

Genetic Algorithms within the
Framework of Evolutionary

Computation

Proceedings of the KI-94 Workshop

.}örn Hopf (Editor)

MPI-I-94-241 August 94

Author's Address

.JÖrn Hopf (Editor)
Max-Planck-Institut für Informatik
Im Stadtwald
D-6612:3 Saarbrücken
F. R. Germany
e-mail : hopf@mpi-sb.mpg.de

Preface

It is a matter offact that in Europe evolution strategies and in the U.S.A. genetic algorithms have
survived more than a decade of non-acceptance or neglect. It is also true, however, that so far
both strata of ideas have evolved in geographical isolation and thus have not led to recombined
offspring. Now it is time for a new generation of algorithms wh ich make use of the rich gene pool
of ideas on both sides of the Atlantic.

It is certain that today there are three different schools whose roots have deve!oped independently
from each other:

• Evolutionary Programming (EP)

• Evolution Strategies (ESs)

• Genetic Aigori thms (G As)

Genetic Programming (GP) and Classifier Systems (CSs) are both special subbranches of the GA
philosophy.

First roots of EP were established with A rtificial Intelligence through Simulated Evolution by
L. .1. Fogei, A. J. Owens and M .. 1. Walsh, 1966, of ESs with Evolutionsstrategie - Optimierung
technischer Systeme nach Prinzipien der biologischen Evolution by I. Rechenberg, 197:3, and Nu­
merische Optimierung von Computer-Modellen mittels der Evolutionsstrategie by H.-P. Schwefel,
1977, and of GAs with Adaption in Natural and Artificial Systems by J. H. Holland, 1975, and An
Analysis of Behavior of a Class of Genetic Adaptive Systems by K. De Jong, 1975.

Only since 1990 contacts between these different schools take pi ace regularly. In 1991, on the fifth
International Conference on Genetic Aigorithms the generic term Evolutionary Algorithms (EAs)
for EP, ES and GA was agreed on. The journal Evolutionary Computation published by MIT Press
since 1993 is supported by all three groups.

EC does not abandon traditional methods. None of the EAs would do the job better or even as
good as those. EC should be taken into consideration if good old and weil underpinned methods
either do not exist, are not applicable, or fai\.
Evolutionary approaches playa considerable role in Artificial Life, a divergence from classical
Artificial Intelligence, control, planning, combinatorial optimization and many other areas. This
workshop surveys the state of the art, presents examples and case studies as weIl as attempts at
systematization. In addition, due to this workshop, a research area which has already tackled
real-world problems with considerable success receives more attention.

This year the first workshop on Evolutionary Computation (EC) will take place on the German
Annual Conference on Artificial Intelligence (KI-94).
It starts with two invited lectures: Quantitative Experimental Studies of Darwinian Evolution by
Christof K. Biebricher; Max-Planck-Institute for physical Chemistry, one of the leading research er
in evolution and Tlle Sciellce of Breedülg and its Application to tlle Breeder Gelletic Algoritllm
by Heinz Mühlenbein, German National Research Center for Computer Science (GMD), a leading
research er who covers both, fundamental research and real applications. This is followed by two
tutorials: Artificial Life alld Selforganisatioll by Wolfgang Banzhaf, Dortmund University and
Gelletic Programming by Frank Klawonn, University of Braunschweig.
I hope that this gives a little overview and motivation for more reasarch in this field. On the basis
of a very good national and international participation our workshop includes the following main
topics:

• Theory of Evolutionary and Genetic Computation

• Biological Principles

• Genetic Programming

• Artificial Life

• Genetic Algorithms for Neural Network Design

• and many Applications

Finally, I want to thank the authors for their contributions, as weil as all those, especially Hans­
Jiirgen Appelrath (University of Oldenburg) , Wolfgang Banzhaf (Dortmund University), Volker
Claus (University of Stuttgart), Heinz Miihlenbein (GMD, St. Augustin) and Lothar Thiele (Uni­
versity of Saarbrücken), who all helped me in organizing this workshop.
I have to thank Hans-Pau] Schwefel (Dortmund University), who gave me historical information
for this preface and support to the workshop even though he will not be able to take part.
It is desireable and al ready foreseeable that the part of AI presented with this workshop will gain
ground on this side of the Atlantic, too.

Saarbrücken , August 1994 Jörn Hopf

Contents

Quantitative Experimental Studies of Darwinian Evolution 5
C. I<. Biebricher

The science of breeding and its application to the breeder genetic algorithm 7
H. Mühlenbein

Artificial Life and Selforganization 16
W. B071zhoJ

Genetic Programming 27
F. Klowonn

Genetic Programming and Redundancy 33
T. Blickle a7ld L. Thiele

Radical Harmony in Genetic Algorithms :39
C. Ryan

Selectively Destructed Restart 50
J. Maresky, Y. Davidor, D. Gitler, G. Aharoni and A. Barak

Comparing Different Evolutionary Algorithms on the Quadratic Assignment Problem 55
V. Nissen

Constructivist Artificial Life: The constructivist-anticipatory principle and functional 73
coupling
A. Riegler

On genetic algorithms for the packing of polygons 84
S. Jakobs

An Evolutionary Heuristic for the Minimum Vertex Cover Problem 86
S. Khuri and T. Bäck

Genetic Algorithm for near optimal Scheduling and Allocation in High Level Synthesis 91
S.-I<. Aditya, M. Bayoumi and C. Lursinsap

GAP-A Knowledge-Augmented Genetic Algorithm for Industrial Production 98
Scheduling Problems
R. Bruns

Cognitive Filtering of Information by Genetic Algorithms 100
M. HöjJerer, B. Knaus and W. Wi71iwarter

A Term-Based Genetic Code for Artificial Neural Networks 117
M. Musial and T. SchejJer

Evolving Neural Networks with Minimal Topology 129
R. Salomo71

Simulation of Global Illumination: An Evolutionary Approach 132
B. Lange and M. Beyer

Construction of Confiict-Free Routes for Aircraftin Case of Free-Routing with Genetic 143
Algorithms.
1. Gerdes

Genetic Algorithms at Siemens 150
J. Heistermann

Author Index 160

Quantitative Experimental Studies of Darwinian Evolution

Christof K. Biebricher
Max-Planck-Institute for physical Chernistry

37077 Göttingen, Gerrnany

Evolution is a highly efficient self-organization
process where optimal solutions are obtained by
iterative mutation and selection. The underly­
ing molecular phenomena for the biological re­
production, mutation and selection have been
identified: The genetic program is encoded as
a linear sequence of nucleotides in the genomic
double helical DNA, where the two strands are
held together by the base-pairing of comple­
mentary nucleotides. DNA is reproduced by
unwinding of the double helix and completion
of both strands to double helices. The accu­
racy of copying is limited and occasional errors
or mutations take place.

The genetic program is decoded by a compli­
cated decoding apparatus. Eventually, this 'ex­
pression' of the genotype leads to certain ob­
servable properties of the organism in the per­
taining environment, Le. to a ph enotype whose
'fitness' is evaluated globally. During reproduc­
tion, the genetic program and the decoding ap­
paratus must be copied. Darwinian evolution is
not bound to li ving organisms, DU t takes place
in any process comprising metabolism, repro­
duction and mutation. Indeed, the only sys­
tem where evolution could be studied experi­
mentally has been a system (Spiegelman et al.,
1965) where RNA molecules are replicated by
an enzyme called replicase. For the quantita­
tive description of the evolution process in this
system we used the expressions in the quantita­
tive theory of molecular evolution developed by
Eigen and coworkers (Eigen & Schuster, 1977;
Eigen & Biebricher, 1988). In this system, evo­
lution can be studied in the test tube, because
the sequence complexity is low, the mutations
rates are high, the population sizes are very
high, and the expression of the genotype into
the phenotype is simple: the phenotype of a
species is simply its efficiency in replication.

The mechanism of RNA replication has been
investigated in detail and is weil understood
(Biebricher et al., 1981, 1982,1983, 1984, 1985,

1991). Replicase binds a single-stranded RN A
template, synthesizes a complementary replica
and releases the template. While replicase is
present in excess, the RNA grows exponentially.
When the replicase is saturated with template,
linear growth results. Single-stranded comple­
mentary strands may react to double strands
that are unable to replicate. Different species
growing in the same solution compete with each
other and the selection behaviour can be in­
vestigated. In the exponential growth phase,
RNA species are selected for their fecundity,
i.e. the overall replication rate. In the early
linear growth phase, replicase is limited and
species that bind replicase most efficiently have
the highest selection value. At still higher
RNA concentrations, species are also selected
for minimizing the loss by double strand for­
mation. Quantitive selection values can be cal­
culated predicting precisely the complicate se­
lection behaviour.
Mutations occur during replication and the
mutants produced compete with each other.
A mutant distribution called quasispecies is
formed where each mutant has acertain relative
population according to its rate of formation
by mutation and by its selection value. Due
to compensating mutations, a quasispecies con­
tains multi-error mutants that are nearly selec­
tively neutral. When the environment changes,
the quasispecies adapts rapidly by selecting the
best mutant and building a new quasispecies
around it. Evolution is very effective in lead­
ing to the optimum in a contiguous mountain­
ous region in the fitness landscape, but can not
reach the global optimum when this optimum is
lying in a well-separated mountain. By raising
the population size and by increasing the step
size of mutational jumps, the optimization can
be improved.

References

P] Biebricher, C.K., Eigen, M. & Luce, R.

(1981) J. Mol. Biol. 148, 391-410.

[2] Biebricher, C.K., Diekmann, S. & Luce
(1982) J. Mol. Biol. 154, 629-648.

[3] Biebricher, C.K., Eigen, M. & Gardiner,
W.C. (1983) Biochemistry 22, 2544-2559.

[4] Biebricher, C.K. , Eigen, M. & Gardiner,
W.C. (1984) Biochemistry 23,3186-3194.

[5] Biebricher, C.K., Eigen, M. & Gardiner,
W.C. (1985) Biochemistry 24, 6550-6560.

[6] Biebricher, C.K., Eigen, M. & Gardiner,
W.C. (1991) In: Biologically inspired
Physics (Peliti, L., ed.) NATO ASI Series
B, Vol. 263, pp. ;317-3:37, Plenum Press,
New York.

[7] Eigen, M. & Biebricher, C.K. (1988) In:
RNA Genetics Vol. Ill: Variability of RNA
Genomes (Domingo, E., Ahlquist, & Hol­
land, J.J., eds.) pp. 211-245. CRC Press,
Boca Raton, FI.

[8] Eigen, M. & Schuster, P. (1977) Naturwis­
senschaften 64, 541-565.

[9] Spiegelman, S., Haruna, 1., Holland, I.B.,
Beaudreau, G., & Mills, D.R. (1965) Proc.
Natl. Acad. Sei. USA 54, 919-927.

A Predictive Theory of the Breeder Genetic Algorithm

Heinz Mühlenbein, Dirk Schlierkamp-Voosen
GMD Schloss Birlinghoven
D-53757 Sankt Augustinl
e-mail: muehlen@gmd.de

Abstract-The Breeder Genetic Algorithm
BGA models artificial selection as performed by
human breeders. We show how the response to
selection equation and the concept of heritabil­
ity can be applied to predict the behavior of the
BGA. The theoretical results are obtained under
the assumption of additive gene effects. For gen­
eral fitness landscapes advanced statistical tech­
niques for estimating the heritability are used to
analyze and control the BGA.

1 Introduction

Evolution of natural organisms is based on three ma­
jor components - reproduction, variation and selection.
Some reproductions of natural organisms occur with
"failures" called mutations. A more systematic variation
of the genetic material happens in sexual reproduction.
Each parent contributes half of its genetic material to
the offspring. This method of variation is called recom­
bination. The offspring will be identical to the parents
if the parents are genetically equal.

Variation is necessary to allow selection to work. Se­
lection in nature is very difficult to define precisely. The
term was introduced by Darwin (5] very informally. "The
preservation 0/ /avourable variations and the rejection 0/
injurious variations, I call Natural Selection." But how
can an observer predict which are the favorable varia­
tions? The favorable variations are the variations which
are preserved! The variations can only be judged after
they have competed in the "struggle for life." Natural
selection is no independent force of nature, it is the result
of-the competition of natural organisms for resources.

In contrast, in the science of breeding the above prob­
lem does not exist. The selection is done by human
breeders. Their strategies are based on the assump­
tion that mating two individuals with high fitness more
likely produces an offspring of high fitness than two ran­
domly mating individuals. The Breeder Genetic Algo­
rithm BGA introduced in [13] is based on the science of
breeding. The science is part of applied statistics. A ma­
jor component is the regression of parent and offspring.

In this paper we deal mainly with a rather simplified
model. We assurne additive gene contributions and uni­
form crossover. Nevertheless five parameters are needed
to describe the initial state of the population and the

selection process. The necessary parameters are

• the population size N

• the initial frequency of the desirable allele Po

• the number of loci n

• the mutation rate m

• the intensity of selection I

For this model we have computed the expected number
of generations until convergence. It would be futile to
investigate the model with all five parameters variable.
Therefore we will investigate the model with one or more
parameters fixed. The outline of the paper is as follows.

First we will investigate evolution without selection,
also called genetic drift (I = 0). If there is no muta­
tion the population will converge to a unique genotype.
In section three we will analyze selection and recombi­
nation in large populations. The analysis is based on
the response to selection equation and on the concept
of heritability. Then the major theoretical results are
summarized.

The above theory gives a dear picture about the be­
havior of the major evolutionary components. For the
breeder genetic algorithm this theory plays the same role
as the ideal gas . theory for dassical thermodynamics.
The "ideal gas" in evolutionary algorithms are simple
additive fitness functions. For these simple fitness func­
tions the behavior of the breeder genetic algorithm is
already complex.

In section 5 it is shown how the theory can be ex­
tended to arbitrary fitness functions. The key problem
is to estimate the heritability. In section 6 the theory is
applied to a number of fitness functions.

The theory presented here is based on dassical live­
stock breeding and population genetics. Some of the re­
sults presented in this paper are also of interest for pop­
ulation genetics. Our models are restricted to haploid
organisms. But in this area our models and equations
are sometimes more precise than the ones used in pop­
ulation genetics. Examples are the analysis of genetic
drift and the analysis of the genetic variance. For a re­
cent survey about predicting the response to selection in
livestock productions see [17).

2 Evolution without selection - genetic
drift

It has been known in population genetics for quite some
time that a finite population converges to a single geno­
type, even if selection is not applied. The mutation rate
is assumed to be negligible. The fixation of the popu­
lation is a result of its finite size. This effect has been
called genetic drift by Wright [18]. The importance of
genetic drift for explaining evolution in nature has been
emphasized by Kimura [8]. He developed a neutral the­
ory of molecular evolution, claiming that natural selec­
ti on is not as important for evolution as previously sur­
mized. Kimura used a very complex diffusion equation
approach to quantify genetic drift [4]. We will generalize
his results. Two chance models will be distinguished

1. no selection, no recombination

2. no selection, but with recombination

The first model is just sampling with replacement.
The second model is an adaptation of Mendel's genetic
chance model to haploid organisms. For the analysis of
genetic effects the following cases will be distinguished if
necessary:

• one gene with two alleles

• n genes each with two alleles

• n genes with an infinite number of alleles

The last case roughly models the genetic representation
used by the BGA for continuous functions of n variables.
In all cases, recombination is done by randomly choos­
ing an allele from one of the parents. For binary repre­
sentations this recombination scheme is called uniform
erossover [16].

The next three theorems have been derived in [2]. The
proofs are based on a Markov chain analysis for one gene
with two alleles. The formulas have been obtained by
numerically fitting the data.

Theorem 1 Let there be a gene with two alleles. Let
half of the initial population have allele 0, the other al­
lele 1. Then in a randomly mating population of size N
without mutation and reeombination, the expected num­
ber of generations until equilibrium GENe is given by

E(GENe) ::::: 1.4· N (1)

If the number of genes or the number of alleles is very
large, GENe is only slightly larger. This is shown in the
next theorem.

Theorem 2 Let the number of genes or alleles be large
enough, that the genotypes of the initial population are
all different from eaeh other. Then in a randomly mat­
ing population of size N without mutation and reeombi­
nation, the expected number of generations until equilib­
rium GENe is approximateIy

E(GENe)::::: 2· N (2)

N 16 32 64 128 256 512
GENe 29.4 60.3 128.0 245.2 546.0 1131.1
SD 16.7 33.5 72.1 121.1 294.9 736.5

Table 1: Gene for a large number of genes

In table 1 numerical results from simulations are given.
They are averages over 10,000 runs. Note the very large
standard deviation SD.

The theorems are in agreement with the results of
Crow and Kimura [4]. They obtained for diploid chro­
mosomes twice as large values, i.e GENe = 2.8N and
GENe = 4N.

The next theorem gives the convergence time if re co m­
bination is applied. lt is restricted to binary representa­
tions. This theorem is new.

Theorem 3 Let eaeh gene have two alleles. Let the size
of the ehromosome be n, the size of the population be N.
Let the initial population be randomly generated. Then
for a randomly mating population with no seleetion, but
with uniform erossover, the expeeted number of genera­
tions until equilibrium is approximately

E(GENe) ::::: 1.4· N . (0.5In(n) + l)!.l (3)

Table 2 gives some results of BGA simulations. One
clearly observes that GEN. increases linearly with the
popsize N and only logarithmically with the size of the
problem n. This result shows that recombination is not
able to substantially reduce the inßuence of genetic drift.
We wililater show that genetic drift is indeed an impor­
tant factor if small selection intensities are used.

N
n 16 32 64

32 67.1 131.0 261.9
64 77.6 160.2 334.2

512 107.7 224.0 475.4
1024 123.6 247.6 504.3
4096 141.6 289.0

Table 2: GENe for different n and N = 16,32,64 with re­
combination (two alleles)

The results for an infinite number of alleles case are
qualitatively similar . To summarize some results ob­
tained by simulations, they show that GENe scales as
N . ln(n), similar to the binary case. It seems that the
value of GENe for an infinite number of alleles is about
the value of GEN. for the binary case with twice as
many genes. The popsizes are held equaI.

In the next section we will analyze selection and re­
combination in large populations.

3 Response to selection

In this section we summarize the theory presented in
more detail in [13],[14]. The change produced by selec­
tion that mainly interests the breeder is the response to
seIeetion, which is symbolized by R. R is defined as the

difference between the population mean fitness of gen­
eration t + 1 and the population mean of generation t.
R(t) measures the expected progress of the population .

R(t) = M(t + 1) - M(t) (4)

where M(t) denotes the average of the population at
generation t. Breeders measure the selection with the
selection differential, which is symbolized by S. It is de­
fined as the difference between the mean fitness of the
selected parents M. (t) and the mean fitn ess of the pop­
ulation.

S(t) = M.(t) - M(t) (5)

Breeders often use truncation selection or mass selection.
In truncation selection with threshold T , the T % best
individuals will be selected as parents. T is normally
chosen in the range 10% to 50%.

The prediction of the response to selection starts with

R(t) = bt . S(t) (6)

bt is called realized heritability in quantitative genetics.
The breeder either measures bt in previous generations
or estimates bt by different methods. Two popular meth­
ods based on the regression of parents to offspring will
be explained later. It is normally.assumed that bt is
constant for a certain number of generations. This leads
to

R(t) = b· S(t) (7)

There is no genetics involved in this equation. It is sim­
ply an extrapolation from direct observation. The pre­
diction of just one generation is only half the story. The
breeder (and the GA user) would like to predict the cu­
mulative response R. for s generations of his breeding
scheme.

R. = L R(t) = b LS(t) (8)
t=1 t=1

The response to selection is the product of the heritabil­
ity and the selection differential. For predicting the re­
sponse to selection band the selection differential have
to be estimated.

If the fitness values are normal distributed , the selec­
tion differential S(t) in truncation selection is approxi­
mately given by

S(t) = I· O"p(t) (9)

where O"p is the phenotypical standard deviation. I is
called the seleciion intensity. The formula is a feature
of the normal distribution. A derivation can be found in
[3].
The seien ce of artificial selection consists of estimating b
and O"p(t). Wejust cite the following theorem [13]. It was
proven for the ONEMAX function under the assumption
that O"p(t) has a binomial distribution

O"p(t) = Jn . p(t) . (1 - p(t))

p(t) is the probability of the advantageous allele in the
population at generation t.

Theorem 4 Let the breeder genetic algorithm be run
with uniform crossover. If the population is large enough
that it converges to the optimum and if the selection in­
tensity I is greater than 0, then the response to seleciion
is given for the ON E M AX funciion by

R(t) = I . Jn. p(t)(1- p(t)) (10)
The number of generations needed until equilibrium is
approximate

GENe = (~- arcsin(2po - 1)) . v: (11)

Po = p(O) denotes the probability of the advantageous bit
in the initial population.

We next compare the analytical results with simula­
tions. In figure 1 the mean fitness versus the number of
generations is shown for three popsizes N = 1024,256,
and 64. The selection intensity is I = 0.8, the size of the
problem n = 64. The initial population was generated
with Po = 1/64.

A doser look at the simulation results show that the
phenotypic variance is slightly less than given by the
binomial distribution. The empirical data is better fitted
if the following estimate is used

Up(t) = .!!..-Jn . p(t) . (1- p(t)) (12)
4.3

Using this variance one obtains the equations

R(t) = .!!..- . I · Jn . p(t)(1 - p(t))
4.3

G - 4 .3 (7r . ()) vn EN e = - - - arcsm 2po - 1 . -7r 2 I

MeanFit

60

50

40

30

20

10

- Theory
•.••. Simulation (N=1024)
- - Simulation (N= 256)
_. Simulation (N= 64) ~ ~ - - - - •

...".~--------

(13)

(14)

~0~----~1~0------~2~0------~3~0-------~~ Gen

Figure 1: Mea.n fitness for various N (T = O.S, po = 1/64).
N = 64 converges first.

The fit of equation 13 and the simulation run with
N = 1024 is very good. For N = 256 and N = 64 the
population does not converge to the optimum. These
popsizes are less than the critical popsize N*(I,n , po) .
The critical popsize is defined to be the minimum pop­
size that the BGA converges with high probability to
the optimum. The problem of determining the critical
popsize will be discussed later.

We have not been able to prove a similar theorem for
an infinite number of alleles. The difficulty lies in es­
timating the variance of the population. We will give
sorne simulation results in the next section.

For proportionate selection which is used by the simple
genetic algorithm we extend the theorem already proven
in [1:3].

Theorem 5 For a genetie algorithm using proportion­
ate selection the seleetion differential is given by

0"; (t)
S(t) = M(t) (15)

For the ON EM AX function of size n the response to
seleetion ean be eomputed /rom

R(t) = 1 - p(t) (16)

1f the population is large enough, the number of genera­
tions until p(t) = 1 - f is given for large n by

1 - Po GEN1_ t ~ n ·In-- (17)
f

Po is the probability of the advantageous allele in the ini­
tial population.

Proof We will only prove 17. For ON EM AX(n) we
have R(t) = S(t). As before we approximate the varianee
by. the variance of the binomial distribution

O";(t) ~ np(t)(1 - p(t)) (18)

Beeause M(t) = np(t), equation 16 is obtained. From
R(t) = n(p(t + 1) - p(t)) we get the differenee equation

1 1
p(t + 1) = - + (1 - -)p(t)

n n
(19)

This equation has the solution

() 1((1) l)t_l) I t pt = - 1 + 1 - - + ... + (1 - - + (1- -) Po
n n n n

This equation ean be simplijied to

p(t) = 1 - (1 - .!.)t(1- Po)
n

By setting p(GEN1- t) = 1 - f equation 17 is easily ob­
tained.

This theorem shows the problem of proportionate se­
lection. It selects too weak if the population approaches
the optimum.

Both theorems of this section assurne large popsizes.
Due to space limitations we will just summarize our ma­
jor theoretical results in the next section ..

4 Summary of the major theoretical
results

In this seetion we willjust survey the major results which
can be found in [9],[13],[14], [2J,[I]. They are valid for
fitness functions with additive gene effects. Let n denote
the number of genes, N the size of the population.

We first consider populations with recombination and
no mutation. Any finite population of size N will con­
ver ge to a single genotype, even if selection is not ap­
plied. This effect is called genetie drift. The number of
generations until convergence GENe is surprisingly low.

GENe oe N · In(n) no_sei, ree, no_mut (20)

We now turn to truncation selection. If the size N of
the population is larger than the eritieal popsize N*, the
minimum popsize to converge to the optimum with high
probability, then we have

GENe oe Vn
1

trunc..,sel, ree, no_mut, N ~ N* (21)

Note that GENe is independent of N. The estimation
of the critical popsize is very difficult. The dependence
of N* from 1 is nonlinear. Simulations have shown that
N* increases for large selection intensities and for small
selection intensities [14]. For small selection intensities
this behavior seems surprisingly. But the reason is the
genetie drift which reduces the variance of the popula­
tion . We conjectured

N* = Vn .In(n) . I1 (Po) . !2(I) (22)

Proportionate selection as used in the simple GA [7] se­
lects too weak when the variance of the population gets
smalI. The expected number of generations GEN1_ 1/ n
until the favorable allele is distributed in the population
with probability of 1 - l/n is given by

GEN1- 1/ n oe n ·In(n) prop_sel, ree, no_mut, N ::}> 0
(23)

This number is much larger than with truncation selec­
tion. The analysis of recombination in small populations
is difficult. We have shown in [14J the results in phase
diagrams relating the posize and GENe. The phase dia­
grams can be divided into two areas. The border is given
by the critical popsize N*.
We now turn to populations using only mutation. Mu­
tation is a random search operator especially efficient in
small populations. The most important result concerns
the mutation rate. The mutation rate is defined as the
probability of mutating a gene.

Rule of thump: The mutation rate m = l/n where n
is the size of the ehromosome is almost optimal [10].

For the above mutation rate the expected number of
generations G ENopt until the optimum is found has been
computed for the (1 + 1)-strategy (one parent, one otf­
spring; the better of the two survives).

GENopt oe n ·In(n) sei, no_rec, mut, N = 2 (24)

Mutation in large population is inefficient. The scaling
remains the same as for N = 2. But it is still twice as
efficient as proportionate selection with recombination
[14].

GEN1- 1/ n IX n ·In(n) sei, no_rec, mut, N ~ 0 (25)

For binary fitness functions, populations using either re­
combination or mutation are able to locate the opti­
mum. Moreover, the asymptotic order of the number
of trials needed (F Eopt) , seems to be the same, namely
O(n ·In(n)). For recombination this nu mb er is obtained
by multiplying GEN by the critical popsize N*. There­
fore the question which of the two operators is more ef­
ficient is difficult to answer. The comparison needs an
exact expression for N*, which we have not yet obtained.
But we can easily make a qualitative comparison. The
major difference between mutation and recombination is
their dependence on Po, the percentage of the desired
allele in the initial population.

Let us take Po = l-l/n as example. Then just one bit
of a chromosome is wrong on the average. Mutation will
need about O(n) trials to change the incorrect bit. Uni­
form crossover of two strings, each with one bit wrong,
will generate the optimum string with prob ability 1/4,
independent of the size of the problem. Therefore the
critical popsize N* is also independent of n. Thus re­
combination is much more efficient than mutation. But
the determination of the exact N* is also difficult in this
simple case. It will need on the average 4 trials to gen­
erate the optimum. But the probability that a popsize
of 4 will not generate the optimum is 0.754 = 0.31. It
needs 16 trials in order to obtain the optimum with 99%
probability.

Ifwe take Po = l/n the situation is reversed. Here only
one bit is correct on the average. Now mutation is much
more efficient than recombination which needs a huge
popsize in order to locate the optimum. It is obvious that
mutation is more successful than recombination when far
from the optimum. Recombination has too few building
blocks to generate better offspring. But recombination
is more effective than mutation near the optimum. Here
the success of a mutation is the lowest.

A more detailed comparison between mutation and
recombination, also by means of a competition between
populations can be found in [12]. We now turn to general
fitness functions.

5 Statistics and genetics

In this section we will present two methods for estimat­
ing the heritability. The first one will use the concept of
regression 01 offspring to parent and the second one the
concept of genetie varianee. Both methods have been
of great importance in the development of statistics and
population genetics. Therefore we will first give a short
historical survey.

Genetics represents one of the most satisfying appli­
cations of statistical methods. Modern statistics starts
with Galton and Pearson who found at the end of the last
century a striking empirical regularity. On the average a
son is halfway between his father and the overall average
height for sons. They used data from about 1000 farn i­
lies. In order to see this regularity Galton and Pearson
invented the scatter diagram, regression and correlation
[6].

Independently Mendel found so me other striking em­
pirical regularities like the reappearance of a recessive
trait in one-fourth of the second generation hybrids. He
made up a chance model involving what are now called
genes to explain his rules. He conjectured these genes
by pure reasoning - he never saw any.

At first sight, the Galton-Pearson results look very dif­
ferent from Mendel's, and it is hard to see how they can
be explained by the same biological mechanism. Indeed
Pearson wrote an article in 1904 claiming that his re­
sults cannot be derived by Mendel's laws. About 1920
Fisher, Wright and Haldane more or less simultaneously
recognized the need to re cast the Darwinian theory as
described by Galton and Pearson in Mendelian terms.
They succeeded in this task, but unfortunately much of
the original work is abstruse and very difficult to fol­
low. The difficulty lies in the exact definition of genetie
variance and its connection to heritability. We will in
this section adapt the classical methods to haploid chro­
mosomes. Furthermore we will precisely define the con­
cepts.

The first theorem connects the realized heritability
bt = R(t)/S(t) with the regression coefficient between
midparent and offspring. Let li, /i be the phenotypic
values of parents i and j, then

f -:·_li+/i
',) - 2

is called the midparent value. Let the stochastic variable
F dimote the midparent value.

Theorem 6 Let F(t) = (11, ... , IN) be the population
at generation t, where Ii denotes the phenotypie value 01
individual i. Assume that an offspring generation O(t)
is ereated by random mating, without seleetion. 11 the
regression equation

f-+I·
Oij(t) = a(t) + bFO(t) . T + €ij (26)

with

E(€ij) =0

is valid, where Oij is the fitness value 01 the offspring 01
i andj, then

(27)

Proof From the regression equation we obtain lor the
expeeted averages

E(O(t)) = a(t) + bFo(t)M(t)

Beeause the offspring generation is ereated by random
mating without seleetion, the expeeted average fitness re­
mains eonstant

E(O(t)) = M(t)

Let us now seleet a subset as parents. The parents will
be randomly mated, produeing the offspring generation.
11 the subset is large enough, we may use the regression
equation and obtain lor the averages

M(t + 1) = a(t) + bFo(t) . M$(t)

H ere M(t + 1) is the average fitness 0/ the offspring gen­
eration produced by the selected parents. Subtracting the
above equations we obtain

M(t + 1) - M(t) = bpo(t) . (M.(t) - M(t))

This proves b Po (t) = bt .

The importance of regression for estimating the heri­
tability was discovered by Galton and Pearson. They
computed the regression coefficient rather intuitively by
scatter diagrams of midparent and offspring [6]. The
problem of computing a good regression coefficient is
solved by the theorem of Gauss-Markov. We just cite
the theorem. The proof can be found in any textbook
on statistics [15] .

Theorem 7 A good estimate for the regression coeffi­
cient of midparent and offspring is given by

b
_ () _ cov(O(t), F(t)) FO t - _..!..-~~.:..:...

var(F(t))

The covariance of 0 and F is defined by

(28)

cov(O(t) , F(t)) = ~2)oi,j-av(O(t))){fi ,j -av(F(t)))
i,j

av denotes the average and var the variance. Closely
related to the regressiQll coefficient is the correlation co­
efficient cor(F,O). It is given by

- (var(F(t)) 1/2
cor(F(t) , O(t)) = bf'o(t)· var(O(t)))

The above theorem enables us to estimate the heritabil­
ity by a second method . It works as folIows. For a
large sampie population F the offspring have to be cre­
ated by random mating. Then the regression coefficient
bpo can be computed by equation 28. This procedure is
more robust than dividing R(t) by S(t). First, it works
also in the case of small selection intensity. Second, the
trustworthiness of the computation can be estimated by
statistical techniques.

By the above method an average value for the her­
itability is computed. The average is taken over the
whole domain . For the breeder genetic algorithm we
decided to proceed slightly differently. The regression
coefficient is only computed for the selected parents and
their offspring. This local approximation makes it pos­
sible to compute regression coefficients which depend on
the given population and the local fitness landscape.

The next theorem shows the connection between mid­
pa'rent and parent regression.

Theorem 8 Midparent and parent regression are con­
nected by

bFO(t) = 0.5· bf'o(t) (29)

fl -
cor(F(t), O(t)) = V '2 cor(F(t), O(t)) (30)

Proof We have

cov(O(t), F(t)) = cov(O(t), F(t))

var(F(t)) = 0.5· var(F(t))

From (28) the theorem is obtained.

We now describe a method for estimating the co­
variance. This method connects a microscopic genetic
chance model and the macroscopic phenotypic covari­
ance. It is restricted to discrete genes. In this paper we
only give the necessary definitions and the fundamental
theorem. The interested reader is refered to [1] where
the proof can be found . A detailed computation is given
for a diploid chromosome with two genes in [4].

Let a haploid chromosome with n binary genes Xi be
given, f(x) its fitness. Let the genetic chance model be
defined by uniform crossover. This model can be con­
sidered as Mendei's chance model restricted to haploid
chromosomes. We will decompose the fitness value f(x)
recursively into an additive part and interaction parts.
Let p(x) denote the probability of x, p(XIXi) the con­
ditional probability of x given Xi. First we extract the
average.

f(x) = av(f) + ro(x) (31)

Then we extract the first order (additive) part from the
residual ro(x).

n

ro(x) = L f(i)(Xi) + rl(x) (32)
i=1

where f(i)(Xi) are given by

f(i)(Xi) = L p(xlx;)ro(x) = L p(XIXi)f(x) - av(f)
Xlri Xlri

Here LXlri means that the i-th locus is fixed to the
value Xi. The fCi)(Xi) minimize the quadratic error
Lx p(x)rl (X)2.
If rl (x) :;E 0, we can proceed further to extract the second
order terms from rl(x):

where

rl (x) = L fCi ,j) (Xi , Xj) + r2(x) (33)
(i.1)
i<j

fCi,j)(Xi,Xj)= L p(Xlxi,Xj)rl(x)
Xlri,rj

= L p(XIXi, Xj) f(x) - fCi)(Xi) - fcn(xj)
Xlri,rj

lf we have n loci, we can iterate this procedure n - 1
times recursively and finally we get the decomposition of
fas

f(x) J+ Lf(i)(Xi) + Lfci,n(Xi,Xj)+'"

+
Ci,j)

L f(i, ;n_,)(Xi" ... , Xi n_,} + rn_l(x)
(i11···,in_tl
i, < ... <i n _ 1

Let Vk for k = 1 to n - 1 be defined as

and

(i., i k) X"l""'X'k

i 1<···<ik

x

(34)

(35)

We are now able to formulate the fundamental theorem.

Theorem 9 Let the population be in linkage equilibrium
Z. e.

n

p(x) = I1Pi(Xi) (36)
;:::1

Then the variance of the population is given by

var(F) = VI + V2 + ... + Vn - 1 + Vn (37)

The covariance of midparent and ojJspring can be com­
puted from

_ 1 1 1 n 1
cov(F,o) = 2VI + 4V2 + ... + 2n Vn = L 2k Vk (38)

k:::1

Prom theorems 7 and 9 we obtain

Corollary 1 1f the fitness function zs additive that is,
f(x) = l:i fi(Xi), then

cor(F,O) = yTf2 bpo = 1 (39)

The above theorem plays an important role in the science
of breeding. Breeders conjecture that the additive ge­
netic variance VI is the most important factor of the her­
itability. The higher order interactions contribute much
less to the heritability. Therefore they can be neglected.
We will test this conjecture in a forthcoming paper.

Numerically, decomposing the variance is computa­
tionally far too expensi ve to be of use for the breeder
genetic algorithm. But the regression technique is very
simple to implement. We will show in the next section
that the regression technique can be used to control and
guide the breeder genetic algorithm.

6 Numerical applications of the theory

From statistics and population genetics it is known that
the regression coefficient should be a reliable estimate
for heritability in the case of continuous fitness functions
and large populations. Therefore as a first example we
take the minimization of the hypersphere. The BGA for
continuous functions has been described in [13]. It uses
a floating point representation. In figure 2 scatterdia­
grams of midparent and offspring at generation 1 and 30
are shown. In this example only discrete recombination
is used, no mutation. It is easily seen that the whole pop­
ulation is moving towards the global minimum, which is
o in this example. The regression coefficient is almost
exactly one in both diagrams as predicted by the theory.

In figure 3 the numerical values of the two different es­
timates for the heritability are shown (R(t)j S(t) and the
regression coefficient). Both estimates oscillate around
1 as predicted . The correlation coefficient is about 0.5.

gen . 1
IDcI_2.336 .. O,9604lit
f : O.SQ66

FILO"
0.".-----___ --"

... 3D
t(xJ .0.0002364 .. 0,5$4'.

0.04 I ' 0.6632

0.00

002

0,0'

Figure 2: Scatter diagrams for generations 1 and 30
for the hypersphere. Only discrete recombination is used
(N=1024,T=0.5).

This is less than the maximum value possible, which is
v'Q.5. The reason for this difference is the selection. The
selection reduces the variance of the parents and there­
fore the correlation coefficient.

2

1.5 0.8

0.6
1 "'0'

~

0.4

0.5 0.2

S 10 IS 20 2S
;on 0

31) 10 IS 20 2S 31)-

Figure 3: Heritability estimates (regression coefficient solid
line, R(t)/S(t) dashed line) and correlation coefficient r for
the hypersphere (N =1024,T=0.5).

We just report the results for a simulation run without
selection. In this case the R(t)jS(t) estimator cannot be
used because S(t) is about O. The regression coefficient
can be computed as usual and remains 1. Furthermore
the correlation coefficient is about v'Q.5 as predicted by
the theory.

The above results are not restricted to simple uni­
modal functions. As the next example we take the highly
multimodal function which is known as Schwefel's func­
tion F7 [13].

n

F7 = L -Xi sin (JIxJ) - 500 ::; Xi ::; 500 (40)
1

The theory predicts that the multimodality of this
function can be considered more or less as noise for the
BGA . It should have no major influence on the regression
coefficient. Indeed, with random mating, the regression
coefficient is 1 and the correlation coefficient between
midparent and parent is about v'Q.5, just as for the hy­
persphere. Figure 4 shows areal BGA simulation run
with selection, recombination and mutation . One clearly
observes that the search is first driven by recombination,
then by mutation. Prom generation 17 on , the regression
coefficient substantially differs from the ratio estimator
R(t)jS(t). Now the search is mainly driven by the ran­
dom operator mutation. The BGA mutation scheme is
described in [13].

b

2ri ------------------~

1.5 0.8

0.5

"1//' IJ 0.2

,--:_-:,:","_=_=J+\..J.L.L' "'\ .. "' .. '.I,I!.I:.,<.J··] gen 0 ' \ 0 d oen
.... 25 30 10 15 20 25 30

Figure 4: Heritability estimates b with mutation and re­
combination (N = 256). The correlation coefficient r drops
to zero. The regression coefficient (solid line) and the ratio
estimator (dashed line) are almost equal at the beginning.
Then the ratio R(t)fS(t) goes to zero whereas the regression
coefficient remains high till generation 22.

Next we turn to binary functions. We take as examples

• ONEMAX(n)

• PLATEAU(20,3)

• DECEP(1O,3)

PLATEAU(20,3) has astring length n of 60. An in­
crease in fitness is allocated only if three consecutive
bits at loci 1,3,6, .. are 1 's. In each case, the fitness is
increased by 3. DECEP(10, 3) is the deceptive function
defined by Goldberg [9].

In figure 5 the results of a BGA run are shown for
ON EM AX(64) with a truncation threshold of T = 0.5
and uniform crossover, but without mutation. The two
heritability estimates coincide fairly weil . They are
about 1, as predicted. The correlation coefficient is
about 0.5 till generation 14. This is less than the correla­
tion coefficient without selection, which is .JQ.5. At the
end of the run the correlation coefficient increases. This
behavior indicates that the genotypes of the selected par­
ents are becoming very similar. Therefore the offspring
are very similar to both parents.

b

2r.-------------------,
1.5

0.5

0.8

0.6

0.4

0.2

o I I
4 8 10 12 14 16 gon 2 4 8 10 12 14 16 -

Figure 5: Heritability b estimates (regression coefficient solid
line, R(t)fS(t) dashed line) and correlation coefficient r with
recombination only for ONEMAX(64) (N = 128, T = 0.5)

Our next example is the PLATEAU function . We
will discuss PLATEAU(20,3) and PLATEAU(20,5).
PLATEAU(20,5) has a plateau of size 5, therefore it
is more difficult to optimize. Without selection the re­
gression coefficients for the two functions are about 0.7
and 0.4, the correlation coefficients are ab out 0.5 and
0.3. In figure 6 we have used a truncation threshold
of T = 0.5. For both functions the regression coeffi­
eients are substantially higher than without selection.
This indicates that selection is very effective for this fit­
ness function. But note that the realized heritability

R(t)f S(t) is considerably smaller than the regression co­
efficient. For PLATEAU(20,5) it substantially increases
during the run.

b

QS

M~/ Iv
Q4

Q2

01 I gen
2 4 6 S W 12 14 16

b

0.2

01 Igen
5 10 15 20 25 30

Figure 6: Heritability b estimates (regression coefficient solid
line) for PLATEAU(20,3) and (20,5)

The last example is the deceptive function DE­
CEP(1O,3) . This function is called deceptive, because
the search is guided into the local optimum (0,0,0). The
global optimum is at (1, 1, 1). Without selection, the re­
gression coefficient is about 0.5 and the correlation coef­
ficient about 0.35. This is shown in figure 7.

b r
1

o.sl 0.5~

0

·0.5
0.2

0 1 I gen
5 10 15 20 25 30

.1' I gen
5 10 15 20 25 30

Figure 7: Heritability b and correlation r estimate with re­
combination for DECEP(10,3), no selection (N = 256)

The behavior radically changes with selection. If selec­
tion is applied, both the regression coefficient and the
ratio estimator become erratic. Half of the time they
are negative. This shows selection with this fitness func­
tion works against crossover and vice versa.

