for the user, it models only that 
part of contents the user is interested in, a11 other aspects are filtered out. 

5. Cognitive Information Filtering System 

5.1. Evolutionary Computation 

The field of Evolutionary computation (EC) includes research in genetic algorithms 
[25], evolution strategies [26], genetic programming [27], artificial life [28] and 
several other problem solving strategies, that are based on biological observations, 
that Charles Darwin called 'The means of natural selection and the survival of the 
fittest'. These algorithms are thus termed Evolutionary Algorithms (EA) and use 



computational models of evolutionary processes as key elements in the design and 
implementation of problem solving systems [29]. 
They share a common conceptional base of simulating the evolution of individual 
structures via processes of selection, mutation, and reproduction. The processes 
depend on the perceived performance of the individual structures as defined by the 
environment. In CIFS we use the EC approach for prioritizing e-mails. 

5.2. System Architecture 

Based on the previous Sections we designed the system architecture of our Cognitive 
Information Filtering System displayed in Figure 1. The central component of the 
system, the cognitive information filter contains a population of information objects 
(words, user usage patterns, phrases) called e-mail agents, representing thecontents 
of e-mails. By using a Genetic Algorithm [30] e-mail agents cooperate and compete 
for correct evaluation of a user's actual interest rating. E-mail agents learn by 
adjusting their evaluation, thus moving it closer to the user's evaluation. A payoff 
schema prevents the population from increasing. 

The filter is supplemented by the following modules: 

• Pre-filter 
Contains a set of general negative keywords and phrases which weed out e-mails that 
are not about any topic of interest. Typical examples are sender of themail or subject 
categories like 'request to unsubscribe', 'please send me information how to 
subscribe', 'I arn on vacation', a distinct group or a specified time interval. 

• IndexerlParser 
This component is responsible for the linguistic analysis as described in detail in 
Section 4. The document text is transformed to an index used for pre-selection of 
relevant contexts. The resulting text segments are parsed and modelIed as frames in 
order to match them with the corresponding items of the knowledge base. 

• Knowledge Base 
The knowledge base contains the semantic representation of the user profiles which 
is applied to the assessment of new e-mails. The internal structure consists of frames 
describing the individual user interests. Their dynarnical adaptation is induced by the 
e-mail agents of the filter component. 
• Monitor 
Records a user's behavior, that is, hislher reaction to incoming e-mails, e.g. deleting, 
forwarding, storing, replying, printing. Therefore, the monitor provides a feedback 
mechanism, measuring how effectively the recording of usage patterns predicts 
current user behavior. 



Knowledge base Monitor 

Cb~tivehttorrmrionFllrer 

Figure 1: Cognitive information filtering system 

5.3 ImplementatioD 

In the initial training session of CIFS the user specifies interest domains and 
categorizes the e-mails accordingly. By use of the indexer module an index is 
generated out of the e-mail text and presented to the user for rating. He/she may 
assign one of the following discrete relevance values very interesting .. [-1,-0.5), 
injonning .. [-0.5,0), desinteresting .. O, boring .. (0,0.5] and unexciting .. (0.5,1] to the 
individual terms, all others are evaluated with adefault value. As additional feature 
the user is allowed to define synonyms and phrases. 

After the collection of a representative sampIe for each topic (Figure 2), the training 
session is completed. On the basis of the different assessments, a list of descriptors is 
created which covers the semantics of the interest domain (Figure 3). 
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The actual filtering process is presented in figure 4. 

PRE-FILTERING 

ASSIGNMENT TO INIEREST OOMAINS 

RElEVANCE RATING 

MONITORING OFUSER REACI10N 

GENETIC ADAPTION 

Figure 4: The Filtering Process 

1. Pre-filter 
E-mail 1 (Figure 5) is deleted because the trigger word subscribe is detected. 

From genetic-programming-owner@list.Stanford.EDU Wed Jul 20 17:19:41 ·1994 
Date: Wed. 20 JuI199416:32:44 +0100 
From : xxxxxxx 
To: genetic-programming@cs,stanford.edu 
Content-Length: 42 
X-Unes: 1 
Status: RO 

subscribe genetlc-progflJmm ing xxxxxxxx 

~---_._----

Figure 5: E-mail 1 



E-mail 2 (Figure 6) passes through. 

/ ' (- . . ..._..... . ~ _. _ ... _. _. __ ...... __ ....... _. __ ._-.-.. -----
'\ 

From mh Tue Jul19 09:21:251994 
Cate:Tu •• 19 Jul94 09:21:24 +0200 
From: mh (M.x Ho.Herer) 
To: bk 
Subject: evolutionary computation 
Cc:mh 
Status: RO 
Cont.nt·L.ngth: 9170 
X·Lines: 153 

Info-scope System 
The Infoscope system lFlscher 1991) is-an,extenSion to parts ofthe Information Lans System and 
-consists of three parts: 
(1) A graphieaUy balad user:Jnte-rface ror a-ccen;ing-news m,e-snges. This ''browser100r, aliows 
users to persue end learn the .exlsting.structure of baskets -contalrung s_8lected 'e~,mlll:messages. 
Me~8$3'S are oFgsnlsed lnto .convel'S=8tions that co-ns-ist,of a meuage "ode. ·all responses to-the 
meuage..'" thllt nOde,' and Ilmllarfy:I!_!I:~espor:'s',s to't_he·rel_~ons."untillel'-nodes IT' reached. 
(2) Virtual n.w.group .... piit •• nlareas.ofsp.cl.llnt.' •• tto.nlndlVldu.lu •• tTbe comp.l.ng.llsp 
nOde-Is-'8, US81"Jet"newsgroup, ancf:th"8"comp.lang.ltsp;clos nDd."ls":a:vlrtual bas:ket'"conlalnlng 
a8Iected"me,saages filtered from ,tt'e:newsgroups comp;~ng:Jlap"and:"~u;co.~mmonloo"ps~ Uslng 
th.ls n.w Ylrtualb.sk.tu .. ,shavearepository ro,lnronnationabout cIoslhaltsdlsplay.d uslngth. 
n.m. semantlc.ny attach.d to that Information by th. u •• rwhod.ftn.d thatbask.t. 
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Figure 6: E-mail 2 

2. Assignment to interest domains 
The descriptors of e-mail 2 are matched against the descriptors of the different 
domains. The e-mail is assigned to the interest domain which the highest 
matching score. 

3. Relevance rating 
Each descriptor of the e-mail is weighted by the corresponding strength from the 
knowledge base. Based on the list of weighted descriptors the relevance of the e­
mail is computed. 

4. Monitoring 01 user reaction 
Reactions or sequences of reactions, Looking over the user's shoulder positive 
(store, forward, print, reply), neutral (view) and negative actions (delete) result in 
acceptance measure. 

5. Genetic adaptation 
The learning algorithm in Figure 7 describes the adaptive process that associates 
user ratings with descriptors to rank incoming e-mails. A population of e-mail 
agents belongs to a user's domain of interest. The structure of an agent consists of 
his (initial) strength, a bid [-1, ... ,+1] and a bid learning rate. The population 
learns by adjusting their evaluation, moving it closer to the user's evaluation. A 
payoff schema prevents the population from increasing. 



Figure 7: Genetic adaptation of e-mail descriptions 

E-mail agents that run out of strength leave the population for a calculated period of 
time - at that moment they are not relevant - and get incorporated into the pre-filter. 
Agents above the average fitness serve 
• as 'new' keywords to the prefilter, e.g. the system reacts to the fact that a user has 

not been interested in a topic for aperiod of time, or 
• remain in the population and get one more chance to be useful. 

The knowledge-base contains the semantic representation of the user profiles. 
Individual interests are mapped to frames. Their dynamic adaptation is induced by e­
mail agents. 
The monitor is a kind of feedback mechanism, measuring how effectively the history 
of usage patterns predicts current usage patterns and the probability that an item is 
needed given the history for such information [31]. 

6. Conclusion 

CIFS supports two general aspects: 
• individual user preferences in daily operations with his/her e-mail system, and 
• the actual contents of messages that are deemed interesting or uninteresting. 
A further advantage is the time saving device to cope with the infonnation overload 
problem. The current state of implementation is that we completed all modules but 
do so far without complex frame representations and sophisticated linguistic analysis 
techniques. 
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Abstract 

We developed a well-structured term-based lan­
guage for the structural specification of artifi­
cial neural networks. The language achieves an 
intuitive and compact representation even for 
very large networks, making it interesting as an 
input language for network simulators. Since it 
describes neural networks on a logicallevel, it is 
very weil suited as a "genetic code" for the op­
timization of network architectures by genetic 
algorithms, allowing well-controllable mutation 
operators and a powerful crossover operation 
that is able to recombine fu,nctional blocks of 
any shape instead of destroying them. We de­
fine the language formally, give examples of its 
application and present some results of its use 
as a genetic code for finding network architec­
tures. 

1 Introduction 

Although it can be proven that there exists an artificial 
neural network (ANN) approximating every continuous, 
bounded function (e.g. Theorem of CYBENKO [1]), no 
universal algorithm that determines the network's pa­
rameters is known. Given an architecture of an ANN, i.e. 
the number of units and their connectivity, the weights 
can be adapted by several training algorithms, e.g. back­
propagation [2]. 

Yet, the architecture decides whether a set of weights 
can be found by the BP algorithm. Genetic algorithms 
(GOLDBERG [3]) can be used to find or optimize network 
structures. A similar optimization strategy is evolution 
strategy(RECHENBERG [4] (51). Evolution strategy is 
better understood and a more extensive theory is avail­
able, parts of which can be applied to the similar genetic 
optimization strategy. 

There are two possible ways of optimizing ANNs by 
means of genetic algorithms: Architecture and weights 
can be optimized simultaneously (e.g. KOZA and RICE 
[6]), or only architecture is optimized bya genetic algo­
rithm, while the weights are adapted by a local search 
strategy like back-propagation for each individual (e. g. 
HARP [7]). Due to the results of the theory of evolution 
strategy, we focused on the second approach. 

1.1 Genetic Algorithms 

Genetic algorithms optimize a population of individuals 
(e.g. ANNs) by (1) evaluating the quality of each indi­
vidual with respect to the problem, (2) reproduction of 
individuals with a rate proportional to the quality and 
(3) mutating and sexually recombining the new individ­
uals. 

Although it is possible to define the mutation oper­
ators on the phenotype level (UTECHT and TRINT [8]), 
the individuals are usually represented by a genetic code. 
The mutation and crossover operators are then defined 
on that code. This representation of an individual is 
called its genotype. To evaluate the quality of each mem­
ber of the population, a mapping from the genotype to 
the phenotype has to be defined, which can be considered 
the semantics of the genetic code. 

1.2 Genetic Representation 

To achieve efficient optimization by genetic algorithms, 
the principle of strong causality has to be obeyed by the 
mutation operators as weil as by the genetic code, i.e. 
the mutants of each individual have to be most probably 
similar to their parent in phenotype, and similar geno­
types should lead to phenotypes of similar behaviour, 
which means smoothness of the quality space. 

Various forms of genetic representation of ANNs have 
been invented. They can be divided into direct encod­
ing schemes, which encode complete and detailed infor­
mation about the network's architecture, and indirect 
encoding schemes, which encode either rules for the gen­
eration of the phenotype [9] or only those parts of the 
network's architecture that are considered to be of rele­
vance. 

Direct encoding schemes, the simplest of which is the 
direct encoding of the interconnection matrix, tend to re­
sult in large and redundant genotypes. The term "redun­
dant" here alludes to a crucial characteristic of ANNs: 
There is only a relatively loose causality between an 
ANN's architecture and its suitability for a given task, 
Le. its quality. The effect of small variations in the 
network's architecture is in many cases completely con­
cealed by the stochastic noise in the quality space, which 
is a consequence of the random initial weights in back­
propagation training. 

Indirect encoding schemes sometimes limit the set of 



possible solutions apriori, and the law of strong causal­
ity between the genotypes and the phenotypes is often 
violated, e.g. two similar sets of rules may derive com­
pletely different network architectures. 

2 The Approach 

Our genetic code is based on the idea that the genotype 
should reflect the logical structure of the network as it 
would be seen by a human engineer. An ANN may con­
sist of subnets or organs, self-contained functional units 
performing a special task. Identical or similar parts can 
be incorporated several times in the network. If such 
information about the network's structure is available 
in the genotype, mutation operators should be possible 
that vary the structure in steps of well-controllable size, 
so that effective structural changes are possible while the 
complete destruction of the network remains improbable. 

In addition, we want to be able to define a crossover 
operator that simulates the advantages of biological, sex­
ual reproduction. That is, it should be capable of com­
bining independently developed subnetworks, like or­
gans, in a common descendant. Therefore, it should in 
most cases extract functionally correlated parts of a net­
work, including those extending over severallayers. 

3 The Genetic Code 

To achieve this, we designed a recursive, structured, 
tenn-based language. 

3.1 Syntax 

The language is the smallest set T that satisfies: 
nE T, iffn E N 
par(tl, "" t n ) E T, iff tl,"" tn E T 
ser( tl, . . . ,tn ) E T, iff t], ... ,tn E T, n > 1 
mul(n,t) E T, iffn E N\ {l},t E T 
smul(n,t)ET, iffnEN\{l},tET 
tf(r) E T, iff rE [0,1] 

Where N is the set of positive natural numbers. 

3.2 Informal Semantics 

A term consists of a function symbol followed by a list 
of arguments. Depending on the function symbol, the 
arguments mayaIso be terms, and their semantics are 
networks. The function symbol detennines the arrange­
ment of the argument networks to obtain the resulting 
ANN. The argument networks may lie parallel or in se­
ries: 

e "n"-terms anchor the set. They represent n parallel 
units not having any connections between them. 

e The arguments of a par(tl,' .. , tn ) term He parallel 
and are structured networks themselves. There are 
no edges from any unh within an argument to any 
unit within another argument of the same par term. 

e The arguments of a ser(tl, ... , tn ) term He in series 
and are networks again. If neither argument ti nor 
argument ti+l is of the type tf(r), then the output 
units of block ti are completely connected to the 
input units of block ti+1' 

e mul/smul(n, t) terms allow the "cloning" of a block 
n times and correspond to a par term with n times 
the argument t . In the smul case, weights are shared 
by the instances of t. Thus, feature detectors can be 
described. 

e The topological filter tf(r), placed between two ar­
guments of a ser term, avoids a complete intercon­
nection between these blocks. Instead, a specific 
connection structure is generated, with the number 
of connections actually drawn determined by r. The 
resolution of topological filter is described in detail 
in section 3.3. 

3.3 Semantics 

To depict terms and to apply a set of transformation 
rules, we translate them into diagrams . Diagrams are 
graphs with special types of nodes and edges . We con­
sider a graph to be a six-tuple (V, E, IV, I E , iV

, iC
) , where 

V is a set of vertices (nodes), E ~ V x V a set of 
edges, IV the alphabet of node types, I E the alphabet 
of edge types; iV 

: V -t IV assigns each node a type and 
ie 

: E -t IE assigns each edge a type. The types of edges 
for a diagram are: 

1. connected-to: units and blocks (Le.: terms) can 
be connected to other blocks or units. We draw 
connected-t<redges as solid lines; but although they 
are directed edges, we do not care to draw arrows , 
because the direction is always from the bottom to 
the top. Such an arrangement is always possible, 
because we specify feed-forward networks only. 

2. member-of Since diagrams represent structured 
terms, blocks (or units) can be incorporated in other 
blocks. We do not draw these edges at all, in­
stead we draw all members directly into their parent 
blocks. 