For binary functions the heritability can also be esti­
mated by decomposing the genetic variance. We have
already used this method for the ONEMAX function.
But the numerical implementation for the general case
is prohibitive. The method of decomposing the variance
will numerically be useful if the first term, the additive
genetic variance VI is sufficient for estimating the heri­
tability. We must postpone this investigation.

To summarize this section: The theory presented is es­
pecially applicable for continuous functions. For many
continuous fitness functions the regression coefficient will
be 1, the maximum possible. For binary functions the re­
gression coefficient and the realized heritability give use­
ful information about the complexity of the fitness land­
scape and how to guide the search of the breeder genetic
algorithm.

7 Concl usion

Efficient evolutionary algorithms for optimization should
be based on the science of breeding rather than on nat­
ural selection. The breeder genetic algorithm BGA con-

nects the theory of genetic algorithm with classical pop­
ulation genetics and statistics. Some of the results, al­
ready known in the science of breeding, have been ex­
tended or made more precise. Several possible improve­
ments need further study. One example is to use nonlin­
ear regression techniques for estimating the heritability
in complex fitness landscapes.

We believe, that it has been a big mistake in the theory
of genetic algorithms, that researchers tried to develop a
new theory without looking into the theory already de­
veloped in population genetics. It took the most famous
statisticians and population genetics researchers alm ost
half a century to derive at the theory presented here.
The so called schema theorem [7] which is the starting
point of the conventional GA theory is either a tautol­
ogy or it is incorrectly used. The fundamental theorem
of section 5 is a generalized version of Fisher 's fundamen­
tal theorem of natural selection . It correctly describes
the development of a genetic population. By comparing
this theorem with the schema theorem one easily detects
why the schema theorem has no predictive power.

The BGA solves the problem of how to scientifically
breed a population. We hope that genetic algorithm re­
search in the future concentrates on the real problem
remaining - how to find a good representation for the
given application . For combinatorial optimization prob­
lems the representation problem is discussed in [9],[11].

Acknowledgement: Part of this research has been
funded by the REAL WORLD COMPUTING pro­
gramme und er the project SIFOGA.

References

[1] H. Asoh and H. Mühlenbein . Estimating the heri­
tability by decomposing the genetic variance. Tech­
nical report , GMD, Sankt Augustin, 1994.

[2] H. Asoh and H. Mühlenbein. On the mean conver­
gen ce time of genetic populations without selection .
Technical report, GMD, Sankt Augustin , 1994.

[3] M. G . Bulmer . "The Mathematical Theory of Quan­
titative Genetics". Clarendon Press, Oxford , 1980.

[4] J . F. Crow and M. Kimura. An Introduciion to
Population Genetics Theory. Harper and Row, New
York, 1970.

[5] Ch . Darwin. The Origins of Species by Means of
Natural Selection. Penguin Classics, London, 1859.

[6] D. Freedman, R.Pisani, R. Purves, and A. Ad­
hikkari. Statistics second edition. W.W. Norton,
New York , 1991.

[7] D.E. Goldberg. Genetic Aigorithms in Search, Op­
timization and M achine Learning. Addison-Wesley,
Reading, 1989.

[8] M. Kimura. The neutral theory of molecular evolu­
tion. Cambridge University Press, Cambridge Uni­
versity Press, 1983.

[9] H. Mühlenbein. Evolution in time and space - the
parallel genetic algorithm. In G. Rawlins , editor ,

Foundations of Genetic Aigorithms, pages 316-337 ,
San Mateo, 1991. Morgan-Kaufman.

[10] H. Mühlenbein. How Genetic Algorithms Really
Work : Mutation and Hill-climbing. In R. Männer
and B. Manderick, editors, Parallel Problem Solv­
ing from Nature , pages 15-26, Amsterdam, 1992.
N orth- Holland.

[11] H. Mühlenbein. Parallel Genetic Algorithms
in Combinatorial Optimization. In O. Balci ,
R. Sharda, and S. Zenios, editors, Compu"ter Sci­
ence and Operations Research , pages 441-456 , New
York, 1992. Pergamon Press.

[12] H. Mühlenbein and D. Schlierkamp-Voosen. Anal­
ysis of Selection , Mutation and Recombination in
Genetic Algorithms. Neural Network World,3 :907-
933, 1993 .

[13] H. Mühlenbein and D. Schlierkamp-Voosen . Pre­
dictive Models for the Breeder Genetic Algorithm
1. Continuous Parameter Optimization. Evolution­
ary Computation, 1 :25-49, 1993.

[14] H. Mühlenbein and D. Schlierkamp-Voosen. The
science of breeding and its application to the
breeder genetic algorithm. Evolutionary Computa­
tion, 1:335-360, 1994.

[15] C.R. Rao. Linear Statisticcal Inference and Its Ap­
plication. Wiley, New York, 1973.

[16] G . Syswerda. Uniform crossover in genetic algo­
rithms. In H. Schaffer, editor, 3rd Int. Con! on
Genetic Aigorithms, pages 2-9, San Mateo, 1989.
Morgan Kaufmann .

[17] E. Verrier , J .J . Colleau, and J.L. Foulley. Methods
for predicting response to selection in small pop­
ulations under additive genetic models: a review .
Livestock Production Science , 29:93-114 , 1991.

[18] S. Wright . The roles of mutation, inbreeding, cross­
breeding and selection in evolution. In Proc. 6th
Int. Congr. on Genetics, pages 356-366, 1932.

Artificial Life and Selforganisation

Wolfgang Banzhaf

Department of Computer Science, Dortmund University

Baroper Str. 301, 44221 Dortmund, GERMANY

banzhaf@tarantoga.informatik. uni-dortm und.de

Foreword

The following article reports on work presented
at the 4th International Workshop on Artificial
Life, held from July 6 - 8, 1994 at MIT in Cam­
bridge, Massachusetts. It will appear in Proceed­
ings of ALIFE IV, R. Brooks and Pattie Maes
(Eds.), MIT Press, Cambridge, MA, 1994 and
refers to the second part of my talk.

Abstract

We discuss a system of autocatalytic sequences
of binary numbers. Sequences come in two
forms, a 1-dimensional form (operands) and a
2-dimensional form (operators) that are able to
react with each other. The resulting reaction
network shows signs of emerging metabolisms.
We discuss the general framework and examine
specijic interactions for a system with strings
of length 4 bits. A self-maintaining network
of string types and parasitic interactions are
shown to exist.

1 Introduction

Sequences of binary numbers are the most primitive
form of information storage we know today. They are
able to code any kind of man-made information, be it
still or moving images, sound waves and other sensory
stimulations, be it written language or the rules of math­
ematics, just to name a few. As the success of von­
Neumann computers has shown over the last 50 years,
binary sequences are also suflicient to store the com­
mands that drive the execution of computer programs.
In fact, part of the success of the digital computer was
due to the universality of bits and their interchangeabil­
ity between data and programs.

It is not far-fetched to expect that the physical iden­
tity between operators (programs) and operands (data)

mayaiso play an essential role in self-organisation. We
have proposed to consider a simple self-organising sys­
tem [1], in which sequences of binary numbers are able
to react with each other and sometimes even to repli­
ca te themselves. This ability of binary strings was a
result of the proposition to consider binary strings simi­
lar to sequences of nucleotides in RNA. RNA sequences
which presumably stood at the cradle of life [2, 3], seem
capable of self-organisation and come in at least two al­
ternative forms, a one-dimensional genotypic form and a
two or three-dimensional phenotypic form. We proposed
to consider binary strings in analogy and to provide for
a second, folded and operative form of strings. Techni­
cally, we considered as this alternative a two-dimensional
matrix form that is able to perform operations on other
one-dimensional binary strings.

2 Reactions between binary strings

The fundamental ideas of this model have been out­
lined elsewhere (see ref. [1],[4],[7] for details). Here we
only give abrief overview of what has been learned so
far.

Let us consider sequences

s= (Sl,S2, ... ,Si, . .. ,SN). (1)

of binary symbols Si E {O, I}, i = 1, ... , N organised in
I-dimensional strings.

Then we ask the question: Does there exist an alter­
native form of these strings, that is (i) reversibly trans­
formable into the form (1), and is (ii) operative on form
(1)? The answer is surprisingly simple and weil known
from mathematics: Yes, there are operators with the
above capabilities, known as matrices.

Thus, we require the existence of a mapping M

M: s-+Pr (2)

which transforms sinto a corresponding 2-dimensional
matrix form Pr of the sequence which should be unique
and reversible. This mapping is simply a spatial reorgan­
isation of the information contained in a sequence and

o o

o o 0 o

o o 0 o 0

o o 0 0

(a) (b) (c)

Figure 1: Some two-dimensional compactly folded forms of
astring in an example with N = 16 binary numbers: s =
(1101001011001000) .
(a): non-topological folding, (b) and (c) : topological foldings.

may be termed a fo/ding , in elose analogy to the notion
used in molecular biology.

The most compact realization of such a 2-dimensional
form would be a quadratic matrix. For astring with
a quadratic number of components N, N E Nsq with
Nsq = {I , 4,9 , I6 , 25, ... }, the procedure is straightfor­
ward: Any systematic folding (examples are shown in
Figure 1) would do. Since folding is not yet very sophis­
ticated, and different configurations may be obtained by
a renumbering of string components , we shall consider
here the topological folding of Figure 1 (b) only.

In the more general case of N being a non-quadratic
number, different generalizations are reasonable. Here
we shall only discuss a compact folding 1 in non-square
matrices, where

(3)
In order to treat non-quadratic cases similar to the
quadratic case, a bias should be used in the direction
of the most compact solution, i.e.

Ni = VN + Ci,

with I ci lassmall as possible.

i = 1, 2 (4)

Table 1 gives the resulting 2-dimensional form for
strings up to N = 10. One can see that strings with a
length corresponding to a prime number are somewhat
special as they do not allow any compactification in the
2-dimensional form.

The inter action between a 2-dimensional form of a
string and a I-dimensional form can be considered a re­
action between the two strings. As an example, let us
assurne an operator Ps was formed from string s. This
operator might now "react" with another string, s', pro­
ducing thereby a new string s":

Ps s' => s" (5)

The notion here is that some sort of raw material (analo­
gous to energy-rich monomers in Nature) is continuously
supplied to allow the ongoing production of new strings
based on the information provided by the cooperation of
Ps and s' .

1 Compact foldings do not have any spacing between ad­
jacent string elements

Length Compact folded form

1 (sJ)

2 (SI S2)

3 (SI S2 S3)

4 i SI S2)
S4 S3

5 (81 S2 83 S4 85)

6 (SI S2 S3)
S6 85 S4

7 (SI S2 S3 84 S5 S6 87)

8 (81 S2 S3 84)
S8 S7 86 85

(SI
S2

S3) 9 S6 S5 S4

S7 S8 S9

10 (SI S2 S3 S4 S5)
S10 8 9 88 S7 S6

Table 1: Compact topological string folding with length up
to N = 10. Each folding comes also with the transposed
matrix.

A typical example of an interaction is given in Figure 2
for the simple case of strings of the same quadratic length
N . s' might be considered as concatenated from VJii
segments with length .JN each. The operator Ps acts on
each of these segments sequentially, and performs semi­
local operations. In this way, it moves down the string
in steps of size .JN until it has finally completed the
production of a new string s".

The particular algorithm for assembling new compo­
nents "0" and " 1" into strings that we have examined in
more detail , is:

i=I, ... ,VJii k = 0, ... , VJii - 1

with u[] being the squashing function

u[x] = {I for x ~ 0
o for x < 0

(6)

(7)

and e used as an adjustable threshold. Eq. (6) may
be interpreted as a combination of Boolean operations,
applied separately in each segment k of the string if e =
1.

The consistent generalization of eq. (6) for interac­
tion of non-quadratic strings and for strings of differ­
ent length is straightforward: Suppose a matrix of size
NI x N2 is interacting with astring of length N3 • The
operator locally interacts with NI elements of the sec­
ond string in order to generate one component of the
new string. This operation will be repeated N2 times,
then the operator moves on to interact with the next

-lN-

tri] 1+ 1+
0

N 0 >- N

I

1
Operator Ps String s' String s"

Figure 2: An operator Pt of matrix dimension v'N x v'N (derived from string S) acts upon astring s' consisting of .JN
segments of length v'N each to produce a new string s" .

NI elements of the second string. The newly produced
string will thus consist of N4 elements with

N3
N4 = r NIl x N 2 . (8)

where r x 1 are Gaussian parentheses giving the next
larger integer to x.

In mathematical terms, the interaction reads:

with

S~'+kN2 = (J' :L: PiiS'j+kN, - e
[

i=Nl 1

z=I, ... ,N2

;=1

N3l _ 1. k = 0, ... , r NI

(9)

This interaction is generally length-changing - either
resulting in a shorter or a longer product strings. The
particular direction of this length-change depends on the
relation of NI to N2 : lf NI > N 2 then N4 < N3 , and
the new string is shorter. If, however, NI < N 2 then
N4 > N3 , and the new string is longer.

The different types of possible reactions between
strings are listed in Table 2. For a given N , say N = 4,
the reactions form areaction network, and we shall ob­
serve in the next Section the behavior of such a network.

3 Dynarnics of a sampIe system

Every reaction vessel is only able to keep a finite num­
ber of strings, say M. The reactions discussed in Section
2, however , continuously produce new strings. There­
fore, a competitive dynamics has to be implemented by

Reactants Product Description
I

s + s' s" Heterogeneous reaction
I

s + s' s Replication I

s+ s' s' Replication

s+s s' Heterogeneous self-reaction

s+s s Self-replication

Table 2: Characterization of different polymerization re ac­
tions.

providing for an overflow mechanism for the reaction ves­
seI. Since at present we would like a well-stirred reaction
vessel without any spatial structure for reactions, the re­
moval of strings will be a random process, hitting each
sort of strings with a probability proportional to its con­
centration. For each newly produced string, one string is
removed from the vessel. Whereas this random process
does not influence in any way the constitution of the ves­
seI content, due to different re action channels producing
new strings, a change in the composition of the content
will happen over time.

There are, however, some potentially "lethai" strings
in such systems. Astring is said to be lethai ifit is able to
replicate in an unproportionally large number in almost
any ensemble configuration. For eq. (6), this happens to
be the case for two self-replicating string types 2, s(O) =

(2 N-l) . (O,O, ... ,O,O)ands =(1,1, ... ,1,1). Theformeris
able to replicate with every other string, the latter with
most of the other strings.

2We shall name strings with decimal numbers correspond­
ing to their binary sequence

In order to balance this tendency of the system we
prohibit production of s(O) and discourage production of
s(2

N
-

1
). In other words, s(O) will not be added to the

vessel , if the reaction product should be s(O) . Instead,
a randomly selected string will be copied. We deal with
s(2

N
-

1
) in a more gentle way by providing a means of

non-deterministic string removal due to decay processes.
The fewer the number of "1" 's astring contains, the
more stable it becomes. The chance to decay therefore
depends on the string feature

N
I (k) = ~ s(l:)

~, '
i=1

k = 1, ... , M . (10)

I(k) measures the number of" 1" 's in string k and deter­
mines a probability

(11)

which determines whether astring should be removed .
Usually, we set the parameter n to n = 1. In any case,
the decay probability of s(2

N
-

1
) is 1. Once astring de­

cays, its place might be filled
(i) with a later reaction product or
(ii) with a copy of a randomly selected string in the ves­
seI. The latter method has the advantage of allowing a
constant string nu mb er M in the vessel and is adopted
here .

One sweep through the algorithms hence consists of
the following steps:

STEP 1:

Generate M random binary strings of length N each

STEP 2:

Select astring and fold it into an operator by forming
a compact matrix

STEP 3:

Select another string and apply the operator gener­
ated in STEP 2

STEP 4:

Release the new string, the old string and the oper­
ator (as string) into the reaction vessel , provided it
is not an s(O). Otherwise go to STEP 2.

STEP 5:

Remove one randomly chosen string in order to com­
pensate for the addition of astring in STEP 4

STEP 6:

Select one string and substitute it according to the
prob ability of (11) with the copy of a randomly se­
lected string

STEP 7:

Go to STEP 2

M sweeps through this algorithm are called a genera­
tion.

For a discussion of the system's dynamic behaviour
we use as observables the concentrations Xi (t) of all the
different string types s(i) with:

Xi(t) = mi(t)/M (12)

where mi(t) is the number ofactual appearances ofstring
type s(i) in the vessel at time t.

lf we run a system by seeding it with an initial com­
position of M random strings, we regularly observe a
transition into a (mostly fixed point) attractor. Due to
different rates of production of different sorts , an initial
composition will change until an equilibrium is reached .
During the transition, new sorts are produced, already
present sorts disappear, and every now and then a co­
existence between sorts is reached for some time. As long
as new sorts are created by interactions between already
present sorts, the network has to reorganise itself in order
to incorporate the newly emerging reaction channels be­
tween the different sorts. After some time, however, no
new string sorts arrive , and the system reaches a steady
state. Thus, the system behaves as one of the metabolie
networks that are discussed in Bagley et . al. [5 , 6] . As
long as we have a small number of sorts, we can easily
describe the system by a set of deterministic differential
equations for the time development of string sort con­
centrations.

Deterministic rate equations were derived in [1] and
are given he re as a summary: We assume continuous
non-random concentration functions Yi(t) of the differ­
ent string types i, 1 ~ i ~ ns, which are considered to
approximate the time averaged concentrations <Xi>t :

o ~ Yi(t) ~ 1 (13)

The deterministic rate equations in Yi(t) read:

Yi(t) = A(t)Yi(t) + [BiYi(t) + f: GikYk(t) - Di] Yi(t)+
k~i

(14)

where Bi, Gib Wijk are coupling constants derived
from areaction table containing all sorts l...ns . Di de­
termines a selection term

(15)

and A(t) reflects the addition of strings due to. random
copies

where

a .. - {1
'1 - 0

ns ns

A(t) = L aijYi(t)Yj(t) + L DiYi(t)
iti

(16)

if the reaction of s(i) and sU) produces s(O)

otherwise .
(17)

String

Operator 1 2 3 4 5 6 7 8 9 I 10 11 12 I 13 I 14 I 15

1 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

2 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3

3 1 1 1 2 3 3 3 2 3 3 3 2 3 3 3

4 0 4 4 0 0 4 4 8 8 12 12 8 8 12 12

5 1 4 5 2 :3 6 7 8 9 12 13 10 11 14 15

6 0 5 5 0 0 5 5 10 10 15 15 10 10 15 15

7 1 5 5 2 3 7 7 10 11 15 15 10 11 15 15

8 4 0 4 8 12 8 12 0 4 0 4 8 12 8 12

9 5 0 5 10 15 10 15 0 5 0 5 10 15 10 15

10 4 1 5 8 12 9 13 2 6 3 7 10 14 11 15

11 5 1 5 10 15 11 15 2 7 3 7 10 15 11 15

12 4 4 4 8 12 12 12 8 12 12 12 8 12 12 12

13 5 4 5 10 15 14 15 8 13 12 13 10 15 14 15

14 4 5 5 8 12 13 13 10 14 15 15 10 14 15 15

15 5 5 5 10 15 15 15 10 15 15 15 10 15 15 15

Table 3: Reactions table for the simulations of a N = 4 system. It was generated using a variant of (6) with topological
folding.

Finally, 4>(t) is a flow term that enacts competition be­
tween the various string sorts sei) by enforcing constancy
of the overall sum of concentrations.

The reaction table listing the interactions between
string types (cf. Table 3) can be used to derive inter­
action graphs for various situations. In Figure 3 we have
depicted all interaction graphs that can be generated
from Table 3 if we start the reaction vessel with one out
of 2N -I string types (here N = 4). Functionally iden­
tical graphs are not depicted. Figure 3 illustrates the
variety of interactions emerging from astart with dif­
ferent string types. It ranges from self-replication over
parasitic interaction to entire metabolisms. From an in­
teraction graph it is evident, what kind of attractor may
be approached .

The dynamics of the parasitic interactions of Figure 3
is examined by integrating eq. (14) . Figure 4 - 6 show
the results of a simulation. The transition of the string
composition is clearly visible. In [1 ; 4] we have shown
that simulations on the reaction level agree completely
with the integration of rate equations used here .

A simple metabolism emerges if we do not start with
one sort only, but with two or more from the outset. Fig­
ure 7 shows the interaction graph of this self-maintaining
network of reactions. This graph is somewhat special
as each reaction channel is of nearly equal strength. A
search through the space of all combinations of 2 initial
sorts uncovers that the self-replicator s(12) plays some
special role. Usually, as soon as even a spurious concen­
tration of s(12) is present, together with one other sort
(except s(I)), the metabolie attractor emerges. Figure 8
gives two examples.

It is interesting to note that there are many closed
subsets of elements within even a simple N = 4 system.
In Tables 4, 5 we give a complete list of them, ordered
according to their complexity in terms of participating
string sorts. Following [8], a closed subset is defined as
the set A* of elements from the ensemble of string types
Ns = {s(l),s(2) , . .. ,.S(2

N
-

1
)},

A* ~ N s (18)

that might be produced by aB different sequences of n
reactions,

Rn(A) = U?=orn(A) (19)

(a)

1

G
(b)

2.········.

~1
&

(e)

(c)

'.

........

.......)

..,.Lt(~ (" .,. ,<')
··· .. ~~~;;~;:~)t /')

....... \' ~~~
.................. ~

.....,

.....

....

-0, ••••••

.....
.....................

(d)

~8

i/ f~~(~ \
..... ~1.~ j

······················G
" .. ~

.....

(f)

Figure 3: Interaction graphs of the system with N = 4. These graphs include all string sorts that are produced if the
upper left string sort is used as the one and only initial sort in the reaction vesseL Solid lines connect the two string sorts
participating in areaction. Dashed lines indicate operator sort. (a) Self-replicator, also realized by sorts s(7), s(12) and s(15).

(b) - (f): Simple and complicated parasitic interactions, (b) also realized by pairs (S(1I),S(15)), (s(13),s(15)) and (S(14),S(15).

.5

j

I
~

i
~

0.8

0.'

0 ..

0.2

. .

. '
,
.::+

. ' .'
.... . '

""""
.,

••••.....••...•...•.

"
++

8011'
80112

++1'.+

o ~ t , ++·+T

o W ~ ~ ~ ~ ~ ~ ~ .0 --

~
i
~

0 .•

0.'

0.'

0.2

. .

, ,

..' .'
..........•....

.'

, '. +++

01 . ··++l''''tu.
o 10 15 20 2S 30 36 _

Figure 4: Dynamics of the interaction graph Figure 3(b) and (c) .

0.' . .'
....... .. '

0.8

..,
.+ .' .'

m
0.'

. . . '
. ' , .

80113 +
.... G

·1

...... ,. I ' •
x .

O' r
. .

0 ..

0.2

m
m

m
G . .

. .
•• + IiI .!i++++

.+ D cO +:t ••

~&II ++++

.. a· o "
.. aB +. .. °a +. .. °0 " + .+ Cla~B .+ •••

•• + DOmoOQoac++·+·.··.
o I .! t ! Cilaa·'sppn.

o 5 10 1S 20 25 30 3S 40 -'5 SO --

.
i ' .
S

.
0 ..

...

0.2

0
0 20

...

.., --
Figure 5: Dynamies of the interaction graph Figure 3(d) and (e) .

0.8

0.'

I x
x

0 ..

l~ D •

0.2 D .t·
l

111
• ,+

o~
0 20 ..,

. ' .' .'
:/ .•...
. ...•

so --

.... , . """3 • _. m

""". x SOtt 15 •

..

.ti

i
~

'00

0 ..

0.2

0
0 20 .., --

Figure 6: Dynamics of the interaction graph Figure 3(f) and (g).

so

..

'0

Sol11 ..
"'3 ,

~

... , . _2 +

••• 03 •
""". x

..

..

.... , .

.... 2

.... 3 _. _ ..
$ort, --­

SOI'I10 --
60ft 12 --

'0

'00

'00

Figure 7: Reaction graph of the metabolism of N = 4.

0.5op-----.,..------r------r------,

0.45 , . 0 ..
..... 2 • 0.'

.
0.-4 -:

&at 12 •

0.7 0.3& .':. \

.li
0.1

I 0.5

~ 0.4 \
0.3

'\
'l.

0.2

0.'

0
'50 zoo 0 .. '00 -- '50

..... , .

.....2 •
8011 7 •

80ft 12 •

200

Figure 8: Dynamies of the interaction graph Figure 7. Left: Equal concentration of S(6) and S(12) , at the outset; Right: High
concentration of S(7), low concentration of S(12) at the outset.

0.4r-----r-----T-----.,..------, , .
SOII2 •
SOlI ••
80111 •

O~----~----~----~----~ o 50 100 150 zoo
Q ... -

Figure 9: Dynamies of the interaction graph Figure 7. Starting with three different string sorts.

starting from an initial set A ~ Ns, for 11 -+ 00, with

ro(A) = A (20)

rn(A) = U?;ol ri (A) 0 rn-i-l(A) : (21)

A* = lim Rn(A). (22)
n-oo

Closed sub sets are important organisational struc­
tures, especially in the light of the fact , that we can
only populate part of sequence space, once the compo­
nent number strings increases.

We should keep in mind, that we have dealt here with
a system consisting of 4-bit components. The complex­
ity of interactions in such a simple system as Figure 3
demonstrates, is astonishing. We expect the two basic
behavioral classes, parasitic interaction and metabolism,
to emerge in a variety of forms in systems with longer
strings.

4 Evolution

As we have· seen, the dynamics in this small system
quickly settles into one of its attractor states. The ques­
tion, however, arises, whether there is a perspective for
evolution, that is, for a sequential exploration of possibil­
ities. For evolution to happen, an occasional mutation of
one string into another should lead to a cascade of newly
produced string types, that lead to a new equilibrium.
We have shown this to happen in a N = 9 system [7],
and will adopt the results learned there.

We have been using a mutation as a motor for oc­
casional change. A mutation hits each string with a
probability depending on its size. We define q to be
the probability that one element of a randomly selected
string changes to another symbol, here "0" to "1" and
vice versa. Since each element may be hit, this is a length
dependent change and the prob ability that at least one
error occurs in astring is Q(I) = Nq, with the provi­
sion that q < < *. Evidently, this mutation probability
depends linearlyon the concentration of string sorts in
the re action vessel. That is to say, a more successful
string sort will spawn more variations. Two-bit muta­
tions are then Q(2) = (N q)2 where we neglect the fact
that sometimes back-mutation may happen . In Nature,
at least on instance of this type of mutations occurs in
mutations caused by cosmic radiation.

Mutation does open up new transformation pathways
between string sort, something Bagley et al. term a
stochastic metadynamies [6].

Suppose we start our system by sort S(7). Since this
is a self-replicating string sort, nothing interesting will
happen, unless the mutation process intro duces one of
its nearest neighbors s(3),s(5),s(6),8(15). The reaction
table shows, that the appearance of s(6) will have no
consequence, whereas the appearance of s(3), s(5), 05(15)

allows the system to switch to another attractor. Fig­
ure 10, left, shows the effect of introducing 05(5). As a
result, the interaction graph of Figure 3 (d) comes into
play, and s(l) dominates. Figure 1O,right, is the evo­
lution from selfreplicator s(l5) to the metabolism con­
sisting of s(l) 05(2), s(4) , 5(8). This has been achieved by
introducing 5(12), a two-bit mutation from 5(15), in spu­
rious concentration .

5 Conclusion

We have examined a very simple self-organising sys­
tem. The main idea was to introduce a second form
of the information carriers of our system, the sequences
of binary numbers. This has been accomplished by us­
ing an operative matrix form for the strings. We then
have defined a particular interaction between matrices
and strings and considered the interaction itself as some
sort of areaction with input and output. The low-level
(" atomic") computations in the system have thus been
likened to chemical reactions in the real world.

lt has been shown that closed subsets of strings ex­
ist which can be considered as organisations. Under the
assumption of one particular folding, these subsets of
strings might be studied in their 2-dimensional matrix
form alone, effectively yielding an interesting dass of
mathematical objects that are dosed under the proposed
non-linear interaction.

We also dealt with the dynamics of the competitive
system naturally emerging, with reactions going on be­
tween different species of strings. As in other artificial
systems [5, 6, 9, 10, 11] an attractor state was reached
relatively quickly, beyond which nothing interesting hap­
pened any more. However, we al ready demonstrated
powerful evolutionary effects brought about by the in­
clusion of a mutation or the potential of length changing
interactions. Systems with longer strings will certainly
possess different metabolie networks, and it is dear that
the behavioral flexibility in such systems will be enor­
mous.

2 3 4 5 6 7 8 11

1 (1,2) (1,2,3) (1,2,3,4) (1,2,3,4,5) (1,2,3,4,5,6) (1,2,3,4,5 ,6,7) (1,2 ,3,4 ,5,8 ,10,12)

(4) 1,3 (1,2,4) (1,2,4,8) (1,2,3,4,8) (1,2,3,4,5,7) 1,3,5,7,11,13,15 1,3,5,7,9,11,13,15

7 (4,8) 1,3,5 1,3,5,7 (1,2,4 ,8, 12) (1,2,3,4,8,12)

(8) 7,15 (4,8,12) 1,3,5,15 1,3,5,7,15

15 (8,12) 7,11,15 7,11,13,15 1,3 ,5,9,15

1:3,15 13,14,15 7,11,13,14,15

14,15

Table 4: Closed subsets of elements with up to 8 members. First column: Self-replicators. In parenthesis: Subsets which
occasionally prod uce the destructor.

9 11 13 15

(1,2 ,3,4,5,8,10,12,15) (1,2,3,4,5,6,8,9,10,12,15) (1,2,3,4,5,7,8,10,11,12,13,14,15) (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

Table 5: Closed subsets with more than 8 members. All subsets occasionally produce the destructor.

S •• 17 • "--'---, .
". _5 , So., . .•.. .

-. Q
o.e " 8oft3 e . -, '

o.e . . 0.8 \ \ 80ft 10 .. --. '. Sor1 12 --
0.7 \

... ts-··
\

0.1 0.1
\

t t
\
\

0.5 '.
\

~ . . ~ \
0 .. 0 .. \

i
\

03 \
\

0 .. 0 .. \
--->,..

~::'-_
0.' ----/

0 0
0 '50 200 0 50 '00 '50 200 --

Figure 10: Evolutionary dynamies. Left: A I-bit mutation causes 8(5) to appear. This leads to 8(1) as the dominant string
sort after the transition. Right: A 2-bit mutation causes 5(12) to appear. The result is the emergence of the metabolism of
Figure 7.

Acknowledgement

I have enjoyed discussions with Dr . Walter Fontana. Mr.
Helge Baier has provided me with the data of Table 4
and 5.

References

[1] W . Banzhaf, Self-replicating sequences of bi­
nary numbers, Computers and Mathemat­
ics, 26 (1993) 1

[2] M. Eigen, Steps toward Life: a perspective
on evolution, Oxford University Press, 1992

[3] M. Eigen, P. Schuster, The Hypercycle - A
principle of natural self-organization, Part
A-C, Naturwissenschaften 64 (1977) 541
and 65 (1978) 7, 341

[4] W. Banzhaf, Self-replicating sequences of bi­
nary numbers - Foundations land Il, Bio­
logical Cybernetics, 69 (1993) 269 and 275

[5] R.J. Bagley, J. D. Farmer, Spontaneous
Emergence of a Metabolism, in: C.G . Lang­
ton, C. Taylor, J.D.Farmer , S. Rasmussen
(Eds.) , A rtificial Life Il. Addison-Wesley,
Redwood City, CA, 1991, 93

[6] R.J . Bagley, J.D. Farmer, W. Fontana, Evo­
lution of a Metabolism, in: C.G. Langton,
C. Taylor, J.D .Farmer , S. Rasmussen (Eds.),
Artificial Life Il. Addison-Wesley, Redwood
City, CA , 1991, 141

[7] W . Banzhaf, Self-replicating sequences of bi­
nary numbers - Foundations III, to be pub­
lished

[8] W . Fontana, L. Buss, " The arrival of the
Fittest" : Toward a Theory of Biological Or­
ganization , Bulletin of Mathematical Biol­
ogy, submitted

[9] W. Fontana, Algorithmic Chemistry, in:
C.G. Langton, C. Taylor , J .D.Farmer,
S. Rasmussen (Eds.), Artificial Life Il.
Addison-Wesley, Redwood· City, CA , 1991 ,
159

[10] J.D . Farmer, S.A. Kauffman, N.H. Packard ,
A utocatalytic Replication of Polym ers , Phys­
ica D22 (1986) 50

[11] S. Rasmussen, C . Knudsen, R. Feldberg, Dy­
namics of Programmable Matter, in: C.G.
Langton , C. Taylor, J .D.Farmer, S. Ras­
mussen (Eds.), Artificial Life Il. Addison­
Wesley, Redwood City, CA, 1991,211

Genetic Programming

Frank Klawonn
Department of Computer Science

University of Braunschweig
Bültenweg 74/75

D-38106 Braunschweig, Germany
Tel. (+49)(531)391-3293, Fax (+49)(531)391-5936, E-Mail klawonn@jbr.cs.tu-bs.de

Abstract

Evolutionary computation comprises problem
solution techniques that are based on ideas in­
spired by the process of natural evolution. Ge­
netic programming, one of the branches of evo­
lutionary computation, provides a framework
in which solutions to a problem are generated in
the form of a strategy in a LISP-like notation,
instead of a parameterized form, which is used
by most ofthe algorithms in evolutionary com­
putation. This paper gives a short introduction
to the basic techniques in genetic programming
and abrief overview of possible applications.

Keywords: Evolutionary computation, genetic pro­
gramming

1 Introduction

The process of natural evolution provides the basic ideas
for evolutionary computation techniques. Most of these
techniques encode the possible solutions to a problem in
the form of a real-valued vector, like in evolution strate­
gies or sometimes in evolutionary programming, or in
the form of astring of fixed length. Such codings are
weil suited for parameter optimization and for problems
where solutions have a canonical representation in very
restricted and fixed form.

However, for many complex problems the solution can­
not be given in a parameterized form, but only in terms
of a strategy or a computer program. In order to apply
the ideas of evolutionary computation to the evolution
of optimal strategies or programs, an appropriate formal
framework has to be found. In [2, 6] modified genetic al­
gorithms are applied in order to leam the rule base of a
fuzzy controller in the form of if-then rules. Such a rule
base can be interpreted as a simple program or strategy.
However, these rules are still very restrictive and a more
general framework for formulating solution strategies is
needed.

J.R. Koza, who developed the genetic programming
paradigm [7, 8], chose for various reasons LISP as the
language in which the solutions have to be encoded. Of
course, the genetic operators have to be adapted to the
framework of LISP-programs as chromosomes.

The paper is organized as folIows. After a short intro­
duction to a LISP-like notation in section 2, we explain
the basic methodology in genetic programming in section
:3. The fourth section reviews brießy some application
areas of genetic programming. Although the theoretical
analysis of genetic programming is still in a very early
state, we point out some approaches in this direction in
section 5.

2 Coding of a Solution in a LISP-Like
Style

What kind of programming language should be chosen
for coding possible solutions? It should have a very sim­
ple syntax and substructures or subroutines must be eas­
ily identifiable. LISP (LISt Processing) offers these fea­
tures.

Therefore, let us shortly review the basic constructs
of LISP, slightly modified for our purposes. In LISP
one distinguishes between symbols for functions and for
terminals (constants or variables). Besides these symbols
only brackets are needed. Let:F and / denote the set
of function symbols and terminals, respectively.

An S-expression or a list is defined as folIows.

1. t is a list for any t E 7.
2. If f E :F is a function symbol for a func­

tion of n arguments and i 1 , .•• , in are lists, then
(J i 1 •.• in) is also a list.

:3. No other strings than those defined in 1. and 2. are
lists.

We can associate to each list i a function in the fol­
lowing canonical way.

1. If i = t where t E /, then we identify i with the
function taking the constant value t, whenever t is
a terminal standing for a constant. In the case that
stands for a variable, then i is the identity function
(in that variable).

2. If i is of the form i = (J i 1 • •• in) as described
above and the list i j is associated with the function
gi(x~i), ... , xii)) where i = 1, ... n, then we identify
i with the function

Figure 1: The tree representation of the list (1).

Example. Assume:F = {+, *, -, sin} and T
{x,y,z,O,l,7r}. Then the list

(+ (sin x) (* 7r y))

is associated with the function

!(x, y) sin(x) + 7r' y.

(1)

Note that we understand the functions +, *, and - as
functions of exactly two arguments, i.e. we do not al­
low a list like (+ x y z). In order to express the
function !(x, y, z) = x + y + z, we have to use either
(+ x (+ y z)) or (+ (+ x y) z). This restric­
tion makes the definition of genetic operators more easy.

sin is of course a function of one argument.

lt is not necessary that the functions in :F operate on
real numbers. Boolean functions, functions on strings, or
on arbitrary abstract domains are also thinkable. How­
ever, what we require is that each function in :F is defined
for any possible input. If this is not the case like for ex­
ample for the logarithm, one has to choose an arbitrary
fixed value as the output for those values for which the
function is not defined. lt might be reasonable to en­
rich the set of terminals T with an extra constant error,
which is chosen as output if a function is not defined
somewhere.

The representation of a list as astring over the alpha­
bet of function symbols, terminals, and brackets is very
convenient for storing them in a computer. But for the
way in which the list was defined as a composition of
functions, trees seem to be more suitable. A list can be
transformed into a tree in the following way. The no des
are the terminals and function symbols appearing in the
list. Anode representing a function symbol is connected
to its 'argument' nodes. In this way, the terminals be­
come the leaves of the tree. The tree corresponding to
the list (1) is shown in figure 1.

The tree representation of a list is also appropriate
for genetic programming, since in this coding genetic
operators can be defined easily.

3 Description of Genetic Programming

The principal idea in the genetic programming paradigm
is to evolve a population of LISP-programs or lists as
they are introduced in the previous section in order to
find a solution to a given problem. Based on a problem
dependent fitness function that evaluates the members

of the population with respect to their capabilities to
solve the problem, selection can be defined in the usual
manner. Even more than in genetic algorithms, the
most important genetic operator for genetic program­
ming is crossover. Of course, crossover has to be rede­
fined for lists to guarantee that the recombination of two
list yields again a list. The principle scheme of genetic
programming is as folIows.

1. Choose suitable sets :F and T of functions and ter­
minals.

2. Create a random initial population of lists.

3. Determine the fitness of the lists in the population.
The fitness of a list should reflect how weH its cor­
responding function solves the given problem.

4. Carry out selection based on fitness.

5. Apply crossover.

Repeat steps 3. - 5. until the termination criterion is
satisfied.

The termination criterion is as usual in evolutionary
computation defined on the basis of a maximal number
of generations, desired quality of the best chromosome
(list), no improvements of the fitness in the last genera­
tions, etc.

In the following, we describe more detaiIed the single
steps to be carried out when solving a problem by genetic
programming.

3.1 Function Set and Terminal Set

First of all , suitable finite sets of a functions, and termi­
nals have to be determined. lt is clear that at least the
input variables for the problem (if there are any) have to
be included in the set ofterminals. But in addition usu­
ally so me constants are also needed. IfBoolean functions
are considered then the only constants ° and 1 can be
added to the terminals. However, for real-valued func­
tions it is impossible to include all real numbers in the
set of terminals. In this case only a few 'representative'
numbers should be considered as terminals. Other con­
stants can be represented indirectly by iterated applica­
tion of functions from the function set to those constants
that belong to the terminals.

The closure property of the function set and the ter­
minal set is very important in genetic programming. lt
requires that any terminal and any value or data type
returned by any function is accepted by each function
of the function set as its argument. This seems to be
quite a restrictive postulate. But it can be easily met by
extending partially defined functions simply by choosing
an arbitrary fixed output for those arguments for which a
function is not defined. For example, the division opera­
tion may yield the usual quotient unless the denominator
is zero. Then we define for instance the zero as the result
of the division. Another possibility is to introduce the
value undefined, which then can also appear as an argu­
ment of function leading again to the result undefined.
Various approaches to the solution of this problem are
discussed in Chapter 6 of [7]. Another idea using types
is proposed in section 3.6.

Besides the c10sure property, the choice of the func­
tions and terminals should guarantee for sufficiency, Le.
the lists that can be constructed from the functions and
terminals must be capable of solving the given problem,
or at least include a satisfactory approximate solution.
For instance, when one is looking for a Boolean function,
it is weil known that the function set {AND,OR} is not suf­
ficient for constructing an arbitrary Boolean ftinction, in
opposition to the set {NAND}. Sufficiency is, of course, a
must. But it is not required that the function set is min­
imal in the sense that without one of the functions the
sufficiency property would be lost. Extraneous functions
may lead to solutions that can be better interpreted bya
human. For example, expressing a Boolean function only
on the basis of NAND usually does not help to understand
the character of the function. Nevertheless, it cannot be
recommended to use too many extraneous functions and
especially extraneous terminals, since it leads to larger
search spaces.

3.2 The Fitness Function

The fitness of a list should indicate how weil or how bad
its corresponding function solves the given problem. The
raw fitness of a list is usually defined on the basis of a
number of test cases. The test cases should be a rep­
resentative set of inputs. For each test case the desired
result and the output given by the function associated
with the list are compared and the (absolute value of
the) error is calculated. The sum of these errors is the
raw fitness of the list. For some problems there might
be no fixed desired output. Instead of this, the solution
is required to obtain as many score points as possible.
In this case the sum over all score points collected in the
test cases gives the raw fitness.

The standardized fitness is defined in such a way that
the goal is the minimization of the standardized fitness
which should only take non-negative values. lf the raw
fitness measures the errors then the raw fitness can be
chosen as the standardized fitness. lf the raw fitness
counts the scoring points, the standardized fitness can
be defined as the maximal number of obtainable scoring
points minus the raw fitness.

Koza [7, 8] proposes to introduce the adjusted fitllesS
which transforms the standardized fitness into the unit
interval by

a(l)
1 + s(l)

where s(l) and a(l) are the standardized and the nor­
malized fitness values of the list (chromosome) l.

Finally, the normalized fitness n(l, t) of the list l in the
population of generation t, on which selection is based,
is given by

a(l)
n(l, t) =

L:l'EP(t) a(l')

where P(t) is the population of generation t.

3.3 The Initial Population

The initial population is created by producing a number
of random lists. In principal, this is done by selecting

randomly one of the elements of the set C = :F U T. If a
function f E :F of n arguments was chosen then again n
elements of C have to be selected at random. The pro­
cess is continued recursively, until finally only terminals
were selected and thus the creation of a random list is
completed.

This simple procedure can lead to lists whose corre­
sponding trees have a high depth and might be very un­
balanced. To avoid this effect, a maximal initial depth of
the trees is specified (usually 6) and for each depth from
two to the maximal initial depth equally many trees are
generated randomly. Moreover, 50% of the trees should
be full, Le. the length of the path from the root to each
leaf is the same for allleaves of the tree. Finally, dupli­
cate lists should be avoided.

A typical population size is 500, however, for very
complex problems a larger population size is recom­
mended.

3.4 Selection

Usually roulette wheel selection based on the normal­
ized fitness is carried out. When dealing with larger
populations it might enhance the performance of genetic
programming when fitter lists gain an additional bonus
during selection.

3.5 Crossover

Crossover is the main genetic operator within the frame­
work of genetic programming. The crossover operator
has to be modified with respect to lists. Allowing ar­
bitrary crossover points would in general lead to incor­
rect lists. The idea is that crossover should exchange
'sub-functions' of lists, meaning that in the tree repre­
sentation subtrees are exchanged. Therefore, crossover
is better explained on the level of trees than on the level
of lists. When two lists are selected for crossover, for
each of them anode in their tree representation is chosen
randomly. In each list the chosen node marks a subtree.
These subtreesare then exchanged by crossover.

Consider the list (1) with its corresponding tree shown
in figure 1 and the list

(sin (+ (sin (+ :x y)) z)) (2)

with its associated tree illustrated in figure 2.
Assurne that these two list were selected for crossover

and that for list (1) the *-node was chosen as crossover
point whereas for list (2) the second (lower) sin-node
was chosen. In figures 3 and 4 the respective nodes are
marked by a dashed box and the induced subtrees are
framed in a box.

After crossover the subtrees are exchanged resulting in
the trees illustrated in figures 5 and 6 that correspond
to the lists

(+ (sin :x) (sin (+ :x y)))

and
(sin (+ (* 'Fr y) z)),

respecti vely.
It is very important to note that in opposition to ordi­

nary genetic algorithms, the application of the crossover

Figure 2: The tree representation of the list (2).

Figure 3: The crossover point and the corresponding
su btree in list (1).

Figure 4: The crossover point and the corresponding
subtree in list (2).

Figure 5: The first tree after crossover.

Figure 6: The second tree after crossover.

operator to two identical lists (trees), does here in gen­
erallead to two new lists that do both not coincide with
their parents. Therefore, where in genetic algorithms
the mutation operator is needed to maintain a certain
variety in the gene pool, in genetic programming a rich
variety is already produced by crossover alone. There­
fore, crossover (together with selection) is considered as
the primary operator in genetic programming, whereas
mutation as well as other additional genetic operators are
of minor importance. In the next subsection we shortly
discuss some of these secondary operators.

Typically, a crossover rate of 90% is chosen. The
crossover point is usually selected in such a way that the
terminal nodes, Le. the leaves, get only a 10% chance
of being chosen. The remaining 90% of the crossover
points are distributed equally among the internal nodes
representing functions.

Crossover can create more and more complex lists. To
reduce the size of the search space it is recommended to
limit the depth of trees and to cancel a crossover opera­
tion when a tree is generated that exceeds the maximal
allowed length of for instance 17 nodes.

3.6 Other Operators and Modifieations

The definition of mutation for trees is straight forward.
An arbitrary node is chosen randomly and the whole
subtree below this node is replaced by a random tree.

Permutation is inspired by the inversion operator for
genetic algorithms. A random internal (function) node
is chosen and its arguments are permutated randomly.

More important than mutation and permutation is
editing which simplifies lists on the basis predefined rules
like

Replaee (NOT (NOT x)) by x.

Editing leads to shorter solutions and helps also pro­
tecting good but clumsily stated solutions like (NOT (NOT
(NOT (NOT x)))), co ding simply the solution x, against
destruction by crossover.

Another way to avoid the disruptive effects of
crossover is the application of encapsulation which re­
places a subtree by a single newly defined node which
cannot be destroyed by crossover. Kinnear [4] discusses
a similar concept called module acquisition which not
only encapsulates a subtree or composed function, but
also adds it to a module library which can be used by
other lists by module acquisition.

We introduced types into genetic programming for ap­
plications in medical diagnosis. Here we have the prob­
lem of a large number of different measurement values of
different types (real, integer, boolean, and even linguis­
tic values). Moreover, it is very common to deal with
missing values in medical diagnosis. To overcome these
problems and to obtain solutions that are easier to inter­
pret, we defined types for the arguments of the functions
and admitted only those list in which each function had
its correct types as arguments.

4 Some Application Areas

Genetic programming is a very flexible technique and
can therefore be applied in many fields. In this section
we mention some standard application areas of genetic
programming. Large collections of examples are included
in [7, 9] where also details can be found.

4.1 Symbolie Regression

A very common problem is that of identifying an un­
known function which reflects some input-output be­
haviour on the basis of some given data. The idea of
symbolic regression is to find a suitable function as a
composition of some basic functions like polynomials
or trigonometrie functions. These functions and some
standard operations like addition, multiplication etc. are
then considered as the function set for genetic program­
ming. The terminals should include the input variables
and very few typical constants. The lists engendered
by genetic programming are then interpreted as input­
output functions. The fitness of such a list is defined on
the basis of the sum of (squared) errors that is produced
by the corresponding input-output function when it is
applied to the given data set. Symbolic regression can
also be used for solving differential or integral equations.
The lists or the respective functions are interpreted as
possible solutions of the equations. The fitness is again
computed on the basis of the errors caused by the list as
a solution for some typical points.

4.2 Optimal Control

Related to symbolic regression is the problem of optimal
control where we are looking for a transfer function of a
controller. In some cases there might be data available
obtained from observing an operator. Then the control
problem reduces to symbolic regression. If only the pro­
cess itself or a simulation of it is available, fitness has
to be defined on the basis of how well the transfer func­
tion defined by a list can cope with the process or the
simulation.

4.3 Planning, Emergent Behaviour, and
Game-Playing

In opposition to symbolic regression and optimal con­
trol, planning, emergent behaviour, and game-playing
are usually based on strategies that are not described
in terms of a real-valued input-output function. The
strategies are usually more complex and thus a prob­
lem dependent function set has to be defined for genetic
programming. Also the definition of fitness may vary
strongly from problem to problem.

5 Theoretical Analysis of Genetic
Programming

Although there are a lot of activities in evolutionary
computation directed to theoretical analysis, for many
algorithms such a theoretical analysis is missing com­
pletely or only a few investigations were made that give
some hints about the power of the methods. Most re­
sults were of course obtained in the older fields of genetic
algorithms and evolution strategies.

For the young discipline of genetic programming only
a few attempts for a theoretical analysis were made now,
wh ich do not explain the behaviour of genetic program­
ming satisfactory.

Koza [7] discussed the notion of schemata in .genetic
programming on an informal basis. He defines a schema
as a subtree. Although his arguments seem to be in­
tuitively appealing, he does not carry out any compu­
tat ion regarding schemata and does not even mention
Mühlenbein'ss criticism [10] of wrong interpretations of
the schema theorem.

Altenberg [1] examines the capability of evolvability
for genetic programs, i.e. the ability of a population to
produce variants fitter than any yet existing. He points
out that the high recombination rates in genetic pro­
gramming do usually not support the evolvabilty, al­
though they might be necessary for finding good solu­
tions quickly.

Most of the investigations on genetic programming are
more experimental as for example in [4, 5] than based
on a rigorous theoretical background. Until now one
must rely on heuristics, when one wants apply genetic
programming. Nevertheless, the successful applications
show that genetic programming is a technique worth a
closer examination.

References

[1] 1. Altenberg, The Evolution of Evolvability in Ge­
netic Programming. In: [3], 47-74.

[2] J. Hopf, F. Klawonn, Learning the Rule Base of a
Fuzzy Controller by a Genetic Algorithm. In: R.
Kruse, J. Gebhardt, R. Palm (eds.), Fuzzy Systems
in Computer Science. Vieweg, Braunschweig (1994),
63-74.

[3] K.E. Kinnear (ed.), Advances in Genetic Pro­
gramming. MIT Press, Cambridge, Massachusetts
(1994).

[4] K.E. Kinnear, Alternatives in Automatie Function
Definition: A Comparison of Performance. In: [:3],
119-14l.

[5] K.E. Kinnear, Fitness Landscapes and Difficulty in
Genetic Programming. Proc. 1st IEEE Conference
on Evolutionary Computation, Orlando (1994),
142-147.

[6] .1. Kinzel, F. Klawonn, R. Kruse, Modifications of
Genetic Algorithms for Designing and Optimizing
Fuzzy Controllers. Proc. 1st IEEE Conference on
Evolutionary Computation, Orlando (1994), 28-33.

[7] J.R. Koza, Genetic Programming: On the Program­
ming of Computers by the Means of Natural Selec­
tion. MIT Press, Cambridge, Massachusetts (1992).

[8] J.R. Koza, The Genetic Programming Paradigm:
Genetically Breeding Populations of Computer Pro­
grams to Solve Problems. In: [11], 203-352.

[9] J.R. Koza, Genetic Programming 11: Automatie
Discovery of Reusable Programs. MIT Press, Cam­
bridge, Massachusetts (1994).

[10] H. Mühlenbein, Evolution in Time and Space - The
Parallel Genetic Algorithm. In: G. Rawlins (ed.),
Foundations of Genetic Algorithms. Morgan Kauf­
mann, San Mateo (1991), 316-337.

[11] B. Soucek and The IRIS Group (eds.), Dynamic,
Genetic, and Chaotic Programming. Wiley, New
York (1992).

Genetic Programming and Redundancy

Tobias Blickle· and Lothar Thiele t
Lehrstuhl für Mikroelektronik

Universität des Saarlandes
D-66041 Saarbrücken

Abstract
The Cenetic Programming optimization method
(CP) elaborated by John Koza [Koza, 1992] is
a variant of Genetic Algorithms. The search
space of the problem domain consists of com­
puter programs represented as parse trees, and
the crossover operator is realized by an ex­
change of subtrees. Empirical analyses show
that large parts of those trees are never used or
evaluated which means that these parts of the
trees are irrelevant for the solution or redun­
dant. This paper is concerned with the iden­
tification of the redundancy occuring in G P. It
starts with a mathematical description of the
behavior of G P and the conclusions drawn from
that description among others explain the "size
problem" which denotes the phenomenon that
the average size oftrees in the population grows
with time.

1 Introduction

A growing range and variety of probl.ems are sol~ed u~­
ing the Genetic Programming Paradlgm. Especlally I.n
control systems the ability of GP to generate symbohc
solutions makes it an interesting optimization tool for a
plenty of problems. But to achieve good solutions in rea­
sonable time a lot of parameters have to be adjusted, and
often only heuristics can help to set these parameters.

It is weil known that the representation of the possi­
ble solutions as parse trees allows the trees to grow with
time often without improving the current best solution
("siz~ problem" or "bloating"). This problem is often ad­
dressed in connection with some kind of "schema theory"
for GP: to overcome the decrease in efficiency caused by
bloating some mechanism is introduced to keep track of
the freq~ency and saliency of subtrees (named "schema")
[Tackett, 1994; Rosca and Ballard, 1994]. These infor­
mations are used to select "better" subtrees for crossover
to achieve a better convergence.

Another method to avoid "oversized" solutions is to
add some penalty to the fitness function for too big trees:

I it (i) = Cl! rawfi t(i) + ß sizeof(i)

• blickle@ee.uni-sb.de
t thiele@ee.uni-sb.de

If the fitness is to be minimized, larger trees are "pun­
ished", because they get a higher fitness than small~r
ones. The adjustment of the parameters Cl! and ß JS
the main problem of this approach because they de­
pend heavily on the problem and the r~wfit functi~n.
Examples can be found in [Koza, 1992; Kmneth E. Km­
near 1993]. Conor Ryan recently suggested a special
case' of multi-modal fitness functions named "Pygmies
and Civil Servants" [Ryan, 1994] where he uses two cri­
teria to determine the fitness: one list keeps track of
the best rawfit individuals, in a second list the sorting
criterion is the size of the individuals.

In this paper both the phenomenon of bloating and
the unsatisfying convergence of the search process are
explained by means of the redundancy in .the trees. An
exact analysis of these phenomena requues a mathe­
matical description of the evolutionary process du ring
a generation. This description is given in the nex~ sec­
tion where also a simple theorem for convergence IS de­
rived. The subsequent section elucidates some effects of
redundancy and explains the "size problem". Section 4
suggests a control mechanism to reduce .redun~ancy. A
discussion of the results and a companson wJth other
approaches follows in Section 5.

2 Generational Behavior of GP

To describe the behavior of trees during a GP run one
needs an analysis of both the reproduction and the
crossover phase. In the following we assurne that re­
production and crossover are done sequentially: first
a reproduction phase creates an intermediate pop~la­
tion and crossover is then performed on the fractlOn
Pe of this inter mediate population to get the p~p~la­
tion for the next generation. This kind of descrlptlOn
differs form that of the Genetic Programming Paradigm
in [Koza, 1992] but is mathematically equivalent.

2.1 Reproduction Phase

Definition 2.1 The reproduction rate s'(I) denotes the
expected number 01 individuals with fitness value I afl:er
the reproduction phase. s(l) denotes the number 0/ m­
dividuals with fitness value I be/ore reproduction.

The reproduction rate s' depends on the fitness value,
the fitness distribution of the population, and the repro­
duction method chosen . Using this definition a classi-

fication of the reproduction methods is possible. The
ratio :Hl gives the expected number of copies of one
individual with fitness f. A reasonable selection method
should of course favour good individuals by assigning

them a ratio ·.'(H > 1 and punish bad individuals by a

. iJJl 1 ratio ""iUT < .
Weil known is for example the reproduction

rate for fitness proportionate selection sfp (I) =
s(l) i:t L.T;P /it(T) where M is the size of the popula­

tion P and fit(T) represents the fitness value of the
individual T (see e.g. lGoldberg, 1989)).

We concentrated our work on tournament selection
[Goldberg and Deb, 1990], that works as folIows: Ran­
domly choose a certain number t of individuals (with
or without replacement) from the population and take
only the best individual for the next population. This
process is repeated as often until the desired population
size is reached. The tournament size t strongly affects
the behaviour of the reproduction method.

The expected number of best individuals for tourna­
ment selection (with replacement) can be exactly derived
(see [Rheinert, 1994]).
Theorem 2.1 Let M be the population size, s(/6) the
number of current best individuals with fitness /6. Then
the expected number of best individuals after performing
tournament reproduction with tournament size t is

SI(/6) = M (1- (1- SCf;)) t) (1)

Proof: For each tournament t individuals are ran­
domly chosen from the population. The probability
that no best individual participates in such a tourna-

ment is given by (1 - ''1;») t, as 1 - ''1;) is the prob­

ability to select a non-best individual. The probability
that at least one best individual is in a tournament is

then 1 - (1 - • (lt)) t. In this case the best-fit individual

will win the tournament. As exactly M tournaments are
held the expected number of best individuals is given by
Equation 1. 0

Theorem 2.2 For a small number s(/6) ~ M of best
individuals with fitness /6 the reproduction rate of tour­
nament with tournament size t is given by

.s'(/6) ::::: t s(/6) (2)

Proof:

S/(/6,P) = M(l-(l-
S
Cf;)Y)

::::: M(sCf;)=ts(/6)

o
The choice of the tournament size depends on the pop­

ulation size and the current number of individuals with
best fitness. If the tournament size is too high there will
be too many best individuals and the GP will perform
badly and get stuck at a local optimum.

2.2 Crossover Phase and Redundancy

Definition 2.2 The edge A in tree T is called redun­
dant if for all values of the leaves (terminals) the func­
tion represented by tree T is independent of the subtree
located at edge A.

Note:

• If the edge A is redundant it follows imme­
diately that all edges in the subtree located
at edge A are redundant , too.

• The redundancy of en edge A in general
depends on the context.

• All nodes located at redundant edges are
redundant nodes.

• The non-redundant no des are also called
"atomic" [Tackett, 1994].

Definition 2.3 The proportion of redundant edges in a
tree T is given by

r(T) = number of redundant edges in T (:3)
P number of all edges in T

Definition 2.4 The redundancy dass T* is the set of
all trees T that only differ from subtrees at redundant
edges, i. e. for any two trees Tl, T2 E T*, Tl can be
transformed into T2 only by changing subtrees at redun­
dant edges of Tl.

A tree can only belong to one redundancy dass, and all
members of the dass have the same fitness value denoted
by fit(T*).

Now it is easy to compute the probability p,(T) that
a tree T of the redundancy dass T* survives crossover,
i.e. it remains in the dass T*.

Theorem 2.3 Let Pe be the probability of crossover and
T a tree of the redundancy class T*. The probability of
tree T to remain in class T* after crossover is given by

p.(T) ~ 1 - Pe + PePr(T) (4)
Proof: With probability 1 - Pe the tree does not par­
ticipate in crossover and with probability PePr (T) the
crossover is performed at a redundant edge. In both
cases the tree Tremains in the dass T*. The "~" sign
takes into account that a tree also survive if crossover is
performed at a non-redundant edge when a "matching"
subtree is inserted. But the probability of that event to
occure is very smalI. 0

The average probability of an arbitrary member ofthe
redundancy dass T* to survive crossover is

p.(T*) ~ 1 - Pe + PePr(T*) (5)

with Pr(T*) = LTW:jr(T) the average proportion of

redundant edges in the trees of dass T*.
lt follows from Equation 4 that within a dass the more

redundant trees are more likely to survive. On the other
hand it is very difficult to predict whether the redun­
dancy of a tree will increase or decrease once a redundant
crossover si te has been chosen as this depends on the size
of the new subtree being inserted. But this size is inde­
pendent of the redundancy, so in average the selection
mechanism will dominate and the redundancy within a
dass is expected to increase.

Theorem 2.4 Let Pr(T*) be the average redundancy of
the redundancy class T* before reproduction. The aver­
age redundancy Pr(T'*) after reproduction is in average
independent of the reproduction method and Pr(T'*) =
Pr(T*).

Proof: As the reproduction of any tree of the dass
T" is independent of the redundancy and each tree has

. .' fit TO .. the equal reproductlOn rate • fit(TO)) no tree IS gIVen
preference to. Tberefore, the redundancy will in average
remain constant after reproduction. 0

As aB statistical considerations in this paper Theorem
2.4 is only valid in average and the effective redundancy
during a GP run may significantly differ.

2.3 Generational Behavior

Now we are able to describe the behavior of the Genetic
Program over a whole generation.

Theorem 2.5 (Generational Behavior) Let f be the fit­
ness value of the trees of the redundancy class T* with
IT*I members and s(f) the total number of individuals
with fitness value f. The expected number of members
of T* in the next generation is given by

IT'" I ;::: IT* I ~(~1 (1 - Pe + PePr(T*)) (6)

Proof: IT*I';U? gives the expected number of members
of the redundancy dass T* after reproduction and before
crossover. Using this and combining 5 with Definition
2.1 Equation 6 is obtained. Actual Pr(T*) denotes the
average redundancy in the dass T* before reproduction
but it is used in Equation 6 as average redundancy after
reproduction. But in average these two values are equal,
as shown by Theorem 2.4. 0

Theorem 2.5 shows that the redundancy classes with
high redundancy will be given preference to. Condusions
from that will be drawn in Section 3.

In the following two different trees are compared.

Theorem 2.6 Let Tt and T; be two redundancy classes
with the same fitness value f but a different redundancy
(Pr(Tn = Pr(Tt) + a, a > 0). The ratio r of trees of
class Tt to trees of class T; after crossover is given by

Proof:

=

=

ITtl~ p.(Tt)

IT;I:H? p.(Tn

177lp.(Tt)
IT;I p.(Tn

ITtl p.(Tt)

IT;I P.(1'i) + Pea

(7)

o
lf we use Theorem 2.6 in the special case of only one

individual in each redundancy dass (i.e. we look at the

moment of appearance of these trees) it is possible to
trace the ratio r for k generations :

(k) (p.(Tt)) k

r ~ p.(Tt) + pca
(8)

It is assumed that the proportion of redundant edges
in average remains constant for the trees of the same
class T* over the generations. An exact reflection must
consider that this proportion varies (increases) with
time, e.g. p.(Tt) and aare a function of k. But the
basic statement of Equation 8 remains valid: the ratio
will approximately rise exponentially in k.

2.4 Convergence

"Good convergence" is one of the most desirable prop­
erties of an optimization method. To achieve tbis, it is
demanded that the current best individuals in a popula­
tion shall be in the generation at least once. By this the
current best solution will never be lost.

Theorem 2.7 (Convergence Theorem) Let Tb" be a re­
dundancy class with current best fitness /b and redun­
dancy Pr (Tn, s(/b) the total number of individuals with
fitness fb and s'(/b) the reproduction rate. At least one
member of the class Tb will in average be contained in
the next generation if the following inequality holds:

IT;I~fJ:1 (1- Pe + PePr(Tn) ;::: 1 (9)

Proof: This is directly obtained from Theorem 2.5. 0

If this statement is specialized for the case that only
one best individual shall survive, regardless from which
redundancy dass, the following inequality is obtained

s'(/b) --
s(/b) (1 - Pe + PePr(Tb)) ;::: 1 (10)

. -- 1
wlth Pr(Tb) = 'üb) L:T;lfit(T;)=fb Pr(T;) the average re-
dundancy of all trees with fitness /b.

Limiting oneself to a further specialization of Equation
10 with Pr(Tb) = 0, i.e. the current best trees are free
of redundancy, the condition that at least one best-fit
individual survives is tightened to

s' (/b)
s(/b) (1 - Pe) ;::: 1 (11)

This inequality gives a lower bound on the adjustment
of the reproduction rate. Using tournament reproduc-

tion the tournament size should be t = '.'8:? ~ 1 ~Pc .
The parameters of a GP run C~~:~ and Pe) should

be adjusted according to this theorem to achieve good
convergence.

3 Effect of Redundancy
In the previous section a mathematical description of the
Genetic Programming was carried out by introducing the
term of redundancy. Now some effects of this theory are
derived and experimentally verified. The 6-multiplexer
problem from [Koza, 1992] served as test problem. The

6-multiplexer problem was chosen because it allows to
determine the total redundancy in the trees. To achieve
this sequentially in each edge of every tree a boolean
NOT was inserted. If the insertion does not change
the function table of the tree this edge is redundant
according to Definition 2.2. This is a time consuming
mechanism but an easy way to determine the total re­
dundancy.

In the experiments the population size was M = 200 ,
and the probability of crossover Pe = 0.9 . The reproduc­
tion method was tournament, and the maximum tree
size was limited to 50 nodes. All data given are the av­
erage over 100 runs. Note that the fitness measure is the
number of errors in the function table of a tree , i.e. the
optimal individual has a fitness value of O.

According to Theorem 2.5 the redundancy in the trees
of a certain (not only the best) fitness value will increase
over time, because the trees are treated equal during re­
production phase but more redundant trees have a higher
chance to survive crossover. This expectation is verified
by Figure 1: in this single run, the GP was stuck at a
local optima from generation 4 to 15 and an increasing
redundancy is observed for all fitness values.

Fitness 15

4

o . f edundancy

Figure 1: The redundancy increases with time (6-
multiplexer problem , tournament size t = 10).

Another way to observe the increasing redundancy is
to continue a GP run even if a best solution is found .
[Koza, 1992] reported the phenomenon that after some
generations there are almost 70-80% best-fit individuals,
but almost all best trees are different . This can be ex­
plained straightforward with redundancy : the trees are
all different but belong to only a small number of differ­
ent redundancy classes. A very high redundancy makes
the trees robust against crossover. Figure 2 shows the
course of redundancy versus time.

Ci 200

~lH
Z

110

'"
100

"
10

"

__ Nurrberotditterentbest.fit1rees

_____ Numberotrodlndancyelas ...

O. S JJ ..
~

t
0. ,,8-

o . 2S

,.,.--............ .,.-,'~-"", ... "...,., .. -, ,,,--_ .. ,,. .. , ' ' ·1 0 12 ':> , - ~ -
• 10 20 30 4 0 1.. 0

Optimal solUtion found .1 generation 8 Generations

Figure 2: Redundancy versus time after occuring of a
best-fit individual

For a given fitnessvalue this increasing redundancy
can only be achieved by increasing the tree size, because
some "minimal size" in the atomic part of the tree is
necessary to reach this fitness. By this the tree size will
grow with time and the "size problem" can be explained
with redundancy. Figure 5 shows that the average tree
size for a given fitness value is smaller, if a higher repro­
duction rate is chosen. A comparison with the results
in [Tackett, 1994] is given in the next section. So if the
redundancy can be reduced the average tree size will be
reduced at the same time.

One way to achieve a reduction of redundancy is of­
fered by Theorem 2.5 : If the reproduction rate s' is too
low Theorem 2_5 implies that non-redundant trees have
a too small chance to survive and redundancy-free trees
will often vanish . Therefore a higher reproduction rate
should lead to lower redundancy. The results of the cor­
responding experiments with tournament reproduction
are shown in Figure 3 for a tournament size t of 2, 5 and
10. It can be seen that the redundancy decreases with
increasing selection pressure, e.g. the redundancy at gen­
eration 50 for tournament size 2 is alm ost twice as high
as the redundancy using tournament size 10. As the
convergence time is very different for various selection
pressure the relation between the average redundancy in
a population versus the average population fitness gives
a more meaningful description. In Figure 4 it can be
seen that ·the higher the selection pressure the lower the
redundancy. Note that a fitness value of zero is optimal.

The increasing redundancy makes it less likely to
choose a non-redundant edge as crossover site and
thereby hinders the evolution of new individuals. It
follows from this consideration that the probability to
escape a potential local optimum decreases with time.

Iftwo partial solutions with the same fitness score but
different redundancy occur at the same time, the less re­
dundant might be lost after few generations (Equation
8). If the GP is not able to combine the two partial solu­
tions during a limited time the loss of important genetic
material (i .e. one partial solution) is probable.

Looking at the redundancy from an individual 's point
of view it is advantageous to maximize the redundancy,
because it increases the probability of the individual to

0 .1

0.015

0.05

0.025

, , , , ,

,.,. .. -.. _--_ ..

"
J .** , . ,: ,:

I ,
I

20

-- Tournamentsizet=2
-----. Toumament size t=5
._--_.-- Toumament size t:.;'O

)0 '0 5 0

Generations

Figure 3: Increasing selection press ure leads to decreas­
ing redundancy

§'
.e

0 .5

§ 0.4

~ ..
co
I! .i 0 . 3

0.2

0.1

-- Toumament size t&2
-----. Toumamem size t=5
•••••••• Tournament size t=10

10 15 20 25 J O

Average Population Fitness

Figure 4: Average population fitness versus redundancy
with tournament reproduction

survive. From the viewpoint of GP as an optimization
method, the redundancy is unfavorable because it aggra­
vates the optimization process.

These considerations show the importance of redun­
dancy for the performance of the Genetic Programming
optimization method . One suggestion to control the re­
dundancy is given in the next section .

4 Control of Redundancy by Marking

The idea of marking is to avoid crossover at redundant
edges by marking all edges that are traversed during
evaluation of the fitness function: First the marking flags
of all nodes are cleared and if anode is evaluated dur­
ing the fitness calculation the corresponding flag is set.
After calculating the fitness function, only at redundant
no des the f1ags are still cleared . The crossover is then
restricted to edges with the flag set, i.e. non-redundant
edges. By this useless crossover sites are avoided.

The additional time consumption caused by setting
the marking flag is very low and the additional mem­
ory demands is one bit per node for the marking flag.
The method implies that some subtrees are not evalu-

:!l
50

Ci)

'" !
t- 40 ..
co
I! ..
>-<

JO

20

10

10 15

-- Toumament size t=2
•••••••• Toumament .ize t=10

20 JO
Average Population Fitness

Figure 5: Higher selection pressure leads to smaller tree
sizes for the same fitness value (maxtreesize = 50)

ated if some "run-time" condition is met. That can only
be achieved by a suited implementation of the GP. Also
the "total" redundancy can not be discovered, because
it depends on the ordering of the evaluation of the sub­
trees. Consider for example the boolean ANO function
and the tree ARO(FALSE,SUBTREE) where FALSE is a tree
that always returns the value false and SUBTREE is an
arbitrary tree . If the implementation evaluates the first
subtree at first, the second subtree SUBTREE is not tra­
versed because the result will be false anyway. By this
the SUBTREE will be discovered as redundant. But if the
implementation evaluates the second argument at first,
in some cases SUBTREE will be true in some cases false.
So both subtrees will be evaluated and the redundancy
will not be discovered.

The marking method also depends strongly on the
function set used to solve the optimization problem.

Experimentally we investigated the effect of the mark­
ing method for three problems taken from [Koza, 1992].

For the 6-multiplexer problem the performance was
almost doubled, as can be seen in Figure 6. The parame­
ter setting was the same as in the experiment described
above with a tournament size of 10. This problem is weIl
suited for the marking method because the usage of the
function set IF AND OR NOT allows an easy discovering
of the redundant edges.

Using the marking method for the truck backer up­
per problem an improvement in convergence of 20 % was
measured. The third example was the artificial ant prob­
lem, where the almost no improvement occurred .

5 Discussion

In Section 3 we explained the size problem using re dun­
dancy. In [Tackett , 1994] Walter Tackett states that the
average growth in size is proportional to selection pres­
sure, and he gives an example of a deceptive problem
solved with several selection methods to verify his state­
ment. We think that it is better to analyze the depen­
dency between the average population fitness and the
average tree size, rat her than between the time (num­
ber of generations) and the average tree size as done by

.,
~ f Standard Crossover

rn f Marking
Ö o.s
.~
:! .g
a: 0.6

0 .• L J ~~~ •• _-~~-~-_ ••. ~
,-_ .. -_ ...

0.2 l / /'~",.-.".
,~ ,-
10

-'
,-"-

20

,.' -~,

lO 40 ;0
Generations

Figure 6: Improving performance of the 6-multiplexer
problem using marking

Tackett. As a higher selec.tion pressure mostly leads to
higher fit individuals at an earlier generation and higher
fit individuals mostly are bigger it is natural that the
average tree size will grow faster under higher selection
pressure. But the relation between average fitness and
size has a higher meaningfulness. Figure 5 shows that
under higher selection pressure (tournament size 10) the
average tree size for given average fitness value is smaHer
than under lower selection pressure (tournament size 2).
Analyzing the tree size over time yields the same results
that Tackett has reported, but we do not think that this
correlation gives a valuation of a good parameter setting.

Another observation reported by Tackett is that no
"bloating" at all occurs if there is no selection. This can
easily be deduced from the theory of redundancy: with­
out selection all edges in all trees are redundant (accord­
ing Def. 2.2). From Pr(T) = 1 follows p.(T) = 1 for all
trees, i.e. every tree will "survive" crossover.

6 Conclusions

In this paper the main emphasis was put on the mathe­
matical description of the behavior of the Genetic Pro­
gramming optimization method by introducing the term
of redundancy. The theory showed that high fit and high
redundant trees will spread exponentially in the popu­
lation. The conclusions drawn gave an explanation of
the "size problem" and showed a dependency between
selection pressure and redundancy.

Further the new crossover operator "marking" was in­
troduced that can improve the convergence by avoiding
redundant crossover sites. Though this method may not
be suited for many problems it demonstrates the influ­
ence of redundancy on the evolvability of a program.

References

[Goldberg and Deb, 1990] David E. Goldberg
and Kalyanmoy Deb. A comparative analysis of se­
lection schemes used in genetic algorithms. Technical
Report 90007, The Clearinghouse for Genetic AIgo­
rithms, Department of Engineering Mechanics, The

University of Alabama, Tuscaloosa, AL 35487-2908,
July 1990.

[Goldberg, 1989] David E. Goldberg. Genetic AIgo-
rithms in Search, Optimization and M achine Learn­
ing. Addison-Wesley Publishing Company, Inc., Read­
ing, Massachusetts, 1989.

[Kinneth E. Kinnear, 1993] Jr. Kinneth E. Kinnear.
Generality and difficulty in genetic programming:
Evolving a sort. In Stefanie Forrest, editor, Proceed­
ings 0/ the Fifth International Con/erence on Genetic
Algorithms, pages 287-294, San Mateo, CA, 1993.
Morgan Kaufmann Publishers.

[Koza, 1992] John R. Koza. Geneiic programming: on
the programming 0/ computers by means 0/ natural se­
lection. The MIT Press, Cambridge, Massachusetts,
1992.

[Rheinert, 1994] Pascal R. Rheinert. Die Genetische
Programmierung. Master's thesis, Lehrstuhl für
Mikroelektronik, Universität des Saarlandes, D-66041
Saarbrücken, 1994.

[Rosca and Ballard, 1994] Justinian P.
Rosca and Dana H. Ballard. Genetic programming
with adaptive representations. Technical Report 489,
The University of Rochester, Computer Science De­
partment, Rochester, New York 14267, 1994.

[Ryan, 1994] Conor Ryan. Pygmies and ci vii servants.
In Jr. Kinneth E. Kinnear, editor, Advances in
Geneiic Programming. The MIT Press, Cambridge,
Massachusetts, 1994.

[Tackett, 1994] Walter Aiden Tackett. Recombination,
Selection, and the Geneiic Construction 0/ Computer
Programs. PhD thesis, Faculty of the Graduate
School, University of Southern California, 1994.

Racial Harmony in Genetic Algorithms

Conor Ryan*

University College Cork, Ireland

1 Introduction

This paper extends the work orginally presented in (Ryan,1994) which described
a new selection scheme, the Pygmy Algorithm, designed for multi-objective prob­
lems. The extensions not only improve the performance of the Pygmy Algorithm,
but show that, in certain cases, the mating of phenotypically similar parents can
benefit evolution. The extended Pygmy Algorithm also demonstrates the power
of evolving the parameters that control a population in parallel with the evo­
lution of the population. Finally, the paper also examines the issue of taking
paralleis not only from nature, but also from sociological phenomenon.

2 Background - Pygmies and Civil Servants

The Pygmy Algorithm was orginally applied to the problem of evolving minimal
sorting networks, which must not only be able to sort numbers, but also in as
few steps as possible. The Pygmy Algorithm employs two fitness functions and
maintains two lists of parents, one for each criterion of the problem. Traditional
methods which use a single fitness function and try to balance the reward for
each criterion force the implementor to choose how important each criteria is
and run the risk of individuals trading off parts of the fitness function for each
other. Neither of these problems arise with the Pygmy Algorithm.

One of the lists contains very efficient individuals, known as Civil Servants,
while the other contains very short individuals, known as Pygmies. When select­
ing parents for a new individual, the Pygmies and Civil Servants were treated as
though they were morphologically different, one parent being drawn from each
list. As a population evolved, it was found that each list contributed pressure to
direct the evolution in its particular direction, i.e. Civil Servants ensured that
individuals were efficient at sorting, while Pygmies exerted pressure towards
individuals being short. It was found that, when using the Pygmy Algorithm
for selection, individuals could not trade off various parts of the overall fitness
function for other, less important parts, and that populations using the Pygmy
Algorithrn were more likely to converge on an optimal solution than those that
use a fitness function which is a surn of the two criteria.

To aid comparison between the work presented here and previous work, the
same problems will be examined in this paper.

* This work is supported in part by Memorex Telexlreland Limited. Thanks to Gordon
Oulsnam for suggestions on this paper.

3 Gender or Race?

Due to the fact that all the individuals were looked upon as belonging to one
of two genders, inbreeding between individuals with similar performance was
prevented. It was still possible, however, for individuals to breed with elose
relatives - siblings perhaps, or even a parent of the opposite sex. In the Pygmy
Algorithm, such incestuous behaviour did not appear to cause problems because
of the diversity of parents maintained in each of the two lists.

The nature of multi-objective problems is such that individuals must solve
two or more smaller problems in order to solve the main problem. However,
despite the fact that the Pygmy Algorithm maintained groups of individuals
who were good at each of the sub-problems, neither group explicitly attempted
to produce individuals who excelled at its own sub-problem, simply because
individuals in the same group could not mate with each other.

One of the motives behind this work is to investigate whether or not it would
be better to try to solve the main problem together with each sub-problem all in
parallel. The only way aGA can solve a problem is, of course, through evolution,
so individuals in the same lists, up to now physically unable to do so, would have
to be permitted to mate. For this reason, individuals are no longer of a given
gender, but are assigned arace, which allows every individual to mate with every
other, but still makes an individual's membership of a list readily identifiable.

3.1 Racial Preference Factor

If the original Pygmy Algorithm is taken to be using races, then each race would
always outbreed. The descriptive name chosen for an individual's tendency to
outbreed is Racial Preference Factor (R.P.F.) - which is simply a measure of
the probability that an individual will choose an individual from the other race
when selecting a mate. In the case of the original Pygmy Algorithm, individuals
display behaviour characteristic of having an RPF of 100%, i.e. always outbreed.

Initial experiments were designed to investigate whether or not it was worth­
while using RPFs of different values - which would permit inbreeding within
each race to a certain degree. As there was no way of knowing in advance which
value of RPF (if any) would be the optimal, several experiments varying the
value of the RPF were carried out. The first experiment was to evolve a minimal
sorting network with six inputs using a population of 100 individuals. The RPF
was varied from 0% (always inbreed) to 100% (always outbreed), and yielded
the results as shown in figure 1.

Although experiments for each value of RPF were repeated on 3000 different
initial populations - the same 3000 for each value to aid comparison - there was
no one value for the RPF which was obviously better than the rest . However, an
important result was that all of the higher results were in the range 20% to 40%,
which shows that always outbreeding in this case was not the optimal strategy,
and that inbreeding to quite a significant extent improves performance. To what
extent is, at this stage, still unelear.

~r--------.---------.--------,---------r-------~
Population 100 --

36

34

32

30

28

26

24~------~--------~--------~--------~------~ o 20 40 60 80 100
APF

Figure 1: Varying the RPF with a population of 100

To further test the result of there being no optimal value for the RPF, the
same experiments were carried out on a number of other population sizes, ranging
from 150 to 300 individuals, and yielded the results as in figure 2.

These experiments served to add to the confusion over the value for the
RPF: not only were there several different possible optimal values, but these
also changed when the population size changed. The only consistent results were
that always inbreeding, not surprisingly, yielded poor results, and that a RPF
of around 80% also tended to produce poor results.

The conclusion can only be that there is no single optimal value for the RPF,
rather that it is dependent on the initial state ofthe population. It is certain that
an RPF of somewhere between 15% and 75% would be best, but such vagueness
would be useless when using the Pygmy Algorithm on different problems - how
could one choose the value of RPF in advance'? If there is some uncertainty about
the optimal value, as there is here, which value should one choose?