Each node is assigned a type. The (infinite) alphabet 
of types is 

Nx{e,par,tf(r)}, rE[O,l] 

The first component of the type indicates the position 
of the block within its parent, the second determines 
whether the block is a unh (which is a block, too) , a 
structured non-unit block or a topological filter. If it is 
a topological filter, the real-valued filter-factor is given. 
The function TI : V -t N maps every block to its position 
within its parent. It is defined by 

TI(n) = 7r, 

Figure 1 shows the translation of terms into diagrams. 
The translation function can be defined as folIows: 

We first append unique identifiers to every block of a 
term, i.e. the rule 

f(aJ, ... ,an ) ---+ f(al, ... ,an ) :id, 

with id denoting a unique identifier, is applied wher­
ever possible. As an example, the term par(ser(3,4),5) 
is transfonned into par(ser(3 : id l ,4 : id2 ) : id3 , 5 : id4 ) : 

ids. Then the J function translates the named term into 
a graph. J receives a named term and a relative position 



of that term within its parent as parameters. At the 
top level, J (t, w) indicates that there is no parent for the 
whole term. 

J(n:id,1I") = 
J(par(. : id l , ... ,. : idn ), 11") 

J(.: id,1I") = 

(V, E,JV,JE, iV, iC
), where 

V = {id}, 
E = {(id, id)}, 

I v, I E defined as above, 

iV = (id H (11",.)), 
i' = {((id,id) H member of)} 

J(par(tl : id l , ... , t n : idn ) : id) = 

(V' E IV I E 'v' 'C) h , , , , Z , Z, w ere 

(V,E,JV,JE,iV,i C
) = UJ(idi,i), 

V'=VU{id}, 

i V
' =iVU{(idH (11", par))}; 

J(ser(t l : idl , .. ·, t n : idn ) : id, 11") = 

(V E' IV I E ·v .c') h , , , , Z , Z, w ere 

(V,E,Iv,IE,iV,i C
) = UJ(idi,i), 

n-I n 

E' = Eu U {(idi , idi+J)} U U{(idi , id)}, 

n-I 

iC
' = i C U U ((idi , idi+J) H connected to)} 

n 

UU{«(idi,id) H member of)}; 

J((s)mul(n : _, t : id), 11") = 
J(par(t : idl , ... , t : idn ), 11"); 

J(tf(r) : id, 11") = 
(V,E,Jv,IE,iV,i C

), where 

V={id}, E=0, 

I v, I E defined as above 

iV = {(id H (11", tf(r)))}, i C = 0 

where idl , ... , idn are new, unique identifiers, derived 
from the identifier id, and the union of graphs is defined 
as commonly expected: 

(VI, EI, IV, IE, if, in U (V2,~, IV, I E,i2, i 2) 
(V Tl" E T;'_ IV I E ·v 'v'e .e) = IU V2, I U.u"..!, , ,Zl UZ2 ,ZI UZ2 

Figure 2 shows how diagrams can be viewed as graphs. 
ser terms are drawn from the bottom (input) to the top 
(output), n-terms are drawn as n dots, the filter-values 
of topological filters are written into their blocks. For 

par (tl, ... , tn): 1 tl t2 ... tn 1 mul(n.t) 
1 t t ... t 

1 smul(n.t) 

ser (tl, ... , tn): Lf=J tf (r): ~ 
... 

c±=J n: I· • ... ·1 

Figure 1: The diagram language 

0.3 • 

T 
••• 

member-of •.•... '7' 

connected~ 

9 \0· .....• o " 
!.~ :!\- ";!\-

ser(3,par(tf(0.3),I) 

Figure 2: Viewing diagrams as graphs 

mul/smul and par terms, the argument terms are drawn 
into their parents, mul/smul terms are expanded. Note 
that units are members of themselves. 

After this has been done, the connected-to-edges need 
to be resolved, i.e. the member blocks have to get incom­
ing and outgoing edges as weil. This is accomplished by 
a set of diagram transformation rules, which are depicted 
in figure 3. 

R! This rule determines that topological filters" with 
filter-value 1.0 can be inserted anywhere into a ser 
term. To guarantee the termination of the transfor­
mation process, this rule may only be applied if the 
"neighbours" are not of the type tf. 

R2 defines the connection of two filters in series. The 
filter with the larger filter-value is discarded. 

R3 resolves parallel filters. The filter with the least 
filter-value is discarded. Thus, edges "can more eas­
ily pass through a set of parallel filters", while serial 
filters block as weil as the most powerful of them. 

R4 determines what happens to multiple blocks sharing 
a common filter. The filter is applied to every pos­
sible combination of upper and lower neighbours. 

R5 defines the resolution of edges. Edges can be re­
solved if two non-elementary blocks are connected 
via a filter. If the filter is missing, it can be inserted 
by RI. The filter and the old edges are removed and 
each of the n member blocks of the upper neighbour 
(target) is connected to some of the m lower member 
blocks (source). From each target block at position 
1I"t, r·m connections to some of the source blocks are 
established. The connections are grouped around a 
centre at source position "\m. So source blocks "on 



Figure 3: The transformation rules 

the left-hand side" are preferably connected to tar­
get blocks "on the left-hand side". If r . m is not 
a natural number, some of the target blocks on the 
right-hand side get one edge more than their peers 
on the left so that a total of n·r·m edges is obtained 
to the nearest whole number. 

R6 Blocks containing only a single unit are identified 
with that unit. This means, all incoming and out­
going edges of such a block are passed to the unit. 

The rules R I through R6 can be formalized as folIows: 

(V E IV I E ·v .e) R I (V' E' IV I E 'V ·e) 
1 , ., ,1,,1 ~ ., , , ,2,1 

3s,t E V: (s,t) E E 1\ (s H (7l' , par)) E iV 

((s, t) H connected to) Eie 

I\V'=VU{id} 

I\i v
' = iV U {(id H tf(l.O))} 

I\E' = E \ {(s, t)} U {(s, id), (id, t)} 

I\i e' = ie \ («(s,t) H x)} 
U{«(s, id) H connected to)} 
U{«(id, t) H connected to)} 

(V E IV I E ·v .e) R2 (V' E' IV I E ·v' .e') , , , ,t ,t ---+ ' , , ,t ,t 

3s,t,!t,h E V: (!t H (7l'I,tf(rt})) E iV 

1\(12 H (7l'2, tf(r2))) E iV 

I\te = {(s,!d,(!t,h),(h,t)} S; E 
I\ie(t,) = {connected to} 

!Tnin = !t, if rl < r2, else 12 
!Tna.x = 12, if rl < r2, else !t 

I\V' = V \ {!Tna.x} 

I\i v
' = iV 

\ {(fTna.x H x)} 
E = {es, /t), (!t, 12,), (12, t)} 

I\E' = E \ E U {(s, !Tnin) , (fTnin, t)} 

I\i e
' = ie 

\ {(e H ie(e))le E e} 

U{«(S'!Tnin) H connected to)} 

(V E IV I E 'V .e) R3 (V' E' IV I E ·v' .e') , ., ., , 2 ,2 ----+ ., ., , ,1, ,'l. 

3s,t,!t,h E V: (!t H (7['1 , tf(rd)) E iV 

1\(12 H (7['2, tf(r2))) E iV 

At e = {(S, !d, (S, 12), (!t, t), (12, t)} S; E 
I\ie(te) = {connected tO} 

!Tna.x = 12, if rl < r2, else !t 
Imin = /J, if rl < r2, else 12 

1\ V' = V \ {Imin} 
I\E' = E \ {(S, !Tnin) , (fmin, t)} 

I\i v
' = iV 

\ {(fmin H type)} 

I\i e' = ie \ {((S'!Tnin) H -)'((fmin,t) H_)} 

(V E IV I E iV i e ) I4 (V' E' IV I E i V
" i e") 

'" " ----+""" 
3! E V : ie(f) = (7[', tf(r)) 
1\3S,T c V: sES {::} (s,f) E E 

At E T {::} (f, t) E E 

I\V' = V \ {f} U {!t, ... , !ISI'ITI} 

sES 1\ t E T {::} (s, !II(s).II(t)) E E+ 

I\(fII(s).II(t) , t) E E+ 

I\E' = E \ (S x {f}) \ ({f} x T) U E+ 
I\(a H type) E iV 1\ a E V' 

{::} (a H type) E i V
' 

I\i v
" = iV

' U U {al 
a.EV'\V 

I\((a, b) H type) E i e 1\ (a, b) E E' 

{::} ((a, b) H type) Eie' 

I\i e" = ie' U U («(s,t) H connected to)} 
(s,t)EE'\E 

(V E IV I E ' V .e) Rs (V' E' IV I E 'v' .e") , , , ,t ,t ---+ ' , , ,t. ,t 

3Ps,Pt,! E V: (Ps H par) E i V 

I\(Pt H par) E i V 

I\(f H tf(r)) E iV 

I\S, Tc V : (s E S {::} ((s,Ps) H member of) Ei' 

1\ .lIs' E V : ie((s,,s')) = connected to 
l\ie(S/,ps) = member of) 

I\(t E T {::} ((s,pd H member of) E i C 

1\ .lIt' E V : ie (t', t) = connected to 
l\iC(t/,pd = member of) 

I\V' = V\ {f} 

I\E' = E \ {(Ps, f), (f,pd} U U P(S, T, t,r) 
tET 

where (s,t) E P(S,t,r) {::} II(s) E 



[
flet) . 151 _ lr· ITIJ + v 

ITI 2 ' 

flet) · 151 lr 'ITIJ + V] 
ITI + 2 

where V = 1 if flet) 2: 151 - 1151· r · ITll 
-151· lr · ITIJ , else 0 

I\i v
' = iV 

\ {(f f-L)} U 

U (a ~ connected to)} 
a.EV'\ V 

l\i C
' = i C 

\ {((Ps , I) ~ -), ((f,pt} ~-)} 

U U ((a , b) ~ connected to} 
( a.,b)EE' \ E 

(V E IV I E iV i C
) ~ (V' E IV I E iV

' i C
) , , , , , -t " , , , 

3p,u E V: iV(p) = (11', par) 1\ iV(u) = (11',.) 
I\I{u' E V : I((u',p) ~ member 01)1 = I} 

I\V' = V \ {u} 

I\i v
' = i V 

\ {Cu ~ (11', par))} U {Cu ~ (11',.)} 

Note that the rules R 1 through ~ are relations rat her 
than functions, for a rule might "match" several parts of 
a diagram. 

The rules are applied to the diagram by the following 
strategy: 

do 
if a rule of RI, R2 , R3, R4, R6 is applicable 

apply it 
else apply R5 (if possible) 

until no more rules are applicable 

When no more rules are applicable, all non-elementary 
blocks can be discarded. The resulting neural network is 
the largest subgraph with only vertices ofthe type (11',.). 

Those units located "at the bottommost edge" of the 
network are its input units. A unit is an input unit if 
and only if its related n-term is located in the first ar­
gument of each surrounding ser term. The output units 
are identified analogously, considering only the last ser­
arguments. 

The network is uniquely determined by the term , i.e. 
the transformation process is well-defined. This can be 
proven since each two rules (except Rs) are commuta­
tive. 

3.4 Understanding Everything 

We shall now translate an example term into a 
network. The term we will focus on at first is 
ser(l, par(ser(2, tf(0.5), 2) , tf(1.0)) , 1). We first have to 
translate it into a diagram. The first function symbol 
is a ser having three arguments. Following figure 1, the 
arguments have to be put into series. The first and last 
arguments are "n" -terms, they represent one unit each. 
Figure 4a shows the result we have got so far . We now 
have to translate the par term between the input and 

I • I r .. · .. ··· .. · ... · .. l. .. · .... · .. · ...... : 
j p:>r( .. r(2. j 
: tf(o.S). : 
~ 2) : 

~ tf(1.0» ~ 
. · ... · .. 1 ..... · ....... · .... : 

• I 

• 
r·:~:··· ·· ··:r····· · ·· · · ··· .. i 
t ...... ~~~.·~l L.::~~: .. ..l 

• 

• l 

~
. 

0.5 ~ 

• • 
• 

Figure 4: An example diagram 
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Figure 5: An example translation 

output layers. The par term has two arguments, another 
ser term and a tf term. With respect to figure 1 we have 
to place them in parallel. Figure 4b depicts the result 
achieved by now. Final1y, the last ser term has to be 
resolved. We get two n-terms and a filter between them. 
Figure 4c shows the complete diagram. 

Now, the transformation rules R1 through R6 have to 
be applied. Since we can see two edges with no filter on 
either side of them, we apply R1 twice and get figure Sb. 
Now we cannot apply any rule except Rs. So we start 
resolving the tf(0.5) edge. The source and target blocks 
contain two members each. That is, a maximum of 2 · 2 
edges could be drawn . A filter-value of 0.5 teils us now 
to draw only 4 . 0.5 = 2 edges instead. That makes one 
edge per member of the target block. The projection set 
Pt of the left target unit has cardinality 1 and aims at 
source position \2 = 1. The projection set P2 of the 
right target unit aims at source position 2·2 = 2. Thus, 
the left target unit is connected to the lelt source unit 
while the right one is connected to the right source unit. 
The result is shown in figure 5c. 



ser(mul(3. ser(mul(3. I) . ü(213))), ü(213), par{par{par( . .. )))) 
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• •• • • ••• 
Figure 6: A simple feature detector 

Now we resolve the topmost and the bottommost 
edges. The number of members of the middle block vis­
ible to the input layer is two: the bottommost block 
containing two units and the tf(1.0) filter. The input 
layer consists of one unit. The filter-value is 1.0, so the 
full number of two edges have to be drawn. The same 
holds for the output layer. 

Finally, the remaining filter has to be eliminated. Re­
member that each unit is a member of itself (see sec­
tion 3.3), so the two units involved are connected via an 
edge when the filter is resolved. Now the non-elementary 
blocks are discarded and the result is an artificial neural 
network. 

Topological filters can be used to extract data from 
a multidimensional receptive field, in which the arrange­
ment of filters defines the dimensionality assumed for the 
data. We shall now glance at a simple implementation 
of a featu.re detector that takes a subset of units ordered 
in a square as input and perfonns an operation on them. 
By the same technique, arrays of feature detectors can be 
implemented that perform identical operations on differ­
ent but possibly overlapping sections of the input data. 
Figure 6 shows the resolution of the network. The large 
filter means "take only two thirds of the input segments" , 
the array of smaller filters means "of each segment (line), 
only two thirds are of interest" . Using mul/smul tenns, 
overlapping detector arrays of any complexity can be ex­
pressed. See section 4 for a non-trivial example. 

3.5 Bug-Fixing 

Not every term results in a suitable network. The follow­
ing conditions can arise that we regard as context-errors: 

• If some filter-values are too smalI, some units may 
be isolated, Le. do not have input or do not have 
output1 . 

1 Input units are always considered to "have input" and 
output units never lack output. 

• The number of input or output units in the derived 
network will in most cases differ from the number 
required by the task to be solved. 

• Topological filters in the input and output layers do 
not make sense at all. 

Since the above error conditions can be most easily cle­
tected during the translation of a term, "bug-fixing" is 
performed as a side effect of the translation process, 
mainly by permanently changing the tenn into a si m­
ilar context-correct one. The following sections describe 
each case in detail. 

3.5.1 Isolated Units 

After the transformation into a network has been fin­
ished in principle, some units may lack fan-in or fan-out. 
This is always caused by one or more topological filters 
carrying too small factors. Hence, we must find one or 
more filters connected to a parent of the isolated node 
and ensure that 

• these filters themselves have respectively fan-in or 
fan-out, 

• if so, their factors must let pass at least one link per 
member of the parent of the isolated mode. 

This is accomplished by a recursive algorithm, making 
use of the properties of the filter resolution rule (Rs in 
section 3.3). This algorithm is outlined here: 

scale (v E V) 
if v is connected to a non-tf node s E V 

let fn.ew +- ,!., where s has got m members 
else if v is connected to a tf node t E V 

scale (f) 
increase /,s filter-factor to fnew 

revert those parts of the translation process that have 
been affected by the factor of f, translation has to 
be resumed here 

else (v has no connected-to-edges) 
scale (parent (v)) (where v is member of parent (v)) 
exit! 

Note that the isolation of the node v may not be over­
come after a single iteration of scale( v) followed by a 
partial retranslation if there is more than one offending 
filter. But the algorithm assures that, if called for an iso­
lated node v, at least one additional connected-to-edge 
will be established afterwards, which will guarantee the 
correctness of the algorithm. 