4 Tuning the RPF

The conclusions of the previous section show how dependent on the initial state
of a population the RPF iso An ideal situation would be to choose aseparate
value RPF for each population, which would be dependent on that population.

A similar view was taken by (Baeck,1991) when trying to select an optimal
value for mutation rate for a population. Trying to find an optimal value for
mutation rate (De Jong,1975), (Grefenstette,1986), (Schaffer et al,1989) yielded

'" '" CI>

8
~
ö
.g
Q:
~

8S i _.~.#_ ... _... i .

~~-~ --------__ Population 150_-=-=-_

/
~~ - ------------ Populatio 00 ---.

80
--...... Popu 'on 250

'-R ation 300 -'

7S ~•.••..•••..•••...
....

'" >" /------_/~ -----------------------, /~---
6S ~ /------

-_//

80

55

50

45 ~I----------~~----------~----------~------------~----------~ o 20 40 60 80 100
APF

Figure 2: Varying the population over a number of RPF values

much the same conclusions as the early experiments in this paper on RPF: the
optimal value of mutation rate varies from problem to problem, and even from
population to population within a single problem. The approach taken was to
incorporate mutation rate as part of an individual's genes and allow it to evolve
as the population evolved. Like other genes, an individual's mutation rate could
be subjected to crossover and mutation. This strategy meant that each individual
had its own mutation rate which it would examine when testing to see ifmutation
was to be performed. Baeck found that this improved the performance of his GAs
over those GAs for which he arbitrarily selected a value for mutation rate.

Applying this strategy to RPF, each individual was assigned its own personal
RPF which reflected its attitude to outbreeding. This attitude was shaped by
the experience of its parents and ancestors - an individual who was the product
of outbreeding would be more inclined to outbreed , reasoning that if it worked
for its parents, then it should help it produce children with good performance.

4.1 Meta-GA

Three approaches were taken to the tuning of RPF . All three involved individuals
having their own RPF which could evolve in the same manner as any other gene.
The three approaches are as follows :

Species Average (SA)
Racial Average (RA)
Individual Average (lA)

The SA experiments maintained a single value for RPF which was simply
the average of the entire species. While this does incorporate the overhead of
calculating the average of the parent population - 20% of the entire population
- it does have the advantage of allowing one to keep track of the effective RPF
as the population evolves .

The RA experiments maintained two values for RPF - one for each race,
with each RPF being the average of that race. As a run progressed, the two
values deviated considerably from each other and even changed at different rates ,
showing that , depending on the current state of the population, different amounts
of inbreeding and outbreeding suited each race.

Finally, the IA experiments maintained a seperate RPF value for each indi­
vidual, and individuals did not consult or examine the RPF of other individuals
w hen choosing a mate. This approach is the dosest to that of (Baeck, 1991) but
had the slight disadvantage of making it impossible to figure out what exactly
was happening to the value of the RPF.

To maintain a balance, half of the parents were chosen from each race, and
these parents then chose from which race they wanted their mate.

The results are shown in figure 3.

90r---------~r_--------~r_--------_,----------_.

80

70

60

50

40

Individual -­
Racial --­

Species ;.;; •

.......... :;::f: ..

~~--------~~--------~~--------~----------~
100 150 200

Population size
250

Figure 3: Evolving the RPF

~

Despite the advantages of being able to track the effective value of RPF in
both the SA and RA experiments, the IA yielded the best results, and at the
smallest computational cost. Clearly, allowing individuals their own RPF is the
best method.

U>
U>

~
U>

Ö
.c
o a:
~

~'r-----------~------------r------------r-----------,

80

75

70

65

60

55

50 ~ / .•..• /

45~ (....

40 f- .//

....... ,-/' .. /
.'

,"
..... , . .&-

,~:J'

~~V'_' ____________ ~ ____________ ~ ____________ -L ____________ ~

100 150 200 250 300
Population size

Figure 4: A comparison of evolving RPF and fixed RPF

Figure 4 shows the best of the evolving RPF experiments compared to two
of the fixed RPF results , against an average of the top three results for each
population and against the top band for each population , typically in the region
15% to 75%. Although the results appear practically identical from the graph,
the evolving RPF, henceforth known simply as "lA", slightly outperformed all
of the fixed experiments, with the bonus that using IA did not involve many
runs to try and find the optimal value for RPF. The IA experiments did not
perform better than the best result found by brute force , but as the values for
brute force involved some 39,000 experiments it was feit that using an average
of the top results gave a fair enough impression.

4.2 Sociological Modelling

So far , as in all previous implementations of meta-GA, the RPF of an individual
is looked upon solely as being a genetic feature. However, because of what this
paper is modelling - the behaviour of individuals in races - it was felt that
treating the RPF as an attitude rather than simply as a phenotypic trait would
be more appropriate. As weIl as usig RPF , individuals used a variety of methods
for calculating their own RPF . Some individuals were incapable of making up
their own minds and simply followed the prevailing opinion , the same as SA
above, while others were a bit more tribai in their attitudes, following the general
opinion of their race , in the same manner as RA. A final , independently-minded
group were the same as IA, in that they made up their own minds when deciding
their RPF .

Taking RPF to be an attitude loses none of the ability to perform the exper­
iments outlined above, but, like any opinion, RPF can be influenced or swayed
by other opinions, and this observation led to another suite of experiments.

Free Choice Model(FCM).
Independence from Prevailing Opinion.
Influence by other individuals.
Opinion reinforcement.

The first set of experiments, the free choice model, influenced by (Todd, 1991),
allowed individuals the choice of whether or not to accept another individual as
a mate. This was implemented as below:

1. Select father from one race.
2. Select, according to father's RPF, which race to choose a mate from.
3. Select individual (mother) probabilistically from that race.
4. Test, according to mother's RPF, if she wants to mate with an individual

from the father's race.
5. If she accepts the father's overtures, then mate, otherwise select another

mother.

If, after trying nine attempts, an individual cannot persuade any others to
mate with hirn, he is deemed too unattractive and is rejected.

~r-----------~----------~----------~----------~

80

75

70

60

55

50

45

40

150 200
Population size

250 300

Figure 5: A comparison of the Free Choice Model and IA

Figure 5 above shows that allowing individuals free choice of whether or not
to mate w,ith a potential suitor didn't give any improvement over the original
IA experiments. Several other experiments were tried, varying from allowing
individuals of type RA and SA some degree of independence from the racial or
species average, to permitting individuals to influence each other to some extent.
As the most interesting results have all come from the IA type experiments, only
the extensions to these will be discussed.

4.3 Influential Partners

Like any opinion , RPF can also be subject to change. In this section, individ­
uals were influenced by (potential) partners, which allowed their RPF to vary
depending on that of those around them. The implementation was as follows:

1. Select father from one race.
2. Select, according to father's RPF , which race to choose a mate from .
3. lf father's RPF>mother 's RPF, then let her effective RPF be the geometric

mean of the two.
4. Test, according to mother's ejJective RPF, if she wants to mate with an

individual from the father 's race.
5. lf she accepts the father 's overtures, then mate, otherwise select another

mother.

The reasoning behind this experiment is rooted more in sociological than bi­
ological thought. lf the probability of the father choosing the mother is greater
than the prob ability of her accepting his advances, then her RPF is adjusted
upwards - reflecting the influence his enthusiasm has on her. Two different ver­
sions of this experiment were run - in the first , the mother 's RPF returned to
its initial value after each mating, whereas in the second, the value of her RPF
remained at the new value, reflecting a situation where a mate had a lasting
effect on her .

The rat her easily led individuals in this experiment did not fare too weil
relative to the IA experiments , as can be seen in: Figure 6, and resulted in lower
performance under every circumstance. Clearly, relying on other individuals for
information about how to behave to other races does not help the society as a
whole.

4.4 Opinion Reinforcement

The final experiment concentrated solelyon the IA experiment , as this had
yielded the best results so far . Again , individuals were allowed to change their
RPF during their lifetime , and any changes were permanent. All changes were
based on their own experiences and, based on the results of the experiments
in which individuals were influenced by each other, did not concern themselves
with the opinions of anybody else. This was implemented as folIows :

90

80

70

:;;
" 8
:>

'" Ö 60
.<l
0

<t
~

50

40

~~----------~----------~----------~----------~
100 150 200

Popula1ion size
250 300

Figure 6: A comparison of the influential models and JA

1. Select father from one race.
2. Select, according to father's RPF, which race to choose a mate from.
:3. Produce child.
4. Test child.
5. lf child is fit enough to enter parent population, adjust father's RPF so he

is more likely to make the same decision the next time he mates, otherwise
adjust the RPF so the father is less likely to make the decision.

Of all the experiments which exploited the fact that RPF was an opinion,
the Opinion Reinforcement fared best, giving the same performance as IA. This
serves to confirm that allowing individuals to make up their own minds, whether
through evolution or from personal experience, leads to better performance than
either forcing a value on them, or by letting them infiuence each other.

5 Conclusion

An extension to the Pygmy Algorithm, the use of races, has been introduced
and is shown to outperform the Pygmy Algorithm in multi-objective functions.
The increase in performance is due solely· to the fact that individuals are allowed
to inbreed when it suits them, and hence allow the algorithm to break up the
problem and concentrate on solving separate parts of it in parallel.

Also demonstrated is the power of meta-GA, the evolving of the control
parameters of aGA, and it is shown that when in doubt about the value of a

~ i~------------~------------~-------------r------------~

80

75

70

65

.,.;;p">/'

60

55

50

45

40

35

~i~ ____________ ~ ______________ ~ ____________ ~ ______________ ~

100 150 200 250 300
Population size

Figure 7: A comparison of the Reinforcement Model, IA and the top 3.

parameter, it is better to evolve it, which allows the parameter to change as the
population changes.

The final set of experiments investigated were those that involved sociological
modelling on a coarse level and , in a curious parallel with human societies,
experimental results showed that situations where individuals are allowed make
up their own minds and judge from their own experiences produce much better
performing societies than those where individuals are easily led , and give more
weight to the prevailing opinion of their society than to their own feelings.

References

Baeck, T. : Sel/-adaptation in Genetie Algorithms in Proceedings of the First European
Conference on Artificial Life. MIT Press (1992)

De Jong, K. : An analysis 0/ athe behaviour 0/ a dass 0/ genetie adaptive systems PhD
thesis, University of Michigan, Ann Arbor, MI. (1975)

Eshelman, L. : Preventing premature eonvergenee in Genetie Algorithms by prevent­
ing ineest in ICGA4, R. K Belew, L.B. Booker, Eds. San Mateo, CA : Morgan
Kaufmann. (1991)

Goldberg, D and Richardson, J : Genetie algorithms with sharing /or multimodal /une­
tion optimisationin ICGA2 J. J . Grefenstette, Ed. San Mateo, CA : Morgan Kauff­
mann. (1987).

Grefenstette, J .J. : Optimization 0/ eontrol parameters /or genetie algorithms in IEEE
Transactions on Systems, Man and Cybernetics, SMC-16(1) :122-128. (1986)

Ryan C. : Pygmies and Civil Servantsin Advances in Genetic Programming, K. Kinnear
h., Ed. MIT Press. (1994)

Schaffer, J.D. et al : A study of control parameters affecting online performance of
genetic algorithms for function optimization in ICGA3 J .D. Schaffer, Ed. CA :
Morgan Kaufmann.

Todd, P. and Miller, J. : On the sympatric origin of the species: Mercurial Mating
in the Quicksilver model in ICGA4, R. K Belew, L.B. Booker, Eds. CA : Morgan
Kaufmann. (1991)

This article was processed using the ~TEX macro package with LLNCS style

Selectively Destructive Re-start

Jonathan Maresky, Yuval Davidor; Daniel Gitler, Gad Aharoni and Amnon Barak
Department of Computer Science,

Hebrew University of Jerusalem, Jerusalem 91904, Israel
Email Correspondence:yuvaHlwisdom.weizmann.ac.i1

Abstract

This paper motivates for, and introduces a
macro genetic operator called selectively de­
structive re-start. This operator uses a conver­
gence evaluation function to determine when
computing resources would likely be better
used in re-initializing the population and be­
ginning the search process in a new area of
the search space. Genes are re-initialized ac­
cording to so me probability; this has the result
of keeping so me genetic information from the
converged run, at the same time as introduc­
ing new genetic diversity. The use of this new
operator is demonstrated for two problems of
Quadratic Assignment and Dynamic Control.

1 Introduction

A Genetic Algorithm (GA) is a search process that is
motivated by natural selection and other concepts from
natural evolution. While its search is not guaranteed to
produce an optimal solution, it is often characterized by
finding good solutions in a reasonable time, using a rea­
sonable amount of resources. Thus, any comparison of
the performance of two genetic algorithms over a prob­
lem domain depends on both the quality of solution and
the execution resources.

Consequently, algorithms may be compared on the ba­
sis of solution quality while holding the number of eval­
uations constant, or on the basis of resources used until
a certain quality of solution is found.

In both cases, resources may be wasted by an algo­
rithm searching an area not containing a solution of suf­
ficient quality, where any possible improvement in the
solution quality is not justified by the resources used.

The macro genetic operator re-start - well-known to
practitioners and researchers in the field - observes the
level of genetic convergence of a population and decides
when resources would be better utilized in re-starting
the search in a new area, with a new population.

This involves a tradeoff between the probability of dis­
covering sufficiently better individuals within the current
area of the search space, and the use of extra resources in

·Schema. Ltd., 61a Hadar St., Herzlia

creating a new population and improving it to a similar
level as the previous converged population.

An extension to the re-start operator is proposed
here, which allows for different rates of population re­
initialization. On re-starting the population after con­
vergence, we introduce a probability of re-initialization,
for each gene of an individual. We call the resulting
operator selectively destructive re-start. This operator
improves on the unselective version of re-start consider­
ably although this improvement is highly dependent on
the selection rate parameter.

The remainder of this paper is organized as follows:
the next section motivates for and explains the re-start
operator, and describes the approaches used for compar­
ing GAs using re-start. Section 3 introduces the selec­
tively destructive re-start operator. The fourth section
describes the test-bed of problems, analyses the differ­
ences between the two re-start operators on these prob­
lems, and briefly presents results. Section 5 discusses
related and future work, while the last section draws our
conclusions.

2 The Re-start Operator

A genetic algorithm generally consists of a number of
iterations of a loop which pro duces new individuals and
inserts them into the population, subject to certain con­
straints (see Figure 1).

Initialize population
While termination condition false
{

Produce ne~ individuals,
Insert these into the population

}
Report on results

Figure 1: Outer Joop structure of a Genetic AJgorithm

In terms of the inner loop, a Generational Replace­
ment GA pro duces many new individuals during one in­
ner loop, while a Steady State GA produces few new indi­
vi duals, relative to the size of the population. This work
is based on an elitist Steady State GA with unsophisti­
cated real number crossover, mutation and termination

conditions.
Regardless of the approach, the normal behaviour of

the GA is such that the amount of genetic diversity de­
creases as fitter individuals are discovered; the area of
search becomes more concentrated and the possibility
of chancing on new genetic material is limited. This is
called convergence: the GA has likely settled on some
local optimum in the search space of the problem.

In order to deal with this characteristic, we utilize
the genetic operator re-start which, in order to continue
the GA's search, intro duces new genetic information and
moves the GA into another solution region.

Re-start is a macro genetic operator. In contrast to
the micro genetic operators of crossover, mutation and
others, which function at the gene and chromosome level
in producing new individuals, the re-start operator func­
tions at the population level.

The re-start operator uses an evaluation function to
decide when the population has likely converged. The
population is then re-initialized, and the convergence
process begins again.

Why is this operator necessary? As a population's
genotypic diversity decreases, it is less likely to produce
strikingly different individuals, and may be wasting re­
sources searching an area of which the genetic possibil­
ities have been exhausted. At some point it is neces­
sary to abandon the population and utilize computing
resources more efficiently (see [3], [4] and [7]). It has
been shown, moreover, that a GA with optimal popu­
lation size and the appropriate number of re-starts, ex­
hibits better performance than the same GA functioning
without the re-starts, and an appropriately larger popu­
lation size([6]).

The re-start operator functions outside the main loop
ofthe GA (see Figure 2) and is reliant on some definition
of convergence.

While termination condition talse
{

}

Initialize population
While population has not converged.

and termination condition is talse
{

Produce new individuals.
Insert these into the population

}

Report on results

Figure 2: Outer Joop structure of a Genetic Algorithm
with re-start operator

Determining the "when" of re-start, the extent of ge­
netic convergence, is exceedingly costly: this would in­
volve the variance analysis of every gene within the pop­
ulation. However, this may be estimated by observing
the relative improvement of the population's best indi­
vidual, also called the best-of-generation individual, as a
function of the number of iterations. A relatively steep
curve indicates much exploration of new genetic mate-

rial, while genetic convergence tends to imply a fiattish
curve. In Figure 3, it is fairly easy to determine when it
is necessary to re-start the execution.

Cos'

UDCOD\'ef'gcd JX'puJatioD

(stce:, dope)

COD'lleTged popul:ltioo

(& .. Iope) ,

Figure 3: Using the cost improvemellt curve to determine
convergence

The calculation of the extent of convergence is a func­
tion of:

• The number of evaluations since the last improve­
ment of the best-of-generation individual. Longer
gaps between updates implies greater convergence.

• The relative magnitude of the improvement. Larger
improvements often affect the process more than
smaller improvements.

• The population size. A larger population will gen­
erally widen the gap between best-of-generation up­
dates.

Note that the evaluation function is relatively
problem-specific.

Note also that convergence does not imply that
the best-of-generation individual would not improve.
Rather, it is probable that the resources used in attempt­
ing to improve the best-of-generation individual would
be better used in re-starting the population and contin­
uing the execution from there.

10

8

% ofruns

6

4

2

0 .05 0 . 1

GA. wilhONt re-sllilrl

GA. wüh re-SUJrI

0.15
SDlutio" cost

0.2

Figure 4: ProbabiJity distributions of GAs witll and
without re-start

For example, we compared the functioning of the GA
with re-start against the original GA, on the bal-14 prob­
lem. The prob ability distribution graph of solution costs
is shown in Figure 4.

Running for 20000 evaluations, the GA with re-start
produced a mean result of 0.0428 , with standard devia­
tion 0.026. The normal GA without re-start , produc.ed
a mean result of 0.0697 with standard deviation 0.045
(n = 2.50). Despite the extra resourees invested in re­
starting the new population , the re-start operator pro­
duces better , more stable results.

It is possible to approximate the behaviour of the GA
with re-start by observing the probability distribution of
the GA without re-start. Each sub-run, from reinitial­
ized population to convergence, constitutes a unit within
the distribution, and is independent of sub-runs before
and after. Thus the re-start operator effectively re-starts
the execution with a new initial population, whose out­
come is unrelated to the previous outcome.

3 The Selectively Destructive Re-start
Operator

We investigated an extension to the operator: instead of
completely destroying the genetic material present in the
population at convergence and thereby wasting the re­
sults of mueh eomputation, the re-start probabilistically
reinitializes genes in the creation of new individuals.

The resulting operator is called selectively destructive
re-start (SDR) because it does not eompletely destroy,
and re-initialize, the converged population before be­
ginning the convergence process, in the manner of the
normal re-start operator; a percentage of the converged
genes will survive untouched to begin the next conver­
gence stage. The resulting GA 's structure is outlined in
Figure 5.

While termination condition false
{

}

Initialize population :
for each gene, for each individual,
qi th probability = selection rate,
the gene is reinitialized

While population has not converged,
and termination condition is false

{
Produce neq individuals,
Insert these into the population

}

Report on results

Figure 5: GA witll seleetively destructive re-start oper­
ator

This percentage is the rate 0/ selectivity of the opera­
tor: the higher the rate , the more genes are reinitialized.

It is fairly easy to compare GAs whieh use re-start
and SDR: the difference in the re-initialization process
is hidden from any comparison .

4 Results

4.1 Problems

Two problems are selected for testing . One , bal-14, a
Quadratie Assignment problem, and one, J Mi, a Dy­
namic Control problem.

The Quadratic Assignment problem ([1]) involves 14
dimensional quadratic minimization, which has many
applications in dynamics (though the dimensionality
may vary) .

Given a structure whieh is not dynamieally balanced
around its rotation al axis Z (centre of gravity is not on
the Z axis) , and n locations in the structure in which
mass can be added or subtracted, find that combination
of mass changes that minimizes the yaw and pitch move­
ments and the total mass added.

min(CßW + (1 - C) 11 M 11)

where ßW is the net weight added, C is some con­
stant , and 11 M 11 is the resulting Z right angle moment .

The upper and lower bounds for the point m ass es ,
the cylindrical coordinates Zi, ri and I{); (representing
distance along the Z axis, radius , and angle from some
reference radius , respectively) for each of the n points,
and the initial mass of the structure are given.

At low dimensions, the problem may be solved using
the Simplex method which guarantees optimality. How­
ever , numerical problems are encountered at high dimen­
sions which cause convergence to a local optimum and a
GA approach beeomes attractive.

Each individual is coded as containing a chromosome
of 14 real numbers, a total mass, moment , cost and a
fitness value. The solution space size is of the order of
10287.

The Dynamic Control problem is from [5] :

(

N-l)
min xÄr + {; (x~ + u~)

where

XI:+1 = XI: + Uk, k = 0, 1, ... , N - 1,

where Xo is the initial state, XI: E 'Tl is astate, and i1
is the solution vector.

We call the following problem JM1: a fixed domain
of (-200,200) is assumed for each Ui , with Xo = 100
and N = 45. In similar fashion to the bal-14 problem,
each individual is represented by a 45-ary vector of real
numbers, a cost and a fitness value.

4.2 Analysis

In order to eompare GAs using re-start , the following
approaches were used:

• In the evaluational approach, the number of evalu­
ations is held constant, and the GAs are compared
by using the mean result obtained .

• The good-enough approach searches until an accept­
ably good solution is found , and GAs are compared
by observing the mean number of evaluations re­
quired to arrive at the solution.

The new operator was tried on the above test-bed of
functions and proved successful , in comparison to the
original re-start operator, albeit at different selectivity
rates for different problems.

_"0/
.~$

100000

80000

60000

40000

20000

_,....,u
«ost)

28000

26000

24000

22000

20000

18000

Ca···· r. sllJndtzrd deVÜJtion

nomuJ r.sl/Zrl ~

sdecti.,dy destruclwe resllzrl

_. --- - ---------------------------- -- ~--

20% 40% 60% 80% 100%
Rilk 0/ "k./ioIJ

<a> JM1, eood-enough = 30000

.... ... ~ sII:uultsrd ."iatio"

~r .. lllrt ':. 1:.
"ketiwly IiIstnutW, ,..sllITt

-------------------------- -- ---t---~- - t

20%

A

V

40%

~

60% 80% 100%
RtIk ofsck<n-

 JM1, 100 000 evaluations

Figure 6: Comparative performance of different re-start
operators on JMl, using the good-enough and evalua­
tional approach es

Figures 6 and 7 compare the mean and standard de­
viation results of the normal re-start operator and the
SDR operator on the different problems, under differ­
ent selection rates, using both the good-enough and the
evaluational approaches. Figure 8 gives specific results.

The monotonie J M 1 problem was chosen specifically
for its behaviour under the normal re-start operator .
Figure 6 shows that a GA using re-start (100% selec­
tion rate) is less effective than a GA without re-start
(0% selection rate) . Thus, even where using the re-start
operator may not be advisable, the SDR operator im­
proves on the core GA not using re-start.

The choice of a selection rate of 15% results in an im­
provement of 72% over the number of evaluations needed
to produce a good-enough result using the normal re-start
operator. The corresponding standard deviation is less
than one tenth of the standard deviation of the re-start
operator.

Using the evaluational approach, the optimal selection
rate is closer to 10%, and results in an large mean solu­
tion improvement over the re-start operator GA, using
100000 evaluations. The standard deviation is also con­
siderably lower than that of the re-start GA.

2SOOOO

200000

150000

100000

soooo

0.06

o.os

0.04

0.03

0.02

0.0 1

\. ,1aIUImTI dnWJio,.

t
---------- ~---------------~---f--r---

t t

(a) bal-l4, good-eaoucb. '.81

IIOrwu:rl ra""
,d.dJwly dall'l.diw r~l""

----- ----- ' --- -- -------- --+ ---~--- -- --
~ ~ : :

(b) ba1-14. 100 000 evaJualio ...

Figure 7: Comparative performance of different re-start
operators on bal-14, using the good-enough and evalua­
tional approach es

For the 14-dimensional bal-14 problem (Figure 7) , a
40% rate of selection is preferred using the good-enogh
approach: it results in a performance improvement of
over 65% compared to the re-start approach's mean num­
ber of evaluations used, and the stability also improves
considerably.

Using the evaluational approach, the same selection
rate produces a mean result which is one third ofthe re­
start GA's mean result . The standard deviation is also
improved.

We noticed that low selection rates on the Quadratic
Assignment problem produce very poor results - the
slight change in genetic material as a result of re-start
introduced by the SDR operator is not sufficient to move
the algorithm to a new search area.

The new operator results in impressive savings in re­
source utilization: it finds good-enough solutions quicker,

and produces considerably better and more stable results
given a fixed number of evaluations . These evaluation al
results seem more striking, but it is not possible to quan­
tify the improvement, because of the nonlinearity of this
relationship . Note also that the optimal selection rate
is not necessarily the same for good-enough and evalua­
tional executions (see Figure 8) .

Problem (1) (2) (3) (4) (5) (6)

iMl 19950(5478) 71525(66728) 15"'(72"') /7376(382) 28306(2369) 10""

baJ·14 52656(32/ /7) 152002(144413) 40'10(65"') O.OO3/(O.O()47) 0.013(0.01) 40""

(1) Good-enough: mean evaluations (std. UWzti<>n) - Selectively Destruct;ve Re-start

(2) Good-enough: mean evaluations (std. deviation) - Re-sun

(3) Best Seleclion rate for good-enough approach (improvemenl)
(4) Evaluational: "",an result ("tl. deviation) - Selectively Destructive Re-s14r/

(4) Evaluational: mean =ult (std deviation) - Re-start
(6) Best Seleclion rale for evaluational approach

Figure 8: Optimal selection rates for different problems
(n = 250)

Different problems have different optimal rates of se­
lection; additionally, one problem may have different op­
timal rates of selection using different comparison ap­
proaches. It is an open question which feature of the
problem influences this parameter.

In terms of computing resources used, in most cases
the SDR operator uses slightly more resources than the
normal re-start operator: apart from a call to the ran­
dom number generator to determine if a gene is to be
re-initialized, another random number call is necessary
to produce the new value, although fewer stores are used
by the new operator.

Selectively destructive re-start is superior to normal
re-start and provides us with an improved method of
renewing genetic diversity in genetic algorithm search.
Intuitively, the complete reinitialization of the popula­
tion ''forgets'' the previous solutions, and the chance of
arriving at the same result, or even the same general area
of search, is minimal.

In contrast, the use of a selective rate of reinitializa­
tion keeps the previous solution within the convex hull of
the new population, even though it is unlikely that the
previous solution be a member of the new population.
The new run will in most cases improve on the previous
result, in contrast to the normal re-start operator which
has no memory of previous solutions.

This apriori analysis is mostly borne out by obser­
vation of executions of the model running the SDR op­
erator on different populations: the function of best re­
sult , per new re-started population, against number of
re-starts is almost monotonically improving, whereas the
normal re-start produces the expected erratic curve of
statistically independent intermediate results.

The apparent monotonicity of the new operator is not
provable, however. The stochastic nature of the pro­
cess will produce unexpected results in response to the
slightest difference in a crossover or mutation, exactly as
in nature.

5 Related and Future Work

Eshelman ([2]) introduced a similar operator as part
of his nontraditional genetic algorithm . His operator,
called restart or partial initialization, is used as a more
global substitute for mutation, where mutation is moved
from inside the reproduction-recombination loop to out­
side of the loop. It was not analyzed separately from
Eshelman 's other new operators, with the result that its
performance improvement has been mostly unknown.

In understanding the reasons behind the superiority of
selectively destructive re-start over normal re-start, we
have not attempted a theoretical analysis. A more thor­
ough mathematical investigation of the genetic reasons
for this new operator's workings is necessary.

6 Conclusions

The re-start operator provides an effective mechanism
for continuing the execution of a converged population .
A simple and computationally inexpensiveextension to
the operator produces the selectively destructive re-start
operator, where the selection of an effective rate of re­
initialization results in impressive improvements in exe­
cution performance as weil as solution quality. At low
selection rates, where the converged population is re­
started by changing relatively few genes, certain prob­
lem domains react adversely and have difficulty in im­
proving their result. Additionally, selectively destructive
re-start benefits problems where the normal re-start op­
erator provides no improvement over the GA without
re-start.

References

[1] Davidor, Y. An ECOlogical Model for Evolutionary
Computing. In The Japanese Journal for Systems,
Control and Information, 1993, vol. 37, no. 8.

[2] Eshelman L.J. The CHC Adaptive Search Algorithm:
How to Have Safe Search When Engaging in Nontra­
ditional Genetic Recombination. In Foundations of
Genetic Algorithms (Edited by Gregory J.E . Rawl­
ins), 1991.

[:3] Goldberg, D.E. Optimal initial population size for
binary-coded genetic algorithms. Technical Report
No. 85001, TCGA, 1985.

[4] Goldberg, D.E. Sizing populations for serial and par­
allel genetic algorithms. In Proc. 3rd Int. Conf. on
Genetic Algorithms (Arlington, VA), 70-89, 1989.

[5] Janikow C.Z., Michalewicz Z. An Experimental
Comparison of Binary and Floating Point Represen­
tation in Genetic Algorithms. In Proc. 4th Int. Conf.
on Genetic Algorithms(San Diego, CA), 31-36, 1991.

[6] Nakano R., Davidor Y. , Yamada T. Optimal popula­
tion size under constant computation cost . In print:
Parallel Problem Solving fram Nature 1994, Springer­
Verlag.

[7] Robertson G.G. Population size in classifier systems.
In Proc. 5th Int . Conf. on Machine Learning (Los
Altos, CA), 142-152, 1988.

A Comparison of Different
Evolutionary Algorithms on
the Quadratic Assignment

Problem

Volker Nissen, University of Goettingen,
Germany. E-mail: vnissen@uni-goettingen.de

Abstract. The Quadratic Assignment Problem
(QAP) is a tough standard operations research
problem with relevance to different practical ap­
plications, particularly in facility layout. In this
paper it serves as a vehicle to compare the per­
formance of different types of Evolutionary AI­
gorithms (EAs). A migration model Genetic AI­
gorithm (MMGA), an Evolution Strategy (CES)
and Evolutionary Programming (CEP) are com­
pared on a set of QAPs. The strictly mutation­
based CES- and CEP-heuristics generally out­
perform the crossover-based GA-approach. This
may be explained by reference to recent re­
sults concerning the relation of fitness landscape
and design of evolutionary operators. CES and
CEP are competitive to implementations of Ta­
bu Search and Simulated Annealing as described
in the literature. The results demonstrate that
even highly epistatic problems can successfully
be approached with pure (non-hybridized) EAs
when the search operators are designed accor­
dingly.

1 Introd uction

The Quadratic Assignment Problem is one ofthe
toughest combinatorial optimization problems.
It can be formalized as follows [5]: Given a set
N = {I, 2 ... n} and real numbers Ci 1: , ai1:, bi1: for
i, k = 1,2 ... n, find a permutation Cf' of the set
N which minimizes:

n n n

Z = L: CiIP(i) + L: L: aikbIP(i),IP(k)
i=1 i=11:=1

where (assuming a facility layout problem)

n: number of facilitiesjlocations
Cij: fixed cost of locating facility j

at location i
aik: cost of transfering a material unit

from location i
to location k

bjl: flow of material !rom facility j
to facility 1.

The QAP is characterized by a high degree of
epistasis (non-linear interaction between soluti­
on elements). Even swapping the assignment
of two facilities might affect the quality of vir­
tually all other assignments, depending on the
flow-matrix. As a generalization of the TSP the
QAP is NP-hard, and only moderately sized pro­
blem instances (approx. n = 18) can be solved to
optimality with exact algorithms within reaso­
nable time limits. One, therefore, concentrates
on developing effective QAP-heuristics. Exten­
sive reviews of the QAP and associated solution
techniques can be found in [15, 5].

The QAP is of practical relevance in such
diverse areas as facility layout, machine schedu­
ling and data analysis. Vollmann and Buffa [28]
introduced the concept of flow-dominance, mea­
suring the variation of values in the flow matrix.
It is given by 100 * std.dev ./mean of the matrix
elements. Simply stated, high flow-dominance
indicates that few facilities with high interacti­
on tend to dominate the problem. Burkard and
Fincke [4] were the first to prove the asympto­
tic behavior of large randomly generated QAPs.
This means that the relative difference between
the worst and the optimal solution becomes ar­
bitrarily small with a prob ability tending to 1
as the problem size tends to infinity. Hence,
for any QAP-heuristic test-suite design becomes
an issue. Here, a . set of 7 QAPs varying in si­
ze between n = 15 and n = 64 with different
structure (flow-dominance) have been employed.
They were taken from the QAP-library collected
by Burkard et a1. [6].

In this paper, the performance of different
variants of Evolutionary Algorithms (EAs) is
compared on a test-suite of QAPs. EAs are
general purpose search and optimization tech­
niques with heuristic character that imitate ba­
sic principles from evolution theory. They differ
from more conventional optimization methods in
the following aspects:

• They operate on astring or vector repre­
sentation of the decision variables.

• They, generally, process a set (population)
of solutions (individuals), exploring the
search space from many different points si­
multaneously.

• In their search operators, EAs imitate
the evolutionary mechanisms of replicati­
on, variation and selection of individuals.

• They require only information on the qua- 2
lity (fitness) of solutions derived from ob­
jective function values but no auxiliary
knowledge such as derivatives. However,
incorporating available domain knowledge 2.1

Description of the imple­
mented EA-variants

A Migration Model Genetic
Algorithm (MMGA) in solution representation, initialization,

operators or decoding function may sub­
stantially increase the competitiveness of
an EA at the cost of a reduced scope of
application.

• Stochastic elements are deliberately em­
ployed. This means no pure random
search, though, but an intelligent explo­
ration of the search space.

The most prominent EA-variants are:

- Genetic Algorithms [11],

- Evolution Strategies [24],

- Evolutionary Programming [9].

Readers unfamiliar with these techniques are
refered to Bäck and Schwefel [2] for a concise
overview and Nissen [19] for a more detailed pre­
sentation.

Few authors developed evolutionary approa­
ches to solve QAPs. Typically, when high­
quality results were achieved, the EA had been
massively hybridized with other problem solving
techniques such as Simulated Annealing (SA)
[3, 18] It is, therefore, difficult to assess the per­
formance of 'pure' EAs (i.e. non-hybridized) on
the QAP. This question is of particular interest
when one recalls the recent debate on the power
of Genetic Algorithms in combinatorial optimi­
zation.

Here, in a set of experiments the following
types of EAs are compared on the QAPs:

- migration model Genetic Algorithm (MM­
GA),

- Combinatorial Evolutionary Programming
(CEP),
Combinatorial Evolution Strategy (CES).

Since none of the EA-types was originally
intended for combinatorial optimization certain
adaptations of the methodology were unavoi­
dable. However, in the authors view all EA­
types should be treated as variants under a com­
mon evolutionary paradigm, and they together
constitute a set of design elements from which
problem-specific EAs should be constructed that
best solve the actual problem. So adaptations
of the basic EA-concepts to combinatorial pro­
blems are even desirable.

The migration model Genetic Algorithm uses a
straightforward permutation co ding (figure 1) as
solution representation . This representation is
also employed by the other two evolutionary ap­
proaches to be discussed later.

Assuming a facility layout problem, each po­
sition on a solution vector represents a facility
location and integer values are assigned to these
positions as numbered facilities. With this in­
formation, objective function values can be cal­
culated from the given problem matrices and are
taken as fitness information for the implemented
EAs.

MMGA is a Genetic Algorithm which pro­
cesses 6000 individuals (solution trials) in 200
subpopulations of 30 individuals each. Thereby,
selection and recombination of mating partners
are performed only locally to prevent premature
convergence. All subpopulations evolve inde­
pendently. During each GA-cyde the worst indi­
vidual in each subpopulation is replaced (steady­
state GA).

I apply deterministic binary tournament se­
lection to determine mating partners. This
means, two individuals are randomly drawn
from a subpopulation, and the better is kept
as the first mating partner. This is repea­
ted to determine the second mating partner.
The recombination-operator is partially mat­
ched crossover (PMX) as introduced by Gold­
berg and Lingle [10], since it is a rather con­
servative form of crossover and tends to inherit
absolute string positions. In my implementati­
on, strings are treated as rings to overcome the
bias against end-positions. The better ofthe two
offspring is kept.

For PMX to be effective identical mating
partners must be avoided. Therefore, a subpo­
pulation is blocked from further genetic action
when identical mating partners are consecutive­
ly drawn twice. It is then assumed that this sub­
population has reached astate of relative conver­
gence. Once all subpopulations are blocked, ran­
domly drawn individuals are exchanged between
randomly determined subpopulations (emigra­
tion phase). 750 such exchanges are performed,
refreshing the subpopulations with locally new
solutions. Afterwards all subpopulations are re-

leased and the GA-process continues as before.
A copy of the best solution in the entire po­

pulation is always kept in a seperate storage and
updated whenever a better solution has occur­
red.

This solution is output as the final MMGA­
result and can optionally be improved by a
hillclimber (2-0pt). 2-0pt is a simple local
search heuristic that sequentially considers pair­
wise exchange (2-swap) between the positions
of facilities. The swap is made whenever this
results in a lower objective function value and
the search starts again' from the new solution.
This procedure continues until no exchange in
the current solution results in a further impro­
vement.

Figure 2 gives an overview of MMGA in
pseudo-code. As for the other evolutionary heu­
ristics presented here, the MMGA strategy pa­
rameters are determined experimentally and no
claim is made as to their optimality. The para­
meters are kept constant over all testproblems
since a heuristic that requires problem-specific
tuning of strategy parameters is not particular­
ly user-friendly.

2.2 An approach based on Evolu-
tionary Programming (CEP)

In this approach 25 children are generated from
five parents in each generation by copying each
parent five times and mutating the resulting
offspring. No crossover is applied following stan­
dard practice. Mutation is based on 2-swaps
of solution elements. In standard Evolutiona­
ry Programming mutation of a solution element
means adding a normally distributed random va­
riable where the standard deviation depends on
the parent's fitness value. This is sensible when
the global optimum is known in advance and
fitness measures some error term such as the
squared difference of current objective functi­
on value and global optimum. This is not the
case for the QAP. However, to keep the ba­
sic idea of standard Evolutionary Programming
CEP utilizes the parental fitness value when de­
termining the mutation intensity (number of 2-
swaps on the current solution). Additionally, the
current generation number influences the muta­
tion intensity. More formally, the number of
2-swaps exchange# during mutation of a par­
ticular offspring is determined by the following
formula:

ezchange# = round(abs(N(O, 0"))) + 1

with 0" (In (In (maxgen/ gen) + 1)) .

where:
N(O, 0") :

maxgen:

gen:
fit:

worstfit :

0':

fit 2

.(worstfit) . 0'

normally distributed random
variable with expectation 0
and standard deviation 0"
maximal number of CEP­
generations
current CEP-generation
parental fitness value of
current child
worst objective function
value in startpopulation
scalar (0' = ~l

Note that mutation intensity is high at the
beginning of the search process and decreases
on a logarithmic scale. The current state of the
optimization influences the mutation intensity,
firstly, by the factor maxgenjgen that decrea­
ses solely with time. Secondly, the parental s0-

lution quality in relation to the worst element
of the startpopulation is taken into considera­
tion. As a general tendency, the offspring of a
mediocre parent will undergo a stronger muta­
tion than children of a good parent (minimizati­
on!). Sigma decreases with continued optimiza­
tion, focussing the search process. This may be
compared with the cooling schedule of Simula­
ted Annealing. The constant term in the above
formula ensures that at least one 2-swap is per­
formed to avoid apremature termination of the
search process.

Following mutation, five new parents are se­
lected from the population of parents and child­
ren (30 individuals). This is done via a stocha­
stic tournament in which the fitness (objective
function value) of each individual is compared to
the fitness of seven randomly determined "op­
ponents". An individual scores a "win" when
its fitness is at least as good as the fitness of
the opponent. The best five individuals resul­
ting from a ranking based on individual wins
(not fitness) are taken to be the new parents for
the next CEP-generation. Thus, imitating bio­
logical processes , selection is stochastic (as in
MMGA) and even bad individuals have a cer­
tain chance of surviving the competition. The
best solution based on fitness is always kept in a
seperate storage and updated when required. It

is the final CEP-result that is output at the end
of each run. An optional postprocessing with
the 2-0pt local hillclimber is possible.

Figure 3 presents the general outline of CEP
as pseudo code. Again, the strategy parameters
of CEP are determined experimentally. They
are held constant over all QAP-experiments.

bilization in the context of ES is also described
in [1] but realized differently. During this pha­
se, the counter is set to zero and A children are
created with increased mutation intensity. The
number of swaps randomly lies in the interval
[3, .. , 8] now. Thereby, individuals which differ
more strongly from previous solutions are gene­
rated and the search shifts to a new area in the

2.3 A combinatorial variant
Evolution Strategy (CES)

of solution space. This helps to escape from local

CES was first presented in [20]. It uses a simple
population concept and is basically a (I,A)-ES.
This means, in each generation A children are
generated from one parent solution by first co­
pying the parent and then randomly swapping
integer values on the coding string via mutati­
on. The mutation operator from standard-ES,
which is based on adding normally distributed
random variables to the elements of the current
solution, is not adequate for such a permutati­
on problem since it would yield invalid results.
Crossover of solutions is not employed. A equals

optima and counters the strong selection pres­
sure in CES. Again, CES determines the best
child to become the new parent. Procedure de­
stabilization is then terminated and the search
continues as before until the termination criteri­
on holds.

As for the other EAs, CES starts from a ran­
domly generated (rather poor quality) initial so­
lution. The best solution discovered by CES is
stored separately and is continuously updated
during the search. This is the final result of the
heuristic. It can optionally be improved with a
local hillclimbing technique (2-0pt). Figure 4
gives an overview of CES in pseudo code. The
CES parameters are empirical and constant over
all QAP-experiments again.

50 for the smaller test problems NUG 15, NUG20
and ELSI9. For the other problems A equals
100. The parent is eliminated after each genera­
tion. This allows for an occasional deterioration 3
of the parent solution. The concept has expe­
rimentally proved slightly more successful than
having parent and children compete for survival.

Empirical Results

MMGA, CEP and CES were run on seven test­
problems taken from [22] (NUGI5, NUG20,
NUG30), [26] (STE36a, STE36c), [8] (ELSI9)
and [25] (SK064) with numbers of facilities n
varying between 15 and 64. NUGI5, NUG20,
NUG30, and SK064 are randomly generated
problems with low ßow-dominance. The other
three appear to be practical applications with
high (STE36a, STE36c) and very high (ELSI9)
ßow-dominance values. Hence, the seven pro­
blems are very different in size and structure ma­
king them a good test-suite. The search space
size (number ofsolution alternatives) varies from
roughly 1.31 . 1012 for NUG 15 to 1.27· 1089 for
SK064. Ten trials are performed in each expe­
riment. Results are given in tables 3-5. Data
for generation 0 refers to the starting solutions
used.

The number of 2-swaps during mutation is
randomly chosen to be either one or two. It can
occasionally be zero however, should the algo­
rithm by chance choose the same position for
a swap twice. This then preserves the parent
solution. In accordance with the standard ES­
scheme, it would have been possible to use a nor­
mally distributed random variable for adapting
the number of swaps during mutation, but it was
decided to keep the number of swaps small. In­
tensive swapping of facilities generally deteriora­
tes the objective function value of a given QAP­
solution due to massive interactions between the
facilities. Generating normally distributed ran­
dom numbers is also more time consuming.

The best child becomes the new parent solu­
tion (deterministic selection). If its fitness value
is not better than the former parent's value, a
counter is increased. The counter is reset to zero
whenever a CES-generation is successful. After
round {n/l0+2} consecutive unsuccessful gene­
rations, an empirically determined value, a pro­
cedure called destabilization is executed. This is
a non-standard operator. The concept of desta-

The well-known conventional combinatorial
heuristic 2-0pt serves as a benchmark to com­
pare the quality of solutions generated by CES
with a more traditional QAP-heuristic (table 2).
The starting solutions of CES and 2-0pt are
identical. MMGA, CEP, CES and 2-0pt were
all implemented in Pascal on a workstation IBM
RS 6000/320 H. Also, for orientation purposes,

results of the excellent TABU search implemen­
tation (TS) of Taillard [27] are given (table 1),
but one should bare in mind that TS was run on
different hardware (parallel transputer system)
and the evaluations of individual solutions in TS
have a lower time complexity as in the heuristics
presented in this article.

Examining the results for MMGA first (ta­
ble 3) it is clear that the GA-approach is neither
competitive with TS nor with 2-0pt when both
solution quality and CPU-requirements are ta­
ken into consideration. An exception to be dis­
cussed later is ELS19. The general increase in
solution quality due to continuing search efforts
with rising generation number is no surprise.
However, the number of solution evaluations and
CPU-requirements rise only underproportional­
ly in case ofthe larger test problems. This means
that with time subpopulations are blocked mo­
re frequently here, and the emigration operator
loses part of its power. Processing the MMGA­
result with an additional 2-0pt hillclimber is
useful for short MMGA-runs to overcome the
well-known weakness of GA in finetuning the fi­
nal solution.

Because of the chosen 2-swap based search
operators in CEP and CES both heuristics al­
low for an especially efficient form of solution
evaluation that cannot be applied to the PMX­
based MMGA (see [19] for details). The number
of CEP- and CES-generations are chosen as to
produce roughly equivalent numbers of solution
evaluations during runs, since the time comple­
xity to evaluate individual solutions is very si­
milar in both heuristics.

Results for CEP and a hybrid, where the
CEP-solution is postprocessed by 2-0pt, are gi­
ven in Table 4. Generally, the optimal solution
is approached in an asymptotic manner, while,
simultaneously, the reliabilty of the optimization
process increases with rising generation number
as can be seen in the reduced standard deviati­
on. For ELS19 the paradoxical situation occurs
that the shortest run produces the second best
CEP-result. One should bare in mind, though,
that depending on the max. generation number
the search process for CEP proceeds differently
for runs of varying length. This is due to the
intluence ofthe factor maxgen/gen on the muta­
tion intensity.

Very good or optimal values are quickly iden­
tified for the smaller test problems NUG15 and
NUG20 as can in the Best-Gen. column. Con­
trary to this, CEP is weaker on ELS19, the pro-

blem instance with the highest flow-dominance.
This phenomenon will be discussed later.

Improving the final CEP-result by 2-0pt is
useful only for the largest test problem SK064.
In all other cases CEP-solutions are already (at
least nearly) locally optimal. The hybrid strat­
egy of CEP and 2-0pt may be described as hill­
finding (CEP) and hillclimbing (2-0pt). That
such a combination is sensible can be seen when
comparing with the pure 2-0pt results (table
2). After 2500 generations the hybrid pro du­
ces on average much better solutions with grea­
ter reliability (lower std.dev.) and lower CPU­
requirements. Examining the additional CPU­
seconds for 2-0pt, it is interesting to note, how
search-Ioad shifts from the hillclimber to CEP
as the length of the CEP-run increases.

On large problem instances CEP is more ef­
ficient than 2-0pt when solution quality and
CPU-time are considered simultaneously. Com­
pared to TS the hybrid of CEP and 2-0pt pro­
duces results on a similar level.

Various authors have asserted that in com­
plex search spaces low selection pressure is ap­
propriate to avoid premature convergence of an
EA (e.g. [13]). For CEP, selection pressure can
be influenced by altering the ratio of parents to
children as weIl as by varying the number of in­
dividual tournaments during the stochastic se­
lection phase. Results for the second alternative
are given in table 6. More results can be found
in [19]. CEP is mildly influenced by the number
of individual tournaments during selection. The
most successful selection pressure is still compa­
ratively high (Seven tournaments for each indi­
vidual = 23 percent of the entire population).
This is slightly surprising and demonstrates the
difficulty to give general recommendations for
strategy values that are independent of the par­
ticular EA-design and the application in questi­
on.

CES, as the last EA-variant to be discus­
sed here, quickly identifies good solutions on
all seven problem instances (table 5). Not sur­
prisingly, average solution quality and standard
deviation improve with the number of genera­
tions because more solution trials are perfor­
med. Destabilization proves to be an import­
ant heuristic element. It counters the negati­
ve effects (tendency to premature convergence)
of the extreme selection pressure in CES. The
average number of destabilizations Can be cal­
culated from the number of function evaluati­
ons, because without destabilization there would

only be A x generations + 1 function evaluati­
ons. On larger QAPs there is a tendency for fe­
wer destabilization phases. One reason for this
phenomenon is the way the allowed number of
consecutive unsuccessful CES-generations befo­
re destabilization is computed. The larger n the
higher this maximum value. Also, as the pro­
blem dimension increases, it becomes easier to
leave a local optimum. But because the size of
the search space (n!) rises drastically, though,
the search process requires more time to identify
high quality solutions than on smaller problem
instances.

CES quickly produces on average far bet­
ter solutions with more reliability than 2-0pt.
Even after only 100 generations CES often ge­
nerates better mean values, thereby challenging
the speed-advantage of more conventional heu­
ristics on larger problems. It also converges to
better solutions with higher reliability as shown

parents to children, as in the 2-swap based mu­
tation, lead to a certain correlation of their fit­
ness values. Even such comparatively conserva­
tive crossover-forms as PMX frequently produce
behavior close to random search by changing so­
lutions too much at a time when population di­
versity is reasonably high. In general, the fitness
landscape for CEP and CES is smoother than
for MMGA due to the different search operators
employed. However, some search behavior dose
to random search is also present during the ear­
ly phases of CEP and it is deliberately employed
during the destabilization phases ofCES. On the
other side, when How-dominance values are ve­
ry high, 2-swap-based heuristics have difficulties
in overcoming pronounced local sub optima, so
that crossover is advantageous. All three EAs
discussed here can in principle be parallelized.
For more details see [1.9].

in table 7. CES also competes well with TS in 4
terms of solution quality and efficiency. Conclusions

Table 5 shows that postprocessing CES­
results with a local hilldimber can lead to impro­
ved solutions on larger problems. Aß with CEP,
to achieve results ofvery high quality, though, it
is necessary to allow for a reasonably long search
phase of the evolutionary component before in­
voking 2-0pt. Also, on smaller problems the
CES-solutions are usually (nearly) locally opti­
mal so that a 2-0pt becomes superHuous.

CES appears to be an effective, easily im­
plementable heuristic that yields good results
without problem-specific parameter tuning on
QAPs of very different size and structure. It has
acceptable CPU-requirements even on aserial
computer. In [21] the authors extend the CES­
heuristic to include practica11y relevant con­
straints of facility layout.

Finally, comparing the algorithmic perfor­
mance of MMGA, CEP and CES on the QAPs
leads to the following results and conclusions:

The strictly mutation-based ES- and EP­
approaches outperform the crossover-based GA
on a11 instances but the problem with the hig­
hest How-dominance value ELS19 (see efficiency
comparison in figures 5, 6 and 7). This may be
explained by reference to results of Manderick et
al. [17] and Lipsitch [16] concerning the relation
of fitness landscape and design of search ope­
rators. On the one side, when How-dominance
is low or medium, a highly multimodal QAP
fitness-Iandscape results from the epistatic na­
ture of the problem. Only small changes from

Overall, the combinatorial variant of an Evolu­
tion Strategy (CES) is the best EA presented
here. The non-standard destabilization opera­
tor in the ES-implementation is useful in over­
coming local optima when selection pressure is
high as in CES. It is also effective on problem
instances with high How-dominance that prove
difficult for other heuristics purely based on pair­
wise exchange of solution elements.

Despite the high degree of epistasis of the
application, CES and CEP (possibly combined
with an additional 2-0pt) are successful opti­
mization techniques for Quadratic Assignment
Problems. CEP and in particular CES are com­
petitive to implementations of Tabu Search (or
Simulated Annealing) as described in the lite­
rature. Contrary to some TS-implementations,
they require no tuning of strategy parameters on
individual problem instances, thus making the
EAs particularly user-friendly.

On larger problem-instances a postproces­
sing of the final EA-solution with a simple 2-
Opt hillclimber can improve the quality of re­
sults slightly at very low cost. One has to be
careful, however, to allow for sufficient explora­
tion of the search space by the EA first before
the hillclimber is invoked.

While the general notion is that problems of
mild epistasis are most suited for EAs [7], the
results demonstrate that even highly epistatic
problems, such as the QAP, can successfully be
approached with pure EAs when one takes care

to design the search operator accordingly (pre­
ference for small changes).

At first glance, the empirical results also
seem to indicate that pure, non-hybridized GA
are not very successful for tough combinatorial
problems. This may be so. One must remember,
though, when assessing the performance espe­
cially of MMGA, that the design ßexibility of
EAs allows for many more variants of evolutio­
nary approaches to be implemented than could
possibly be tested here. Moreover, non of the
three EA-mainstream techniques was original­
ly invented to solve combinatorial optimization
problems. Thus, I have freely adapted the va­
rious EA-types to suit the needs of this appli­
cation. Nevertheless, for the QAP is is fair to
conclude that crossover is not required for an
EA to be successful.

A more detailed description of the experi­
mental setup, results of sensitivity analysis as
weIl as results for a messy-GA approach based
on Goldberg et al. [12] is given in Nissen [19],
together with other applications of EAs, and an
in-depth presentation of all major EA-types, in­
cluding hybrid-systems.

References

[1] Ablay, P.: Optimieren mit Evolutionsstra­
tegien. Spektrum der Wissenschaft (1987)
7,104-115.

[2] Bäck, T.; Schwefel, H.-P.: An Overview
of Evolutionary Algorithms for Parameter
Optimization. In: Evolutionary Computa­
tion 1 (1993) 1, 1-23.

[3] Brown, D.E.j Huntley, C.L.; Spillane,
A.R.: A Parallel Genetic Heuristic for
the Quadratic Assignment Problem, In:
Schaffer, J .D. (ed.) Proceedings of the
Third International Conference on Gene­
tic Algorithms, San Mateo/CA: Morgan
Kaufmann 1989, 406-415.

[4] Burkard, R.E.; Fincke, U.: The Asympto­
tic Probabilistic Behaviour of Quadratic
Sum Assignment Problems. Zeitschrift für
Operations Research 27 (1983), 73-8l.

[5] Burkard, R.E.: Locations with Spatial
Interactions: The Quadratic Assignment
Problem. In: Mirchandani, P.B.; Francis,
R.L. (eds.) Discrete Location Theory, New
York: John Wiley & Sons 1990,387-437.

[6] Burkard, R.E.; Karisch, S.; Rendl, F.:
QAPLIB - A Quadratic Assignment Pro­
blem Library. EJOR 55 (1991), 115-119.

[7] Davidor, Y.: Epistasis Variance: Suita­
bility of a Representation to Genetic AI­
gorithms. In: Complex Systems 4 (1990),
369-383.

[8] Eishafei, A.N.: Hospital Layout as a Qua­
dratic Assignment Problem. Opera.tional
Research Quarterly 28 (1977) 1 ii, 167-179.

[9] Fogei, D. B.: Evolving Artificial Intelli­
gence. Dissertation, University of Califor­
nia, San Diego 1992.

[10] Goldberg, D. E.; Lingle Jr., R.: Alle­
les, Loci, and the Traveling Salesman Pro­
blem. In: Grefenstette, J.J. (ed.): Pro­
ceedings of an International Conference
on Genetic Algorithms and Their Appli­
cations, Hillsdale /N J : Lawrence Erlbaum
1985, 154-159.

[11] Goldberg, D.E.: Genetic Algorithms in
Search, Optimization, and Machine Lear­
ning. Reading/MA: Addison-Wesley 1989.

[12] Goldberg, D.E.; Korb, B.; Deb, K.: Mes­
sy Genetic Algorithms: Motivation, Ana­
lysis, and First Results. TCGA Report
89003, University of Alabama, The Clea­
ringhouse for Genetic Algorithms, Tusca­
loosa 1989.

[13] Hoffmeister, F.; Bäck, T.: Genetic AI­
gorithms and Evolution Strategies: Simi­
larities and Differences. Technical Report
SYS-1/92, University of Dortmund 1992.

[14] Koopmans, T.C.j Beckmann, M.J.: Assi­
gnment Problems and the Location of Eco­
nomic Activities. Econometrica 25 (1957),
53-76.

[15] Kusiak, A.; Heragu, S.5.: The Facility
Layout Problem. EJOR 29 (1987), 229-
25l.

[16] Lipsitch, M.: Adaptation on Rugged
Landscapes Generated by Iterated Local
Interactions ofNeighboring Genes. In: Be­
lew, R.K.; Booker, L.B. (eds.): Procee­
dings of the Fourth International Confe­
ren ce on Genetic Algorithms, San Ma­
teo/CA: Morgan Kaufmann 1991, 128-
135.

[17] Manderick, B.; Weger, M. dei Spiessens,
P.: The Genetic Algorithm and the Struc­
ture of the Fitness Landscape. In: Belew,
R.K.; Booker, L.B. (eds.): Proceedings
of the Fourth International Conference on
Genetic Algorithms, San Mateo/CA: Mor­
gan Kaufmann 1991, 143-150.

[18] Mühlenbein, H.: Parallel Genetic AIgo­
rithms, Population Genetics and Combi-

natorial Optimization. In: Schaffer, J.D.
(ed.) Proceedings of the Third Interna­
tional Conference on Genetic Algorithms,
San Mateo/CA: Morgan Kaufmann 1989,
416-42l.

[19] Nissen, v.: Evolutionäre Algorithmen.
Darstellung, Beispiele, betriebswirtschaft­
liehe Anwendungsmöglichkeiten. Wiesba­
den: DUV 1994.

[20] Nissen, V.: Solving the Quadratic Assign­
ment Problem with Clues from Nature.
IEEE Transactions on Neural Networks:
Special Issue on Evolutionary Program­
ming 5 (1994) 1, 66-72.

[21] Nissen, V.; Krause, M.: Constraint Com­
binatorial Optimization with an Evolu­
tion Strategy. to appear in the Proceedings
of 4. Dortmunder Fuzzy Tage (6.-8. June
1994).

[22] Nugent, E.N.; Vollmann, T.E.; Ruml, J.:
An Experimental Comparison of Techni­
ques for the Assignment of Facilities to
Locations. Operations Research 16 (1968),
150-173.

[23] Sahni, S.; Gonz ales , T.: P-complete Ap­
proximation Problem. ACM Journal 23
(1976), 556-565:

[24] Schwefel, H.-P.: Numerical Optimization
of Computer Models. Chichester: John
Wiley & Sons 198!.

[25] Skorin-Kapov, J.: Tabu Search Applied to
the Quadratic Assignment Problem. OR­
SA Journal on Computing 2 (1990) 1, 33-
45.

[26] Steinberg, L.: The Backboard Wiring Pro­
blem. SIAM Review 3 (1961), 37-50.

[27] Taillard, E.: Robust TABU Search for the
Quadratic Assignment Problem. Parallel
Computing 17 (1991), 443-455.

[28] Vollmann, T.E.; Buffa, E.S.: The Facility
Layout Problem in Perspective. Manage­
ment Science 12 (1966) 10, B450-468.

Appendix A: Figures

Location #3

4 3 6 2 5 1 7

Facility #6

Figure 1: Solution representation in MMGA, CEP, and CES (n=7).

6 start
10 generate 200 subpopulations of 30 individuals each randomly
15 choose best solution
20 generationcounter = 1
25 repeat
30 subpopulationcounter = 1
36 repeat
40 if subpopulation not blocked. then
46 tournament selection of two non-identical parents

(PMI-partners. max. 2 attempts)
50 if identical PMl-partners consecutively drawn twice.

then block subpopulation. else
65 PMI =? 2 offspring
60 replace worst individual of subpopulation by best offspring
66 update best solution if required
70 end
75 increment subpopulationcounter
80 until subpopulationcounter > 200
85 if all subpopulations blocked. then
90 exchange 750 randomly determined individuals between

randomly determined subpopulations (emigration)
96 release all subpopulations again
100 reduce generation counter by 1
106 increment generationcounter
110 until max. generation
115 output best solution
120 improve solution by 2-0pt (optional)
125 output improved solution (optional)
130 stop

Figure 2: MMGA pseudo code

5 start
10 generate and evaluate random population of five parents
15 population = parents
20 vorstfit = vorst objeetive funetion value of

startpopulation (* used tor mutation *)
25 best solution = best start-individual
30 repeat
35 eopy eaeh parent 5 times (* replieation *)
40 determine number ot 2-svaps tor eaeh ehild;

mutate and evaluate ehildren
45 hold seven tournaments for eaeh of the 30 individuals

against randomly determined opponents in the population
and keep nuaber ot individual vins

50 sort population in deseending order based on vins (* quicksort *)
55 ehoose tive top individuals ot this ranking as nev parents
60 eompare best individual based on objeetive tunet ion value

trom entire population (30) vith best solution and update
best solution it required

65 until max. generation
70 output best solution
75 improve solution by 2-0pt (optional)
80 output improved solution (optional)
85 stop

Figure 3: CEP pseudo code

5 start
10 generate and evaluate random starting solution
16 best solution = start solution
20 failurecounter = 0
26 repeat
30 save the objective function value o~ parent
36 copy parent to produce 100 children
40 determine number of 2-svaps from interval [1,2] for each child

and mutate
46
50

65

evaluate children
choose best child based on objective function value to be
nev parent
if nev parent not bett er than old parent then increment
failurecounter
else

set failurecounter = 0
if nev parent bett er than best solution
then update best solution

60 if failurecounter = round (njlO) + 2 then go to 1000
65 until aax. generation
70 output best solution
76 improve solution vith 2-0pt (optional)
80 output improved solution (optional)
85 stop

1000 procedure destabilization
1005 copy parent to produce 100 children
1010 determine increased number of 2-svaps from interval [3,8]

for each child and mutate
1015 evaluate children
1020 choose best child based on objective function value to be

nev parent
1025 if nev parent better than best solution

then update best solution
1030 set failurecounter = 0
1035 end procedure

Figure 4: CES pseudo code

OAP-value
6800

1 '" -- MMGA

-+- CEP

6600 1 ~ CES

Optimum

6400

6200~~ * __ ---~---------{J G-----------------
6000~! ---~---~-----~---~---~---~---~---~------~---~---~

o 20 40 60 80 100 120 140 160 180 200 220
CPU-S8C.

Figure 5: Efficiency graph for the testproblem NUG30.

OAP-value
13000!~---,

-- MMGA

-+- CEP

12000 + CES

-0- Optimum

11000
I

10000 ~ •::It::::::===:::::::::::::::::*~_~+
G--------------------------------

9000!~---~~---~~---~~---~~---~~---~~---~~---~~

o 20 40 60 80 100 120 140 160 180200 220 240 260 280 300
CPU-sec.

Figure 6: Efficiency graph for the testproblem STE36a.

OAP-value (in thousands)

22500

21500

20500 - MMGA

-+- CEP

19500 -*- CES

-0- Optimum

18500

17500 G _______ ~ _____________ •

16500~-~-~-~--~-~-~--~-~--~--~~

o 10 20 30 40 50 60 70 80 90 100
CPU-sec.

Figure 7: Efficiency graph for the testproblem ELS19.

Appendix B: Tables

Best known Average objective function value· after i TS-iterations

Testproblem solution i = 4n AFEt i = n2 AFE~ i = 1000 AFEo

NUG15 1,150 1,162 6,300 1,152 23,625 1,150 105,000
NUG20 2,570 2,606 15,200 2,580 76,000 2,573 190,000
NUG30 6,124 6,228 52,200 6,148 391,500 6,142 435,000
SK064 48,498 49,225 516,096 48,692 8,257,536 48,837 2,016,000
ELS19 17,212,548 21,154,221 12,996 19,174,778 61,731 17,780,562 171,000

STE36a
'---- 9,~

-
10,145 90,720 9,869 816,480 9,917 630,000

AFE = average function evaluations.
-The values are approximate. Taillard gives pars per mille above best known solutions.
t 4n . n . (n - 1)/2.
~n2.n·(n-1)/2.
o 1000. n . (n - 1)/2.

Table 1: Numerical results of the TS-implementation by Taillard [27]. TS was ron on a 10-
node T800C-G20S transputer system. CPU-time per iteration is given by approx. 6,2· n2ps.

Test- Best known Mean Std.dev. 0-solution 0-CPU
problem solution evaluations Jsec.}
NUG15 1,150 1,194.4 24.69 745.7 0.06
NUG20 2,570 2,670.6 35.90 2,001.6 0.22
NUG30 6,124 6,321.8 66.93 10,321.9 2.19
SK064 48,498 49,524.0 321.27 188,649.8 241.57
ELS19 17,212,548 21,798,726.0 2,571,051.42 3,593.8 0.36

STE36a 9,526 10,447.4 265.18 17,838.8 5.20
STE36c 8,239.1 8,902.6 318.18 20,188.4 5.89

0-solution evaluations = average number of solution evaluations.

Table 2: 2-0pt results (on IBM RS 6000/320 H).

MMGA + 2-0pt
Testpr./ Gene- Mean Std.dev. Best 0-so1.- 0-CPU Mean
b.k.so1. ration gen. eva1. (sec .)

NUGI5/ 0 1317.0· 16.35
1150 500 1181.0 8.06 416.1 65933 16.49 1167.8

1000 1154.0 4.47 804.4 111030 29.25 1154.0
3000 1154.0 4.47 804.4 182117 99 .92 1154.0

NUG20/ 0 2969.2· 21.23
2570 500 2713.0 20.90 439.1 67754 26.35 2648.4

1000 2635.0 16.81 937.1 113419 46.09 2623.4
3000 2608.0 22.91 1283.3 195976 145.16 2608.0

NUG30/ 0 7343.2· 78.80
6124 500 6784.8 52.38 378.1 68192 49.36 6297.0

1000 6596.8 60.53 957.5 112037 84.64 6294.0
3000 6297.8 67.42 2220.6 243544 220.54 6266.6

SK064/ 0 56235.0* 195.86
48498 500 54033.8 189.69 405.5 74437 251.30 49385.0

1000 53411.0 178.22 905.5 115277 392.46 49637.6
3000 50768.6 409.58 2893.7 307058 1092.36 49556.2

10000 50562.0 455.36 3633.5 555534 2506.98 49554.2
ELSI9/ o 26373875.2* 1502325.23

17212548 500 17735390.4 279257.96 457.9 68992 24.96 17384514.2
1000 17215921.4 6648.02 916.9 121786 46.22 17212548.0
3000 17212548.0 0.00 944.9 251729 101.12 17212548.0

STE36a/ 0 16805.0* 217.72
9526 500 12907.6 365.34 475~2 72280 72.73 10423.8

1000 11940.4 324.72 941.2 114427 119.39 10182.4
3000 10158.6 286.58 2628.4 286285 313.68 10042.0

STE36c/ 0 13826.3* 125.23
8239.1 500 10878.1 194.80 478.5 71456 77.20 8672 ~6

1000 10111.6 120.06 920.1 113693 127.45 8642.3
3000 8697.9 180.04 2664.6 290367 340.89 8530.0

*Datum refers to the best start-individual in each of the ten runs.
Testpr. / b .k.so1. = Testproblem / best known solution.
Best gen. = average generation of the best solution found .
0-sol.eval. = average number of solution evaluations.
Add. CPU (sec.) = average additional CPU requirements for 2-0pt.

Table 3: MMGA results (on IBM RS 6000/320 H).

Add.
CPU

0.01
0.01
0.01

0.06
0.03
0.02

1.12
0.85
0.29

212.01
186.20
96.83

101.43

0.07
0.02
0.02

2.97
2.58
0.42

3.21
3.07
0.76

Testpr./
b.k.sol.

NUG15/
1150

NUG20/
2570

NUG30/
6124

SK064/
48498

ELS19/
17212548

STE36a/
9526

STE36c/
8239.1

CEP + 2-0pt
Gene- Mean Std.dev. Best 0-801.- 0-CPU Mean
ration gen. eval. (sec.)

0 1497.2* 53.96
500 1160.8 10.81 219 .8 12505 3.14 1160.8

2500 1155.2 3.92 788.9 62505 15.67 1155.2
5000 1154.2 3.84 1281.1 125005 31.35 1154.2

15000 1151.2 0.98 3688.1 375005 93.94 1151.2
50000 1151.0 1.00 5886.2 1250005 313.14 1151.0

0 3241.0* 99.83
500 2608.2 26.75 356.3 12505 3.79 2607.8

2500 2590.6 15.52 1423.3 62505 18.88 2590.2
5000 2582.4 9.79 1834.0 125005 37.68 2582.4

15000 2579.8 10.06 2761.7 375005 112.98 2579.8
50000 2571.8 5.40 10699.7 1250005 376.47 2571.8

0 7898.2* 124.93
500 6312.8 48.64 406.7 12505 5.38 6280.0

2500 6221.6 42.93 2061.0 62505 26.58 6215.2
5000 6178.6 18.97 4102.9 125005 53.07 6168.6

15000 6153.6 14.14 10784.4 375005 159.01 6149.0
50000 6142.8 11.32 34062.7 1250005 529.59 6139.6

0 58052.2* 305.84
500 50385.2 302.67 477.6 12505 20.83 49581.8

2500 49681.6 189.36 2193.4 62505 103.06 49189.4
5000 49374.4 152.40 3481.9 125005 205.12 49016.2

15000 49157.2 96.59 12184.8 375005 614.28 48920.6
50000 49062.6 82.64 35895.3 1250005 2056.00t 48820.6

250000 48912.6 34.42 196225.8 6250005 10300.00t 48687.0
o 48655026.0* 5080681.91

500 20668140.2 2350732.40 245.9 12505 3.55 20668140.2
2500 22587649.8 2688617.62 384.5 62505 17.63 22587649.8
5000 21142317.0 1928873.91 546.7 125005 35.24 21142317.0

15000 20871435.2 2437603.24 1601.2 375005 105.67 20871435.2
50000 20375940.4 1882263.08 5714.2 1250005 349.22 20375940.4

0 19825.6* 560.74
500 10522.0 276.68 403.9 12505 6.25 10351.8

2500 10183.2 259.50 1782.2 62505 30.96 10119.2
5000 10031.6 243.80 2357.9 125005 61.81 9992.6

15000 9845.4 141.48 11728.9 375005 185.19 9825.8
50000 9923.0 106.98 23667.8 1250005 617.58 9614.4

0 16281.4· 464.31
500 8807.1 144.06 396.8 12505 6.30 8720.5

2500 8553.3 102.28 1555.0 62505 31.19 8506.3
5000 8544.5 264.34 3413.4 125005 62.30 8513.7

15000 8443.0 97.70 7640.5 375005 186.60 8425.4
50000 8327.4 81.90 34411.4 1250005 621.47 8310.9

-- '- - -

*Datum refers to the best start-individual in each of the ten runs.
t Appox. values.
Testpr. / b.k.sol. = Testproblem / best known solution.
Best gen. = average generation of the best solution found.
0-sol.eval. = average number of solution evaluations.
Add. CPU (sec.) = average additional CPU requirements for 2-0pt.

Table 4: CEP results (on IBM RS 6000/320 H).

Add.
CPU

0.01
0.01
0.01
0.01
0.01

0.02
0.02
0.02
0.02
0.02

0.26
0.15
0.14
0.14
0.11

52.52
44.30
29.01
27.60

26.20t
24.30t

0.02
0.02
0.02
0.02
0.02

0.65
0.41
0.39
0.29
0.27

0.62
0.39
0.38
0.29
0.26

Testpr./
b.k.sol.

NUG15/
1150

NUG20/
2570

NUG30/
6124

SK064/
48498

ELSI9/
17212548

STE36a/
9526

STE36c/
8239.1

CES
Gene- Mean Std.dev. Best 0-so1.- 0-CPU
ration gen. eval. (sec.)

0 1564.2 79.80
200 1162.0 10.24 90.2 10811 1.46

1000 1153.2 3.49 415.7 54446 7.36
2000 1150.8 0.98 712.1 108976 14.73
6000 1150.2 0.60 1583.2 327086 44.23

20000 1150.0 0.00 2225.0 1090281 147.26
0 3442 .0 73.10

200 2626.4 23.78 89.5 10641 2.10
1000 2591.8 13.22 607.5 53276 10.47
2000 2586.8 13.48 1014.7 106626 20.96
6000 2574.0 6.20 2311.0 320096 62 .93

20000 2570.0 0.00 5447.8 1067451 209.63
0 8127.4 182.19

100 6310.2 66.92 73.8 10291 3.62
500 6202.4 46.38 317.2 52281 18.49

1000 6165.6 23.13 651.8 104701 37.03
3000 6144.8 10.09 1789.2 314691 111.39

10000 6135.0 9.31 4680 .6 1050181 372.35
0 58947.2 737.28

100 50195.6 284.02 95 .7 10001 19.08
500 49565.4 277.49 458.9 50271 95.85

1000 49379.6 181.38 761 .0 100781 192.30
3000 49044.2 123.12 2344.0 302591 583.12

10000 48906.0 80.61 6423.0 1009211 1927.53
50000 48815.2 52.04 31158.5 5045471 9640.00t

0 59725819.2 9244110.12
200 19218336.8 2094638.95 136.7 10486 1.92

1000 18128394.0 1398977.87 451.5 52916 9.71
2000 18128394.0 1398977.87 451.5 105851 19.41
6000 17517830.0 915846.00 1127.5 317621 58.21

20000 17517830.0 915846.00 1127.5 1058841 193.87
0 22754.8 1930.78

100 10650.0 203.66 72.2 10171 4.79
500 10103.0 110.50 402 .3 51461 24.37

1000 9979.0 111.46 801.0 102981 48.78
3000 9811.8 103.26 1879.5 309561 146.80

10000 9701.2 87.92 6628.2 1032511 489.23
0 18890.2 1804.01

100 8923.2 175.76 82.6 10131 4.79
500 8713.1 187.60 325.5 51301 24.43

1000 8581.9 165.04 755.3 102901 49.07
3000 8402.9 93.40 1638.7 309141 147.59

10000 8337.7 85.76 7268.3 1031451 492.26

t Appox. values.
Testpr. / b.k.sol. = Testproblem / best known solution .
Best gen. = average generation of the best solution found .
0-sol.eval. = average number of solution evaluations.

+ 2-0pt
Mean Add.

CPU

1160.0 0.01
1153.2 0.01
1150.8 0.01
1150.2 0.01
1150.0 0.01

2623.6 0.03
2591.4 0.02
2584.2 0.03
2572.8 0.02
2570.0 0.02

6283.8 0.18
6195.4 0.11
6158.8 0.13
6144.4 0.10
6134.8 0.09

49607.6 42.09
49332.0 25.20
49193.0 21.40
48924.8 17.56
48804.2 13.42
48697.6 16.60t

19209755.4 0.02
18128394.0 0.02
18128394.0 0.02
17517830.0 0.02
17517830.0 0.02

10548.0 0.54
10079.2 0.29

9944.6 0.29
9797.2 0.26
9689.8 0.21

8859.4 0.57
8698.5 0.25
8568.3 0.30
8392.7 0.23
8332.0 0.26

Add. CPU (sec.) = average additional CPU requirements for 2-0pt .

Table 5: CES results (on IBM RS 6000/320 H).

Average objective functions values
for different selection pressure

(Standard)
Gen. w=5 w=7 w = 10

500 6351.4 6312.8 6294.0
1000 6343.0 6234.2 6265.2
2500 6276.8 6221.6 6249.6
5000 6253.8 6178.6 6262.2
15000 6237.4 6153.6 6182.2
50000 6210.8 6142.8 6186.4

Gen. = Generation
w = number of individual competitions

in the stochastic selection

Table 6: Varying the selection pressure for CEP on NUG30.

10 x CES (10,000 generations) 1700 x 2-0pt

Best Worst Mean Std. dev. Best Worst Mean Std. dev.

6124 6150 6135.0 9.31 6128 6702 6351.0 83.94

Table 7: Comparison ofCES and 2-0pt solution quality at approx.
identical CPU-requirements (IBM RS 6000/320 H) on NUG30.
All starting solutions are randomly generated.

CONSTRUCTIVIST ARTIFICIAL LIFE: The constructivist­
anticipatory principle and functional coupling

Alexander Riegler

Department of Theoretical Biology
Althanstrasse 14

A-1090 Vienna, Austria

and Department of Software Tecbnology
Resselgasse 3/2/188

A-1040 Vienna, Austria

Email: riegler@eimoni.tuwien.ac.at
Fax: ++43 131336700

Abstract

Botb tbe system theory of evolution and tbe epistemology of radical constructivism provide fertile inspi­
ration for enbancements of artificiallife. Within this paper I will demonstrate that (a) one can move tbe
empbasis on sensory information processing to a more expectation-(Jriven algoritbm; and (b) tbat a sep­
aration between tbe operational elosed brain on tbe one band and sensors and motor elements on tbe other
band will enable the study of cognitive mecbanisms independent of the actual environment

1. Introduction

1.1 Constructivist Artificial Life (CUle)

Constructivist arti/icial life is an enhancement of
artificiallife models with mechanisms provided by
(radicallcognitive) constructivism (sections 2.3 and
2.4) and the system theory of evolution (section
2.2). eLife employs expectation-driven bebavior,
bierarcbical structure of fuzzy representational ele­
ments, and aseparation between cognitive process­
es within an agent and its sensor and effector surfac­
es.

1.2 Active Perception

According the constructivist point of view, autono­
mous agents have their own bypotheses about the
world wbicb do not necessarily correspond directly
with pbysical events. Ibis concept reverses the tra­
ditional bottleneck arcbitecture of perception: No
longer is the entire available 'information from out­
side' used to control the bebavior of a agent. In­
stead, agents are viewed as autonomous entities
wbicb construct their own 'reality' 1. Tbis construc­
tivist-anticipatory principle (cf. section 3.4) is im­
plemented by chaining and ramifying fuzzy interval
schemata. Once a bypothesis is selected, the algo­
rithm needs to test only a few perceptual events
wben the condition parts of the rules require it. Tbis
reduces the computational need for performance.

1.3 Separation between cognitive apparatus
and physiology

Apriori assumptions and anthropocentric ascrip­
lions (e.g., wbat is food, wbat is a predator, etc.) are
avoided. eLife strictly separates the cognitive ap­
paratus from the pbysiology of sensors and motors
(see Fig. 1 and section 4). Tbis implements the ope­
rational closure o/the brain (as described by radi­
cal constructivism). Due to this modular structure
the cognitive apparatus can easily be excbanged for
different experiments and tasks.

1.4 Hierarchical Representation

System theory of evolution provides the functional
couplings within representational Wlits. Sucb adap­
tive predispositions lead to a canalization 0/ devel­
opment, wbere building blocks of representational
units and their bierarcbical relationsbip increase the
speed of evolution by orders of magnitudes. I will

1. As argued in [12], tbe notion of reality may be dif­
ferentiated into: Realität, wbich connotes tbe onto-
10gically given environment every realist makes
reference to, and Wirklichkeit, wbicb designates tbe
"constructed" world in our minds, as the construc­
tivist position proposes. Thus, Wirklichkeit con­
notes a sequence of "effects" (perturbations) wbicb
may appear at any time and place. The reference el­
ements for "knowledge acquisition", whicb we term
"pbenomena" or "facts", are tberefore spatially and
temporally constrained configurations of effects.

INTERPRETER
ENVIRONMENT

COGNITIVE APPARATUS

operates exclusively on its own, Le., it
does not depend on sensory inputs

and motory outputs

single
cond./ actions

Figure 1: Operational closure within the cognitive apparatus. SS denotes the sensory surface, MS is the motor swface.

point out that the drawbacks of interdependent and
hierarchical systems (genetic loads), as we know
from biological evolution, can be avoided within
artificial systems (for an overview see section 3.5).

2. Theoretical Background

2.1 Building Blocks ofBehavior in Biology

Konrad Lorenz [6] used the notion ofjixed action
patte ms to connote the basic building blocks of be­
havior. He cbaracterized them as rather stereotypie
patterns. Many fligbt behaviors are of this kind of
behavior. The egg-retrieving behavior of the grey­
lag goose provides an example for a sligbtly im­
proved version of a fIXed action behavior: If an egg
falls out of the nest the incubating goose roUs the
egg back into the nest with its bill. If the egg is re­
moved midway througb this action pattern the bird
continues until its bill has reached the border of the
nest. It seems that during this process the goose ne­
glects environmental events: if an action pattern has
been triggered, the processing of sensor informa­
tion is reduced until the pattern terminates. During
egg retrieving it is necessary to compensate for any
sideward rolling of the egg. This behavior is called
a behavioral sequence and consists of the interac-

tion between effectors and sensor feedback. We can
compare this behavior with walking in a dark um­
nel: whenever we bump against the wall we slightly
change the direction 10 suit the circumstances. In
eUfe, such action chains are easily implemented:
they are just a sequence of procedures whose execu­
tion is ultimately stopped by a criterion to be satis­
fied. In biology, such a criterion is called a consum­
matory act or, if it is merely astate, an end siruation.

In most cases fixed action patterns are triggered
by stimuli from the environment, but they are inde­
pendent from these stimuli during their execution2.

Such sign stimuli correspond to conditions in eu­
fe. A group of conditions, which I refer 10 as con­
cepts in eUfe, can be identified as sign situations,
Le., a certain configuration of sign stimuli.

The distinction between phylogenetic and on-
10genetic elements in eUfe mirrors the difference
between an innate releasing mechanism (IRM) and
an acquired releasing mechanism (ARM) in bio-

2. Since this definition does not apply to all fixed pat­
terns of action, the notion of modal action pattern
was introduced. It connotes a specific characteristic,
spatially and temporally ordered pattern of behav­
ior, which can be identified by its typical proceed­
ing.

logical systems. Releasing mecbanisms can be
cbaracterized as neurosensory filter mecbanisms
related to certain patterns of bebavior. They specity
tbe response to sign stimuli by selecting out ineffec­
tive stimuli. In CUfe, tbis filtering is turned bot­
tom-up in tbat individuals do not filter out irrelevant
information. Rather, tbey actively test tbe condi­
tions witbin tbeir scbemata. wbicb decreases com­
putational costs for computing all perturbations
from tbe environment.