3.5.2 Number of Input/Output Units 

Although there is not hing fundamentally wrong with 
networks containing any number of input or output 
units, we must fix the number of input and output units 
for a given task. We should not restrict the input and 
output layers to be represented by n-tenns of the re­
quired value, for the input and output layers have to 
carry topological infonnation. Hence, mutations and 
crossovers can affect the number of input or output units, 
which have to be rescaled in return by changing the n­
values and mul-/smul-factors in the input and output 



regions of the term appropriately. Thus, we try to ad­
just the size of the input and output layers with minimal 
effeet on their structu,re. 

Since the number of units in every mul/smul subnet­
work is a product, it may happen that a given number 
of, e.g., input units cannot be reached - especially if it 
is a prime number. Therefore we split the rescaling pro­
cess into two phases (Jet us consider input units only for 
sim plification): 

1. raw-scaling: All n-values and mul-/smul-factors af­
feeting the number of input units are changed pro­
portionally until the network has slightly more in­
put units than required. Formally, slightly more 
means that no single n-value or mul-/smul-factor 
can be further decreased without resulting in less 
input units than required. All changes performed 
in the raw-scaling phase are permanently incorpo­
rated into the term, so that this process need not be 
repeated as long as the term remains unchanged. 

2. fine-scaling: When the term is translated into the 
diagram graph (see 3.3), all mul/smul terms are ex­
panded as if they were corresponding par terms. 
After this expansion, no more multiplications take 
place and the superftuous units are discarded by 
simply reducing some of the n-values by one. Fine­
scaling affects the derived network, ensuring the cor­
reet number of input and output units, but it obvi­
ously cannot have any effect on the term. 

As an example, consider the term mul(3, 10) and a tar­
get number of 13 units. Since 13 is prime, raw scaling 
cannot re ach 13 exactly, but it will result in the term 
mul(2,7) indicating 14 units. After expansion, the dia­
gram looks like the one for par(7,7), which can be fine­
scaled to par(7,6) yielding 13 units as required. 

Input and output scaling would be rat her problematic 
if the number of input units and that of output units were 
not independent, i.e. if a single atomic change to the 
term were able to affeet both the number of input and the 
number of output units. We prevented this by restricting 
the individuals in our GA experiments to having a ser 
symbol at the topmost reeursive level. 

3.5.3 Filters in the Input/Output Layer 
Topological filters in the input and output layers are 

permanently removed from the term. This might leave 
an "empty" parent symbol, which has to be removed 
as weH, and so on. If less than two independent layers 
for input and output persist (in the worst case a term 
contains not hing but filters), the whole term is replaced 
by ser(ni' n o ) where ni and n o are the required number 
of input and output units. 

3.6 The Derivation of Shared Links 

Obviously, the diagram transformation process does not 
cover the derivation of shared links, i.e. links that have a 
common weight parameter in BP training. Shared links 
are specified by the use of smul terms. They are derived 
in an additional pass after the diagram transformation 
has been completed , and for every pair of units u" v it is 
already known if there will be a link (u" v) between these 
units or not. So we just have to choose some groups of 

links and mark their respective members as slwred. We 
now define how this is achieved. 

First of all, the smul subterms within a term set up an 
equivalence relation == c V x V on the set of blocks, in­
c1uding unit!"and filters, in the resulting diagram graph. 
VJ == V2 ho!d:" rand only if 

• either VI and V2 are instances of the argument of 
the same smul block 

• or else the parent blocks PI of VJ and P2 of V2 are 
both of type smul and equivalent, PI == P2 

• or else Il(vd = Il(v2) 1\ PI == P2 

This means corresponding blocks within the instances of 
smul-arguments are considered equivalent. In particular, 
we obtain c1asses of equivalent units , and every unit in 
such a cJass shall have the same vector of input edge 
weights - in principle. 

Since the structure of the input region for a number 
of equivalent units carries topological information, the 
actual grouping of the links that are to be shared needs 
to have some topology-preserving properties; e.g., links 
from one row of a two-dimensional reeeptive field to a 
certain unit should be coupled with the links from the 
corresponding row of the input region of another unit, 
even if the "rows" involved v<l.ry in size.2 Therefore, we 
need some more definitions: 

The term for the whole network can be seen to 
uniquely define a total order --< on the set of units, 
namely the order in which the units occur in the written­
down term after all mul and smul symbols have been 
expanded into corresponding pars. 

Furthermore, we define the topological distance 
ß(U,I, U,2) between two units U,l and U,2 as folIows: Con­
sider the shortest way from U,l to U,2 in the final dia­
gram graph using only member-o}edges and visiting all 
units U,b between U,l and U,2, U,l --< U,b --< U,2, in the order 
given by --<. This way consists of multiple alternating 
ascents and des cents in the member·of tree. The maxi­
mum length of such a single ascent or descent, measured 
by the number of edges involved, determines the topolog­
ical distance ß( U,l, U,2) between U,l and U,2. Figuratively, 
the topological distance gives the number of coordinates 
that U,l and U,2 differ in, according to our topological 
interpretation of the surrounding network region. 

Now we can formally express what topology­
preservation means to link-sharing: Every input edge 
(u"v) to each unit v of a given equivalence dass a 
with respect to == is assigned a so-called share index, 
(u" v) f-t ind(u" v), so that the foHowing conditions are 
satisfied: 

• The first input edges get the same index for aH v E 
a , i.e. ind( U,vl, v) = const. where U,vl is the smallest 
unit according to --< being linked to v.3 

• U,l --< U,2 => ind(u,l, v) < ind(u,2, v) for all 
(U,I,V), (U,2,V). 

2Such variations are particularly annoying if caused by the 
fine-scaling of "identical" regions. 

3The actual selection of this initial index is to ensure that 
sharing takes place among equivalent units only. 



ser(par(mul(2. 2).4). tf(0.5). smul(2. I)) 

Figure 7: An example of weight sharing 

ser(2, srml(2. mul(2. I))) ser(2, mul(2, smul(2, I))) ser(2. smul(2, smul(2, I))) 

• • •• •••• •••• 

~'~~ 
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Figure 8: Combining mul and smul symbols 

• ind(ul,vd = ind(u2,v2) " 
ind(u3,vd = ind(u4,v2) => ß(Ul,U3) = ß(U2,U4) 
for all (Ul,Vl),(U2,V2),(U3,vd,(U4,V2). This is 
what topology-preservation formally means. 

• Reducing any one of these share-indices would vi­
olate one of the above conditions. This means the 
share indices are assigned continually unless the pre­
vious condition requires a gap. 

Finally, all links with the same index are coupled. By 
the way, all biases remain independent in every case. 
Note that the above conditions do not induce a unique 
set of indices, but they do induce a unique scheme of 
shared weights! 

Figure 7 gives an example of shared links and the idea 
of topology preservation. There are a "one-dimensional" 
and a "two-dimensional" receptive field for two equiv­
alent units; only the first row of the two-dimensional 
region corresponds to the one-dimensional region with 
respect to link sharing. 

Figure 8 shows the effects of some combinations of 
smul and mul symbols on weight sharing. Please refer to 
the definition of = to comprehend the results in detail. 

3_1 Completeness 

The bad news is the term language is not complete. Net­
works exist that cannot be expressed as a term. They are 
irregular, "non-structured" networks with link crossings 
that cannot be derived from higher-Ievel connected-to­
edges in the diagram graph. 

But such networks are quite rare in practice, i.e. hu­
man network designers usually succeed without using 
networks of that kind. There seems to be no evidence 
that a non-structured architecture would be required for 
an ANN to learn some particular task. Furthermore, the 
language can be patched so that completeness is achieved 

Figure 9: An impossible network 

easily. If named terms (see section 3.3) are used with a 
list of irregular edges appended, every graph can be ex­
pressed. Figure 9 shows an example of an ANN that 
cannot be coded as a term. Nevertheless, it can be de­
scribed by a named term: 

ser(1 : a, 1 : b,l : c, 1 : d, 1 : e) 

< a - c, a - d, a - c, a - e, b - d, b - e, C - e > 

If named terms are used, the resulting ANN is not al­
ways a feed-forward network, since cycles of edges can 
be specified, e.g. ser(1 : a,l : b) < b - a >. The feed­
forward condition has to be checked in an extra pass be­
fore the resolution rules are applied. We do not believe 
that using named terms is actually necessary, because 
non-structured networks can be approximated by struc­
tured networks; for example, if only one edge is omitted 
in figure 9, the network can again be expressed as a term. 
With respect to the Theorem of CVBENKO [1] we have 
reason to hope that every function that is learned by 
a non-structured network can be learned by a similar 
structured network as weil. This is additionally sup­
ported by the fact that BP is capable of deleting (more 
precisely: ignoring) drawn connections in principle by 
their weights converging to zero. 

4 U sing the Code as an Input Language 
for Simulators 

If a network is to be put into a simulator, the schematic 
structure is usually known to the user, and thus the net­
work can be easily encoded. The ZIP code reader by 
LeCun et al. [12] can be considered a suitable real-world 
problem. The network consists of 1256 units and more 
than 50,000 edges, most of them with shared weights. 
The units are arranged in overlapping feature detectors 
in a regular but non-trivial pattern. While the inter­
connection matrix takes several megabytes of memory 
and the BIGNET-specification [13] still fills a couple of 
pages, the term representation is quite handy: 
ser( 

par(mul(16,16)), 
mul(I2, ser(tf(0.3I25), smul(8, ser(tf(0.3I25), smul(8, 1))))), 
tf(0.6667), 
mul(I2, ser(tf(0.625), smul( 4, ser(tf(0.625), smul(4, 1))))), 
30,10 

Modelling networks can be made easier and complete­
ness can be assured if parlially named terms are used. In 



partially named terms only those nodes are given a name 
that are to get an edge of the separate edge-list. A net­
work with three layers of 25 units each and a single short­
cut from layer #1 to layer #3 could be expressed in this 
manner by ser(par(1 : a, 24), 25, par(1 : b, 24» < a - b >. 
Note that the same network could be written (more ele­
gantly) with a topological filter of value 25125 parallel to 
the hidden units. 

5 The Genetic Algorithm 

We used our term code in a genetic algorithm that is to 
find ANN architectures for given problems. The pheno­
types are back-propagation networks with the transfer 
functions identity for input units and the sigmoid func­
ti on x H 1/(1 + exp(-x» for hidden and output units. 
The GA follows the well-known standard scheme eval­
uate. reduce. select. produce. Below we briefly describe 
those aspects of the GA that are directly influenced by 
the characteristics of the genetic code and the problem, 
i.e. mutation, crossover, and the evaluation of the indi­
viduals. 

5.1 Mutation Operators 

Since Our genetic code is obviously much more structured 
than binary strings, mutation operators are more com­
plicated to write down, but easier to understand and to 
contro!. They are a set of term replacement rules, and 
mutating a genotype means randomly choosing a sub­
term in the genotype, a mutation rule being applicable 
to that subterm, and in most cases some additional rule­
specific parameters. The application of the selected rule 
to the selected subterm yields the "mutant". 

In the following list of mutation rules, small letters 
represent numbers or subterms and capital letters rep­
resent (possibly empty) sequences of subterms. Rule­
specific context-conditions are labelIed with ©, and rule­
specific parameters are listed after #. 

forgetSer: 
© 
# 
forgetPar: 
© 
# 
extendSer: 
extendPar: 
# 
# 
liftMul: 
liftSmul: 
liftlPar: 

liftS er: 
liftPar: 
# 

dropMul: 
dropSmul: 
# 

ser(A, x, B) -t ser(A, B) 
length(A 0 x 0 B) ? 3 
relative position of x 

par(A, x, B) -t par(A, B) 
length(A 0 x 0 B) ? 2 
relative position of x 

ser(A, B) -t ser(A, x, B) 
par(A,B) -t par(A,x,B) 
relative position of x 
x is a new randomly created term 

mul(n,x) -t x 
smul(n, x) -t x 
par(x) -t x 

ser(A,ser(B), C) -t ser(A, B, C) 
par(A, par(B), C) -t par(A, B, C) 
relative position of the subterm to be 
"lifted" 

X -t mul(n, x) 
x -t smul(n, x) 
n 

drop1Par: x -t par(x) 

dropSer: ser(A, B, C) -t ser(A, ser(B), C) 
© length(B) ? 2/\ length(A 0 C) ? 1 
# start and end of B within the argu-

ment list, obeying the condition 

dropPar: par(A, B, C) -t par(A, par(B), C) 
© length(B) ? 1 
# start and end of B within the argu-

ment list, obeying the condition 

resizeMuI: mul(n, x) -t mul(r . n, x) 
resizeSmul: smul(n, x) -t smul(r . n, x) 
resizeN: n-tr·n 
© r . n ? 2 (mul, smul). 
© r . n ? 1 (n). 
# r 

changeTf: tf(p) -t tf(p + r) 
© O:5p+r:51 
# r 

share: mul(n,x) -t smul(n,x) 
unshare: smul(n,x) -t mul(n, x) 

expand: mul(n,x) -t par(x, ... ,x) 

twiceSer: ser(A, x, B) -t ser(A, x, x, B) 
twicePar: par(A, x, B) -t par(A, x, x, B) 
# relative position of x 

ttInSer: ser(A,B) -t ser(A,tf(r),B) 
© length(A) ? 1/\ length(B) ? 1 
# relative position to insert the new 

filter 
# r 

The application probability of each rule as weil as the 
bounds for the randomly chosen parameters in the above 
list can be specified by the user of the GA. In other 
words, it is possible to supply the GA with some knowl­
edge of the task to be performed. For instance, nobody 
would expect that the "optimal" network for xor and 
the optimal one for backgammon will be similar in size. 
Thus, the GA should converge faster if the mutation 
strategy can be adjusted at least to the estimated "size" 
of the task and the required architecture. Furthermore, 
there is no reason why it should lail to converge even if 
the controlling parameters chosen are inconvenient. 

5.2 Crossover 

In contrast to the mutation operators, crossover is ex­
tremely simple for our genetic code. If there are two 
terms a and b to be crossed-over, choose an arbitrary 
subterm of a and one of band simply swap them. The 
only context-condition is that neither a nor b themselves 
may be chosen as subterms for swapping. The definition 
of the language ensures that either modified individual 
is also a term of the language if a and bare. 

5.3 Evaluation 

The phenotypes are trained by back-propagation in 
batch mode with the usual total square error cost func­
tion and a separate set of test patterns. Termination 



criteria are the error on the training set and an upper 
bound to the number of BP epochs. The following en­
hancements to "traditional" back-propagation (e.g. [2]) 
are used: 

• Dynamic adaptation of the 1) (learning rate) and Cl 

(momentum) parameters after SALOMON [10]. This 
method removes the necessity of choosing the "cor­
reet" parameters by hand and is capable of adjust­
ing the parameters for varying local properties of 
the error space . 

• Gradient normalization, i.e. the steps in the weight 
space depend on the graDient's direetion but not on 
its magnitude. This solves the problem that the 
convergence of traditional BP slows down substan­
tially if the error "landscape" becomes relatively 
flat, while steep slopes may cause jumps which are 
much too long. 

Our universal quality function q for a single individual 
is 

where 
et: final error on the test set 
np: number of iree weight parameters in the 

network 
nl: number of links in the network 
ep: BP epoch number with the smallest test error 
nn: num ber of term nodes in the genotype 
c.;: user-defined scaling constants 

Component nn refers to the genotype rather than the 
phenotypej its purpose is to encourage the GA to de­
velop compact representations (note that there might be 
"redundancies" in the genotype without any influence on 
the phenotype but affeeting the set of possible crossover 
operations). The exponential ftmction reDuces the nu­
merical differences so that the qualities can be reason­
ably USeD as relative production probabilities. 

6 Results 

In this section we present some experiments carried out 
with the tenn representation and the genetic algorithm 
outlined above. 