2.2 The System Theory of Evolution

According to tbe system tbeory of evolution, living
beings are bierarcbically organized and may tbere­
fore be cbaracterized by super- and sub-systems.
Any explanation is incomplete as long as only a few
elements of organization levels are examined [15] .

The mechanisms explained witbin tbe system tbeo­
ry of evolution sbed a new light on evolutionary
processes wbicb are not in a line witb traditional
Darwinistic ideas about evolution: from a system
tbeoretical point of view, tbe framework. (Gefüge,
i.e., tbe construction and functional coDditions) of
an organism itself is already defined as conditions
of internal selections.

The relation between system-internal and ex­
temal selection is comparable to tbe relationsbip
between selection witbin an industrial plant and se­
lection on tbe market In a plant tbere are issues
such as standardization and management tbat in­
crease productivity:

[1]t would be disastroiJs for a company ... to have to
rely only upon its customers to find out whether the
engine was properly put into a car or whether the cyl­
inders are equal in size. [11]

2.2.1 Order Principles

In his morpbological analysis of living systems,
Ried! [11] outlined tbe order bebind tbese systems.
He noted tbat tbe evolution of organisms is cana­
lized and attempted to answer several open ques­
tions tbat could not be answered witb tbe lraditional
syntbetical tbeory of evolution. We must distin­
guish four basic order principles of living systems
whicb are responsible for tbe internal selection in
organisms.

• Norms connote tbe uniformity of structures.
Therefore, in CLife simple uniform elements
(conditions and actions) are used.

• Interdependence of norm elements.

• Dependent structures are mutually subordinat­
ed to form ranks, grades, or classes, i.e., a hier­
archicaI organization. In CLite, uniform ele-

ments may be arranged to form blocks of bigh­
er order.

• Tradition adds a time scale to tbe previous
principles. No organic state exists witbout trib­
ute to its ancestry, so tbat all building states are
subsequent series of coordinations.

2.2.2 Functional Coupling

An increase of evolutionary speed can be achieved
by junctional coupling, a mechanism tbat obeys tbe
principle of interdependence and hierarchy. If we
examine tbe evolution of joints we recognize tbat
tbe joint socket and tbe condyle must evolve in tbe
same direction and to tbe same degree in order to
maintain functionality3 . Functional couplings have
tbe advantage of dramatically increasing tbe chanc­
es of adaptation by several orders of magnitude. In
biological systems, clustering of independent ge­
nomes is irreversible, yielding constraints and ca­
nalizations wbich render adaptations to changing
environments more difficult. Such genetic loads
[11] are tbe reason wby a giraffe has tbe same num­
ber of neck bones as a dolpbin al tbough it could use
more in order to increase its pliancy. CUfe bas to
answer tbe question: Can artificial systems gain tbe
advantages of functional coupling witbout inberit­
ing tbe disadvantage of genetic loads?

2.3 Epistemological Constructivism

Epistemological Constructivism (as formulated by
Heinz von Foerster [3] and Ernst von Glasersfeld
[4]4) primarily asks for what we know about tbe
world. The main point is tbe concept of tbe observ­
er, i.e., starting witb tbe assertion tbat observing is
tbe only access to tbe 'world'. This is based on tbe
fact tbat an observer is a so-called operationally
closed system, wherein nervous signals are unspec­
ified, e.g., visual stimuli affect tbe same kind of in­
ternal signals as tactile onesS• Following an exam­
pie ofMaturana and Varela [8], tbe situation isanal­
ogous to a navigator in a submarine: He relys on tbe
readings from his instruments when he operates tbe
levers and buttons. The instruments do sense
"sometbing" outside tbe submarine, but tbis fact is
completely irrelevant to tbe navigator. His only
task is to maintain certain relationsbips between the

3. In the terminology of Genetic Algorithms this
would be called context preserving.

4. For a more detailed description see [12].
5. Since observing-in the sense of having experienc­

es-is a coherent coordination of actions in a com­
munity of observers, Radical Constructivism is not
a solipsistic philosopby.

indicators constant, independent of what this indi­
cators measure and what effect the buttons and
wheels have. Within CLüe, the cognitive apparatus
does not know anything about an environment. It
merely operates on cells whose "semantics" (for an
observerofCLüe) aredefmed within the interpreta­
tive shell around the cognitive apparatus. This shell
maps perturbations from the environment onto the
cells, but this is irrelevant for the operation of the
cognitive apparatus.

Furthermore, Maturana and Varela argue that
the ratio sensors:brain:motors in human beings are
10: 106: 1 (the "Heinz von Foerster ratio"). This does
not imply that sensors and effectors are unimpor­
tant, but emphasizes that behavior is notjust a set of
pure taxes and reflexes. Sensors only perturb the
brain but do not determine behavior. The way sche­
mata are processed in CLüe employs this construc­
tivist-anticipatory principle: Sequences of condi­
tions and concepts may only test the state of internal
ceHs in order to generate action patterns. During the
execution of action patterns the state of single per­
ceptive cells may be tested in order to direct or to
halt the action patterns.

2.4 Cognitive Constructivism

Cognitive Constructivism (e.g., Jean Piaget [10])
emphasizes the cognitive development of beings,
especially human beings. Its starting point is a psy­
chOlotcal one: the to some extent mentally 'naked'
child . Hence, cognition must not be perceived as a
static ability but rather as a dynamic process that
has its origin in the sensorimotor stage of early
childhood.

In the sensorimotor stage, within wh ich cogni­
tion is linked to the content of specific sensory in­
puts or motoric actions, the key question is how
cognitive creatures obtain 'symbolic ideas' about
their world. For the coordination of cognitive sche­
mata, increasing intermodal coordination is very
important-e.g., grasping implies the concurrent
use of visual and tactile sensors. Working with in­
termodal experience, the infant constructs the idea
of invariant, permanent objects. Generally, there
are 3 levels of coordination: (1) In the monomadal
mode, cognition is guided mainly by a single mo­
dality, as is the case within most Artificial Intelli­
gence systems; (2) Multimadality connotes the se­
quential non-overlapping usage of different modal­
ities, as shown in animals up to and including rep-

6. Ibis does not imply the child's cognition to be a
labula rasa when it is born. Of course, the child in­
herits the phylogeny of its ancestors.

tiles (see example below); butonly (3) intermodali­
ty enables the interaction of different modalities we
find in animals from the mammallevel upwards.

= k :ize rrs:~c
675 nm 730 nm 50mm 127mm

Figure 2: The fuzzy "concept" of apple. The differences
in tbe heigbt of the Gaussian curves mirror tbe
importance of each curve. In this example, size con­
tributes more than color to the concept.

In CLüe, the notion of concept mirrors the in­
term odal characteristics of things. See Fig. 2 for an
illustration: In order to classüy an object as a mem­
ber of the concept "apple", it is necessary to test
whetherits size, its color, andsoon are within acer­
tain range.

3. The Cognitive Apparatus

This component is often interpreted as the connec­
tion 7 between sensors and effectors. The construc­
tivist aspect of CLüe, however, requires separating
the cognitive apparatus from the physiology of the
senses (see Fig.I): The nervous system in biologi­
cal systems is operationally closed. It does not dis­
tinguish between perturbations from outside and in­
ternal perturbations, since nervous signals are un­
specified with regard to their origin. As shown by
Maturana et al. [9], there is no correlation between
physical stimulus on the outside of the agent and the
subjectively experienced perception. Indeed, sig­
nals from the perceptual surface are only triggers to
the cognitive apparatus. The nervous system is or­
ganized as a closed network of interacting neurons
within which each state of relative neuronal activity
leads to another state of relative neuronal activity
[7].

In CLüe, neurons are substituted with schema­
ta wh ich include elements from fuzzy logic. From
their point of view, they do not deal with informa­
tion from the environment either, but operate exclu­
sively on a set of ceHs8 which are all equivalent to

7. As shown by Valentin Braitenberg [2]. such con­
nections need not be complicated in order to exhibit
complex emergent behavioral patterns. Simple con­
nections between two sensors and two locomotion
elements exhibit forms of attractive behavior, sucb
as pboto- and chemotaxis.

8. The notion of "cell" has no biological implications.
A cell is merely a storage of a number with a unique
address.

them. The advantages over neural networks, wbicb
seem to be biologically more plausible, are evident
It is mucb easier to track the chain of rules (schema­
ta) in order to explain why a particular bebavioral
pattern bas ultimately emerged. In neural nets, one
can only observe patterns of activity that lead to
some bebavior. Eacb role uses a more sopbisticated
computation than a single neuron in a net In combi­
nation with the constructivist-anticipatory method­
ology (see section 3.4), there is no strict demand for
parallelism. Finally, roles may serve as better vebi­
eIes for some kind of Piagetian scbema mecbanism
(cf. section 2.4), as their data structures are quite
similar to scbemes.

Due to its operational closure of the cognitive
apparatus need not (and indeed does not) assume
any outside world in order to function. It consists of
a number of uniform cells wbicb are consequently
numbered so that they can be addressed by manipu­
lating mecbanisms. These mecbanisms are en­
banced scbemata wbich consist of a condition and
an action component. Each of these components
may be constituted (a) by single query elements or
action elements. and (b) by groups of such single el­
ements. I will refer to the groups of single queries as
concepts.

3.1 Conditions and concepts

In section 2, I pointed out the reasons to use con­
cepts and gave an illustration (cf. Fig. 2). GeneraUy,
the appearance of things are somewbat fuzzy in that
an object that is very light-red and measures five
centimeters is less likely to be an apple than another
object with glaring red color and a beigbt of eigbt
centimeters. Due to this fact, I cbose a modified
kind of scbema9 that fulfills tbis requirement The
basic element of the condition part of scbemata are
fuzzy interval conditions (see Fig. 3 for a simplified
version): The value to be tested is matcbed against
an interval wb ich is defined as a Gaussian curve
with left and rigbt boundaries and an optimal peak.
If the value is exactly the optimum, then the query
answers with the optimal response. Any deviation
from the optimum will lead to lower response until
the value is outside the interval. In tbis case, the an­
swer is zero. It sbould be empbasized that within the
cognitive apparatus the value of cells has no special
meaning. The set of cells is just a set of variables,
eacb of wbicb is set to a certain number.

Each condition bas a unique number and is
stored in either the pbylogenetic or ontogenetic

9. See [13] for a more detailed description of the fuzzy
interval schema.

100%

max

..... ---- interval ---I~~

Figure 3: A single query is a fuzzy interval. Due to per­
formance reasons, a triangular approximation with
left = right is used instead of a Gaussian curve as
described in the text.

condition library. The phylogenetic condition Li­
brary (pcLib) represents the cOIrunon knowledge
whicb bas accumulated during evolution 10. Tbeo­
retically, every organism can access tbis library and
use its entries as building blocks for its bebavior.
The pcLib is created and enlarged by pbylogenetic
mecbanisms, i.e., mutation and crossover. The on­
togenetic condition libraries (ocLib) reflect the in­
dividual experiences and are therefore private to
eacb individual.

At the second level of bierarcby, conditions
may be grouped to form condition blocks or con­
cepts as described above. Eacb concept consists of
indices that refer to entries of the libraries at the flTSt
level of bierarcby. This allows the usage of a condi­
tion in several concepts without multiplying the
condition11 . As for conditions, there are pbyloge­
netic and ontogenetic concepts. Wbile pbylogenetic
concepts exclusively refer to pbylogenetic condi­
tions, ontogenetic condition blocks may combine
both kinds of conditions. This is due to the fact that
every experience may build upon inherited ele­
ments. Both kinds of concepts are collected within
libraries: The phylogenetic condition block librar­
ies (PCBLib) collect all pbylogenetic concepts.
Analogously, the same bolds true for the ontogenet­
ic condition block Library (oCBLib).

From the system theoretical point of view, the
introduction of condition blocks implements a
functional coupling in that the activation of a single
block in turn activates several action elements tbat
are associated with this block.

10. Philosophically, we may refer 10 it as the Kantian
aprioris.

11 . This is similar 10 the usage of calling-by-reference
in bigher programming languages: The subprocedu­
re only receives apointer 10 the variable instead of
the variable itself.

3.2 Actions and Action Patterns

Action patterns are groups of single actions. For in­
stance, an escape bebavior may include "turn
around!" and "start running!" as single actions. Due
to its operational closure the cognitive apparatus
does not know anything about turning around or
running 12. It merely manipulates the values of the
cells (all cells being viewed as equal). Indeed, there
are only four kinds of action an action element can
perform (see Fig. 4):

[action e {O, 1>?~_3} data1 data2

o = set ce 11 da ta 1 to value data2

1 = call the elementdata2 of type data 1

2 = send to background

3 = stop

Figure 4: A single action element which can (0) manip­
ulate the value of a cell, or (1) establish a hierarchi­
cal organization by calling another structure
element, (2) initiate background tasks, or (3) stop
the execution of a action sequence (both in fore­
ground and background).

• SET a certain cell to a certain value;

• CALL another structural element (such as an­
other action element or action pattern) as a sub­
routine, i.e., after the execution of the subrou­
tine has ended, the execution of the calling ac­
tion pattern continues;

• send the execution of the current action se­
quence into BACKground. This feature en­
ables the simultaneous execution of several
tasks. That is, the agent may look for food
(waiting for acertain cell to be set within acer­
tain range) while walking around (background
task).

• STOP the execution of the action pattern,
which also causes the stoppage of the execu­
tion of any other patterns that have called the
current pattern as subroutine. This action is
also the only possibility to stop a background
action sequence.

Note tbat only the fIrst instruction is effective in the
sense tbat it manipulates something. The back­
ground operator enables parallelism within a CLife
model. The call and stop operators are only provid­
ed to establish a recursive and hierarchical relation-

12. Attributing a meaning to the cells takes place in the
interpretative shell (see section 4).

ship between action patterns and other structural el­
ements.

As in the case with conditions and concepts, ac­
tion elements are also stored in libraries. The phylo­
genetic action library (pALib) contains the evolu­
tionarily created actions, while the ontogenetic ac­
tion libraries (oALib) consist of individual experi­
ences. At the second level of hierarchy, phylogenet­
ic and ontogenetic action block libraries (pABLib,
oABLib) collect all groups of action elements by re­
ferring to the entries of libraries at the fIrst level.
Again, this implements a functional coupling in that
the activation of a single block in turn activates sev­
eral action elements.

3.3 Schemata

The actual representational elements are schemata.
Schemata have a condition and an action part. Each
consists of reference pointers to libraries either on
the grouped element level or on the single element
level. Individuals phylogenetically inherit schema­
ta in form of indices which point to the phylogenetic
schema library, i.e., the innate knowledge. Genetic
operators change the indices during the simulated
evolution.

3.4 Constructivist-Anticipatory Schema~
Processing

The constructivist-anticipatory schema-processing
algorithm (CASP) works as folIo ws. The behavior
is controlled by schemata which, once invoked, ask
for sensory or internal data only when it becomes
necessary [14]. In other words, the algorithm ne­
glects environmental events except the current ac­
tion pattern demands to check a certain cell' s value
(which, from the viewpoint of the interpreter shelI,
may beasensoror aninternal value). This leads to a
significant decrease in performance costs since the
simulation algorithm need not provide the full envi­
ronmental information to the agent at every time
step13. The outline of the algorithm-which per­
forms the process of assimilation in the Piagetian
sense-is as folIows:

• POlling, i.e., pattern matching triggers a flISt
schema. Pattern matching is successful when
the conditions of a schema, i.e., the sum of the

13. Of course, this type of processing does not render
feature extraction obsolete (especially in a more
complex structured environment than in the exam­
pIe environment of section 5.2) . Rather than com­
puting intensive reduction of compiexity at every
time step, feature extraction is only necessary to
trigger a hypothesis or if a condition asks for a par­
ticular feature.

[;J ... [PSXp J "innate
knowledge"

phylogenetic schema
CONDITIONS : ACTIONS

"co

[pcb1 J ... [PCb rp]

phylogenetic
condition block

~ ... [PCmpJ
phylogenetic

condition

rns"

... [pabsp]

phylogenetic
action block

(;J ... [panp J
phylogenetic

action

condition ~
specias

action
seT
CALL
BACK
STOP I

Figure 5: The hierarchical organization of eUfe. On each level, all elements of the same sort are summarized in a
library so that elements on the next level only need to refer to the library index of elements they consist of: Ontoge­
netic blocks may consist of both phylo- and ontogenetic elements, while phylogenetic blocks are built up only by
phylogenetic components. The condition and action part of a schema may contain both single conditions/actions
and conditionlaction blocks. Note that in addition to this diagram there are also phylogenetic reflexes that imple­
ment a kind of interrupt.

fuzzy matching results of each condition in the
schema, are satisfied to a certain percental de­
gree, i.e., the global variable threshold.

• Subsequently, the action part is executed; it in­
cludes setting cells, calling other elements
(both actions and conditions, as well as blocks
and schemata, thus forming an action se­
quence), sending the current action sequence to
background, or stopping the execution. If a
condition is required to be fulfilled during the
execution of an action pattern, this checks if the
pattern is still on the right track.

• After a foreground action sequence has termi­
nated the algorithm again tries to trigger anoth­
er schema.

3.4.1 Interrupt Handling

So far, constructivist-anticipatory schema-process­
ing implements an exclusively expectation-driven
behavior. But how does an agent respond to unex­
pected stimuli, e.g., a suddenly appearing situation
which threatens the agent's life? For this purpose,

we need some sort of interrupt which stops the exe­
cution of any action pattern immediately and starts
a short action instead, e.g., a jump action to escape
the dangerous situation.

To attain these requirements the CASP alge­
rithm poIls a smaIl set ofphylogenetic single condi­
tions each time cycle. Each of these conditions coc­
responds to a situation of highest priority that re­
quires an immediate response. Each condition is as­
sociated with an action which is an appropriate re­
sponse to the given situation. 'Ibis implements a
kind of interrupt line. For example, a dangerous ob­
stacle appears in front of the agent and causes the
interpreter shell to change the value of a certain cello
The interrupt element that asks for the value of that
specific cell now becomes activated and changes
the value of another cello The content of the second
cell is translated by the interpreter shell as a back­
ward jump the agent has to perform in order to es­
cape the obstacle. After this interrupt (or reflex in
biological terms) the CASP algorithm again polls
possible interrupts (e.g., the obstacle may still be in

front of the agent). If no interrupt is triggered the
algorithm polIs normal scbemata.

3.4.2 Types 01 behavior

Wemaynow distinguisb between 3 types ofbebav­
iors that mirror the biological equivalents as de­
scribed in section 2.1. The more complex a bebav­
ioral type is the more it contributes to bigber cogni­
tive abilities of the agent. On the other hand, simple
types are mucb more rapidly executed and bave
bigher priority since they bave the function of pre­
serving the agent's life.

• lnterrupt elements (or simple reflexes) consists
of a single condition and a single action. As
they bave the bigbest priority and their activa­
tion bas precedence over all other types, they
implement interrupt lines in the otherwise
completely expectation-driven eASP algo­
rithm.

• Fixed action patterns without "cbeckpoints".
These are stereotypic patterns wbicb, once trig­
gered, are executed without any further refer­
ence to environmental events.

• Action sequences with free positions wbicb re­
quire the agent to examine wbether the pattern
is still appropriate in the current situation.

3.5 The Overall Hierarchy

The bierarchical structure of schemata within eLife
is sbown in Fig. 5. Tbe actual representational ele­
ments are scbemata. Individuals pbylogenetically
inberit scbemata in form of indices wbicb point to
the pbylogenetic scbema library, i.e., the innate
knowledge. Indices are ordinary numerical values
(sucb as integers) wbicb range from 1 to the nmnber
of entries of this library. Genetic operators as
known from genetic algorithms change the indices
during the simulated evolution.

3.6 &caping genetic loads

How can artificial systems gain the advantage of
structural coupling without inberiting the disadvan­
tage of inflexibility? The key is to break open a pby­
logenetic element, i.e., to make grouping of ele­
ments reversible14. New individuals only bave the
pbylogenetic repertoire of bebavior schemata.
Newly added ontogenetic scbemata may consist of:

14. This is comparable to the compression and expan­
sion feature of Angeline's module acquisition ap­
proach [I]

• ontogenetic elements wbose cbaracteristics are
found by trial-and-error or more sopbisticated
learning algorithms (see below);

• new arrangements of pbylogenetic elements;

• ontogenetic copies of pbylogenetic elements
within wbicb one or more values are cbanged
(broken open). For instance, an ontogenetic
copy of the concept "apple" may expand the in­
terval for the color so that it also includes yel­
low apples. From this point on, the experiences
of the individual will decide whether the new
concept is superior to the traditional pbyloge­
netic one. The advantage of breaking open
pbylogenetic elements is to escape canaliza­
tions wbicb in the long run make adaptations to
new envirorunents more difficult.

3.7 Ontogenetic Learning

From the viewpoint of constructivism, success and
failures are not ontological,observer-independent
criteria but are only real in the domain of reality
brougbt fortb by operationally coherent actions. To
make amistake merely means that the reality ex­
pected by the observer is different from the reality
within wbicb the 'unsuccessful' action takes place.
For these reasons, no explicit fitness function ex­
cept survival need be cbosen (wbicb is indeed tbe
only criterion in an ecological system).

Thus, there is no need for any rewarding at all.
Instead, schemata compete in the following way:
&eb scbema is labeled with a measure of the scbe­
ma's degree olgenerality, i.e., the sum over all in­
terval differences in its condition part. The wider a
condition interval the higber its generality. If the
conditions of two or more schemata are satisfied,
the algorithm cbooses the scbema with the lower
generality. The frequency of calls is stored so tbat
scbemata wbich have been called more often than
others have a higher priority. Also, there is some
kind of random noise tbat influences the decision
between competing schemata.

3.8 Phylogenetic Learning

The genotype of each individual consists of indices
that refer to the respective phylogenetic Iibraries.
This requires a higher-cardinality alphabet, namely
the set of integers. Each genome is prefixed with a
tag that indicates the kind of library it refers to. Due
to this characteristic, eLife uses a position-inde­
pendent encoding, Le., genes code for phenotypic
elements regardless of where they are located.

eLire emphasizes the importance of introns. It
can be argued that such introns provide a better

chance to capture apart of the genotype intact if op­
erators such as mutation and crossover are applied.
This propeny of preservation is especially impor­
tant in later generations where genetic operators can
easily destroy sequences of the genotype with
above-average fiOless. Each gene is assigned with a
weight that indicates its mutability. The weights de­
crease the chance of the respective genes being al­
tered through mutation or crossing over. This is the
exact reverse of introns in biological systems,
where the only possibility to achieve different de­
grees of mutability within a genotype is to replicate
genes. Introns are also important to maintain estab­
lished chains between condition and action ele­
ments, blocks, and schemata.

4. Interpreter Shell

Within this shell, the sensory and motor surfaces are
defmed as subsets of the cells of the cognitive appa­
ratus. This is done by mapping certain environmen­
tal perturbations onto the sensory surface, and by
mapping the values of the cells within the motor
subset into environmental effects (cf. Fig. 1).

4.1 The Sensory Surface

This component is capable of perceiving environ­
mental perturbations of various kinds. In a typical
artificial life environment this includes visual,
acoustic, tactile, olfactory and proprioceptive per­
turbations. A technical task may use only a subset of
these modalities.

4.2 The Motor Surface

The effectors can be thought of as locomotion,
acoustic and visual utterances (in order to develop
various types of communication through building
consensual domains between several agents), lay­
ing trails (which will offer the possibility to estab­
lish social relationships between agents), and mat­
ing (in ALife environments).

5. Environments

In this section I provide two examples of environ­
ments to test the Q..ife approach.

5.1 Classical Artificial InteHigence
Environment

Tic-Tac-Toe provides a simple environment for
testing the CLife model with respect to its ability to
build up condition and action hierarchies, i.e., func­
tional couplings. A player has 9 sensors, each con­
nected to the corresponding field of the 3x3

squares. These sensors deliver values between 0
and 2 depending on whether the field is empty (0),
belonging to oneself (1), or belonging to the oppo­
nent (2). The interpreter shell writes the values of
the sensors into the first 9 ceHs of the cogniti ve ap­
paratus that consists of 9 + n + 9 ceHs, where n is a
variable which may be varied in different runs. The
last 9 cells are interpreted as effectors which place
a piece on the board. Due to the rules of Tic-Tac­
Toe these "effector ceHs" may only be written once.

As a flfSt step, the system creates a set of ran­
dom conditions, actions, blocks, and schemata,
each schema assigning a random degree of general­
ity. Now the CASP algorithm compars the condi­
tion parts of the schemata with the current situa­
tion-initially there is an empty board. The trig­
gered schema may then write values in various
ceHs. The interpreter now reads the value of the frrst
cbanged effector cell of the cogniti ve apparatus and
places a piece according to this cell. There are inter­
esting variants of this configuration: (a) The sensor
cells are restricted to boolean values which indicate
whether a field is empty or not but which say noth­
ing about the owner of a piece. To determine the
owner the agent must refer to the state of the effec­
tor ceHs. This implements proprioceptive knowl­
edge; (b) In addition to (a), the state of the board is
considered as 9bit integer (where 0 refers to an
empty board and 511 represents a board where all
pieces are set) rather than using 9 sensors and 9 ef­
fectors. Comparing the results from this experiment
with the original representation throws light on in­
teger representation.

Games are played generation after generation.
Each agent contributes to the phylogenetic library
by adding new rules which can potentially be used
by its descendants. Each schema keeps book on the
number of times it is called; analyses of these fre­
quencies explain the usefulness of the phylogeneti­
cally evolved hierarchy.

5.2 Artificial Life Environment

Originally, Q...ife rilodelling was designed for arti­
ficiallife environments, i.e., computational ecosys­
tems. Its purpose is to investigate the emergence of
higher cogniti ve structures from building invariants
in simple sensorimotor beings. The environment
within which the creatures act is assumed to be two­
dimensional and both spatially and temporally dis­
crete. A strict one-object-per-position rule is fol­
lowed, i.e., a creature can move to an already occu­
pied position Ü the creature either eats the object
(whether non-living or living) or moves it to an ad­
joining space.

ceedings of the Third Conjerence on
Artijicial Life.

[2] Braitenberg, V. (1984), Vehicles. Experi­
ments in Synthetic Psychology. Cambridge,
MA: MIT Press

[3] Foerster, H. von (1973), On Constructing a
Reality. In: Preiser (ed.) Environmental Re­
search Design, Vol. 2. Stroudsburg:
Dowden, Hutchinson & Ross, pp. 35-46

[4] Glasersfeld, E. von (1988), An Exposition of
Radical Constructivism. in: Donaldson (ed.),
Texts in Cybemetic Theory. American Soci­
ety for Cybernetics

[5] Klopfer, P. (1968) Ökologie und Verhalten.
Stuttgart G. Fischer

[6] Lorenz, K. Z. (1937) Über die Bildung des
Instinkbegriffes. Naturwissenschaften 25,
pp. 289-331

[7] Maturana, H. R. & Varela, F. J. (1979), Auto­
poiesis and Cognition: The Realization ofthe
Living, Boston: Reidel.

[8] Maturana, H. R. & Varela, F. J. (1984) The
Tree of Knowledge.

[9] Maturana, H. R., Uribe, G. & Frenk, S.
(1968) A Biological Theory of Relativistic
Color Coding in the Primate Retina, Archi­
vos de Biologfa y Medicina Experimentales,
Santiago, Suplemento No. 1

[10] Piaget, J. (1954), The Construction ofReality
in the Child. New York: Ballentine

[11] Riedl, R. (1978) Order of Living Sys­
temsLondon: John Wiley.

[12] Riegler, A. (1992), Constructivist Artificial
Life, and Beyond. Paper presented at the
Workshop on Autopoiesis and Perception,
Dublin City University Aug. 1992.

[13] Riegler, A. (1994), Fuzzy Interval Stack
Schemata for Sensorimotor Beings. To ap­
pear in: Proceedings ofthe From Perception
to Action (PerAc'94) Conjerence. Lausanne,
Sept. 7-9, 1994. IEEE Computer Society
Press.

[14] Sjölander, S. (1993) Some cognitive break­
throughs in the evolution of cognition and
consciousness, and their impact on the biolo­
gy of language. In: Evolution and Cognition
vol. 3, no. 1

[15] Wuketits, F. M. (1987) Evolution als Sys­
temprozeß. In: Siewing, R. (Ed.) Evolution.
3rd edition. Stuttgart, New York: Gustav fis­
cher (UTB 708)

On genetic algorithms
for the packing of polygons

Stefan Jakobs
sjakobs@Pool.lnformatik.rwth-aachen.de

RWTH Aachen
Lehrstuhl C für Mathematik,

Templergraben 55, 52062 Aachen, Germany

1 Introduction

In the steel industry problems frequently occur when
the need to stamp polygonal figures from a rectangular
board arises. The aim is to maximize the use of the
contiguous remainder of the board . Similar problems
exist in the textile industry, when clothes are cut out of
a rectangular piece of material.

In order to solve these problems let us consider the
following simpler approach. Given a finite number of
rectangles ri, i=l..n, and a rectangular board, an or­
thogonal packing pattern requires by definition a dis­
junctive placement of the rectangles on the board in such
a way that the edges of ri are parallel to the x- and y­
axes, respectively. The computation of the orthogonal
packing pattern with minimal height is called orthogo­
nal packing problem (OPP).

The magnitude of the search space of the orthogo­
nal packing problem is infinit, because for every time
you move a rectangle in a packing pattern in a possi­
ble direction, a new packing pattern is created. In order
to effectively reduce the number of possible orthogonal
packing patterns the so called bottom-Ieft-condition
(BL-condition) is introduced. The orthogonal packing
pattern fulfills the BL-condition if no rectangle can be
shifted further to the bottom or to the left. In addition,
the complexity of the problem is NP-complete.

2 Genetic Algorithm

The data structure is important for the genetic algo­
rithm (GA). The first genetic algorithms worked with
bit-strings. Over the last few years, GAs have been de­
veloped which work on the basis of different structures of
data. Here each packing pattern is represented by a per­
mutation 'Ir. The permutation represents the sequence in
which the rectangles are packed. The advantage of this
data structure is the facile creation of new permutations
by changing the sequence. A consequence of the variable
data structure is the fact that every permutation has to
be assigned to a unique packing pattern. This decoding
of the genotype is realized by a deterministic algorithm
called BL-algorithm.

3 Extension to polygons

One approach for the extension to polygons is based on
the use of a deterministic algorithm to convert the per­
mutation of polygons into a packing pattern. The cost
of existing algorithms is greater than O(n 2) . In the GA
for each step one permutation has to be converted. For
this reason it is not advisable to use this approach. The
embedding-shrinking algorithm offers a faster alter­
native. It consists of three steps:

Step 1: Embed the polygons into rectangles.
Step 2: Apply the GA to the embedded rec­
tangles.
Step 3: Move the polygons in the packing pat­
tern doser together

4 Conclusions

The aim is not the presentation of an optimal packing
algorithm. It adresses the problem of improving deter­
ministic packing algorithms. In pra.ctice the combination
of deterministic and genetic algorithms provides a pos­
sible escape out of local minima. A further advantage
is the fast and easy implementation of the combination.
If a deterministic packing algorithm based on permuta­
tion is known, the algorithm could be improved by the
genetic algorithm presented here.

References

[1] B. S. Baker, E.G. Coffman, R. L. Rivest: Othogo­
nal Pa.ckings in Two Dimensions. SIAM Journal on
Computing, Vol. 9 No. 4 (1980) 846-855

[2] D. J . Brown: An improved BL lower bound. Inform.
Process. Letters. 11, No. 1 (1980) 37-39

[3] E.G . Coffman jr., M. R. Garey, D. S. Johnson: Ap­
proximation algorithms for bin-packing - an upda­
ted survey. Approximation Algorithms for Compu­
ter System Design (1984) 49-106

[4] R. J. Fowler, M. S. Paterson, St. L. Tanimoto: Op­
timal packing and covering in the plane are NP­
complete. Inf. Process. Letters 12, No. 3 (1981) 133-
137

[5] M. Haims: On the optimum two-dimensional allo­
cation problem. Ph .D.-Dissertation, Dep. of Elec.

Engrg., New York University, Bronx, Tech. Rep.
(1966)

[6] K. De Jong: An analysis of the behavior of a dass
of genetic adaptive systems. Doctoral dissertation,
University of Michigan (1975)

[7] Zbigniew Michalewicz : Genetic Algorithms + Data
Structures = Evolution Programs. Springer Verlag
(1992)

[8] Josef Nelißen: Die Optimierung zweidimensiona­
ler Zuschnittprobleme. Schriften zur Informatik und
Angewandten Mathematik , RWTH Aachen , Nr. 150
(1991)

[9] D.D.K.D.B. Sleator: Times optimal algorithm for
packing in two dimensions. Information Processing
Letters, Vo1.10, No. 1 (1980) 37-40

[10] J. Terno, R. Lindemann, G. Scheithauer: Zu­
schnittprobleme und ihre praktische Lösung. Harri
Deutsch-Verlag (1987)

An Evolutionary Heuristic for the
Minimum Vertex Cover Problem

Sarni Khuri
San Jose State University

Dept. of Mathematics & Computer Science
One Washington Square

San Jose, CA 95192-0103
U.S.A.

lntroduction
The minimum vertex cover problem (mvcp) belongs to
the dass of NP-hard problems. The maximum clique
problem can be reduced to it [3]. Thus, the search for an
optimal solution is intractable (unless of course P = NP).
Due to its numerous applications, especially in various
matching problems, the problem is not abandoned. The
goal is to find heuristics: approximation algorithms that
have polynomial running tim es that return near-optimal
solutions.

In this work we describe the results of applying a ge­
netic algorithm [6, 4] to the mvcp . The latter is a highly
constrained combinatorial optimization problem. Unlike
traditional approaches that use domain-specific knowl­
edge, and specialized genetic operators, the approach
presented here makes use of a graded penalty term in­
corporated in the fitness function to penalize infeasible
solutions. The fitness function itself is quite simple and
needs to be added to GENEsYs, the genetic algorithm
software package we use in this work. This package is
based on Grefenstette's widely used GENESIS [5].

Following the formal introduction of the mvcp, the
best known heuristic algorithm for that problem is in­
troduced. The study then focuses on the genetic-based
heuristic. Several problem instances are used with both
algorithms and the results are compared . Our work con­
cludes with so me observations about our findings, and
some suggestions on the use of evolutionary heuristics
for other combinatorial optimization problems.

The Minimum Vertex Cover Problem

The mvcp of an undirected graph G = (V, E) where V is
the set of vertices and E denotes the set of edges, consists
in finding the smallest subset V' ~ V such that V(i, j) E
E, we have i E V' or jE V' (or both). V' is said to be a
vertex cover of G . The following is a formal definition of
the mvcp in which we make use of Stinson's terminology
for combinatorial optimization problems [14]:
Problem instance: A graph G = (V, E), where V =

{I, 2, . .. , n} is the set of vertices and E ~ V x V the
set of edges. An edge between vertices i, j is denoted
by the pair (i, j) E E. We define the adjacency
matrix (eij) according to

e .. _ {I , if (i, j) E E
') - 0, otherwise

Thornas Bäck
University of Dortmund

Dept. of Computer Science, LS Xl
D-44221 Dortmund

Germany

1

6

11

(level 1)

(level 2)

(level 3)

Figure 1: Construction of the regular graph after Papadim­
itriou and Steiglitz.

Feasible solution: A set V' ofnodessuch that V(i,j) E
E: i E V' V jE V' .

Objective function: The size IV' I of the vertex cover
V'.

Optimal solution: A vertex cover V' that minirnizes
IV'I·

Since we are interested in covering all the edges of the
given graph by using as few nodes as possible, one might
be tempted to use a greedy-based heuristic to tackle the
mvcp. The algorithm consists in repeatedly selecting a
vertex of highest degree (the node that covers as many
of the remaining edges as possible), and removing all
of its incident edges. This is not a good strategy as
was demonstrated by Papadimitriou and Steiglitz ([10],
p . 407). They considered regular graphs, each of which
consists of three levels. The first two levels have the same
number of nodes while the third level has two nodes less
than the number of nodes found on the previous two
levels. More precisely, each graph consists of n = 3k + 4
(k ~ 1) nodes; k + 2 nodes on the first level, labeled
1, ... , k + 2; followed by k + 2 nodes on the second level,
labeled k + 3, ... , 2k + 4, while the k nodes of the third
level are labeled 2k + 5, .. . , 3k + 4.

The regular graph for k = 3 can be found in [10]
(p. 407) and is reproduced in figure l.

A minimum ver tex cover is obtained by choosing all
the nodes of the second level, but the greedy strategy
would start with the nodes of the third level, since these
have highest degree. Consequently, the greedy strategy

mvcplOO-OI mvcp100-02 mvcpIOO-03 mvcpIOO-04 mvcpIOO-05 PSIOO

h10~(X) N h10~(X) N h10~(X) N h10~(X) N h10 4 (X) N h10 4 (X) N

53 1 55 34 55 77 55 96 55 99 34 65

54 1 57 3 56 1 67 1 83 1 66 35

55 3 59 2 59 6 68 1

56 6 60 3 63 :3 75 1

57 4 61 10 64 3 90 1

58 4 62 1 66 1

59 9 63 8 67 1

60 4 64 1 68 1

61 6 65 1 70 1

62 12 66 6 71 1

63 5 67 6 74 1

> 63 45 > 67 25 > 74 4

! = 62.61 ! = 62.75 ! = 57.62 ! = 55.80 ! = 55.28 ! = 45.20

Table 1: Experimental results obtained by the genetic algorithm for five random graphs of size n = 100 with edge density
d = 0.1 ("mvcpl00-0l"), d = 0.2 ("mvcpl00-02"), d = 0.3 ("mvcpl00-03"), d = 0.4 ("mvcpl00-04") and d = 0.5 ("mvcpl00-
05") and the regular graph of size n = 100 from Papadimitriou and Steiglitz ("PSI00").

finds a solution of size 2k + 2 (since it has to select k + 2
nodes in addition to the nodes of the third level), while
the optimal solution has size k + 2.

It can be shown that the greedy algorithm never pro­
duces a solution which is more than ln(n) times the op­
timum, where n is the number of vertices ([9], p. 323).
More precisely, the algorithm performs with a relative
error In~n) (which grows as fast as ln(n)) ([10], p. 408) .

The following simple algorithm is surprisingly the
best approximation algorithm known for the mvcp ([9],
p. 301). It can be shown that the size ofthe ver tex cover
it returns is guaranteed to be no more than twice the
size of an optimal vertex cover ([1], p. 968).

ALGORITHM 1 (vercov)

C:= {};
{C con tains the vertex cover being constructed}

E' := E;
while E' ::I 0 do

od

randomly choose (u, v) E E';
C:=Cu{u,v};
E' := E' - {(x, y) I x = u V y = v};

{remove from E' every edge incident on
either u or v};

returnC;

To compare the performance of the above algorithm
with the genetic algorithm, a cover V' is represented by
a binary vector x = X1X2"'Xn where Xi = 1 ifthe ith

node is in V', and Xi = 0 if it is not. Using this repre­
sentation, we developed the following fitness function to

be minimized by the genetic algorithm:

fex) = t (Xi + n· (1- Xi) ' t(1- Xi)eii)
.=1 ;=.

The term L:7=1 Xi of fex) determines the size of the
potential vertex cover represented by x, while the term
n . L:7= 1 L:j =i(1- Xi) . (1 - X j) . eij penalizes sets V' that
are not covers by adding a penalty of magnitude n for
each edge eij for which i rt. V' and j rt. V'. Consequently,
the second term drops to zero for feasible solutions.

The fitness function was developed according to the
following design principles that are important for a suc­
cessful penalty function approach [11 , 13, 7]:

• The penalty should be graded, i.e., fitness values
should improve as solutions approach (in terms of
the Hammingdistance) feasible regions ofthe search
space.

• Infeasible binary vectors are guaranteed to yield fit­
ness values which are inferior to fitness values of
even the worst feasible solutions.

Experimental Results

The experiments reported in this seetion are performed
by using a genetic algorithm with a population size
J1. = 50, a mutation rate Pm = I/n, crossover rate
Pe = 0.6, proportional selection, and two-point crossover.
As reported in [2, 12], the latter is expected to perform
better than the tradi tional one-point crossover . In order
to apply the genetic algorithm to the minimum ver tex
cover problem, no component of this general genetic al­
gorithm - except, of course, the fitness function - has
to be modified. This fact refiects the wide applicability

mvcpl00-0l mvcpl00-02 mvcpl00-03 mvcpl00-04 mvcpl00-05 PSI00

f(x) N f(x) N f(x) N f(x) N f(x) N f(x) N

80 6 80 80 80 1 80 66 100

82 17 82 1 82 82 82 1

84 23 84 2 84 1 84 1 84

86 20 86 4 86 6 86 86 5

88 17 88 18 88 12 88 5 88 7

90 14 90 17 90 15 90 13 90 10

92 1 92 31 92 18 92 24 92 21

94 2 94 20 94 28 94 34 94 27

96 96 4 96 16 96 19 96 17

98 98 1 98 4 98 3 98 9

100 100 100 100 100 3

f = 86.46 f = 89.22 f = 92.22 f = 92.96 f = 93.12

Tab1e 2: Experimental results 0 btained by the vercov heuristic for fi ve random graphs of size n = 100 with edge density d = 0.1
("mvcplOO-Ol"), d = 0.2 ("mvcplOO-02"), d = 0.3 ("mvcplOO-03"), d = 0.4 ("mvcplOO-04") and d = 0.5 ("mvcplOO-05") and
the regular graph of size n = 100 from Papadimitriou and Steiglitz ("PSI00").

and robustness of genetic algorithms when compared to
pro blem-specific heuristics.

For the exp~rimental tests, random graphs of size
n = 100 with different edge densities d, d E {0.1,
0.2,0.3,0.4,0.5}, are used. For example, an edge den­
sity of d = 0.1 means that an edge is placed between two
no des with a probability of 0.1. For each of these prob­
lems, a total of N = 100 runs of the genetic algorithm
is performed. The results are summarized in table 1 for
the best results that were encountered during the 100
runs for each test problem. For each problem instance,
we record the different fitness values that were obtained
and their frequencies. Furthermore, the average fitness
value f over all 100 runs is indicated at the bottom of
the table. The total number of function evaluations per
single run is chosen to be 2 . 104, such that only an ex­
tremely sm all fraction of the search space is tested by
the genetic algorithm.

In addition to the randomly constructed graphs, the
regular graphs introduced by Papadimitriou and Stei­
glitz ([10], pp. 406-409) and described in the previous
section of this paper, are used to compare the behavior
ofthe genetic algorithm with the vercov heuristic.

Recall that these graphs contain n = 3k + 4 (k 2: 1)
nodes distributed on three levels. They can bescaled
up by choosing high values for k. We choose problem
instances of the regular graph of sizes n = 100 (k = 32)
and n = 202 (k = 66).

For each of the problems a total of N = 100 indepen­
dent runs of the vercov heuristic is performed, and the
results are summarized in table 2.

The same experiments were also performed for graphs
of size n = 200 in order to test the behavior of the ge­
netic algorithm as weil as the vercov heuristic for an even
larger problem size. In this case, the genetic algorithm
was allowed to run for 4 . 104 function evaluations per

experiment. The corresponding results obtained by the
genetic algorithm are shown in table 3, while the results
from the vercov heuristic are presented in table 4.

From these tables, a number of interesting conclusions
can be drawn. For the random graphs, which were used
to compare the genetic algorithm and the vercov heuris­
tic, it is known by construction that an optimum of qual­
ity 55 (respectively 110) exists, which is likely to be the
global optimum. This optimum is found by the genetic
algorithm at least on ce within the N = 100 runs that
were performed.

Moreover, the randomly constructed problems quickly
become simpler for the genetic algorithm when the edge
density is increased. For an edge density of d = 0.5, the
genetic algorithm almost surely finds the global optimum
of the problems.

In case of the regular graph after Papadimitriou and
Steiglitz, the genetic algorithm is able to find the global
optimum in about 2/3 of all runs, while the remaining
runs identify a solution of quality 2k + 2.

On the other hand, the vercov heuristic performs
poorly. For the randomly constructed problems, the
heuristic finds best solutions of quality 80 (for graphs
of size 100) and 172 (for graphs of size 200), respec­
tively. Surprisingly, the average performance of the ver­
cov heuristic decreases as the edge density is increased,
i.e., the problems become even harder for the vercov
heuristic while they become much simpler for the genetic
algorithm when the edge density increases.

For the regular graph instances, the vercov heuristic
fails in all of the 100 runs that were performed for each
of the graphs. Recall that the graphs are constructed
so as to force the vercov heuristic into yielding solutions
of quality 2k + 2. The random choice of edges in the
while-loop of the algorithm implies that nodes from ei­
ther layers one and two, or from layers two and three

mvcp200-01 mvcp200-02 mvcp200-03 mvcp200-04 mvcp200-05 PS202

h1O'(i) N h1O'(i) N h104(i) N hlO·(i) N hlo.(i) N h10.(i) N

110 2 110 55 110 95 110 99 110 100 68 60

113 1 120 10 128 1 140 1 134 40

116 4 121 7 129 6

117 2 122 2 130 2

119 3 123 7 134 1

120 1 125 1

121 2 126 1

122 3 127 1

124 3 129 1

125 6 132 2

126 2 134 1

> 126 71 > 134 12

j = 132.50 f = 119.07 f= 111.01 f = 110.30 j = 110 .00 j = 108.00

Table 3: Experimental results obtained by the genetic algorithm for five random graphs of size n = 200 with edge density
d = 0.1 ("mvcp200-01"), d = 0.2 ("mvcp200-02"), d = 0.3 ("mvcp200-03"), d = 0.4 ("mvcp200-04") and d = 0.5 ("mvcp200-
05") and the regular graph of size n = 202 from Papadimitriou and Steiglitz ("PS202").

of the graph are involved in the solution constructed ,
which in turn implies that two layers have to be part of
the solution found by the heuristic [10] .

Conclusion

In this work, we have demonstrated that genetic algo­
rithms can be used in a straightforward way to find
good approximate solutions ofthe minimum vertex cover
problem . Moreover, the results found by the genetic al­
gorithm are better than those obtained from the best
known traditional heuristic, the vercov algorithm. These
findings, in addition to other good results obtained on
different, highly constrained combinatorial optimization
problems such as the subset sum [7], minimum tardy
task [7], and multiple knapsack problems [8], give strong
evidence that genetic algorithms can yield good solu­
tions for a wide range of hard combinatorial optimiza­
tion problems for wruch solutions can be represented by
binary strings.

Acknowledgements

The first author was partially supported by the Cali­
fornia State University research award GS850-851. The
second author gratefully acknowledges support by the
German BMFT, grant 01IB403A , within the project
EVOALG . .

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest .
Introduction to Algorithms. The MIT Press, Cam­
bridge, MA, 1990.

[2] L. J . Eshelman, R. A. Caruna, and J. D. Schaffer.
Biases in the crossover landscape. In J . D. Schaffer,

editor, Proceedings of the 3rd International Confer­
ence on Genetic Algorithms, pages 10-19 . Morgan
Kaufmann Publishers, San Mateo, CA, 1989.

[3] M. R. Garey and D. S. Johnson. Computers and
Intractability - A Guide to the Theory of NP­
Completeness. Freemann & Co., San Francisco, CA,
1979.

[4] D. E. Goldberg. Genetic algorithms in search, op­
timization and machine learning. Addison Wesley,
Reading, MA, 1989.

[5] J . J . Grefenstette. GENESIS : A system for using ge­
netic search procedures. In Proceedings of the 1984
Conference on Intelligent Systems and Machines ,
pages 161-165, 1984.

[6] J. H. Holland. Adaptation in natural and artificial
systems. The University of Michigan Press, Ann
Arbor , MI , 1975.

[7] S. Khuri, Th. Bäck, and J. Heitkötter. An evolution­
ary approach to combinatorial optimization prob­
lems. In D. Cizmar, editor, Proceedings of the 22nd
Annual ACM Computer Science Conference , pages
66-73, Phoenix, 1994. ACM Press, New Vork .

[8] S. Khuri , Th. Bäck, and J. Heitkötter. The zer%ne
multiple knapsack problem and genetic algorithms.
In E. Deaton, D. Oppenheim, J. Urban , and H.
Berghel , editors, Proceedings of the 1994 ACM
Symposium on Applied Computing, pages 188-193.
ACM Press, New Vork , 1994.

[9] C. H. Papadimitriou. Computational Complexity.
Addison Wesley, Reading, MA, 1994.

[10] C. H. Papadimitriou and K. Steiglitz. Combinato­
rial Optimization. Prentice Hall , 1982.

mvcp200-01 mvcp200-02 mvcp200-03 mvcp200-04 mvcp200-05 PS202

f(i) N f(i) N f(i) N f(i) N f(i) N f(i) N

172 2 172 172 172 172 134 100
174 3 174 174 1 174 174

176 13 176 1 176 1 176 1 176 1

178 14 178 1 178 3 178 4 178 1

180 23 180 5 180 5 180 1 180 5
182 14 182 11 182 5 182 9 182 5

184 15 184 18 184 17 184 8 184 5
186 7 186 16 186 19 186 16 186 13

188 5 188 24 188 16 188 16 188 11

190 :3 190 15 190 16 190 16 190 21

192 1 192 4 192 9 192 15 192 19

> 192 0 > 192 5 > 192 8 > 192 14 > 192 19

f = 180.98 f = 186.46 f = 186.92 1 = 188.06 f = 189.16

Tab1e 4: Experimental resu1ts obtained by the vercov heuristic for five random graphs of size n = 200 with edge density d = 0.1
("mvcp200-01"), d = 0.2 ("mvcp200-02"), d = 0.3 ("mvcp200-03"), d = 004 ("mvcp200-04") and d = 0.5 ("mvcp200-05") and
the regular graph of size n = 202 from Papadimitriou and Steiglitz ("PS202").

[11] J. T. Richardson, M. R. Palmer, G. Liepins, and
M. Hilliard. Some guidelines for genetic algorithms
with penalty functions. In J . D. Schaffer, editor,
Proceedings of the 3rd International Conference on
Genetic Algorithms, pages 191-197. Morgan Kauf­
mann Publishers, San Mateo, CA, 1989.

[12] J . D. Schaffer , R. A. Caruana, 1. J. Eshelman, and
R. Das. A study of control parameters affecting on­
line performance of genetic algorithms for function
optimization. In J . D. Schaffer, editor, Proceedings
of the 3rd International Conference on Genetic AI­
gorithms, pages 51-60. Morgan Kaufmann Publish­
ers, San Mateo, CA, 1989.

[13] A. E. Smith and D. M. Tate. Genetic optimiza­
tion using a penalty function. In S. Forrest, editor,
Proceedings of the 5th International Conference on
Genetic Algorithms, pages 499-505 . Morgan Kauf­
mann Publishers, San Mateo, CA, 1993.

[14] D. R. Stinson. An Introduction to the Design and
Analysis of Algorithms. The Charles Babbage Re­
search Center, Winnipeg, Manitoba, Canada, 2nd
edition , 1987.

Genetic Algorithm for near
optimal Scheduling and Allocation

in High Level Synthesis

Sri-Krishna Aditya Magdy Bayoumi Chid Lursinsap
The Center for Advanced Computer Studies,

University of Soutbwestern Louisiana,

Lafayette, LA 70503, USA

Abstract

Scheduling data flow graphs is a critical
task in high-level synthesis and is an NP­
Complete problem. In this paper we present
the application of Genetic Algorithm, a
general optimization technique, to the problem
of scheduling and Allocation. The method
schedules under a variety of constraints like
resource, time, interconnect constraints. It
can schedule multicycle, chained and mutually
exclusive operations. With minor modifications
to cost functions we can take care of functional
pipelining.

Also, if a better heuristic for the problem is
found we can always integrate that heuristic with
this method with a guarantee that this method
performs equally well or better than the heuristic
found. This technique can be easily parallelized
which makes it very promising for application
in large designs. Complexity of the procedure is
O(S*N) where S is number of control steps and
N is number of nodes

1. Introduction

Input to a High-Level Synthesis system is a high level
specification of a digital system which is called as behavior
of the system, along witb constraints on hardware, timing
etc., Output of a High-Level synthesis system is the structure
which realizes the specified behavior of the system.

The tasks involved in the high level synthesis are

Compilation - Behavioral description in a hardware
description language like VHDL is compiled into
optimized data fiow andJor control fiow graphs.
For optimization, several techniques like dead-code

elimination etc., are borrowed from compilation of
programming languages.

• Scheduling -is the assignmenr of each operation to
a control step which generally corresponds to a clock
cycle in synchronous systems. This is considered to
be tbe most critical task in high level synthesis.

• Allocation & binding - Allocation is determining the
number of each type of hardware modules, registers
and buses required. Binding is the assignment of
each operation to a specific functional unit (hardware
resource), assignment of variables to registers and
transfers to buses and is termed data patb synthesis.

• Controller generation for tbe resulting schedule.

• Output the structural representation of the design.

Scheduling without operation chaining and multicycle
operations: Let us assurne addition operations take 50 time
units and multiplication operations take 100 time units.
In fig l.a we need to have a clock cycle time of 100
time units, time taken by the longest operation. Here
the implementation needs two control cycles and total
execution time will be 200 time units.

Scheduling with operation chaining: When tbe
consecutive running time of several operations is less
than the clock cycle time we can scheduJe all of tbem in
a single clock cycle and tbis is called operation chaining.
Here (fig-l.b) the two add operations can be executed in a
single cycle of 100 time units as their total execution time
is less then or equal to tbe clock cycle time. Schedule
takes only 100 time units and one control step (instead of
two control steps as in earlier schedule) which simplifies
controller.

Scheduling with multicycle operations: If we reduce
the clock cycle time to 50 time units tben multiplication
operation takes two clock cycles. The scheduJe (fig-l.c)
requires two control steps and we need a total execution
time of 100 time units. Here the multiplication operation
is scheduJed in two control steps and hence takes two
clock cycles.

(a) Scheduling without operator
chaining or multicycle operation
Process takes two control
steps of 100 time units each.
i.e., total process time is
200 time units.

(b) Scheduling with operator
chaining. This results in
only one control step of
100 time units - Aesults
in simpler control and
laster operation.

(c) Seheduling with mtiticycle
operations. Proeessing time
is same as ease (b) i.e., 100
time units. But has two control
steps of 50 time units each.

Figure

Bus requirement of a schedule: Minimum bus
requirement of a schedule is the maximum number of
concurrent data transfers taking place in the schedule.

Register requirement of a schedule: For a scheduled
control data fiow graph (CDFG) the register requirement
is given by the maximum number of graph edges crossing
a control step boundary.

2. Genetic Algorithms
Paulin et al. , [1] give an excellent survey of

scheduling techniques in the context of high level synthesis,
along with their own force directed scheduling methods.
Applicationof general optimization methods like simulated
annealing for schedulingJallocation problem can be found
in SALSA[2] and in [3]. Genetic Algorithm has been
applied to scheduling in [4] wherein two strings are used
to encode the problem. Our approach which uses only one
string encoding is different from this work.

Genetic algorithms, like simulated annealing are
stochastic search algorithms for optimization problems.
Excellent introduction to genetic algorithm theory and
applications can be found in [5-6]. To apply genetic
algorithms to a optimization problem we should have

• A way of encoding the solutions of the problem
-Here Chromosome is a string of genes. A position
on the chromosome can be occupied by one of the
genes from a set of possible genes (called allelIes) for
that position. It is possible that presence of one gene
at a particular position and another gene at another
position make the genotype (solution) illegal. Tbat
means a cenain combination of genes may be illegal.

• A way of creating an initial population - Tbis
may be a random generation of solutions to the

problem or solutions provided by other algorithms or
a combination of both.
A way of evaluating the fitness of each solution
(genotype) of the population.

• A way of generating the next generation by the
members of the present population by

o Cloning - Cenain members of the present
generation may be allowed to survive for the next
generation or copied into the next generation.

o Crossover - TWo parents from the present
generation are selected , with an exponentially
increasing probability of selection for fitter
parents. Chromosomes of each parent exchange
pan of their information and form two new
chromosomes which constitute two new children
into the next generation. Tbe parents may or
may not be mutated (altering of chromosomal
infonnation) before crossing them with a low
probability.

Determine the way of chromosomal infonnation
exchange (crossover), rate of crossover, percentage
of cloning, mutation rates.

• Termination conditions

3. Chromosomal Representation

We have integer based representation rather than a
binaty representation for the chromosome. To illustrate
the representation let us consider the control fiow graph
in fig-2(a). Let us assume that we are considering a time
constraint of five control steps, hardware constraints of one
adder unit and one multiplier unit and we are trying to
get an optimal schedule where bus and register costs are

a b d e a b e

9
(a) ASAP schedule

contral
step 1

oontrol
step 2

control
step 3

oontrol
step 4

control
step 5

9
(b) AlAP schedule

o Add operation • Execution in one oontrol step

o """"'00 _00· ""''"" '" ~ ~"~, ''''

1 Allelle list tor node 1 (1,2,3,4)
3 Allelle list tor node 3 (1, 2)
2 Allelle list tor node 2 (2, 3, 4, 5)
4 Allelle list tor node 4 (2, 3, 4)
6 Allelle list tor node 6 (2, 3)
5 Allelle list tor node 5 (4, 5)

~ogically sorted node list (breadth tirst)

(c) Topoiogically sorted node list and allelle list ot each node.
Allelle list ot anode is the list ot rts ASAP and ALAP oontrol
steps and the oontrol steps in between ASAP and AlAP steps.

Figure 2

minimum. It may not be possible to meet all the constraints
in wh ich case the algorithm should indicate this possibility.

We will find ASAP (fig-2.a) schedule and ALAP
(fig-2.b) schedule for the given CDFG and note down the
ASAP step and ALAP step for each of the nodes of the
graph. Then the possible allelle values for anode are its
ALAP and ASAP steps and the control steps in between.
An Allelle list of anode can be any permutation of the
corresponding allelle set. In any legal schedule, anode can
be scheduled into one of the control step corresponding
to a member of the allelle list, if such a scheduling
does not contradict precedence relations as indicated by the
graph. Allelle lists forms the units of information exchange
during crossover of two schedules.

Nodes of the graph are topologically sorted such that
in the sorted list anode is entered only after all its
predecessors are already entered. Fig-2.c shows one such
sorting of the nodes.

4. Initial Population Generation
If the population of a generation is decided as N, then

N copies of the sorted node list along with allelle set for
each of the nodes are made. The allelle set of each node
is randomly permuted in each of the copy.

A Scheduler takes each of these permuted copies and
forms corresponding schedules. Scheduler builds schedules
which meet precedence constraints (hard constraints)
always and tries to meet the hardware constraints (soft
constraints) as far as possible. Timing constraints because
of the nature of the method are always met.

Scheduler scans the node list (which is sorted in
topological order) and schedules each node in order. For
each node it scans corresponding allelle list from left to
right. It schedules the node to the first allelle (control
step) in the list wh ich meets the precedence constraints and

also hardware constraints. If it is not possible to meet the
hardware constraints, scheduling will be done to the first
allelle in the list which does not contradict any precedence
relations. Then that allelle is interchanged with the first
allelle in the allelle list. Thus after scheduling is complete,
the first allelle in each of the allelle list reftect the contro!
step to which the corresponding nodes are scheduled.

For example let us assume anode X has a associated
allelle list (a, b, c, d, e), and after scanning the allelle
list, it was found that c is the first allelle in the list to
wh ich scheduling of X, meets precedence and hardware
constraints. Then we schedule the node X into control step
c and update the allelle list as (c, b, a, d, e). As soon
as we schedule anode into a control step we should also
update the corresponding control step's usage of hardware
and the freedom of the subsequent nodes in the sorted list
of nodes. Fig-3 shows a random permutation of the allelle
list, the corresponding schedule developed by the scheduler
and updating of the allelle list to reftect the actual schedule.

After scheduling all the nodes the scheduler checks
to see if any of the control step is empty i.e., none of the
nodes have been scheduled to that control step. In that
case all the nodes scheduled to control steps later to this
empty control step are "pulled-up" by one control step.
For example anode X has an associated allelle list (after
scheduling) of (12, 14, 10, 11, 13) and is scheduled to
control step 12. Suppose if the control step 5 is found to
be empty, then all the nodes scheduled to control step 6 or
more have to be pulled up by one control step. Therefore
node X has to be rescheduled to control step 11 and its
allelle list updated as (11, 14, 10, 12, 13), by interchanging
positions of 11 and 12 in the list. If there are more empty
control steps in the schedule the process has to be repeated
and this process of filling the empty control steps starts
from the empty steps at the end of the schedule to those

node 1 (4, 3, 2, 1)
node3(1,2)
node 2 (4, 2, 3, 5)
node 4 (4, 3, 2)
node 6 (2, 3)
node 5 (4, 5)

a

cont
step 1

control
step 2

contro l
step 3

control
step 5

b c d e

9

node 1 (4, 3, 2, 1)
node 3 (1, 2)
node 2 (5, 2, 3, 4)
node 4 (4, 3, 2)
node 6 (2, 3)
node 5 (5, 4)

(a) Allelle list (b) Generated schedule (c) Updated allelle list
Note lists tor node 2
and 5.

belore scheduling

Figure 3

a

control
step 2

control
slep3

9 h

node 1 (1 , 4, 2 , 3)
node 3 (1 , 2)
node 2 (5, 3, 2, 4)
node 4 (2,4,3)
node 6 (2, 3)
node 5 (5, 4)

(a) A schedule and iIs
corresponding aIlelie list

a

conlrol
step 3

control
step4

control
step 5

9

node 1 (1, 4, 2, 3)
node 3 (1, 2)
node 2 (4, 3, 2, 5)
node 4 (2, 4 , 3)
node 6 (2, 3)
node 5 (4, 5)

h

(b) Schedule modified 10 lill
the empty control slep 4
and Ihe updated allelle list.
Nole changes in lila allele tists
01 nodes 2 and 5.

Figure 4

towards beginning of the schedule. For the given example
this is illustrated in fig-4.

We can seed initial population with ASAP • ALAP or
schedules generated by other heuristics and it is guaranteed
that genetic algorithm generates schedules at least as good
as the best of these schedules. In our trials. we seeded
the initial population with only ASAP. ALAP schedules

and randomly generated schedules. We did not make use
of any other heuristics.

5. Cost Calculation for schedules
After creating schedules in each generation we have

to find the cost of each of the schedules. Measuring fitness
of a schedule depends on what we are trying to optimize.

For example, if we are trying to get an optimized schedule
for some hardware constraints and time constraints, then
the following can be a good cost function for the schedule.

Let

X = Number of control steps allowed.
Y = Actual length of the schedule in number

of control steps.
P = Penalty for generating shorter

schedules.
B = Cost of each bus.
b = Actual number of busses

used for the schedule.
R = Cost of each register.
r = Actual number of registers

used for the schedule.
Ci = Cost of the hardware unit

of type i.
Hi = Allowed number of hardware units

of type i.
chi = Actual number of hardware units

of type i, used in control step c.

Then cost of the schedule is equal to
(X - Y) * P + B * b + R * r + L, L, (Hi - chi) * Ci

i c

The cost of the schedule is the objective function that
has to be minimized. It should be noted that schedules
shorter than the maximum specified length should be
penalized as shorter schedules have a higher prob ability of
breaking hardware constraints.

6. Sorting, Cloning, Crossover and Mutation
At each generation we calculate the cost of each

schedule and we sort the schedules of the generation, in
ascending order of their costs. If two schedules have
same cost, schedules having longer length come before the
schedules of smaller length, to encourage the schedules to
exactly meet the time constraints rather than developing
.short stubby schedules. It is possible to use other criterion
like cost of registers, or cost of buses etc., as a secondary
field for sorting (in addition to cost of the schedule as
the primary sorting field) to encourage schedules which
are better in those aspects.

To produce next generation, a certain percentage of
present population is calculated and we copy that many
top schedules of the present generation to next generation.
This is Cloning.

The remaining members of the next generation are
formed by cross over of the present generation members.
The probability of participation in crossover for a member
of present generation increases exponentially with its fitness
(which is inversely proportional to cost of schedule). For

this purpose we use a random number generator with an
exponential distribution.

Generation of exponential distribution: If RNG is
output of a uniformly distributed random number generator,
then X , a random variable with exponential distribution
is given by

X = 1. - 10 * loge(RNG) 1.

This random number generator generates number one with
high probability and the numbers two and onwards the
probability of generation exponentially decreases. The
numbers after thirty are practically never generated. Thus
if we use a population size of 100, only the top thirty
members participate in crossover.

To choose two parents from the sorted population list,
we ron the random number generator (one with exponential
distribution) twice. Suppose the numbers generated are
X and Y, then the parents chosen for crossing are the Xth
and Yth schedules in the sorted population list. These
two parents exchange the genetic information by swapping
allelle lists at specific nodes determined by a random
number generator of uniform distribution, wh ich generates
a string of Os and 1 s. Length of this string is equal to
number of nodes. This is illustrated in fig-5 for the example
we considered above. This type of crossover is called 0-1
crossover. It should be noted that in crossover we are
not exchanging the genes themsel ves but permutations of
genes corresponding to the node involved in crossover.

As each child is generated we can make it undergo
mutation also, which is choosing one or more of its nodes
with a very low probability and randomly permuting the
allelle lists at those selected nodes. The process is repeated
until the required number of children for the next generation
are created. Scheduler then processes each children and
generates schedules.

Then the process of finding cost of each schedule,
sorting, building next generation by cloning, crossover and
mutation is repeated for a predetermined fixed number of
iterations or until a whole generation converges towards
solutions of equal fitness.

Complexity of the procedure is of the order of
O(P*G*S*N) where P is the population size, G is the
number of generations, S is number of control steps and
N is the number of nodes in the data ftow graph. Since
P and G are constants the procedure is of the complexity
of O(S*N).

7. Experimental Results
The algorithm is implemented in C language and

benchmark studies were done on SUN SPARC workstation.
The benchmark we used is the popular fifth-order elliptic
wave filter. This benchmark can be particularly challenging
for a stochastic algorithm when scheduling for 21 control

node 1
node 3
node 2
node 4
node 6
node 5

Allelle list (4, 2, 3, 1)
Allelle list (2, 1)
Allelle list (5, 2, 4, 3)
Allelle list (4, 2, 3)
Allelle list (3, 2)
Allelle list (5, 4)

BINARY STRING

~
o
1
1
o
1
o

node
node
node
node
node
node

1 Allelle list (1, 4, 3, 2)
3 Allelle list (1, 2)
2 Allelle list (2, 5, 4, 3)
4 Allelle list (2, 3, 4)
6 Allelle list (2, 3)
5 Allelle list (4, 5)

PARENT 1 PARENT 2

~ /
Ir--C-RO-S-S-O-V-E-R-I

/ ~
CHILD 1 CHILD 2

node 1
node 3
node 2
node 4
node 6
node 5

System

HAL

Genetic Algorithm

Allelle list (4, 2, 3, 1)
Allelle list (1, 2)
Allelle list (2, 5, 4, 3)
Allelle list (4, 2, 3)
Allelle list (3, 2)
Allelle list (4, 5)

node 1
node 3
node 2
node 4
node 6
node 5

Allelle list (1, 4, 3, 2)
Allelle list (2, 1)
Allelle list (5, 2, 4, 3)
Allelle list (2, 3, 4)
Allelle list (2, 3)
Allelle list (5, 4)

Nodes at which allelle lists are exchanged is determined
by random binary string generated. In this example
the two parents exchange the genetic information
by exchanging the allelle lists of nodes 3, 2, and 6.

Figure 5

17 control steps 18 control steps 19 control steps 21 control steps

Add - 3 Add - 3 Add - 2 Add - 2
Mul- 3 Mul- 2 Mul- 2 Mul- 1
Reg - 12 Reg - 12 Reg - 12 Reg - 12
Bus - NA Bus - NA Bus - 6 Bus - NA

Add - 3 Add - 3 Add - 2 Add - 2
Mul- 3 Mul- 2 Mul - 2 Mul - 1
Reg - 11 Reg - 11 Reg - 11 Reg - 11
Bus - 6 Bus - 6 Bus - 4 Bus - 4

Table 1
steps as seven multiplication operations have to be irrespective of whether we are scheduling to 17, 18, 19
scheduled end to end, if we have only one multiplier. or 21 control steps.

We used a population size of !OO, cloning ratio of
50% and 50 generations. The algorithm, in all the runs
took nearly 25 CPU seconds for scheduling this benchmark

Table-l gives the results obtained and the comparison
with HAL [1] , Genetic algorithm gave beuer results than
HAL in terms of registers and busses used for the schedule.

8. Conclusion
This paper presented, application of genetic algorithms

for schedulinglallocation problem with timing, hardware
and mutual exclusion constraints. The Genetic Algorithm is
a robust optimization technique and by integrating problem
specific knowledge to genetic algorithm we have obtained
promising results. The approach can be easily parallellized.
We are extending this work to schedule CDFGs with loops.
Even though there are integer programming methods which
always generate optimal solutions for this problem they
will not be suitable for large graphs because of their
exponential time complexity.

9. References
1. Paulin G.P, Knight J.P - "Force_Directed Scheduling

for the Behavioral Synthesis of ASICs", IEEE
Transactions on Computer Aided Design olIntegrated
Circuits and Systems, June 1989, pp 661-<;79.

2. J. Nestor and G.Krishnamoorthy - "SALSA: A
new approach to scheduling with timing constraints",
Proceedings 01 the ICCAD-90, November 1990.

3. Srinivas Devadas and Richard Newton - "Algorithms
for hardware allocation in data path synthesis", IEEE
Transactions on CAD, July 1989, pp 768-781.

4. N. Wehn et al., - "A Novel SchedulingiAllocation
Approach for Data Path Synthesis based on Genetic
Paradigms" in Logic and Architecture Synthesis, eds.,
P. Michel and G. Saucier, E1sevier Science Publishers
B. V. (North-Holland).

5. David Edward Goldberg - Genetic algorithms in
search, optimization, and machine leaming, Addison­
Wesley Publishers, 1989.

6. Lawrence Davis, editor - Genetic Algorithms and
Artificial Ssystems, Morgan Kaufmann Publishers,
1987.

GAP - A Knowledge-Augmented Genetic Algorithm for
Industrial Production Scheduling Problems

1 Introduction

Ralf Bruns
Universität Oldenburg, Fachbereich Informatik

Postfach 2503, D-26111 Oldenburg (FRG)

The task of production scheduling is the temporal and capacity oriented scheduling
of a set of orders for manufacturing products. The manufacturing of a product is
accomplished by the execution of a set of operations in a predefined sequence on
certain machines. The goal of scheduling is the construction of a schedule (temporal
assignment of production processes to machines), which minimizes a chosen evalu­
ation function. Apart from some theoretical cases of little practical importance, the
determination of an optimal solution to a scheduling problem belongs to the class of
NP-complete problems. In addition to the combinatorial complexity, when dealing
with real-world scheduling problems the requirements imposed by numerous details
of the particular application domain, e.g. alternative machines, make the scheduling
task even more difficult. In spite of a large number of developed scheduling
methods (in Operations Research and, more recently, in Artificial Intelligence), only
a few practical applications have entered into everyday use in industrial reality.

Almost aB previous GA-based approaches to scheduling have only addressed sim­
plified versions of scheduling problems so far, e.g. flow-shop problems, and have
made use of a domain-independent problem representation, e.g. the list of all orders
to be scheduled [Cleveland 89, Syswerda 91]. However, in addressing more com­
plex scheduling problems the previous domain-independent representation schemes
seem to have the disadvantage that the genetic algorithm is restricted to perform a
search only on apart of the search space, e.g. only on the space of all permutations
of orders. The rest of the search task has to be accomplished by a transformation
procedure which has to search for information not provided by the representation
scheme.

2 GAP· A Genetic Algorithm for Scheduling

The objective of the project GAP (Knowledge-augmented Q.enetic Algorithm for
Eroduction Scheduling [Bruns 93]) is the development of a genetic algorithm for the
effective solution of real-world production scheduling problems. The approach is
based on the augmentation of the genetic algorithm with problem-specific
knowledge of the application domain.

A new direct representation of candidate solutions to the scheduling problem has
been designed: the complete and consistent schedule itself is used as an individual.
Thus, the GAP-algorithm operates directly on a population of schedules. This
complex representation contains all information relevant for the description of a

schedule, i.e. all operations of alJ orders with associaled machine assignments and
time intervals of production as weil as the selected process plan for each order.

Knowledge-augmenled crossover and mutation operators have been designed to take
advantage of the information included in the non-standard representation scheme.

The advanced crossover operator chooses a partial schedule of each selected parent
schedule and creates a new offspring schedule by combining the two partial sched­
ules. A suitable partial schedule of the first parent is determined by the random
selection of a subset of the orders, their machine assignments and production
intervals build a consistent partial schedule for the offspring. In the next step the
assignments of the missing orders are chosen from the second parent and have to be
inserted into the offspring schedule currently under creation. Occurring capacity
conflicts are solved by delaying the machine assignments of orders. The
performance of the system was further improved by the integration of heuristics for
the selection and combination of the partial schedules.

In order to consider all alternatives specified in the scheduling problem, three
separate operators have been developed for mutation, which randomly alter (a) the
selected process plan of an order, (b) the selected machine of an operation, or (c) the
selected time interval of an operation.

To circumvent the problem of illegal sol utions each operator creates offspring
schedules in a manner that guarantees that all constraints speCified in the scheduling
problem remain satisfied. In order to consider all constraints the genetic operators
have (parts of) the functionality of knowledge-based scheduling algorithms. By
means of (he operators an offspring inherits from its parent schedules the machine
assignment and the production interval (perhaps deferred) of each operation and,
implicitly, the selected process plan of each order. Thus, all relevant scheduling
information is subject to inheritance and the genetic algorithm can operate on the
entire search space. Moreover, the integration of additional requirements of real­
world applications, e.g. cleaning times, is possible due to the direct representation
scheme and the knowledge-augmented genetic operators.

3 Experimental Results

Extensive experiments with an extremely complex instance of a real-world problem
were performed with the GAP-system and a genetic algorithm based on a domain­
independent representation (individual = list of orders). All experiments with differ­
ent parameters showed the same typical behaviour, namely that the problem-specific
GAP-approach generated much better schedules than the domain-independent one.

References

[Bruns 93] Bruns, R.: "Direct Chromosome Representation and Advanced
Genetic Operators for Production Scheduling", ICGA-93.

[Cleveland 89] Cleveland, G.A., Smith, S.F.: "Using Genetic Algorithms to
Schedule Flow-Shop Releases", ICGA-89.

(Syswerda 91] Syswerda, G., Palmucci, J.: "The Application of Genetic
Aigorithms to Resource Scheduling", ICGA-91.

Cognitive Filtering of Information by Genetic Aigorithms

Max Höfferer, Bemd Knaus, Werner Winiwarter

Institute of Applied Computer Science and Information Systems
Liebiggasse 4/3, A-I0I0 Vienna, Austria
e-mail: {mh.bk. ww}@ifs.univie.ac.at

Abstract. An adaptive Information Filtering System is deseribed whieh
extraets e-mail messages from on-line resourees. Adaptation is obtained by
applying (1) linguistie analysis to get eonsistent representations of the eontents
of interesting e-mails, (2) an evolutionary algorithm for prioritizing
morphologieally parsed messages and (3) a monitor to simulate a user's
eognitive behavior.

1. Introduction
More and more users of e-mail and other on-line communication systems are faced
with the problem of selecting relevant information in aspace of different
information-sources. Participants of on-line conferences, members of office­
information systems, and network-diary makers get in trouble with an endless stream
of messages. To overcome this information overload problem [1] information
filtering techniques are being developed to deli ver information to users.

State of the art IFS, e.g. Information Lens System [2], EDS Template Filler [3] or
Isceen [4] offer a static behavior. A cognitive information system should have the
ability to learn and adapt itself to the user's behavior. First steps in this direction
have been proposed in [5] where interface agents employ AI techniques to provide
active assistance to a user with computer-based tasks.

The system presented - Cognitive Information Filtering System (CIFS) - applies
genetic adaptation to learn from user feedback and user behavior. CIFS distils e­
mails from the input stream depending on user's interests and evaluation judgements
which are used to rank e-mail information.

With regard to efficiency the linguistic analysis ofthe e-mails is performed by use of
a cascading architecture. The filtering proceeds by stepwise refinement of analysis
techniques leading to a consecutive reduction of the problem of space. Therefore,
only a very small fraction of the incorning e-mails must be analysed by time­
consurning linguistic methods.
This paper is organized as folIows. In Section 2 and Section 3 we will introduce the
basic concepts of information filtering and cognitive models. The linguistic analysis
applied performed by the indexer/parser module is presented in Section 4. Finally,
Section 5 gives a view of the architecture of the cognitive information filtering
system and an example of the actual filtering process.

2. Information fIltering

Information Filtering (IF) describes the processes of distribution and delivery of
information to users of communication systems. Information filters assist users in
finding relevant information but are also used to target information to potentially
interested users. Information Filtering Systems (IFS) handle primarily unformated
textualdata like documents, semi-structured like electronic-mail messages (e-mail),
NetNews articles, NewsWire stories or more complex structures like hypertext
documents containing voice, graphics, and pictures. IFS process streams of incoming
data based on descriptions of a single user or groups of users. These user "profiles"
typically describe long-term interests [6] and individually depend on the fact how the
user reacts on an incoming stream of information. The user can either select
information items (positive kind of filtering) or remove items (negative kind of
filtering).

The following state of the art prototype IFS are compared in Table 1.

Scisor
The System for Conceptual Information Summarization, Organisation, and Retrieval
(SCISOR) [7] is a prototype system that performs text analysis and question
answering on financial news selecting and analysing stories about corporate mergers
and acquisitions from an on-line financial service (dow jones). The filter component
selects stories about mergers and acquisitions and performs the lexical analysis of
names, dates, numbers, and other special inputs. The natural language components,
using a combination of language-driven and conceptual analysis, process the take­
over texts, identifying key roles such as targets, suitor, and price, as weil as other
features like financing, company products, or legal complications. The result of this
analysis is a single representation of each story that the program adds to a central
knowledge base. The conceptual retrieval component accesses information in this
knowledge base by analysing questions and matching them to the story repre­
sentations stored in the knowledge base.

lnference Network
The Inference Net model [8] is based on Bayesian inference networks. The network
consists of an object network and a query network. The object network contains
object nodes (o"s) and concept representation nodes (rm's) that contain a
specification of ilie conditional probability associated with that node P(rmloß, given
its set of parent object nodes. An incoming stream of objects is compared to profiles
at the same time by computing for every incoming object the probabilities associated
with all profile nodes. The object is filtered by removing it from the stream for a
given profile or selecting an object for a profile.

Information Lens System
Working with the Information Lens System [9], [10] e-mail senders must specify a
finite list of receivers and usually know how these people are. The system permits
senders to structure their messages by templates which represent a particular
message type and header components. Message receivers are allowed to construct
filters - by using a - that find messages matching certain structures. Filters are built
up of production mIes where the condition part contains selection specifications (e.g.
message types or characteristics) for different message fields and the action classifies
messages in specific folders or deletes messages. A disadvantage of Lens is that it
works weIl in small environments like companies but not in global environments.
Typical senders are often not willing to structure their messages and know very little
or nothing who or how many readers receive their messages.

Infoscope System
The Infoscope system [1] is an extension to parts of the Information Lens System and
consists of three parts:
(1) A graphically based user interface for accessing news messages. This "browser
tool" allows users to Jearn the existing structure of baskets containing selected e-mail
messages. Messages are organized into conversations that consist of a message node,
all responses to the message in that node, and similariyali responses to the responses
untilleaf nodes are reached.
(2) Virtual newsgroups represent areas of special interest to an individual user. The
comp.lang.lisp node is a Usenet newsgroup and the comp.lang.lisp.dos node is a
virtual basket containing selected messages filtered trom the newsgroups
comp.lang.lisp and cu.co.commonloops. Using this new virtual basket users have a
repository for information about dos that is displayed using the name semantically
attached to that information by the user who defined that basket.
(3) Agents are collections of mle based heuristics that utilize information resulting
trom the analysis of user behavior to make suggestions to the user. Agents are a
feedback mechanism, helping the user modify the message structure based on their
own system usage patterns. Relevant messages may be missed by filters because
Infoscope does neither analyse the contents of a message nor does the vocabulary in
the header field match the vocabulary in the message body.

Iscreen system
Iscreen [4] is a mle-based system for screening text messages. Users provide
instructions in the form of mies, which include a list of conditions and actions.
Conditions describe values associated with attributes of messages (e.g. who the
message is from, what it is about). Actions describe what is to be done with messages
that match the specified conditions (e.g. forward, save, delete). A special purpose
editor is used to define these mies. The system makes decisions regarding what
should be done with them based on mies provided by each of the recipients. To do
this it matches conditions specified in mies against the contents and envelopes of
messages. Variable references in mIes are resolved e.g. if users specify that messages

from their managers are to be saved in an important box, the system is able to
detennine whether a message is from the users' managers.

LyricTime
LyricTime is a personalized music system [11] in which songs are played at the
listener's workstation. A listener profile provides listener specific preference
information to the filter. The listener is free to stop and start playing at any time,
step forward and backward through the list of selected songs, change the volume and
enter his 'mood' (cheerful, romantic, calm, sad, curious). Listener feedback is used to
update the profile based on the listener's opinion of songs that have been played.