6.1 Identity Function 

First we testeD our GA on the eight-dimensional identity 
function as an example of a very "smalI" problem. The 
training set consisted of the eight possible patterns with 
only one unit "high" (1) and the others "low" (0), the 
test set containeD similar but somewhat noisy patterns.4 

We used a population size of 40 parents and 120 off­
spring. The quality was measured by the test error, 
Cl = 1, the number of weight parameters and the num­
ber of term nodes, C2 = Cs = 0.001, and the training 

4This is a typical training environment for the popular 
encoder prohlen) and a network with three hidden units. Of 
course we did not predetermine the network architecture, but 
the "classic" 8-3-8 encoder would be a suitable solution even 
though it cannot learn the identity function for all possible 
inputs. 

outpuIle.yer 

1 
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Figure 10: The identity network 

time, C4 = 0.0001 (refer to section 5.3). This means we 
were interested in finding a network that learns the iden­
tity function and is minimal with respeet to the amount 
of infonnation incorporated. The mutation probability 
was set to 0.7 and the crossover probability to 0.8. The 
networks were trained for at most 500 epochs or until 
the training error dropped below 10-10 • 

In the following we show the milestones of the evolu­
tion, represented by the genotypes of the best individu­
als of each generation. Note that, for most representa­
tion schemes known, it would not have been possible to 
present the evolution process in such a compact form: 

Gen. Best Individual, Comment 
1 ser~8,8) 

64 independent eDges 
2 ser(8, tf(0.125),8) 

8 independent edges 
3 ser(smul(4, 2), tf(0.25), smul~4, 2)) 

16 eDges, 4 connection-weights 
4,5 ser(8, tf(0.24),smul(8, 1» 

15 edges, 2 connection-weights 
6 ser(8, ser(tf(0.125), smul(8, 1») 

optimal phenotype 

Apart from the redundant inner ser node, the best 
individual of the sixth generation is an optimal solution, 
beeause our GA insists on independent input and output 
layers (see seetion 3.5.2). Figure 10 depicts the resulting 
network, which contains eight edges with a single shared 
weight parameter. The share index "2" is printed at the 
eDges. 

While. the milestones of evolution presented above are 
in a sense characteristic of our identity experiments, this 
is not quite the case for the convergence speed. We car­
rieD out 6 experiments under equal conditions, with the 
optimal phenotype shown evolving after 6, 16, 20, 17, 
32, and 7 generations, which makes 16.3 generations on 
average. 

6.2 Two-Spirals Problem 

The two-spirals problem provides a good test of network 
topology optimization strategies beeause it has proven 
to be very hard to solve by backpropagation-baseD net­
works. Actually, some results indicate that short-cut 
connections could be necessary to succeed, and standard 
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BP has been reported to require at least 20,000 cycles 
for a solution (FAHLMANN , LEBIERE [11]). 

The problem can be outlined as folIows: There are two 
interlocking spirals in the input plane, each going around 
a common centre point three times. The network's task 
is to decide whether a given point, represented by a pair 
of real-valued coordinates, belongs to the first or to the 
second spiral. Hence, two input units are mapped to one 
output unit. 

Our population again contained 40 parents producing 
120 descendants. Mutation and crossover probabilities 
were 0.7 and 0.8 respectively. The networks were trained 
for a (rather optimistic!) maximum of 12,000 epochs or 
until a training error of 0.1, which guarantees a hit rate 
of 100% on the training set. It seems to be favourable to 
start with a very smalliearning rate; we chose 1/ = 10-4 • 

The training set comprised only 100 points, leaving 94 
further ones as a test set to examine the networks' abil­
ity to generalize. In contrast, up to now all 194 patterns 
have usually been taken as training cases and general­
ization neglected. 

Figure 11 shows the development of the mean qual­
ity of the entire population during the experiment. The 
"winner" of the experiment evolved in the 8th genera­
tion. Its evaluation terminated after 5322 cycles due to 
the training error, with a minimal test error of 2.16 in 
epoch 5319. This obviously means a hit rate of 100% on 
the training set, while the hit rate on the test set (which 
we unfortunately could not measure directly) might have 
been 91.5% making 8 misses at worst, but probably was 
in the area of 100% as weil. In addition, the test error 
was almost certainly still decreasing when training ter­
minated. Figure 12 presents the phenotype of our cham­
pion. It contains 28 hidden units arranged in only two 
hidden layers, and it is particularly surprising in that it 
does not show any shortcuts at all. 

On the one hand, this network is quite a bit larger than 
the two-spirals networks proposed in literature, which 
comprise between 10 and 20 hidden units. On the other 
hand , we seem to have set up a new landmark with re­
spect to the time back-propagation requires to learn this 
problem, particularly in view of the generalization re­
sults. Furthermore, in some generations a network with 
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Figure 13: Training the two-spirals champion with en­
hanced BP 

only 19 hidden units and a minimal test error between 
3 and 6 was best. In general, solutions with two hid­
den layers similar in size, but no shortcuts, were clearly 
favoured by the GA. 

When we examined the probability of our winner's 
successfully learning the task, it turned out that the 
astonishing results are in part a merit of the BP en­
hancements in use (see section 5.3). Standard back­
propagation did not discover any correlation between 
input and output in any of 21 trials over 20,000 epochs 
each. But with parameter adaptation and gradient nor­
malization turned on, 28 out of 63 trials (44%) were quite 
successful, i.e. showed training errors below 3.0, after at 
most 20,000 epochs. Figure 13 depicts the frequencies of 
the final training errors when rounded to integers. 

Furthermore, the mean quality diagram confirms a 
typical problem of the evaluation of neural network ar­
chitectures, the noise in the quality space as mentioned 
in the introduction. Although the fittest individual of ev­
ery generation was ensured to survive, the minimal test 
error happened to increase again in some generations. 
We tried to reduce this noise by restricting the initial 
weights to the relatively small interval [-0.1; 0.1], wh ich 
appeared to be a suitable compromise between obtain-



ing reproducable results and successful back-propagation 
training. 

7 Conclusion 

The results presented show that our term representation 
enables a genetic algorithm to quickly find a network ar­
chitecture that solves a given task in principle even if this 
task is rather difficult with respect to back-propagation 
strategy. Such a first solution may be more complicated 
than necessary, but our GA also performed quite weil 
in reducing the networks in a subsequent phase, even 
though "Iocal optimizations" do not seem to be the prin­
cipal strong point of this representation scheme. 

During our experiments, it turned out that the very 
compact and handy genotype.5 constitute an advantage 
that cannot be appreciated enough: Every genetic algo­
rithm for optimizing network architectures will be con­
trolled by a number of parameters, and the human ex­
perimentor has to adjust them in "real-world" applica­
tions. Therefore he should have an idea what the GA 
is doing (wrong?) at any time, which is quite easy to 
find out with a representation scheme like ours, but will 
be difficult and arduous if the genotypes are bunches of 
link specifications, at worst being represented in binary 
form. 

Further investigation on ANN optimization using the 
term code should focus on problems requiring really large 
networks (Le. more than 100 units at least), which would 
significantly reduce the in:Buence of the random initial 
population on the convergence speed and the results of 
the GA. 

By the way, in all of our experiments we have never 
found an indication that the incompleteness of the term 
representation is a serious problem in this field. Es­
pecially, for tasks requiring substantially big networks 
there can hardly be any objective criteria to identify an 
"optimal" network because of the noisy quality space and 
the existence of contradictory aspects of quality (e.g. er­
ror, network size, and training time). 

Finally, even if no genetic optimization is involved at 
all, we think our representation language could be of 
great help in fields like simulator experiments or talking 
about network architectures. This holds particularly if 
incompleteness is overcome by the use of parlially named 
terms. 
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Abstract 

While constructing and training neural net­
works, one faces the chalJenging question of 
how to determine an appropriate topology for 
the network to be trained. The concurrent pro­
cess of learning a network and minimizing its 
topology can be seen as an optimization in a 
multimodal function. In this article we show 
how the collective learning procedure, which ef­
ficiently optimizes those function, can be suc­
cessfully applied to evolve a minimal neural 
network's topology. 

1 INTRODUCTION 

While constructing and training neural networks, one 
faces the challenging question of how to determine an 
appropriate topology for the network to be trained. Usu­
ally, one has a certain amount of experience and makes 
an educated guess for t.he number of hidden units and 
hidden layers needed. The number of hidden units, and 
consequently the number of connections, has an influence 
on the generalization properties of the trained network 
and the number of training epochs needed. 

In the neural network community, there is a common 
assumption that a network with too many weights do not 
generalize weil (Le Cun, 1990). However, if the number 
of connections is below a certain threshold the network 
is not able to learn the given task. On the other hand , 
a larger number of hidden units normaJly decreases the 
number of training epochs. Thus, one has to find a good 
compromise which could be difficult beforehand. 

In the past, several strategies have been developed to 
automize the process of determining a neural networks 
topology. In the skeletonization approach (Mozer, 1989), 
a relevance is assigned to each hidden unit . Once, learn­
ing has obtained a specified accuracy it calculates the 
relevance of aJl hidden units. Then the procedure re­
moves the hidden unit with the least relevance and con­
tinues the training proc.ess. The optimal brain damage 
approach (Le Cun, 1990), involves the computation of 
a salience for each parameter (weight) . After a speci­
fied criterion is obtained those weights with the lowest 
saliency are removed and training is proceeded. Yet an­
other common approach starts with a small network and 

adds new hidden units when no further learning progress 
is attainable. Thus, this approach is reverse of those 
described above. An alternative approach is given in 
(Schiffmann, 1990). This alternative features a genetic 
algorithm which constructs different topologies at each 
generation. In a subsequent step, these networks are 
trained for a specified amount of time and the resulting 
error is used as a fitness value. By means of the genetic 
algorithm and backpropagation learning this procedure 
is able to produce smaJl networks over time. 

The approaches described so far have at least one of 
the following drawbacks. (1) A procedure which removes 
hidden units or single connections has to start with a suf­
ficiently large network. But what is sufficiently large? If 
the initial network is too large, training time and re­
moving process are unnecessarily long. (2) Adding hid­
den units from time to time might result in a network 
which represents the requested functionality but the fi­
nal topology could be far away from the minimum. (3) 
Separating the training from the topology modification 
process requires a criterion after which the training has 
to be stopped. An unappropriate choice slows down the 
overall convergence speed. (4) The hybrid approach pro­
posed by Schiffmann requires the specification of a max­
imal number of training epochs. Thus, the procedure 
is not able to find topologies which need more training 
time than that. In addition, this specification requires a 
certain degree of problem knowledge apriori. 

In the next section, we show how a method, called 
collective learning, can be successfully applied evolving 
topologies which are very elose to the minimum. 

2 THE PROCEDURE 

In (Salomon, 1994) we proposed the collective learn­
ing procedure for optimizing multimodal functions which 
have many local and only one global optimum. Collec­
tive learning is a hybrid scheme which is loosely inspired 
by evolutionary considerations and provides a significant 
improvement in global convergence compared to other 
methods as can be seen in Table 1. This table presents 
a short comparison of the number of function evalua­
tions needed when applying the genetic algorithm vari­
ant of collective leaning (CLGA) and PGA (Mühlenbein, 
1991) to Rastrigin's function fex) = 200 + L;~l x; -
10 cos(2 7r xd. One can see that collective learning is up 



n - 20 n - 50 n - 100 n - 200 n - 400 
PGA 9900 42753 109072 390768 7964400 
Collective LearningliA 4600 8650 12650 23750 31150 

Table 1: Number of Function Evaluations Needed by Collectice Learning and PGA when Applying to Rastrigin's Highly 
Multimodal Function f(i) = 200 + L:~~l x~ - 10 cos(2 'Ir xi) for Several Dimensions (20 to 400). 

to two orders of magnitude faster than PGA. 
The collective learning procedure is based on a genetic 

algorithm or evolution strategy (Rechenberg, 1973) re­
spectively, and a modified self-adapting backpropagation 
algorithm (Salomon, 1992) working as a local learning 
procedure. The basic idea is that the genetic algorithm 
produces offspring with slightly modified topologies as 
well as slightly modified learning parameters like learn­
ing rate 1] , moment um G, and that backpropagation al­
lows each offspring to perform local learning steps. 

To generate new offspring the procedure (the ge­
netic algorithm or the evolution strategy part) randomly 
choose one or two parents and constructs a new offspring 
by me ans of mutation and cross-over. In addition, the 
procedure maintains a construction as weil as a destruc­
tion probability for each object. These probabilities were 
inherited in the same way as the learning parameters 
mentioned above. According to these probabilities, the 
procedure removes and adds connections as weil as hid­
den units. Therefore, a network can grow or shrink. Af­
ter all modifications are done, the procedure removes all 
hidden units which have no input or no direct J indirect 
connection to any output in order to obtain correct and 
useful topologies. 

To establish some biological components, collective 
learning maintains one population of size p. Then, in 
each generation it produces 0 offspring, changes their 
topology, and determines their initial weights as well 
as local learning parameters by means of mutation and 
multiple-point crossing-over . Before collective learning 
makes the necessary selection , it gives each individual 
time to perform exact/y one local backpropagation step. 

In the subsequent selection phase the procedure se­
lects the best p individuals according to the following 
scherne: For each individual the procedure maintains an 
age count and it caUs an individual young iff the age 
count is below a given boundary. In the first stage, the 
procedure selects all young individuals and then, in the 
second stage, it uses the current fitness - with respect 
to the given task - to select further objects. Note that 
the individuals perform only one step and not, as in sev­
eral other approaches, the total or a major part of the 
whole learning process. This sort of hybrid optimization 
process is known as Lamarckian learning (Grefenstette, 
1991) , and the main idea behind this approach is that 
young and promising networks with promising features 
have enough time adapting to the given task before they 
fee I any selection pressure. 

A crucial point using a genetic algorithm or evolu­
tion strategy as an optimization scheme is the definition 
of an appropriate fitness function . This is because the 
fitness value decides which networks are better than oth­
ers and consequently decides which networks will survive 

in the next generation . Within the context of evolving 
minimal topologies the procedure has two distinguished 
goals. First, the network should posses as less connec­
tions as possible, and second , the network's output has 
to be within a specified accuracy. To this end, the fitness 
function q has two parameters and is defined as folIows : 

{ 
me+C 

q(me , #c) = me + #c 
if me > ac 
otherwise (1) 

whereas #c is the number of connections, C a huge 
constant (e .g. 1000), ac the specified accuracy and me 
the maximal error occurring on any output and any pat­
tern . The above definition of the fitness function guar­
an tees that any network which has obtained the specified 
accuracy has a better fitness value than any other net­
work with more connections. 

3 RESULTS AND DISCUSSION 
In our experiments we used standard feed forward net­
works without restrictions to the number of hidden units 
and hidden layers, and I(x) = 1J(1+e-") as the squash­
ing function. Unless otherwise stated, we used in all tri­
als a population size of p = 50, 0 = 4 offspring, and a 
bound of age = 11 for young objects. 

We started our experiments with the 4-x-4 encoder 
task, where the standard topology consists of 2 fully in­
terconnected hidden units with a total of 22 connections. 
This task is fairly simple. However, it is worth to study 
it because this task is weil understood and our experi­
ments give further insights in the minimization process. 
During various trials , the procedure developed different 
solutions with mostly two or three and occasionally four 
hidden units. Normally, after a few generations the first 
solution consists of approximately 50 connections. In 
the ongoing optimization process, the total number of 
connections are reduced. Generally, the final solutions 
consist of 12 to 15 connections. 

A typical run can be seen in Figure 1. Here, the x 
and y axes represent the number of generations and the 
fitness value respectively. As described above, the fit­
ness value is the sum of the number of connections and 
the maximal error iff the accuracy is within its spec­
ification (i.e. 0.3) . One can see that the best network 
after 860 generations has only 17 connections, after 2700 
generations 16 connections and so forth. Finally, after 
6500 generations the procedure ends up with a network 
of merely 12 connections including all bias links. One 
may wonder, how such a sparse network can perform 
the desired task. In this case, there are solely four con­
nections from the input to the hidden layer and the two 
hidden units generate the following four activation pat­
terns: (0.0,0 .5) , (0.5,1 .0) , (0.5,0.0) , and (1.0,0.5). 
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Figure 1: Fitness (Number of Connections plus Maximal 
Error) of a 4-x-4 Encoder. 

Furthermore, we used collective learning to evolve a 
neural network for a pattern recognition task. Here, 
the procedure came up with the first solution consist­
ing of 305 connections after 30 generations. In the sub­
sequent optimization process, the procedure needed an 
additional 330 generations to shrink the network to 106 
connections. Finally, after the 750th generation the net­
work was shrunk to 25 connections. 

In addition, we applied our procedure to other tasks. 
For example, if one allows an encoder network having 
short cuts from the input to the output layer then all 
hidden units vanish during the optimization process and 
the final network consists of exactly eight connections 
(two per each output unit). 

We also applied our procedure to the well known 
exclusive-or (XOR) problem. In this case, the procedure 
needs approximately 150 generations to construct a net­
work with 8 connections, 183 generations to shrink it to 
7 connections, and finally ends up with 6 connections 
after 900 generations. 

4 CONCLUSION 

In this article, we have shown how to evolve a neural 
network's minimum topology by applying the collective 
learning procedure that is devoted minimizing multi­
modal functions. The link between multimodal functions 
and evolving topologies is the following. Removing hid­
den units or particular connections results in a modified 
representations in the hidden layer(s). Thus, an ongo­
ing learning process can get stuck in a local minima. 
To overcome these local minima, the collective learning 
procedure generates different topologies and significantly 
modifies all connections of new offspring. By means of 
the described selection process, the procedure eventually 
overcomes these local optimia. Applied to the 4-x-4 en­
coder task, the procedure found solutions with merely 
twelve connections in a resonable amount of time. Cur­
rently, we are investigating other topology modification 
operators as well as different fitness functions. We are 
also applying the procedure to more realistic tasks. 
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This paper presents a new approach to optimize the global illumination simula­
tion by Evolutionary Algorithms. It is shown that Evolutionary Algorithms have 
the potential to achieve good approximations to the solution of the Rendering 
Equation a multidimensional integral equation modelling radiant light transfer. 

In contrast to Monte Carlo evaluation irradiance information gained during 
sampling is exploited efficiently. Thus the simulation process becomes self­
organizing and is not limited to any apriori assumptions on irradiance dis­
tribution, which allows the system to adjust optimally to a particular lighting 
situation and results in a better convergence towards the accurate value of the 
Rendering Equation. 

Prom a general classification of variance reduction techniques and Evolutio­
nary Algorithms two different evolution models for the optimization of global 
illumination are derived: one describes the evolution of an optimal sampie ray dis­
tribution and the other represents an evolutionary subdivision of the integration 
domain into intervals of optimal confidence. 

1 Introduction 

In computer graphics the attainable degree of realism strongly depends on the 
simulation model of global illumination. In general for every elementary surface 
area within a scene the total irradiance incident from the entire half-space has 
to be accounted for. In a mathematical formulation this leads to a system of 
complex integral equations also known as Rendering Equation [Kaj86]. Since 
there exists no closed form analytical solution the Rendering Equation is solved 
approximately by applying Monte Carlo methods. 

Monte Carlo integration is a stochastic process, where the integration do­
main, i.e. the half-space of irradiance, is sampled by a finite set of random rays. 
The integral is estimated by the weighted average of irradiance values calculated 
for each sam pie ray direction. The major problem of Monte Carlo integration is 
to determine an optimallocation and density of sampies in order to guarantee 
some bound on the variance of the estimate, which is equivalent to finding a 
probability density function that is a good primary estimator for the function 



being integrated. In general this is impossible, since the irradiance distribution 
over the hemisphere above a point on a surface has many local peaks of different 
magnitude and both, location and magnitude of these local intensity maxima 
are unknown in advance. 

Many weIl known techniques for variance reduction (e.g. importance samp­
ling, stratified sampling) have been applied to the global illumination problem. 
Yet even with these techniques, there are many scenes for which current Monte 
Carlo algorithms fail to yield good approximations; since they have one substan­
tial drawback: they rely on apriori assumptions on irradiance distribution. 

Unfortunately the only way to gain information about irradiance distribution 
is by actually evaluating it . The goal , therefore, is to optimize the simulation 
process in such a way that this information is exploited effectively allowing the. 
system to adapt itself to the actual irradiance distribution. 

The techniques presented here contribute towards a solution to this problem 
by means of Evolutionary Algorithms (EA) . In the past Evolutionary Algorithms, 
which are directed search techniques based on the model of natural evolution , 
have been applied successfully to many global optimization problems. We de­
cided to approach the global illumination problem by Evolutionary Algorithms 
because they have the capability of evaluating extremely noisy and disconti­
nuous objective functions without needing any predefined models and provide 
mechanisms for self-adaptation. 

First , we will analyze variance reduction techniques for Monte Carlo simu­
lation of radiant light transfer. Then a short description of Evolutionary Al­
gorithms is given, and two suitable representations for the global illumination 
problem as evolutionary process, where each implements a different evolution 
model , are investigated . The outline of the algorithms is described and it is 
shown, that by Evolutionary Algorithms a better convergence of the estimate 
towards the solution of the Rendering Equation is achieved, which in turn results 
in an improvement of image quality. 

2 Simulation Model 

The production of realistic images requires the ability to simulate the propa­
gation of light in an environment, i.e. the ability to completely account for 
the global illumination arising from complex interreflections within the envi­
ronment . Therefore the light transfer model and the simulation algorithm used 
are the most important characteristics of a realistic renderer. The light transfer 
model governs the quality of the simulation results. The simulation algorithm 
affects the simulation speed and the accuracy of the results. 

In classical radiation theory radiant light transfer between surfaces can be 
characterized by an integral equation modelling the radiance of light leaving a 
point on a surface in a particular direction . The radiance of a surface is the 
sum of the emitted and the reflected radiance. For a given point on a reflecting 
surface the total hemisphere of incoming radiation has to be accounted for in 
order to calculate the emitted radiance. Thus the radiance Lout of an elemental 



projected surface area dw emitted in direction (Or, ~r) is obtained by integrating 
the incident radiation Linover all directions (O,~) ofthe total hemisphere a (see 
Fig. 1), which leads to the following alternative form ofthe Rendering Equation: 

where Le( Or , ~r) is the emitted radiance in direction (Or, ~r) and p( Or, ~r, 0, ~) is 
the bidirectional reflectance of the surface. The Lin again are emitted radiances 
of other surfaces in the environment which have to be solved for all surfaces 
simultaneously. 

Since it is not possible to find a closed form analytical solution there exist two 
general methods for approximating this complex multidimensional integral equa­
tion: finite- element methods and Monte Carlo methods. The former approach 
yields radiosity algortithms and the latter approach yields stochastic ray-tracing 
algorithms where light paths are followed from the eye all the way back to the 
light sources. These light paths correspond to Markov Chains [Kaj86]. Thus for 
every visible.object point the hemisphere of incident radiation is sampled by a 
finite set of randomly selected rays (paths) [Lang 1]. 

Fig. 1. Geometry for radiant light transfer calculations. 

The advantages of Monte Carlo methods are its elegance and generality. They 
are easy to implement and handle arbitrary surface geometries and reflectance 
functions in a clean uniform way. Monte Carlo ray-tracing can simulate a lot 
more lighting effects all in a physical and mathematical way correct. 

Unfortunately the basic Monte Carlo technique is extremely slow to converge 
and has an inherent limitation: sampling noise. Several techniques for variance 



reduction try to alleviate this problem, but rendering typical global illumination 
effects such as indirect diffuse reflections still requires a lot of computational ef­
fort. By analyzing common variance reduction techniques for global illumination 
we will derive the requirements for a new optimization technique which further 
reduces the variance in order to achieve the best approximation. 

2.1 Variance Reduction 

Although it is possible to approximate the Rendering Equation using uniform 
stochastic sampling and sample-mean Monte Carlo integration [Rub8l], the con­
vergence under most conditions is so slow, that such a solution is impractical. 

The key to optimal convergence lies in variance reduction. This is achieved by 
altering the probability density in such a way, that the information gained from 
each sampIe is maximized. There have been made several attempts to increase 
the efficiency of the Monte Carlo solution through variance reduction techniques 
like importance sampling and stratification ([Dre9l], [Kir9l], [Lan9l], [Shi9l], 
[War92]). A specific cause of noise is highly non-uniform irradiance distribution. 
The problem is that the emitted radiance Lout is essentially the product of the 
incident radiation Lin with a reflection term p. Generally we can obtain accu­
rate information about the reflection term but not about Lin. For this reason 
importance sampling distributes the random variables according to the surfa­
ces reflection properties and sam pIes where the reflection term p is large, but 
usually does not consider the irradiance distribution. However if Lin is highly 
non uniform (for example 99light comes from only lpredictor of the important 
sampling directions, leading to high variance [Vea94]. 

Stratification is effective if the domain of integration can be partitioned into 
strata within which the variance is smaller than the difference between their 
means. In the context of rendering stratification is preformed explicitly by esti­
mating the integrals of direct and indirect irradiance independently. This may 
become inefficient if there are too many light sour ces in the scene, because in this 
case it is very difficult to generate a set of appropriate sam pIe rays. Although 
these variance reduction techniques reduce the number of sampIes, they have to 
rely on apriori assumptions about irradiance distribution. In order to reduce 
the variance of the estimated irradiance to tolerable levels for arbitrary surfaces, 
it still requires tracing thousands of rays, even if a combination of importance 
sampling and stratification is used. This is due to the fact, that the irradiance 
usually is a multimodal function, thus it is hard to determine a good primary 
estimator without any previous knowledge. 

Another fundamental problem of classical variance reduction techniques is, 
that the information gained during the simulation process is not sufficiently 
exploited. The sampIes are distributed only once according to a predefined pro­
bability density function. Furthermore the irradiance information gained from 
each sam pIe ray decreases with respect to the total number of sampIe rays. 
Therefore an adaptive sampling technique is needed which is superior to Monte 
Carlo sampling, in that it efficiently exploits irradiance information gained du-



ring the sampling process itself, thus giving the stochastic process a direction 
and improving the simulation process towards optimal convergence. 

In the past Evolutionary Algorithms have proven to be powerful methods for 
global optimization problems in different fields of research, not using any prede­
fined internal model of the objective function. They are robust even in the case 
of multimodal objective functions and provide mechanisms for self-adaptation . 
Due to these properties they are weIl suited to optimize the simulation of global 
illumination. 

3 Evolutionary Algorithms 

In nature, evolution, which is the process of adaptation of living organisms to 
their environment, can be regarded as a very powerful optimization method. 
Thus developing nature analogous problem solving strategies seems to be pro­
mising . 

Evolutionary Algorithms are directed search techniques with a great ver­
satility, that mimic the effects of evolution and natural selection. The most 
important ones being Evolution Strategies ([Rech73], [Schw75], [Schw77]) and 
Genetic Algorithms ([GoI89], [HoI75]), they share common concepts but differ in 
their implementation. Each of these approaches is based upon a collective lear­
ning process within a population of individuals representing points in the search 
space of potential solutions to a problem given by the objective function. The 
individuals of an arbitrarily initialized start population adapt to their environ­
ment, by evolving towards better and better regions of the search space (in terms 
of the objective function) by means of probabilistic se1ection and genetic opera­
tors (mutation and recombination) in such a way, that the average quality of the 
individuals increases. Each individual is assigned a quality value which usually 
depends on the objective function. Selection is an operator of the evolutionary 
process that favors individuals of higher fitness to reproduce more often than 
those of lower fitness, thus guaranteeing survival of the fittest, and giving the 
process a direction. The recombination operator allows the exchange of genetic 
information, whereas the mutation operator accounts for genetic innovation. 

Evolutionary Algorithms have shown to be useful methods for the exploration 
of large search spaces using simulated systems of variation and selection. They 
achieve much of their breadth by ignoring information except that concerning 
payoff and they can tolerate extremely noisy function evaluation. Furthermore 
they find near optimal results quickly after searching only small portions of 
the search space. Due to these properties they seem to be weIl suited for the 
optimization of the sampling process in order to approximate the Rendering 
Equation. 

If we want to apply Evolutionary Algorithms to the problem of calculating 
the total radiation incident to a given point, we first have to formulate the ra­
diation calculation as an optimization problem. Next we have to find a suitable 
evolutionary model for the optimization problem above and define an Evolutio­
nary Algorithm to solve it. The algorithm has to be designed in such a way, that 



it produces successively better approximations to the integral equation by ex­
ploring the total hemisphere of incident radiation; searching for those regions or 
sampIe ray directions that contribute significantly to the irradiance. Thus incre­
asing the average information gained from each sam pIe and converging towards 
an optimal sam pIe ray distribution. 

In the following two different approaches to the global illumination problem 
by evolutionary algorithms will be presented. In contrast to the classical design 
of an EA, we have not chosen every individual to be a full representation of the 
solution. This would imply a population of ray distributions, which seems rather 
impractical , not only from the computational efficiency point of view, but also 
from the difficulties in defining an appropriate quality measure for individual 
ray distributions, as weIl as difficulties in designing suitable genetic operators. 

4 Evolution of Sampie Ray Distributions 

As mentioned earlier, the approximation accuracy in the context of Monte Carlo 
integration strongly depends on the sampIe ray distribution. This means we are 
looking for an optimal distribution resembling the actual irradiance distribution 
in order to reduce the variance of the estimate. 

In a figurative sense our first evolution model can be described as folIows: the 
hemisphere of incident radiation to an object point represents the biosphere for 
a population of ray individuals. These ray individuals now have to adapt to their 
environment by finding optimalliving conditions for themselves. Thus they have 
to search for attractive places to settle down. With increasing attractiveness of 
their actual residence on the hemisphere their willingness to move decreases. The 
attractiveness or quality of life at a certain place depends on the irradiance at 
that place as weIl as on the population density of its surroundings. 

The goal of this settlement process is to find a suitable settlement structure, 
where the living conditions for all ray individuals are approximately equal. In 
contrast to classical Evolutionary Algorithms, where only one individual repre­
senting the optimal solution is searched for. 

The process of finding an optimal settlement structure corresponds to the 
ability of the EA to exploit the information gained by individuals during the 
settlement process. In order to have no loss of irradiance information accumula­
tive cartographic irradiance maps are produced during the settlement process. 
The process terminates if the irradiance map of the hemisphere has a certain 
state of accuracy. 

In order to find aB attractive regions of the hemisphere quickly and at the 
same time achieve an overall representative settlement structure, the Evolutio­
nary Algorithm has to be implemented in such a way that there is always a 
balance between exploration of the hemisphere and exploitation of the informa­
tion gained by it . 



4.1 Implementation 

In the evolutionary model outlined above, a ray individual is defined by its ray 
direction (0, 4» related to the local sphere coordinate system wi th cone angle 0 
and circumferential angle 4> . This representation is appropriate, since it allows 
a problem specific design of the genetic operators. Furthermore individuals that 
are elose to each other in the representation space are also elose in the problem 
space [Mich92]. 

An initial population Po of J..l ray individuals is represented by a set of random 
ray directions equally or stochastically distributed over the total hemisphere of 
a visible surface point within the scene: 

(2) 

where 
Oi E [0 . .. iJ ' 4>i E [0 ... 271"] (Vi E {1, ... ,J..l}) . 

The evaluation of the initial population Po is performed in four steps, one 
for the calculation of the irradiance incident from each individual ray direction 
and three to calculate a fitness value for each ray individual. 

The irradiance Lin : JR3 x I - C (where C = JR3 is the color space of 
RGB triplets) associated with each ray individual corresponds to the objective 
function of the general EA. 

The fitness !fit : C x 1- [0 ... 1] of a single ray individual is determined by 
the difference between the individual's irradiance and an assumed background 
radiance for that direction. Since the overall contribution of the background ra­
diance to the total irradiance can be calculated in advance, the main effort of the 
evolutionary search procedure can be spend on those regions of the hemisphere, 
where the irradiance differs significantly from the background radiance, i.e. re­
gions, where the gain in information for the evaluation of the reflected radiance 
is high. In combination with the selection procedure, !fit is responsible for the 
exploitation of information gained during the evolution process, thus conduc­
ting a local search for regions considered to be important for the total reflected 
radiance. 

The fitness value !fit only depends on the irradiance value measured by ray 
tracing. Therefore it does not describe the living conditions of each ray indivi­
dual completely according to the settlement model defined above. In order to 
satisfy this model, also the population density distribution over the hemisphere 
has to be taken into account. The sharing function !share : [0 .. . 1]~ - [0 ... 1]~ 
considers the distance between all individuals within the population and reduces 
the fitness value calculated for each ray individual by !fit according to the popu­
lation density of its neighborhood. Therefore it also reduces the fitness difference 
within the population, and in combination with the selection procedure it leads 
towards aglobaI search process exploring the total hemisphere. 

In order to achieve an appropriate balance between exploration and exploi­
tation, i. e. between global and local search, the fitness values given by !fit are 
scaled by the scaling function !Kale : [0 ... 1]~ - [0 ... 1]~ before !share is applied . 



fscale is constructed in such a way that the minimum fitness value ffit rWD within 
the population remains unchanged whereas all other fitness values are scaled li­
nearly so that the maximum scaled fitness value fscalemu does not exceed ffit rWD 

times a constant factor mscale . 

The functionality described so far allows to initialize and rate the popula­
tion of rays which then will evolve until a termination condition is reached . If 
for a number of successive generations there is no significant change in the ra­
diance value estimated, then is assumed that no more gain in information can 
be achieved and the process terminates. 

A new population is derived from the old one by first generating an inter­
mediate generation of J1. + >'0 individuals, where >'0 is the number of offsprings. 
Then from this inter mediate generation the J1. best individuals are selected in 
terms of their scaled and shared fitness values. 

The offsprings are produced by randomly selecting a subpopulation of >'0 
parents and applying a genetic mutation operator m : 1>'0 -+ 1>'0. 

The mutation operator is the most important operator of the process. It is 
designed in such a way that it models a directed search for attractive regions 
of the hemisphere, thus allowing the individuals to move around with the goal 
to find a place with higher quality of life. It produces new individuals through 
altering the ray directions of the parents in dependence of their scaled and shared 
fitness values. 

As a result we achieve an implicit stratification of the hemisphere into dif­
ferent regions, which are sampled according to the irradiance information they 
provide. Thus an optimal sampie distribution is evolved, which becomes noti­
ceable in a significant reduction of overall noise. 

Based on the observation that the indirect irradiance tends to change slowly 
over a surface [War92], the evolved ray distribution can serve as a start popula­
tion for neighboring object points. Thus information is exploited not only during 
the sampling process but also within the image space. 

Figure 2 shows a typical sampie ray distribution produced by Monte Carlo 
simulation with importance sampling and the corresponding sampie distribution 
optimized by the Evolutionary Algorithm (for the geometry ofthe corresponding 
scene refer to Fig. 4). Comparing both reveals that the Monte Carlo algorithm 
spends a lot of its effort in regions of the hemisphere, where the irradiance 
information is low. In contrast, the Evolutionary Algorithm directs the sampling 
process towards those regions with large payoff in irradiance information, which 
particularly becomes evident by the concentration of rays in the range of the 
white light source. 

One problem of this algorithm, however, lies in the final evaluation of the 
integral. Since there exists no analytical descriptionof the probability density 
function the evolved ray individuals have to be mapped to a hemispherical grid, 
which leads to an undesirable increase of computational cost and mayeven result 
in approximation errors. In order to avoid the explicit mapping of rays to solid 
angles, we have developed an alternative evolutionary algorithm, where solid 
angles are implicitly accounted for. 



5 Evolutionary Stratification 

The concept here is to maximize the confidence in our estimate of the integrand 
by an evolutionary stratification of the hemisphere. The integration domain is 
subdivided adaptively by means of probabilistic selection and mutation in such 
a way that the estimated value of the integral in each stratum is equal. If the size 
of the strata does not change within certain limits, the optimal approximation 
result is reached. 

5.1 Implementation 

In this evolution model the hemisphere represents a population of irradiated 
solid angles. For computational efficiency each individual is defined by a spherical 
triangle with an associated mean irradiance value obtained by the sam pIe rays 
at its vertices (see Fig. 3). 

Initially the hemisphere is subdivided into four spherical triangles of equal 
size. Each individual is evaluated by determining its local and regional fitness 
value. The local fitness is obtained by calculating the mean irradiance value. 
The regional fitness of an individual is determined by the maximum deviation (in 
RG B-primaries) from the mean irradiance values of its direct neighbors weighted 
by its area size. Thus the regional fitness is a measure for confidence or quality 
of life. 

The goal now is to reduce the variance of the estimate by achieving a stra­
tification of the hemisphere into solid angles (shperical triangles) of equal con­
fidence. In each generation the integral is evaluated and the size of the solid 
angles is adjusted. Therefore the mutation operator models a population growth 
by cell-splitting, i.e. subdividing the individuals into new triangles. Parents are 
selected by Roulette wheel, where the chance for being selected for sub division 
is proportional to the triangles regional fitness. The process terminates if all 
individuals have an almost equal quality of life (see Fig. 3). 

The advantages of this method are its fast convergence and computational 
efficiency, because the evolution process and the evaluation ofthe integral can be 
effectively combined by using the same data structures. It produces successively 
better approximations to the integral equation by exploring the hemisphere, sear­
ching for those solid angles that contribute significantly to the total irradiance. 
Thus increasing the average information value of the sampIes and converging to­
wards the best approximation, which in turn results in an improvement of image 
quality (see Fig. 4). 

6 Conclusions 

The main objective approximating the Rendering Equation is to minimize the 
variance of the estimate. This implies an optimization of the sampIe ray distri­
bution used . Since the irradiance distribution over the hemisphere is unknown 
in advance, Monte Carlo sampling techniques, which use predefined prob ability 



density functions, have to rely on apriori assumptions and are mostly inefficient. 
Adaptive sampling techniques are superior, because they use information gained 
during the sampling process itself to generate a subset of new sampIes in each 
adaptation step. We have shown that in order to exploit this information nature 
analogous techniques like Evolutionary Algorithms can be successfully applied. 
In contrast to classical Monte Carlo methods the first Evolutionary Algorithm 
presented above achieves a self-adaptation of the sam pIe ray distribution to a 
particular lighting situation. In order to avoid computational effort for the fi­
nal evaluation of the integral, an alternative evolutionary approach has been 
investigated . In this approach not sampIe directions but solid angles are sub­
ject to evolution. The confidence in the estimate is maximized by evolutionary 
subdividing the integration domain according to local and regional irradiance 
information, which in turn results in a fast convergence towards the optimum. 
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Abstract 

This paper describes a special genetic algo­
rithm for the creation of flight routes for air­
craft in the airspace. A detailed description of 
the problem and the implemented algorithm is 
presented together with a test of two mutation 
types for a special gene. A short theoretical 
discussion about the building block hypothesis 
will be given. Furthermore the results of several 
experiments with a randomly generated flight 
scenario and a real-trafik scenario are lined out. 
Altogether the paper shows the initial stages in 
finding a solution to decrease the delay in the 
airspace and to use the airspace more efticiently. 

1 Introduction 

At the moment the air traftic control systems in many 
countries have to cope with increasing traftic congestions 
and therefore with an increasing delay. These conges­
tions are caused by the growing air traftic over the last 
years together with the airs pace structure with its over­
loaded sectors and prescribed standard routes. This does 
not mean that the airspace itself is overloaded, too. lm­
provements are necessary for a better use of the airspace 
around the prescribed routes. A possible new strategy 
could be 'Free-Routing', meaning that there would not 
be a system of prescribed routes and all aircraft may use 
the direct link between start and destination airport if 
no conflict would occur with other aircraft. But if all 
aircraft will use their own routes, this will lead to a very 
complex system and it will be impossible for the con­
trollers to locate impending conflicts. A proposal how 
to find the best routes without conflicts is presented 
by the tool ROGENA (free ROuting with GENetic 
Algorithms) [4]. This paper will give a short description 
about the present state of ROGENA. 

2 Description of the Problem 

Over the last years a constant increase in air traftic could 
be recognized. As mentioned before, for facing the in­
creasing traftic it is necessary to change the airspace 
structure and the operational procedures. The capac­
ity problem does not only depend on the high number 

of aircraft but also on the strategies for the use of the 
airspace. 

A big problem for an increase in airspace capacity is 
caused by the airs pace sectors and standard flight routes. 
Each sector has its own limited number of aircraft which 
can be handled and every aircraft normally uses a stan­
dard route (normally not the direct link) between start 
and destination airport (figure 1). In case of aircraft 
on different routes this reduces the number of points 
where conflicts can occur to those ones at crossing points 
of routes. Therefore, talking about congested airspace 
means talking about congested standard routes. The 
limited number of aircraft for each sector or on each 
route is responsible for the increasing delay. Such a sit­
uation is very problematic for those aircraft wh ich have 
missed the sheduled time slot for departure or are not 
planned in advance. 

A possible solution for increasing the airspace capacity 
could be found in giving up these standard routes. This 
strategy is called 'Free-Routing', which includes the per­
mission to fly in any direction in any level at any time if 
the controller allocate such a route. This would lead to 
the following advantages: 

• The whole airspace would be usable for air traftic. 

• It would be easier to find new slots or a new route 
if the time of departure has changed. 

• The delay would decrease. 

• Noise and pollution would be uniformly distributed. 

But the introduction of free routing will lead to a major 
disadvantage. It would be nearly impossible for airspace 
controllers to detect conflicts between aircraft in ad­
vance. Because there are no longer fixed points where 
conflicts can occur, a system is needed which is able to 
develop routes between start and destination points in 
such a way that conflicts with other aircraft are avoided. 

3 Formalization of the Problem 

When applying genetic algorithms to free routing, one 
has to be aware of certain facts. Firstly, free-routing is 
more complicated as e.g. a TSP [2] because there is no 
predefined number of way points which should be used 
by the aircraft. Furthermore there are forbidden areas in 
airspace (e.g. militaryairspace I thunderstorms) and it 



is necessary to avoid conflicts with other moving aircraft. 
Finally, conflict probability depends on the time when an 
aircraft arrives at a specific point in the airspace. This 
leads to a very complicated fitness landscape. 

3.1 Formalization 

For the formalization of free routing with genetic Algo­
rithms an area of 200 x 200 Nautical Miles (NM) was 
covered by a grid of 20 x 20 squares of size 10 x 10 NM 
and 441 numbered grid nodes. A route is defined as a 
sequence of nodes (way points). Flying a route means 
moving on the links between the nodes which follow suc­
cessively in the sequence. Therefore the actual position 
of the aircraft is not necessarily a grid node. The prin­
ci pie idea of the algorithm is based on the modGA of 
Michalewicz [6]. However, several modifications have 
to be included for a significant improvement in perfor­
mance. The size of the population is 60 chromosomes 
(or routes). 

The information is coded as a chromosome of length 
11 with numbers of way points in the first 10 genes which 
could be used for the definition of a route. The informa­
tion in the last gene is the number of actually used points 
which ranges from 1 to 10. Theoretically it is possible 
to get a solution with the use of all ten genes but several 
runs with the GA without the last gene have shown very 
bad results. Because it is necessary to arrange ten points 
straigth on a line instead of one or two it has taken more 
than 600 runs for getting just the diagonal between the 
upper right and the lower left corner of the grid. Like 
in biological chromosomes the unused information is not 
lost but stored for the moment it would be needed. 

For representing the information in a gene integer 
numbers were chosen. In this way it is easier to code the 
node numbers and handle the genetic operators. Apply­
ing a crossover operator to a chromosome then means an 
exchange of way points in a very simple way. In case of 
mutation it is possible to change the content of a gene 
direct to a new way point. No repair algorithm is neces­
sary. Furthermore it must be mentioned that the coding 
of a route is not unique. It is possible to code the same 
route e.g. with 2 or with 3 points where in the latter case 
e.g. the second point could lie on the diagonal between 
the others. 

3.2 Evaluation 

The following formula describes the evaluation function 
which is to be minimized: 

eval(chromosome) = (length of route) * 
(1 + 0.2 * (number of 

conflicts with other aircraft» 

For a better handling of local optima this type of defi­
nition includes the number of conflicts. Routes with con­
flicts will not be automatically removed from the popu­
lation and therefore short routes with a small number of 
conflicts then have the chance to change under crossover 
or mutation to good routes without conflicts, e.g. if there 
is a local optimum surrounded by routes with conflicts, 

there is now a good possibility to jump over such a bar­
rier of conflicts out of the local optimum. 

3.3 Selection 

As mentioned before the implemented GA is based on 
the modGA. Therefore it is necessary to select chro­
mosomes for 3 different groups. Most of the selections 
are made dependent on the evaluation value (stochastic 
sampling). The first group includes 30 different chro­
mosomes which remain unchanged. The best 3 chromo­
somes for this group are chosen by the ELITIST model 
[5] , the remaining 27 with stochastic sampling without 
replacement. The 16 chromosomes of the second group 
will undergo crossover and the remaining 14 chromo­
somes in the third group will be treated with the mu­
tation operator. Both are selected with stochastic sam­
pling with replacement. 

3.4 Crossover 

Depending on the 'number of used points' two different 
types of crossover are applied . lf the pair of chromosomes 
affected by crossover uses more than one way point for at 
least one chromosome two point crossover is applied. In 
the other case the operator must be one point crossover 
because it is not possible to use the normally better two 
point crossover [8] for a length under two. The crossover 
points were selected randomly between first and 10th 
position. 

3.5 Mutation 

As before for crossover two different types of mutation 
are in use, each with a probability of 50 %. Again the 
gene for the mutation is selected with the use of a random 
generator. We use 

• Non-Bounded-Mutation (normal mutation) with 
the same probability of 1/441 to be selected as the 
new node for each node of the grid. 

• One-Bounded-Mutation with selection of one of the 
eight points next to the old one. 

The second type simulates a limited hill climbing in the 
surrounding of a given solution. 

3.6 Building Block Hypothesis 

The building block hypothesis says that schemata with 
short defining length; low order, and high fitness have 
the better chance to survive crossover and mutation than 
other schemata. Applying the building block hypo thesis 
to the algorithm of ROGENA gives the impression that 
we have to cope with a high defining length for each 
schema. This is caused by the number of used points 
wh ich is necessary for each schema and occurs in a last 
position. Another problem is the time dependence of 
each solution. E.g. a route with 6 points where the last 
3 points form a very short route without conflicts could 
change to a bad route with conflicts at the last three po­
sitions with a mutation on the first three genes. Because 
of this it is more important to have a good beginning of 
a route instead of a good ending since each gene will be 
influenced by the preceding genes. 

Altogether this means that good schemata would have 
a high defining length. But if we look closer at this 



Figure 1: Air space structure over Northern Germany with sectors (black lines), standard routes (grey lines) and the 
German border . 

problem it can be recognized that according to the two 
point crossover it does not make any difference whether 
. the number of used genes are in the last or in the first 
position if we treat the chromosomes like acting on a 
circle [8]. If the last gene is moved to the first position 
we have a small defining length. 

Analyzing the structure of good solutions more care­
fully shows that a good schema normally has defined 
first positions and 'don't-care-symbols' at the end. Good 
schemata with a high defining length are schemata with 
high order, too. 

4 Mutation of the 'Number of Used 
Points' 

At the beginning of the evolution process the routes with 
high numbers of way points are very long because they 
were generated by random. In this case the evaluation 
function leads to bad values. Therefore higher numbers 
in the 11 th positions (number of used genes) of the chro­
mosomes will get lost within the first simulation runs. To 
prevent this loss a mutation at this gene must be carried 
out. Again two types of mutation have been applied to 
this gene: 

• random mutation, and 

• increase by one ('+1'). 

As mentioned before, the second type will not lead to 
a loss of good solutions. As test case a scenario with 
20 flights was chosen and 6 runs of ROGENA were con­
ducted for each type. The results of these tests can be 
found in table 1. The table contains the results for all 
flight, where the direct route leads to conflicts with other 

aircraft. The 'Number of Ale' means the number of 
this flight in the sequence of arriving aircraft within the 
scenario. For each aircraft 200 runs of ROGENA were 
made. It can be 0 bserved easily that '+ 1 ' leads to bet ter 
results for each flight within this limited number of runs 
than the random mutation does. But another very im­
portant point is the number of nodes used for the found 
route. As mentioned before increasing the number of 
used points often leads to bad routes and this makes it 
difficulty to get routes with higher number in an appro­
priate time. For type ' + l' this increase occured earlier 
than for the random type (figure 2). 

Figure 1 shows the progress of fitness of the best so­
lution for type '+1' and type 'Random'. For both types 
the graph with the best final result was chosen. It can 
be easily recognized, that type' + 1 ' shows better results 
at an earlier state than in the case of type random. Be­
cause of this result the type '+1' mutation was chosen 
as the normal mutation for the gene which contains the 
number of used points. 

5 The Algorithm of ROGENA 

ROGENA is a program which is driven by a flight sched­
ule. This schedule contains a number of flights with the 
following information: 

1. Time when the aircraft enters the system. 

2. x- and y-co-ordinate of the start-point. 

3. x- and y-co-ordinate of the destination-point. 

4. Speed. 

5. Priority type of flight (number between 1 and 6). 



Number Type '+1' Type 'Random' 
of Ale o Nodes o Length o Nodes o Length Direct 

7 2 242.74 2 242.74 242.44 
9 1 210.44 1 210.44 210.16 
10 1.83 120.42 1.16 120.70 119.34 
12 1.16 211.57 1 211.57 211.56 
15 1.83 188.20 1.5 188.21 188.17 
16 1.66 208.83 1 208.93 207.00 
20 2.33 191.11 2 194.50 186.37 
0 1.68 196.18 1.38 196.72 

Table 1: Comparison between mutation types '+1' and 'Random'. 
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Figure 2: Best solutions of type '+ l' and type Random over the time in dependence of the number of runs. 



The lowest number could stand e.g. for an aircraft type 
like B747 with a high speed and a high number of pas­
sengers. An aircraft with a high priority type like 6 are 
e.g. sm all general aviation aircraft. 

An update of the position of the aircraft which has 
already entered the system is made every 10 seconds of 
flight time. Distances between aircraft are calculated on 
the basis of the actual positions. 

If a new aircraft enters the system the following pro­
cess is executed: 

Step 1: Checking the direct link between start and des­
tination point for conflicts. If there are no confliets 
assign the direct link as flight route for the new air­
craft and resurne normal simulation. If there are 
conflicts continue with step 2. 

Step 2: Start of the genetic algorithm of ROGENA. 
Create a first generation of 60 random generated 
routes between the start and destination point. 
Evaluate these routes and select 30 routes which will 
survive this run without changes. Select 16 routes 
to wh ich crossover will be applied and 14 routes for 
mutation. Evaluate the new generation and repeat 
this process until an appropriate conflict-free route 
is found. lf a route is found resurne norrnal simula­
tion with the new route for the new aircraft. If no 
short route with a good evaluation value is found af­
ter a certain number of runs of the genetic algorithm 
continue with step 3. 

Step 3: Check the system for those aircraft which have 
a conflict with the direct link for the new aircraft. 
If the new aircraft has a lower priority type than 
the other aircraft, choose the one with the highest 
priority type and the highest number of conflicts. 
Remove this aircraft from the system and construet 
a new route for the new aircraft according to step 
2. After this continue with step 2 for the removed 
aircraft . If there is no aircraft with a higher priority 
type assign the best route found in step 2 to the new 
aircraft and resurne simulation. 

6 Results 

In this section the results of two different experiments 
with ROGENA are described. 

• The first type of experiment (scenario 1) was carried 
out with 3 randomly generated test-scenarios. Each 
has included 20 flights with an interval of 30 seconds 
between the starting times and random-generated 
speed between 300 and 600 knots (Nautical Miles 
per hour). For these scenarios a comparison be­
tween the length of the direet routes ignoring pos­
sible conflicts and the confliet-free routes generated 
by ROGEN A was made. 

• Scenario 2 is composed of real aircraft (A/c) tra­
jectories which were extraeted from radar data from 
the north of Germany (figure 1). Starting time for 
each aircraft was the actual time when the aircraft 
crossed the border of the grid, respectively. Start 
and destination points were the positions where the 
aircraft had entered and left the grid. Each of the 

three scenarios contained the data of a special flight 
level. The comparison was made between the mea­
sured length of the radar tracks and the routes gen­
erated by ROGENA. 

For both types of scenarios there was no reassignment 
necessary, e.g. step 3 of the genetic algorithms did not 
apply. 

A comparison between the length of the direct routes 
and the ROGENA routes shows that the requirement to 
avoid conflicts does not increase the length of the route 
dramatically in spite of the high number of moving air­
craft (figure 2). The average loss per confliet is 1.24 NM 
but this value must be seen in connection with the sum 
of the route length. The average of the ROG ENA routes 
in percent of direct routes is 100.16 %. It can be said 
that all aircraft are able to fly a route which is very near 
to the direct route. If this program would allow more 
aircraft to enter a sector than in the moment the delay 
for every aircraft caused by the avoidance of conflicts 
would be sm all in comparison to the increased number 
of handled aircraft. 

The results in table 3 which represent scenario 2 
with real traffic show just a small number of conflicts 
and shorter routes for ROGENA than for the standard 
routes. This confirms the assumption that free-routing 
works weIl and would not lead to a high number of con­
flicts. The gain is caused by using the direct routes. But 
we have the highest gain in scenarios with more con­
fliets. The sum of length for all routes are not as high as 
for the generated scenarios in table 2 because the routes 
of the traffic scenarios are divided into different levels 
of airspace and it was necessary to simulate these levels 
one after the other. 

Not all scenarios were as good as the three ones shown 
above in table 3. For one scenario a bad value for a 
ROGENA-route was found. The main reason for this 
was that the route was very short and resolution for the 
grid points not high enough. 

7 Conclusions 

The forecasts for the future air traffic demand show a 
further increase of aircraft movements in order of 4.5 
% per year. This will make it necessary to find new 
strategies for the usage of airspace and to develop new 
tools which areable to reduce the controller work load. 

In order to get a tool which is applicable to the air 
traffic control system much more details have to be in­
vestigated including the possibility to climb and descend 
to other levels, the flight behaviour of aircraft (e.g. how 
they are flying curves) , sm aller squares for the grid and 
the conneetion between adjoining seetor grids. 

Since ROGENA has to rely on the navigation accuracy 
with which the aircraft are able to fly the assigned route 
the equipment of the aircraft is very important. 

Finally additional theoretical analysis for the algo­
rithm of ROGENA will be carried out including the 
schema theorem, influence of crossover and mutation op­
erators and the relation between the number of conflicts 
per route in a population and the average number of 



Number of Route Length ~Sum~ ROGENA in Loss per 
A/C I Conf. DIRECT ROGENA % ofDIRECT Conflict 

20 7 3734.47 3742.17 100.21 -1.10 
20 3 3240.99 3244.05 100.09 -1.02 
2L -~ _315:l.96 :3158.41 100.17 -1.82 

Table 2: Scenario 1. Comparison between the length of direct links with conflicts and the length of routes created 
with ROGENA. 

Number of Route Length _~Sum) ROGENA in Gain per 
A/C I Conf. Traffic 1 ROGENA % of Traffic Route 

12 0 834.43 820.29 98.31 1.18 
22 2 1647.70 1602.07 97.31 2.02 
31 2 1747.24 1714.00 98.10 1.07 

Table 3: Scenario 2. Comparison between the length of standard routes in areal trafiic scenario and more direct 
routes generated by ROGENA. 
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Figure 3: Example for the solution of a generated scenario with remaining route for each aircraft in black, aircraft 
as circles with radius half of the minimum separation between aircraft and the border in grey. 



used nodes. A comparison between the genetic algo­
rithm of ROGENA and other optimization algorithms 
like simulated annealing and hillclimbing will be carried 
out. Furthermore there will be a test of the applicabil­
ity of genetic programming [7] for the creation of routes 
within ROGENA. 
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Abstract. The purpose of trus contrioution is 
i:Wofold. First. a model will be presented. which 
allows the estimation of the runtime "f Genetic 
Algorithms 'GAi. A mathematical modells 
presented with the purpose of seeing genetie 
alg~rithms (GA) from an abstract standpoint. 
The model sees GA as a process. whieh copies 
~enes frlJm one generation to the other by 
preferring good. genes to inferior ones. The 
algorithm finally reaches a point. where there is 
only one allele left for' each g';!ne in the 
p0l>ulation. Seeond. an overview of practical GA 
applications at Siemens will be given. The 
applieations are from different fields like :luclear 
fuel management. neural learning of problems 
from speech and vision. fuzzy control or filter 
development. Most of trus paper is part 01' 
[Hei941. 

1. The Model 

1.1 Basic Assumptions 

When designing a GA for a specific problem 
the developer of aGA has to be a ware of how 
the genetic operators work. There are 
various good explanations with regard to 
standard operators for example - but there 
are relative few studies about the exact 
quantitative influence of the genetic 
operators during the whole evolutionary 
process. One purpose ofthe model presented 
here is to till this gap. 

From an abstract point of view the main 
task of GA is to copy genes from one gene­
ration to the nen. The genes of the actual 
generation will be spread into :he n.ext 
generation according to their quality. In the 
beginning a GA has a large gene pool. 

The better alleles supercede the inferior 
ones oy seiection mutation "lorks :3.S a 
countereffect somehow). Eventually all 
individuals of the tJopuiation share :he 
same gene material. Reaching this state 
means degeneration of ehe population to a 
single point in the search :;;pace - the 
algorithm .should stop there at ehe latest. 
For a designer of GA i.s 01' major interest 
how long this process takes in dependence to 
his genetic operators. 

By inspecting the evolutionary process in 
the population it becomes necessary to 
evaluate the mean value and variance of a 
variable A that counts .he number of 
generations, until there is only one allele 
left for a single gene position. 

How is a generation modelled? Consider a 
ballot containing n balls. The balls are all 
different by having individual numbers. 
The ballot corresponds ~o one gene position 
and each ball to one possible allele for that 
gene. One ball stands for an allele already 
contained in the population. Assume that 
all n initial individuals in the starting 
population have a different allele. The 
evolution process works in the following 
way: one ball is taken out of the ballot. 
copied. put back into the ballot and the new 
copy saved. Repeat this n times and finally a 
dupHcate ballot i.s produced. 

Ifa ball with number K:t (xE{1,2, ... ,n}) is n.ot 
copied it dies out. The question iso "how long 
will it take until the population is reduced 
to one bail?". More precisely: 
1) What is the mean value of A \A counts 

the number of generations. which is 
equivocal oi the number of ballots used) 
until there 1S only one sort of balls K:t 
remaining? 



2) What is the standard deviation of A? 

From intuition one always expects the same 
distribution of balls in the ballot, but by 
random drift all but one sort will eventually 
die out (Random drift is generally described 
using the elementary probability theory), 
for example [Fe168]). Convergence to a final 
state lfinal state meaning . -:mly one ball 
with some Kx remaining) can be described 
by markov ehains [Kem60J. Aballot with i 
balls of sort Kx :jE{0,1,2, ... ,n}) eorresponds 
to a system state with i zeroes and (n-i) ones. 
The state Si. (iE{0,1,2, ... ,n}) shows the aetual 
number i of a sort of balls Kx . Of significant 
interest is the probability distribution Pij, 
whieh contains the probabilities ~hat the 
system changes from state Si. to Sj. Each 
member Si in the process ehain of sueeessive 
states depends only on its predecessor . the 
proeess requires no memory. The P ij can oe 
placed into a matrix, whieh contains all 
transitional probabilities in order to move 
from one state Si to Sj üj E {0,1,2, ... ,n}). For 
example: Si = 5 and Sj = 11 . meaning that 
five balls of K x are in the first ballot and 
eleven balls of Kx in the new one. The states 
of the markov ehain are binomial 
distributed: 

p .. = 
I) 

with IKxl = i the number ofballs oftype K x. 
It is then possible to construct a matrix P' 
eontaining all state transitions Pij 

(ijE{0,1,2, ... ,n}). The states 1,2, ... ,n-1 are 
transient; only 0 and n are sta tionary. The 
matrix P'm contains the me an values that Si 
ehanges to Sj in exaetly m i,m € ~l) steps. To 
ealeulate how often astate j is visited within 
the whole proeess one formuiates the 
equation: 

~ n 
. ) ""' """ , m suml1 =, ') p ... 

'J ~ ~ 1J 
m= 1i=0 

The matrix P is defined as the sum of the 
infinite ehain of the infinite number of 
transition matrices. The sum has a finite 
value. because the system reaehes a final 

state 1,0 or 1) with probaoility 1 [Fel681. The 
most interesting fact is that the sum of each 
row contains the mean value of how long it 
takes to reach one ot"the final states. 

The next step is to build a matrix Q by 
removing the rows and columns with 
number 0 and n from P. Q then contains 
information exclusiviely about the 
transient states. This matrix will be 
discussed during the rest of the paper. The 
mean value of A (A is the number .:>f 
generations before reaehing a tinal state ) 
will be calculated. The probability of A = 1 
ist Pin I with i usually 1 in the initial 
population). The probability for the direet 
transition from so me state Si to sn is \iin)n. 
The equation required to arrive at the final 
state in exactly j steps is 

P(A=j) = (nO ... 0) Qj-l * 

( Gn~r.·· (D:lrr 
We can now compute the mean value of A by 
summing up the P(A::: j) for 1 S j S -r, W hich 
is modelled as a finite sum in the form 

lC 

E(A) = (nO ... O»j * Qj-l * 
. ----

j = 1 

;« i (~)n (~ln ... (n-1\ nJ T 

,n/ , n I . n ) 

This formula can be brought to a closed 
form. what is teehnieally complieated. The 
details are presented in [Hei93J. The final 
form. whieh shows a formula without 
infinite sums is given as 

-2 
E(A) = (nO ... O) (I-Q) 



l' i ( (~r (:)" (n:l n . 
\ 

i 
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When computing the standard deviation cr 
one has also to evaluate ELo\2) : 

:x: 

E( A 2 ) = (n 0 ... 0) :L/ * ~ - 1 

j= 1 

(( ~ \ln (!)n (~\nlT 
n " \n \ n ) ) 

\ , 

and the eventual result being (see again 
[Hei93i for the details ) 

2 -3 
E(A )=lnO ... O) (I+Q ) (I-Q) 

l (~r (:)" .. (n:l r r 
This formula obtains the mean value and 
standard deviation of A. 

Figure 1 shows the statistics for E(A) and 
cr(Al. The x-axis contains the various 
population sizes. The y-axis shows the 
outcome for E(A) and a(AL The medium 
curve models E(A ) and the two remaining 
curves show the range of the standard 
deviation. 

EtA) develops linearly . a result also 
achieved by Goldberg [Gol87]. The 
convergence shown in figure 1 needs more 
generations, because Goldberg looked 
exclusively at binary coding of genes. The 
deviation is very widespread leading to very 
different result in practise . 

1.2 The Multi-Gene Model 
Until now we have only considered one 
single gene posmon. For "real life 
examples" one would not wait unti1 the last 

position had reached a homogenous 3tate, 
but rather interrupt :he GA when a percen­
tage cf genes are in their final state. It is 
possible to estimate this interruption point 
by using Tschebyschetrs inequation: 

.> 
IJ-

P (i X - E (X) ! < a ) ;:?: 1 - - . 
. ) 

a-

Generally the fact that a percentage Z of the 
genes are in their final state is enough to 
stop the algorithm in practise. With a value 
of a2/a 2 = 1 - z we can arrive at the further 
equation of: 

. 1 
a = IJV--

1 - z· 

The minimal percentag~ of genes, which 
should be in their final state, is thus 
assessable . The value of ooa" can be 
computed from the formula above . 

Figure :2 presents results. which are an 
expansion offigure 1. The x· and y-axis have 
the same meaning as in figure 1. The lowest 
curve shows the probability that 10% or 
more of the genes are in their final state. 
The remammg curves show the 
probabilities for the different percentages of 
genes reaching their final state. For 
example: a population size of 50 takes more 
than a 100 generations to assume that 75% 
ofthe genes have reached their final state . 

1.3 Selection 
To provide selection the model from chapter 
2 has to be enlarged in a way that selection 
of the balls corresponds to their quality. 
Concerning the quality variation of the 
balls one uses differing matrices P and Q. 

i 
I n 

~ = t 
\ j 

) * ( : ' 11\ K :'t ; .\ 

J i"lltK , .r i n-i~I " Il\P -K l ) 
.. :'t l: 

. n-j 

. " ( i '" il( K ) + ;n - i) " 11(: - K .' 

, :n - i) * 11tp - K ) ) . 

. :'t :t 



This quality dependent approach leads to a 
new formula for the matrix elements Pij. "i" 
denotes the number of K x , on-i'; the number 
of the remaining balls in the ballot. p-K x 
stands for all of the balls with the exception 
of Kx• and ll( Kx; being the quality of Kx. 
Each allele .. ;ill get an own quality - we 
would like to demonstrate ~ow quality 
dependent selection wiil snorten the 
convergence rate. E"l'erimenting with 
varying selection scenarios leads to the 
following results: 

Surprising results were attained when 
comparing the mean values of A in reiation 
to the various selection advantages. A 
selection advantage of 70/30 leads to a cut 
in the expectation of A from 196 to 5 at a 
population size of 100. For larger 
populations the difference will be even 
greater. From the graph one can state that 
selection reduces the linear growth of A 
with the number of individuals to a 
logarithmic growth. 

2. The Applications 

2.1 Nuc1ear Fuel Managem~nt 
The search for an optimal arrangement of 
fresh and burnt fuel and control material 
within the core of a pressurized water 
reactor represents a formidable optimi­
zation problem. In-core fuel management 
for pressurized water reactors entails 
identifying the arrangement of fresh and 
partially burnt fuel and burnable poisons 
within the core that optimizes the 
performance of the reactor over the next 
operating cyc1e, while ensuring that 
operational constraints are always satisfied. 
Typical objectives might be to maximize the 
cyc1e-length, to minimize the power peaking 
or the individual assembly and region 
averaged burnups. The optimization 
problems consists of shuffiing the assem­
blies around in the core and to evaluate the 
consequences with a .3imulation program 
based on partial difference equations. 

A core contains 193 fuel assemblies with 
quarter core symmetrie. After each cycle 
around 25% - 35% of the fuel elements must 
be replaced. The old fuel has to be rear­
ranged to yield optimal core performance. 
The optimization problem is devided into 
several (dependent) steps. 

1. Select a number offresh fuel elements. 
2. Select k out of n elements to fill the core 
and store the others for one more cycle. 
3. Place the elements selected under 1; and 
2) into the core . 
4. Give each element an orientation ieach 
element has four orientations). 

AGA for possible solving the problem: 
1. Build an initial population 
Choose a number how many new elements 
will be taken for each individual. Take 
randomly 193-n elements from the rest. 
Give those elements a random orientation. 

2. Genetic operator crossing-over 
Make a cut through the core and take one 
half of the cut from one random element of 
the population and the other half from 
another random choosen individual. 
Combine the core elements with respect to 
replace fuel elements, which may be 
contained twice in the new individual by 
random fuel elements. 

3. Genetic operator mutation 
Mutate an individual by 
- changing the orientation of single ele­
ments. 
- switch two elements in the core randomly. 
- replace core elements with elements from 
the reserve objects. 

A different genetic approach to that problem 
is discussed in [Po0931. Our work i.3 now 
concentrated on building models to evaluate 
the goal function. 

2.2 Neural learning of problems from 
speech and vision 
!wo real world examples were choosen from 
speech and image processing for evaluating 
different learning approaches. The data 
were used for practical industrial applica­
tions at Siemens. Many experiments were 



performed and their results were carefully 
analyzed. 

A phoneme is the smallest significanr. 
language unit. The data sets were coded 
from colloquial language. Each 10 ms a 
discrete fourier transformation about ;:he 
last 20 ms of fluently speech was performed 
to code the short term language signal. The 
signals were transformed :0 ceps;;ral 
coefficients. which were !"epresented by a 
vector of 16 real numbers. The second 
application dealt with hand written 
numbers. The numbers were stored as 
binary pictures with different size and 
orientation. To avoid the use of too many 
neurons the pictures were raste red with 
16x16 pixels. The NN's had to identify all 
those pictures correctly. 

We implemented several algorithms· ~wo of 
them genetic to compare their performance 
for problems ofvarying difficulty. 

The two genetic based algorithms : 
GA + GradCGA) 
GA nave its strength in exploring the 
database in the beginning of the 
optimization process. They can find 
promising regions of the search space with 
high probability. Gradient search 
algorithms (Grad) are strong dependent on 
their starting position ün case of a non­
convex search space) being strong in fast 
convergence. It is obvious that an 
algorithm, starting with GA to fmd a good 
starting point and finishing the training 
session with Grad, will be a promising 
approach. The strength of both algorithms 
could thereby combined. 

GradCGA) 
The optimal step size varies through 
gradient search from step to step. 
Optimization theory offers a variety of line 
searcn methods. Those methods required a 
lot of objective function computations - in 
case of~"N they might be very expansive. To 
salve this problem, a simple GA could help. 
After having worked out the gradient the 
objective function was computed using the 
actual step size. The step size was then 
mutated to a larger and a shorter value and 
the two corresponding objecti "-e function 

values were computed. The best of the three 
values was taken. This method offered a 
simple, ~ast and very smooth adaptation to 
the step size. PTactical experiments showed 
that the optimal step size changed slowly 
within short time intervals, but 
dramatically for longer terms. The other 
four algorithms are based on gradient 
descent methods combined with methods 
like conjugate gradient search. The SUt 
different optimization algorithms were 
compared with respect to the two exampies. 
Two ex am pies based on data from practical 
applications were studied for different 
problem sizes. Larger problems were 50lv-ed 
best by a hybrid algorithm. where a GA first 
found a good starting point for gradient 
descent. The step size of the gradient search 
was also controlled by a simple genetic 
algorithm. If the problems were medium 
sized, a gradient method with genetic 
controlled step size outperformed all other 
algorithms. Simple problems were solved 
easily by all the proposed algorithms. Error 
backpropaga-tion was the best approach, 
because it did not calculate the objective 
function. 

2.3 Fuzzy Control 
Fuzzy systems ha ve some parameters like 
membership functions or ruIes, which have 
influence on the behavior of the system. If 
the fuzzy system can be evaluated by a goal 
function the development of the fuzzy 
controller is a complex: optimization 
problem itself. Genetic optimization is used 
on two different problem areas in the fuzzy 
system: first, the exaet position of the 
membership function and second, one bit for 
each rule, which switches rules on and off. 

At Siemens there is some work in progress 
to evaluate the usefulness of GA for fuzzy 
systems [Tau93J. [Wo193J. Basically, Tautz 
differs between two types of fuzzy systems -
driven by expert knowledge or adaptive to 
an objective function. The second type of 
fuzzy system is a eandidate for optimization 
withGA. 

The first problem is then coding of the fuzzy 
system. Tautz codes the membership fune­
tions by five genes. Assuming that the 
membership funetions are trapezoid-shaped 



its shape can be fixed by the four corner 
points. In addition to that one more gene 
switches the membership functions on or 
ofT. Each mle of the fuzzy system is 
controlled by two more genes. The first gene 
5witches :he rule ODJofT and the second gene 
chooses a membership function. if the 
condition of the corresponding rule is 
fulfilled. 

As an example to evaluate his system Tautz 
choosed a fuzzy-PI-controller . With the GA 
the controller was able to adapt himself to 
global optimum for different tasks by using 
between 2000 and 5000 individuals. 

2.4 Filter development 
Acustic filters are important components in 
the fast growing filter market. There is a 
linear connection between the geometrical 
structure of the filter and its function. To 
optimize the structure of the filter a genetic 
algorithm is used as part of the automatic 
filter design tool [Hei931. 

The filters have thetask to strenghten the 
incoming signal in a special frequence area 
and to surpress the signal otherwise. The 
function of the filter can easily be computed 
from the filter design by using Fast Fourier 
Transformations. 

The structure ofthe filter was modeled by a 
very specialized GA, which was optimized in 
performance to construct filters in less than 
two minutes. The algorithm is now part of 
the filter development design tool. 
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001 06 OS OL 09 OS Ot 08 0(; 01 0 

0 

02 

001 

021 

00(: 
/ 

/ 
/ OSz, 

/ _.-%06 
/ 

---%02 j / 00f: 
c / G •••• D %01 I 

! ., 
(V)3: I osr 



250 
E (A) 

225 I a(AJ .3 •••• €J 

200 

175 

~ 150 

125 ~ 
I .Ill 

100 I 

r • Cl' 

I ,a' 
75 r ' e' 

.Ilt • 

50 r ,1iI' 

25 

0 

0 10 20 30 40 50 60 70 80 90 100 

Figure 3: Convergence to a final state under selection 



Authors Index 

Aditya, S.-K ............................. 91 
Aharoni , G ....................... .... . ... 50 
Bäck, T .... ............ .......... .. . ..... 86 
Banzhaf, W . . ............................ 16 
Barak, A ................................. 50 
Bayoumi, M . ............................. 91 
Beyer, M ................................ 1:32 
Biebricher, C. K ........................... 5 
Blickle, T. . .............................. :33 
Bruns, R ........................... .. .... 98 
Davidor, Y ..................... ........ .. 50 
Gerdes, I. ............................... 14:3 
Gitler, D . .. .... .......................... 50 
Heistermann, .J ..................... .. ... 150 
Höfferer, M ............................. 100 
Jakobs, S .... .. .......................... 84 
Khuri, S ................................. 86 
Klawonn, F. . ............................ 27 
Knaus, B. . . . ........................... 100 
Lange, B ................................ 132 
Lursinsap, C. . . .......................... 91 
Maresky, J ... . ........................... 50 
Mühlenbein, H ....................... ' ..... 7 
Musial, M .... . .......................... 117 
Nissen, V. . .............................. 55 
Riegler, A ................................ 73 
Ryan, C ............................. .. ... 39 
Salomon, R ...... . .................. ... . 129 
Scheffer, T ............... .... ........... 117 
Thiele, L. . .... . .......................... :3:3 
Winiwarter, W .......................... 100 



o 

mPD 
_____________ I N F 0 R M A T I K ____________ _ 

Below you find a list of the most recent technical reports of the research group Logic of Programming 
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server 
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. If you have any questions concerning ftp 
access, please contact reportslQmpi-sb.mpg.de. Paper copies (which are not necessarily free of charge) 
can be ordered either by regular mai! or by e-mail at the address below. 

Max-Planck-Institut für Informatik 
Library 
attn. Regina Kraemer 
Im Stadtwald 
D-66123 Saarbrücken 
GERMANY 
e-mail: kraemerOmpi-sb.mpg.de 

MPI-I-94-241 J . Hopf 

MPI-I-94-239 P. Madden, 1. Green 

MPI-I-94-238 P. Madden 

MPI-I-94-235 D. A. Plaisted 

MPI-I-94-234 S. Matthews, A. K. Simpson 

MPI-I-94-233 D. A. Plaisted 

MPI-I-94-232 D. A. Plaisted 

MPI-I-94-230 H. J. Ohlbach 

MPI-I-94-228 H. J. Ohlbach 

MPI-I-94-226 H. J. Ohlbach, D. Gabbay, D. Plaisted 

MPI-I-94-225 H. J. Ohlbach 

MPI-I-94-224 H. Ai't-Kaci, M. Hanus, J. J. M. Navarro 

MPI-I-94-223 D. M. Gabbay 

MPI-I-94-218 D. A. Basin 

MPI-I-94-216 P. Barth 

MPI-I-94-209 D. A. Basin, T. Walsh 

MPI-I-94-208 M. Jaeger 

MPI-I-94-207 A. Bockmayr 

MPI-I-94-201 M. Hanus 

MPI-I-93-267 L. Bachmair, H. Ganzinger 

Genetic Algorithms within the Framework of 
Evolutionary Computation: Proceedings of the 
KI-94 Workshop 

A General Teclmique for Automatically Optimizing 
Programs Through the Use of Proof Plans 

Formal Methods for Automated Program 
Improvement 

Ordered Semantic Hyper-Linking 

Reflection using the derivability conditions 

The Search Efficiency of Theorem Proving 
Strategies: An Analytical Companson 

An Abstract Program Generation Logic 

Temporal Logic: Proceedings of the ICTL Workshop 

Computer Support for the Development and 
Investigation of Logics 

Killer Transformations 

Synthesizing Semantics for Extensions of 
Propositional Logic 

Integration of Declarative Paradigms: Proceedings 
of the ICLP'94 Post-Conference Workshop Santa 
Margherita Ligure, Italy 

LDS - Labelled Deductive Systems: Volume 1 -
Foundations 

Logic Frameworks for Logic Programs 

Linear 0-1 Inequalities and Extended Clauses 

Termination Orderings for Rippling 

A probabilistic extension of terminological Iogics 

Cutting planes in constraint Iogic programming 

The Integration of Functions into Logic 
Programming: A Survey 

Associative-Commutative Superposition 




	94-2410001
	94-2410002
	94-2410003
	94-2410004
	94-2410005
	94-2410006
	94-2410007
	94-2410008
	94-2410009
	94-2410010
	94-2410011
	94-2410012
	94-2410013
	94-2410014
	94-2410015
	94-2410016
	94-2410017
	94-2410018
	94-2410019
	94-2410020
	94-2410021
	94-2410022
	94-2410023
	94-2410024
	94-2410025
	94-2410026
	94-2410027
	94-2410028
	94-2410029
	94-2410030
	94-2410031
	94-2410032
	94-2410033
	94-2410034
	94-2410035
	94-2410036
	94-2410037
	94-2410038
	94-2410039
	94-2410040
	94-2410041
	94-2410042
	94-2410043
	94-2410044
	94-2410045
	94-2410046
	94-2410047
	94-2410048
	94-2410049
	94-2410050
	94-2410051
	94-2410052
	94-2410053
	94-2410054
	94-2410055
	94-2410056
	94-2410057
	94-2410058
	94-2410059
	94-2410060
	94-2410061
	94-2410062
	94-2410063
	94-2410064
	94-2410065
	94-2410066
	94-2410067
	94-2410068
	94-2410069
	94-2410070
	94-2410071
	94-2410072
	94-2410073
	94-2410074
	94-2410075
	94-2410076
	94-2410077
	94-2410078
	94-2410079
	94-2410080
	94-2410081
	94-2410082
	94-2410083
	94-2410084
	94-2410085
	94-2410086
	94-2410087
	94-2410088
	94-2410089
	94-2410090
	94-2410091
	94-2410092
	94-2410093
	94-2410094
	94-2410095
	94-2410096
	94-2410097
	94-2410098
	94-2410099
	94-2410100
	94-2410101
	94-2410102
	94-2410103
	94-2410104
	94-2410105
	94-2410106
	94-2410107
	94-2410108
	94-2410109
	94-2410110
	94-2410111
	94-2410112
	94-2410113
	94-2410114
	94-2410115
	94-2410116
	94-2410117
	94-2410118
	94-2410119
	94-2410120
	94-2410121
	94-2410122
	94-2410123
	94-2410124
	94-2410125
	94-2410126
	94-2410127
	94-2410128
	94-2410129
	94-2410130
	94-2410131
	94-2410132
	94-2410133
	94-2410134
	94-2410135
	94-2410136
	94-2410137
	94-2410138
	94-2410139
	94-2410140
	94-2410141
	94-2410142
	94-2410143
	94-2410144
	94-2410145
	94-2410146
	94-2410147
	94-2410148
	94-2410149
	94-2410150
	94-2410151
	94-2410152
	94-2410153
	94-2410154
	94-2410155
	94-2410156
	94-2410157
	94-2410158
	94-2410159
	94-2410160
	94-2410161
	94-2410162
	cover-hinten_2099-2897-300dpi