Pasadena
The Pasadena System [12] is a W AN subscription service that actively and
aperiodically queries diverse information sources (e.g. NewsNet news and mailing
lists) and maintains a local database of current information iterns, deleting older
information and adding new iterns continually. Each subscriber has one profile
which contains one or more queries. Each query is composed of a comparison text
and parameters like list of databases to be searched or pattern for document
exclusionlinclusion. The filtering process involves categorisation, exclusion patterns
and vector space ranking and text comparing algorithms. Those documents that fall
into the categories contained in the query and which do not contain the queries
exclusion pattern are ranked by their calculated retrieval status value [15] for each
query.

Tapestry
Tapestry [13] is an experimental mail system that supports collaborative jiltering.
Collaborative filtering means that users collaborate to help one another perform
filtering by recording their reactions to documents they read. These reactions or
annotations e.g. the document was uninteresting, can be accessed by others' filters.
Incoming documents are indexed and added to a document store. An annotation
store provides storage of annotations associated with documents. A filter component
repeatedly runs a batch of user-provided queries over a tbe set of documents and
those documents matching a query are placed in the little box of the query's owner.
The system applies TQL (Tapestry Query Language - based on SQL) to specify filters
as queries. A TQL query is a böolean expression to select those documents that
satisfy a user's current need.

Datacycle
The Datacycle system model [14] includes access managers acting on a single large
set of shared data items (storage pump). They perform retrieval and update
operations, complex searches, and support for queries that function as database
triggers. Data items are made available to the access managers by repetitive
broadcast of the entire storage pump. The broadcast stream is filtered by custom
VLSI filters within the access managers.

Criteria Typeof Constructio Rule-based / User support for Queries?
infonnation n - filter Query-based rules/queries

objects

Datacycle Documents User Fuzzy queries Filter: SQL
andFuzzy

Queries

Lens Documents User rule-based Templates -
Inference Documents User query-based - -

Net

Infoscope Documents User/agents rule-based Heuristics -
Iscreen Documents User rule-based Conflict What-If

detection, queries
explanation

Lyric time Music System rule-based - -
Pasadena Documents User query-based User dialogue Filter: Queries

Scisor Documents User Query-based - -
Tapestry Documents User/System query-based User comments, Filter: TQL-

TQL Queries
Table 1: Information Filtering Systems

IF is ciosely related to Infonnation Retrieval (IR) which is concemed with the
representation, storage, organisation, and accessing of information items such as
documents [15]. The fundamental problem in m is to identify the relevant
documents from non relevant ones according to a particular user's request. Three
domains classifying m research: indexing, retrieval and evaluation.

The document representation or indexing process performs the task of assigning
information items to documents for purposes of retrieval. An indexing language
maps the contents of docurnents on a textual representation.

The three main retrieval models in m - boolean, vectorspace and probabilistic
model - differ with respect to the matching process between user queries and
document representations.

The Boolean model [15] compares queries and document descriptions by exact
matching of the index terms with the help of boolean operators. A disadvantage of
the exact match model is that the whole document space is divided into two sets of
relevant and non relevant documents with a ranking of documents according to a
query.

In the Vector Space model [15] queries and documents are represented as vectors in
a multi-dimensional space and compared with the help of statistical methods e.g. the
eosine, Dice or Jaccard function [16].

The Probabilistic IR model estimates the probabilities of a document's relevance by
using the Bayes' theorem. The model is based on the probabilistic ranking principle
(pRP) [17] which states that optimum retrieval is achieved when documents are

ranked according to decreasing values of their probability of relevance with respect
to the current query.

Differences between IF and IR are described in Table 2.

Information Filterin/! Information Retrieval
System illQut clynamie datastream statie database

User goals long-term periodie desires short-term intentions

User behavior to reaets to aetively searehing
ineoming data

Information removing finding (seleetion)
processing

Information flow distribution and organization representation and organization

Use of the system repeated single

Representation of profiles queries
user interests

Environment more or less privacy more or less publie

User-groups undefined well-defined

Table 2: Information filtering vs. information retrieval

Simple Keyword Matching deterrnines whether the user's information interests
match the incoming information items of the system.

Before we present the cognitive models incorporated in CIFS, it is most important to
state that the process of filtering that the indexing component consists of:

• a lexical scanner,
• a morphological component, and
• a component for generating postings.

3. Cognitive models

In each electronic information source there can be so much detail that the
information presented to the reader may be of lower quality and less relevant than
traditional approaches. The ability to select relevant information to a user is essential
to the viability of such services and requires an individual user model [18]. In our
approach we have incorporated the following cognitive aspects to improve our
system's ability for filtering e-mails.
Given the diversity of IFS users, the fact that they will not have the same problems or
needs, and that the user's level of expertise and interests is likely to change in the
cause of time, it is desirable that profiles be able to adapt to and support the
requirements of individual users.
Monitoring data collection techniques, think-aloud protocols, tape recording of
interaction, interviews, and questionnaires are helpful to understand the filtering

process of an individual user [19]. The user's behavior is mapped on the behavior of
the system.

The system must also have a model of itself, in order to foresee its possible future
actions and thus be able to choose the best way to do. Therefore we apply techniques
similar to those used for debugging to give us a trace of system actions during the
filtering process. If no user interrupt occurs, in case of a relevant message, the
system analyses any observations so that it can choose what to do with the next
incoming similar message. Observation is needed to detect system actions during the
filtering process. The observation me be passive or active depending on whether it
memorizes what happened or makes experiments to find out autonomous new topics
that may be interesting for the user. In the first prototype we only use passive
observation.
As long as the system has not noticed abnormal behavior, reacts exactly alike
without observing itself but simultaneously creates a trace of its actions and results; it
may correct what goes wrong immediately or analyze it later. this observation may
be continuous or occasional. In our approach we use continuous observation.
Similar experimental e-mail assistants like Maxims [20] are learning by
continuously "looking over the shoulder" of the user as he/she deals with e-mail [5].

CIFS is a two step learning system. In a first step, the user may specify a catalogue of
relevant topics (interest-domains). By rating the keywords of each incoming e-mail
and assigning them to one or more interest-domains, the system creates a polarity
profile for each domain out of a set of ratings. In this (training)-phase the system
learns the basic structure of the user's cognitive style.
Of course, learning has to be an incremental process and the system has to learn on
the job. In this (adaptive) phase, the monitor memorizes all user (re-)actions as
situation-action pairs for the genetic algorithm to work with (Chapter 5).
A complete cognitive user model has to represent the user's cognitive style and
personality factors, the user's goals and plans, his/her capabilities and preferences,
and the user's beliefs and knowledge.

4. Linguistic analysis

Within CIFS linguistic analysis is performed by the index er/parser module.
Additionally, apre-filter reduces the amount of relevant e-mails. For this purpose,
the pre-filter contains a set of keywords and phrases that initially describe the user's
current interests. These descriptors weed out e-mails that are not about a topic of
interest.

4.1. Indexer

As a second step within the filtering process the documents selected from the pre­
filter are assigned to the appropriate interest domains on the basis of an indexation
module. The document texts are first transformed to a sequential word list. In order
to retrieve the individual word boundaries welI-approved heuristics are applied and
abbreviations, compound words and special formats (e.g. time, date, or currency) are
treated correctly by the use of a morphological pre-processor.
After generating the word list, all words that do not contribute to the meaning of the
document (e.g. grammatical particles or expletives) are removed on the basis of a
stop word list. Now, an index is created which assigns each entry with a list of
postings, that is, the positions of its occurrences. In order to check the equality of two
words we do not apply an exact string match but we designed a special comparison
module which applies simple techniques from morphological analysis to lemmatise
the concerned words.
The developed tool is multilingual in the sense that techniques which are valid for
any language are strictly separated from language-specific features . Furthermore, the
latter are to a high degree rnapped to parameters so that the adaptation to a new
language can be very easilyperformed. Although we applied mostly approximate
methods, we achieved a very high accuracy without losing too much speed. The
following important morphological phenomena are analysed by our comparison
module:

• spelling errors: Obviously, we do not consider all possibilities for the
appearance of spelling errors but restrict ourselves to correct the most
frequent error patterns like the insertion of one wrong character, the
permutation of two letter or the omission of one character.

• vowel-gradation: This is a irregular morphological variation which occurs
in many languages during the formation of inflexions (e.g. the ablaut in
German) and can be resolved using techniques from spelling error
correction.

• endings and suffixes: The distinct final part of two words are compared with
lists of legal inflexions and derivations which gives also a first evidence for
the word category, an information which is essential for later syntactic
analysis.

• elision: Elision is the omission of the unstressed e-sound, a frequent
phenomenon in German and in Scandinavian languages.

• binding sounds: Finally, binding sounds tie together the individual parts of
the word in the formation of derived or compound words.

For a more detailed discussion of morphological analysis in computational
linguistics, especially for inflective languages, we refer to [21].
The resulting document index is matched against the domain descriptors by applying
statistical similarity measures adopted from the vector space paradigm of
information retrieval [15] .

4.2. Parser

Only those documents which are evaluated as relevant to one of the interest domains
of the user are subject to a more sophisticated syntactic and semantic analysis. Due to
the requirements of information filtering with regard to processing time, natural
language analysis can only be performed by information extraction and not by text
understanding. This implies that only fractions of the document text are analysed,
the retrieved information is mapped to some target representation, and a11 other
subtle aspects of meaning are left out of consideration [22].
Therefore, a cascaded architecture is required which does not perform a complete
linguistic processing for the whole document but narrows the scope by first retrieving
text segments of special interest which can then be analysed more carefu11y. Within
our filtering system this task of selecting interesting text segments is performed by
the indexing module and is made available to the parser as result of the match
against the user's profile.
The contexts of these so-ca11ed trigger words are further analysed by use of a simple
but efficient parsing algorithm in order to detect syntactic constructs (e.g. noun
phrases, verb phrases or prepositional phrases). Only straight-forward syntactic
analysis is performed, all more tedious linguistic issues are ignored, according to the
'golden rule' of information extraction: 'to do the right amount of syntax, so that
pragmatics can take over its share of the load' [22].
Pragmatics is mode11ed within our knowledge base by the use of frames as
conceptual representation scheme. The interesting pieces of information contained in
the analysed contexts are mapped to the slots of these frames during semantic
analysis [23]. As consequence of our main research objectives, the adaptive behavior
of our information filtering tool, this knowledge base cannot be implemented by use
of a static structure but on the contrary the represented knowledge must change
dynarnically in response to changes of the user's interests.
Finally, during discourseanalysis a11 resulting frames are merged to obtain one
consistent representation of the contents of an e-mail document. One difficult and
important task of this merging process is to unify various interpretations, that is, to
eliminate local ambiguities [24]. The final semantic representation is used for
valuating the subjective relevance of the document for the user, it models only that
part of contents the user is interested in, a11 other aspects are filtered out.

5. Cognitive Information Filtering System

5.1. Evolutionary Computation

The field of Evolutionary computation (EC) includes research in genetic algorithms
[25], evolution strategies [26], genetic programming [27], artificial life [28] and
several other problem solving strategies, that are based on biological observations,
that Charles Darwin called 'The means of natural selection and the survival of the
fittest'. These algorithms are thus termed Evolutionary Algorithms (EA) and use

computational models of evolutionary processes as key elements in the design and
implementation of problem solving systems [29].
They share a common conceptional base of simulating the evolution of individual
structures via processes of selection, mutation, and reproduction. The processes
depend on the perceived performance of the individual structures as defined by the
environment. In CIFS we use the EC approach for prioritizing e-mails.

5.2. System Architecture

Based on the previous Sections we designed the system architecture of our Cognitive
Information Filtering System displayed in Figure 1. The central component of the
system, the cognitive information filter contains a population of information objects
(words, user usage patterns, phrases) called e-mail agents, representing thecontents
of e-mails. By using a Genetic Algorithm [30] e-mail agents cooperate and compete
for correct evaluation of a user's actual interest rating. E-mail agents learn by
adjusting their evaluation, thus moving it closer to the user's evaluation. A payoff
schema prevents the population from increasing.

The filter is supplemented by the following modules:

• Pre-filter
Contains a set of general negative keywords and phrases which weed out e-mails that
are not about any topic of interest. Typical examples are sender of themail or subject
categories like 'request to unsubscribe', 'please send me information how to
subscribe', 'I arn on vacation', a distinct group or a specified time interval.

• IndexerlParser
This component is responsible for the linguistic analysis as described in detail in
Section 4. The document text is transformed to an index used for pre-selection of
relevant contexts. The resulting text segments are parsed and modelIed as frames in
order to match them with the corresponding items of the knowledge base.

• Knowledge Base
The knowledge base contains the semantic representation of the user profiles which
is applied to the assessment of new e-mails. The internal structure consists of frames
describing the individual user interests. Their dynarnical adaptation is induced by the
e-mail agents of the filter component.
• Monitor
Records a user's behavior, that is, hislher reaction to incoming e-mails, e.g. deleting,
forwarding, storing, replying, printing. Therefore, the monitor provides a feedback
mechanism, measuring how effectively the recording of usage patterns predicts
current user behavior.

Knowledge base Monitor

Cb~tivehttorrmrionFllrer

Figure 1: Cognitive information filtering system

5.3 ImplementatioD

In the initial training session of CIFS the user specifies interest domains and
categorizes the e-mails accordingly. By use of the indexer module an index is
generated out of the e-mail text and presented to the user for rating. He/she may
assign one of the following discrete relevance values very interesting .. [-1,-0.5),
injonning .. [-0.5,0), desinteresting .. O, boring .. (0,0.5] and unexciting .. (0.5,1] to the
individual terms, all others are evaluated with adefault value. As additional feature
the user is allowed to define synonyms and phrases.

After the collection of a representative sampIe for each topic (Figure 2), the training
session is completed. On the basis of the different assessments, a list of descriptors is
created which covers the semantics of the interest domain (Figure 3).

@)
r"·
I
!
!

retrieval 4
fllterin9 6
representat! on 8
indexing 9
browsing 3
OIatchlng 7
natural language 8
knowledge base 10
rrlessage 3
header 2
Inference 7
selection
newsgroup$
e"1llail
re I evance
feedback
user interhce
YOCabullll"\j
heurist1c$

Rating

Rattng-Scope: 1 to 10

IteN: selectlon

Rating:
[10...

5

11 __ !i~x~ J I ~d
StatusGroup

Status: Input

Input Fi le: Input.R

Output Fi le: Output.R3

Figure 2: User rating of an interest domain

r@l •• aI vaJlIt

10

Files
r«rtlllil "',,-fil:erillCl IrtIIFIle: IIAIU.Rl
rq>rc3CIIt.:>ti", ~ tonle; ~.R3

lrdexl~

lroIsing

~J IIItchtI19
....t.roll_ [LJ
knod!dge base

lIeSIa9I

header ~---.
inf

sellCtllll

~ ~

e-tall

rol_ ~ feeobcl.
_ interfa r IIiXDlll'!l
huittice

a ~

Figure 3: User-profile

The actual filtering process is presented in figure 4.

PRE-FILTERING

ASSIGNMENT TO INIEREST OOMAINS

RElEVANCE RATING

MONITORING OFUSER REACI10N

GENETIC ADAPTION

Figure 4: The Filtering Process

1. Pre-filter
E-mail 1 (Figure 5) is deleted because the trigger word subscribe is detected.

From genetic-programming-owner@list.Stanford.EDU Wed Jul 20 17:19:41 ·1994
Date: Wed. 20 JuI199416:32:44 +0100
From : xxxxxxx
To: genetic-programming@cs,stanford.edu
Content-Length: 42
X-Unes: 1
Status: RO

subscribe genetlc-progflJmm ing xxxxxxxx

~---_._----

Figure 5: E-mail 1

E-mail 2 (Figure 6) passes through.

/ ' (-_..... . ~ _. _ ... _. _. __ __ _. __ ._-.-.. -----
'\

From mh Tue Jul19 09:21:251994
Cate:Tu •• 19 Jul94 09:21:24 +0200
From: mh (M.x Ho.Herer)
To: bk
Subject: evolutionary computation
Cc:mh
Status: RO
Cont.nt·L.ngth: 9170
X·Lines: 153

Info-scope System
The Infoscope system lFlscher 1991) is-an,extenSion to parts ofthe Information Lans System and
-consists of three parts:
(1) A graphieaUy balad user:Jnte-rface ror a-ccen;ing-news m,e-snges. This ''browser100r, aliows
users to persue end learn the .exlsting.structure of baskets -contalrung s_8lected 'e~,mlll:messages.
Me~8$3'S are oFgsnlsed lnto .convel'S=8tions that co-ns-ist,of a meuage "ode. ·all responses to-the
meuage..'" thllt nOde,' and Ilmllarfy:I!_!I:~espor:'s',s to't_he·rel_~ons."untillel'-nodes IT' reached.
(2) Virtual n.w.group piit •• nlareas.ofsp.cl.llnt.' •• tto.nlndlVldu.lu •• tTbe comp.l.ng.llsp
nOde-Is-'8, US81"Jet"newsgroup, ancf:th"8"comp.lang.ltsp;clos nDd."ls":a:vlrtual bas:ket'"conlalnlng
a8Iected"me,saages filtered from ,tt'e:newsgroups comp;~ng:Jlap"and:"~u;co.~mmonloo"ps~ Uslng
th.ls n.w Ylrtualb.sk.tu .. ,shavearepository ro,lnronnationabout cIoslhaltsdlsplay.d uslngth.
n.m. semantlc.ny attach.d to that Information by th. u •• rwhod.ftn.d thatbask.t.

'''-----------------_ .. __ . __ ... _ .. _ _._ _-_._._ .. _ .. _._._ .. _---_._---)

Figure 6: E-mail 2

2. Assignment to interest domains
The descriptors of e-mail 2 are matched against the descriptors of the different
domains. The e-mail is assigned to the interest domain which the highest
matching score.

3. Relevance rating
Each descriptor of the e-mail is weighted by the corresponding strength from the
knowledge base. Based on the list of weighted descriptors the relevance of the e­
mail is computed.

4. Monitoring 01 user reaction
Reactions or sequences of reactions, Looking over the user's shoulder positive
(store, forward, print, reply), neutral (view) and negative actions (delete) result in
acceptance measure.

5. Genetic adaptation
The learning algorithm in Figure 7 describes the adaptive process that associates
user ratings with descriptors to rank incoming e-mails. A population of e-mail
agents belongs to a user's domain of interest. The structure of an agent consists of
his (initial) strength, a bid [-1, ... ,+1] and a bid learning rate. The population
learns by adjusting their evaluation, moving it closer to the user's evaluation. A
payoff schema prevents the population from increasing.

Figure 7: Genetic adaptation of e-mail descriptions

E-mail agents that run out of strength leave the population for a calculated period of
time - at that moment they are not relevant - and get incorporated into the pre-filter.
Agents above the average fitness serve
• as 'new' keywords to the prefilter, e.g. the system reacts to the fact that a user has

not been interested in a topic for aperiod of time, or
• remain in the population and get one more chance to be useful.

The knowledge-base contains the semantic representation of the user profiles.
Individual interests are mapped to frames. Their dynamic adaptation is induced by e­
mail agents.
The monitor is a kind of feedback mechanism, measuring how effectively the history
of usage patterns predicts current usage patterns and the probability that an item is
needed given the history for such information [31].

6. Conclusion

CIFS supports two general aspects:
• individual user preferences in daily operations with his/her e-mail system, and
• the actual contents of messages that are deemed interesting or uninteresting.
A further advantage is the time saving device to cope with the infonnation overload
problem. The current state of implementation is that we completed all modules but
do so far without complex frame representations and sophisticated linguistic analysis
techniques.

References

[I] G. Fischer, C. Stevens, Information Access in comples, poorly structured information
spaces, Proceedings CHI conference, pp.63-70, April 1991.
[2] T. Malone, K. Grant, F. Turbak, S. Brobst, M. Cohen, Intelligent Information-Sharing
Systems, CACM 30(5), pp.390-402, 1987.
[3] H.K. Shuldberg, M. Macpherson, P. Humphrey, J. Corley, Distilling Information from
Text: The EDS TemplateFilJer System, JASIS 44(9), pp.493-507, 1993.
[4] S. Pollock, A Rule-Based Filtering System, ACM TOIS 6(3), pp.232-254, 1988.
[5] P. Maes, Agents that reduce work and information overload. CACM 37(7), 1994.
[6] NJ. Belkin, W.B. Croft, Information Filtering and Information Retrieval: Two Sides of the
Same Coin? CACM 35(12), pp.29-38, 1992.
[7] P.S. Jacobs, L.F. Rau, SCISOR: Extracting Information from On-line News, CACM
33(11), pp.88-97, 1990.
[8] H.R. Turtle, W.B. Croft, Evaluation of an inference network-based retrieval model, ACM
TOIS9(3), pp. 187-222, 1991.
[9] T. Malone, K. Grant, F. Turbak, S. Brobst, M. Cohen, Intelligent Information-Sharing
Systems, CACM 30(5), pp.390-402, 1987.
[10] T. Malone, K. Grant, F. Turbak, K. Lai, D. Rosenblitt, Semistructured messages are
surprisingly useful for computer-supported coordination, ACM TOIS 5(2), pp.115-13 I, 1987.
[I I] S.Loeb, Architecting Personalized Delivery ofMu1timedia Information, CACM 35(12),
pp.39-48, 1992.
[12] H.P. Frei, M.F. Wyle, Retrieval Algorithm Effectiveness in a Wide Area Information
Filter, Proc. 14th Int. Conj. on Res. a. Devel. in Infonnation Retrieval, pp. 114-122, 1991.
[13] D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Using Collaborative Filtering to Weave an
Information Tapestry, CACM 35(12), pp.61-70, 1992.
[14] G.E. Herman, G. Gopal, K.C. Lee and A. Weinrib, The Datacycle architecture for very
high throughput database systems, Proceedings of ACM SIGMOD, ACM, NewYork, 1987.
[15] G. Salton, M.J. McGill, Introduction to Modern Information Retrieval. New York:
McGraw Hili, 1983.
[16] T. Norault, M. McGill, M.B . Koll, A performance evaluation of similarity measures,
document term weighting schemes representations in a boo1ean system. Information retrieval
Research, (eds). R.N. Oddy et.a!., pp. 57-71,1981.
[17] S.E. Robertson, The probability ranking princip1e in IR, Journal of Documentation, Vol.
33,pp. 294-304,1977.
[18] R.B. Allen, User models: theory, method, and practice, Int. J. Man-Machine Studies 32,
pp.51l-543,1990.
[19] J. Anderson, Cognitive Psychology and its Implications, ASeries of Books in
Psychology, Ed.: R. Atkinson, G. Lindzey, R. Thompson, New York: W.H. Freeman and
company, 1985.
[20] Lashkari, Y., Metral, M. and Maes, P., Collaborative Interface Agents, Proceedings of
the Natianal Conference on Artijiciallntelligence, 1994.
[21] W. Winiwarter, A.M. Tjoa. Morphological Analysis in Integrated Natural Language
Interfaces to Deductive Databases. Proceedings ofthe Fourth International Workshop on
Natural Language Understanding and Logic Programming, Sep. 1993.

[22] J.R. Hobbs, D.E. Appelt, M. Tyson, J. Bear, D. Israel, Description of the Fastus System
for MUC-4, Proc. ofthe 4th Message and Understanding Conference, pp. 169-177, 1992.
[23] D. Ayuso, S. Boisen, H. Fox, H. Gish, R. Ingria, R. Weischedel, BBN: Description of the
PLUM System Used for MUC-4, Proc. ofthe 4th Message and Understanding Conference,
pp.268-275, 1992.
[24] A. Meyers, D. de Milster, McDonnell Douglas Electronic System Company: Description
of the TexUS System used for MUC-4, Proceedings of the 4th Message and Understanding
Conference, pp.207-215, 1992.
[25] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning,
Addison Wesley Inc., Reading, Mass., 1989.
[26] H.P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, Birkhäuser Verlag, Basel, Stuttgart, 1977.
[27] J. Koza, Genetic Programming: On the programming of computers by means of natural
selection, Cambridge, MIT press, 1992.
[28] T.S. Ray, Is it alive, or is it aGA, Proceedings of the 1991 1nternational Conference on
Genetic Algorithms, pp.527-543, CA, Morgan Kaufmann, 1991 .
[29] LJ. FogeI, J.W. Atrnar (eds.), Proceedings of the first Annual Conference on
Evolutionary Programming, Evolutionary Programming Society, San Diego, CA, 1992.
[30] D.E. Goldberg, Genetic and Evolutionary Algorithms Come of Age, CACM 37(3),
pp.l13-119,1994.
[31] J .R. Anderson, The Adaptive Character of Thought, Lawrence Erlbaum Associates:
Hillsdale, New Jersey, 1990.

A Term-Based Genetic Code for Artificial Neural Networks

Marek Musial and Tobias Scheffer
(TU Berlin), Schottburger Str. 11 a, D-12305 Berlin, musia@cs.tu-berlin.de

(TU Berlin), Jahnstr. 65, D-12347 Berlin, tobiass@cs.tu-berlin.de

Abstract

We developed a well-structured term-based lan­
guage for the structural specification of artifi­
cial neural networks. The language achieves an
intuitive and compact representation even for
very large networks, making it interesting as an
input language for network simulators. Since it
describes neural networks on a logicallevel, it is
very weil suited as a "genetic code" for the op­
timization of network architectures by genetic
algorithms, allowing well-controllable mutation
operators and a powerful crossover operation
that is able to recombine fu,nctional blocks of
any shape instead of destroying them. We de­
fine the language formally, give examples of its
application and present some results of its use
as a genetic code for finding network architec­
tures.

1 Introduction

Although it can be proven that there exists an artificial
neural network (ANN) approximating every continuous,
bounded function (e.g. Theorem of CYBENKO [1]), no
universal algorithm that determines the network's pa­
rameters is known. Given an architecture of an ANN, i.e.
the number of units and their connectivity, the weights
can be adapted by several training algorithms, e.g. back­
propagation [2].

Yet, the architecture decides whether a set of weights
can be found by the BP algorithm. Genetic algorithms
(GOLDBERG [3]) can be used to find or optimize network
structures. A similar optimization strategy is evolution
strategy(RECHENBERG [4] (51). Evolution strategy is
better understood and a more extensive theory is avail­
able, parts of which can be applied to the similar genetic
optimization strategy.

There are two possible ways of optimizing ANNs by
means of genetic algorithms: Architecture and weights
can be optimized simultaneously (e.g. KOZA and RICE
[6]), or only architecture is optimized bya genetic algo­
rithm, while the weights are adapted by a local search
strategy like back-propagation for each individual (e. g.
HARP [7]). Due to the results of the theory of evolution
strategy, we focused on the second approach.

1.1 Genetic Algorithms

Genetic algorithms optimize a population of individuals
(e.g. ANNs) by (1) evaluating the quality of each indi­
vidual with respect to the problem, (2) reproduction of
individuals with a rate proportional to the quality and
(3) mutating and sexually recombining the new individ­
uals.

Although it is possible to define the mutation oper­
ators on the phenotype level (UTECHT and TRINT [8]),
the individuals are usually represented by a genetic code.
The mutation and crossover operators are then defined
on that code. This representation of an individual is
called its genotype. To evaluate the quality of each mem­
ber of the population, a mapping from the genotype to
the phenotype has to be defined, which can be considered
the semantics of the genetic code.

1.2 Genetic Representation

To achieve efficient optimization by genetic algorithms,
the principle of strong causality has to be obeyed by the
mutation operators as weil as by the genetic code, i.e.
the mutants of each individual have to be most probably
similar to their parent in phenotype, and similar geno­
types should lead to phenotypes of similar behaviour,
which means smoothness of the quality space.

Various forms of genetic representation of ANNs have
been invented. They can be divided into direct encod­
ing schemes, which encode complete and detailed infor­
mation about the network's architecture, and indirect
encoding schemes, which encode either rules for the gen­
eration of the phenotype [9] or only those parts of the
network's architecture that are considered to be of rele­
vance.

Direct encoding schemes, the simplest of which is the
direct encoding of the interconnection matrix, tend to re­
sult in large and redundant genotypes. The term "redun­
dant" here alludes to a crucial characteristic of ANNs:
There is only a relatively loose causality between an
ANN's architecture and its suitability for a given task,
Le. its quality. The effect of small variations in the
network's architecture is in many cases completely con­
cealed by the stochastic noise in the quality space, which
is a consequence of the random initial weights in back­
propagation training.

Indirect encoding schemes sometimes limit the set of

possible solutions apriori, and the law of strong causal­
ity between the genotypes and the phenotypes is often
violated, e.g. two similar sets of rules may derive com­
pletely different network architectures.

2 The Approach

Our genetic code is based on the idea that the genotype
should reflect the logical structure of the network as it
would be seen by a human engineer. An ANN may con­
sist of subnets or organs, self-contained functional units
performing a special task. Identical or similar parts can
be incorporated several times in the network. If such
information about the network's structure is available
in the genotype, mutation operators should be possible
that vary the structure in steps of well-controllable size,
so that effective structural changes are possible while the
complete destruction of the network remains improbable.

In addition, we want to be able to define a crossover
operator that simulates the advantages of biological, sex­
ual reproduction. That is, it should be capable of com­
bining independently developed subnetworks, like or­
gans, in a common descendant. Therefore, it should in
most cases extract functionally correlated parts of a net­
work, including those extending over severallayers.

3 The Genetic Code

To achieve this, we designed a recursive, structured,
tenn-based language.

3.1 Syntax

The language is the smallest set T that satisfies:
nE T, iffn E N
par(tl, "" t n) E T, iff tl,"" tn E T
ser(tl, . . . ,tn) E T, iff t], ... ,tn E T, n > 1
mul(n,t) E T, iffn E N\ {l},t E T
smul(n,t)ET, iffnEN\{l},tET
tf(r) E T, iff rE [0,1]

Where N is the set of positive natural numbers.

3.2 Informal Semantics

A term consists of a function symbol followed by a list
of arguments. Depending on the function symbol, the
arguments mayaIso be terms, and their semantics are
networks. The function symbol detennines the arrange­
ment of the argument networks to obtain the resulting
ANN. The argument networks may lie parallel or in se­
ries:

e "n"-terms anchor the set. They represent n parallel
units not having any connections between them.

e The arguments of a par(tl,' .. , tn) term He parallel
and are structured networks themselves. There are
no edges from any unh within an argument to any
unit within another argument of the same par term.

e The arguments of a ser(tl, ... , tn) term He in series
and are networks again. If neither argument ti nor
argument ti+l is of the type tf(r), then the output
units of block ti are completely connected to the
input units of block ti+1'

e mul/smul(n, t) terms allow the "cloning" of a block
n times and correspond to a par term with n times
the argument t . In the smul case, weights are shared
by the instances of t. Thus, feature detectors can be
described.

e The topological filter tf(r), placed between two ar­
guments of a ser term, avoids a complete intercon­
nection between these blocks. Instead, a specific
connection structure is generated, with the number
of connections actually drawn determined by r. The
resolution of topological filter is described in detail
in section 3.3.

3.3 Semantics

To depict terms and to apply a set of transformation
rules, we translate them into diagrams . Diagrams are
graphs with special types of nodes and edges . We con­
sider a graph to be a six-tuple (V, E, IV, I E , iV

, iC
) , where

V is a set of vertices (nodes), E ~ V x V a set of
edges, IV the alphabet of node types, I E the alphabet
of edge types; iV

: V -t IV assigns each node a type and
ie

: E -t IE assigns each edge a type. The types of edges
for a diagram are:

1. connected-to: units and blocks (Le.: terms) can
be connected to other blocks or units. We draw
connected-t<redges as solid lines; but although they
are directed edges, we do not care to draw arrows ,
because the direction is always from the bottom to
the top. Such an arrangement is always possible,
because we specify feed-forward networks only.

2. member-of Since diagrams represent structured
terms, blocks (or units) can be incorporated in other
blocks. We do not draw these edges at all, in­
stead we draw all members directly into their parent
blocks.

Each node is assigned a type. The (infinite) alphabet
of types is

Nx{e,par,tf(r)}, rE[O,l]

The first component of the type indicates the position
of the block within its parent, the second determines
whether the block is a unh (which is a block, too) , a
structured non-unit block or a topological filter. If it is
a topological filter, the real-valued filter-factor is given.
The function TI : V -t N maps every block to its position
within its parent. It is defined by

TI(n) = 7r,

Figure 1 shows the translation of terms into diagrams.
The translation function can be defined as folIows:

We first append unique identifiers to every block of a
term, i.e. the rule

f(aJ, ... ,an) ---+ f(al, ... ,an) :id,

with id denoting a unique identifier, is applied wher­
ever possible. As an example, the term par(ser(3,4),5)
is transfonned into par(ser(3 : id l ,4 : id2) : id3 , 5 : id4) :

ids. Then the J function translates the named term into
a graph. J receives a named term and a relative position

of that term within its parent as parameters. At the
top level, J (t, w) indicates that there is no parent for the
whole term.

J(n:id,1I") =
J(par(. : id l , ... ,. : idn), 11")

J(.: id,1I") =

(V, E,JV,JE, iV, iC
), where

V = {id},
E = {(id, id)},

I v, I E defined as above,

iV = (id H (11",.)),
i' = {((id,id) H member of)}

J(par(tl : id l , ... , t n : idn) : id) =

(V' E IV I E 'v' 'C) h , , , , Z , Z, w ere

(V,E,JV,JE,iV,i C
) = UJ(idi,i),

V'=VU{id},

i V
' =iVU{(idH (11", par))};

J(ser(t l : idl , .. ·, t n : idn) : id, 11") =

(V E' IV I E ·v .c') h , , , , Z , Z, w ere

(V,E,Iv,IE,iV,i C
) = UJ(idi,i),

n-I n

E' = Eu U {(idi , idi+J)} U U{(idi , id)},

n-I

iC
' = i C U U ((idi , idi+J) H connected to)}

n

UU{«(idi,id) H member of)};

J((s)mul(n : _, t : id), 11") =
J(par(t : idl , ... , t : idn), 11");

J(tf(r) : id, 11") =
(V,E,Jv,IE,iV,i C

), where

V={id}, E=0,

I v, I E defined as above

iV = {(id H (11", tf(r)))}, i C = 0

where idl , ... , idn are new, unique identifiers, derived
from the identifier id, and the union of graphs is defined
as commonly expected:

(VI, EI, IV, IE, if, in U (V2,~, IV, I E,i2, i 2)
(V Tl" E T;'_ IV I E ·v 'v'e .e) = IU V2, I U.u"..!, , ,Zl UZ2 ,ZI UZ2

Figure 2 shows how diagrams can be viewed as graphs.
ser terms are drawn from the bottom (input) to the top
(output), n-terms are drawn as n dots, the filter-values
of topological filters are written into their blocks. For

par (tl, ... , tn): 1 tl t2 ... tn 1 mul(n.t)
1 t t ... t

1 smul(n.t)

ser (tl, ... , tn): Lf=J tf (r): ~
...

c±=J n: I· • ... ·1

Figure 1: The diagram language

0.3 •

T
•••

member-of •.•... '7'

connected~

9 \0·• o "
!.~ :!\- ";!\-

ser(3,par(tf(0.3),I)

Figure 2: Viewing diagrams as graphs

mul/smul and par terms, the argument terms are drawn
into their parents, mul/smul terms are expanded. Note
that units are members of themselves.

After this has been done, the connected-to-edges need
to be resolved, i.e. the member blocks have to get incom­
ing and outgoing edges as weil. This is accomplished by
a set of diagram transformation rules, which are depicted
in figure 3.

R! This rule determines that topological filters" with
filter-value 1.0 can be inserted anywhere into a ser
term. To guarantee the termination of the transfor­
mation process, this rule may only be applied if the
"neighbours" are not of the type tf.

R2 defines the connection of two filters in series. The
filter with the larger filter-value is discarded.

R3 resolves parallel filters. The filter with the least
filter-value is discarded. Thus, edges "can more eas­
ily pass through a set of parallel filters", while serial
filters block as weil as the most powerful of them.

R4 determines what happens to multiple blocks sharing
a common filter. The filter is applied to every pos­
sible combination of upper and lower neighbours.

R5 defines the resolution of edges. Edges can be re­
solved if two non-elementary blocks are connected
via a filter. If the filter is missing, it can be inserted
by RI. The filter and the old edges are removed and
each of the n member blocks of the upper neighbour
(target) is connected to some of the m lower member
blocks (source). From each target block at position
1I"t, r·m connections to some of the source blocks are
established. The connections are grouped around a
centre at source position "\m. So source blocks "on

Figure 3: The transformation rules

the left-hand side" are preferably connected to tar­
get blocks "on the left-hand side". If r . m is not
a natural number, some of the target blocks on the
right-hand side get one edge more than their peers
on the left so that a total of n·r·m edges is obtained
to the nearest whole number.

R6 Blocks containing only a single unit are identified
with that unit. This means, all incoming and out­
going edges of such a block are passed to the unit.

The rules R I through R6 can be formalized as folIows:

(V E IV I E ·v .e) R I (V' E' IV I E 'V ·e)
1 , ., ,1,,1 ~ ., , , ,2,1

3s,t E V: (s,t) E E 1\ (s H (7l' , par)) E iV

((s, t) H connected to) Eie

I\V'=VU{id}

I\i v
' = iV U {(id H tf(l.O))}

I\E' = E \ {(s, t)} U {(s, id), (id, t)}

I\i e' = ie \ («(s,t) H x)}
U{«(s, id) H connected to)}
U{«(id, t) H connected to)}

(V E IV I E ·v .e) R2 (V' E' IV I E ·v' .e') , , , ,t ,t ---+ ' , , ,t ,t

3s,t,!t,h E V: (!t H (7l'I,tf(rt})) E iV

1\(12 H (7l'2, tf(r2))) E iV

I\te = {(s,!d,(!t,h),(h,t)} S; E
I\ie(t,) = {connected to}

!Tnin = !t, if rl < r2, else 12
!Tna.x = 12, if rl < r2, else !t

I\V' = V \ {!Tna.x}

I\i v
' = iV

\ {(fTna.x H x)}
E = {es, /t), (!t, 12,), (12, t)}

I\E' = E \ E U {(s, !Tnin) , (fTnin, t)}

I\i e
' = ie

\ {(e H ie(e))le E e}

U{«(S'!Tnin) H connected to)}

(V E IV I E 'V .e) R3 (V' E' IV I E ·v' .e') , ., ., , 2 ,2 ----+ ., ., , ,1, ,'l.

3s,t,!t,h E V: (!t H (7['1 , tf(rd)) E iV

1\(12 H (7['2, tf(r2))) E iV

At e = {(S, !d, (S, 12), (!t, t), (12, t)} S; E
I\ie(te) = {connected tO}

!Tna.x = 12, if rl < r2, else !t
Imin = /J, if rl < r2, else 12

1\ V' = V \ {Imin}
I\E' = E \ {(S, !Tnin) , (fmin, t)}

I\i v
' = iV

\ {(fmin H type)}

I\i e' = ie \ {((S'!Tnin) H -)'((fmin,t) H_)}

(V E IV I E iV i e) I4 (V' E' IV I E i V
" i e")

'" " ----+"""
3! E V : ie(f) = (7[', tf(r))
1\3S,T c V: sES {::} (s,f) E E

At E T {::} (f, t) E E

I\V' = V \ {f} U {!t, ... , !ISI'ITI}

sES 1\ t E T {::} (s, !II(s).II(t)) E E+

I\(fII(s).II(t) , t) E E+

I\E' = E \ (S x {f}) \ ({f} x T) U E+
I\(a H type) E iV 1\ a E V'

{::} (a H type) E i V
'

I\i v
" = iV

' U U {al
a.EV'\V

I\((a, b) H type) E i e 1\ (a, b) E E'

{::} ((a, b) H type) Eie'

I\i e" = ie' U U («(s,t) H connected to)}
(s,t)EE'\E

(V E IV I E ' V .e) Rs (V' E' IV I E 'v' .e") , , , ,t ,t ---+ ' , , ,t. ,t

3Ps,Pt,! E V: (Ps H par) E i V

I\(Pt H par) E i V

I\(f H tf(r)) E iV

I\S, Tc V : (s E S {::} ((s,Ps) H member of) Ei'

1\ .lIs' E V : ie((s,,s')) = connected to
l\ie(S/,ps) = member of)

I\(t E T {::} ((s,pd H member of) E i C

1\ .lIt' E V : ie (t', t) = connected to
l\iC(t/,pd = member of)

I\V' = V\ {f}

I\E' = E \ {(Ps, f), (f,pd} U U P(S, T, t,r)
tET

where (s,t) E P(S,t,r) {::} II(s) E

[
flet) . 151 _ lr· ITIJ + v

ITI 2 '

flet) · 151 lr 'ITIJ + V]
ITI + 2

where V = 1 if flet) 2: 151 - 1151· r · ITll
-151· lr · ITIJ , else 0

I\i v
' = iV

\ {(f f-L)} U

U (a ~ connected to)}
a.EV'\ V

l\i C
' = i C

\ {((Ps , I) ~ -), ((f,pt} ~-)}

U U ((a , b) ~ connected to}
(a.,b)EE' \ E

(V E IV I E iV i C
) ~ (V' E IV I E iV

' i C
) , , , , , -t " , , ,

3p,u E V: iV(p) = (11', par) 1\ iV(u) = (11',.)
I\I{u' E V : I((u',p) ~ member 01)1 = I}

I\V' = V \ {u}

I\i v
' = i V

\ {Cu ~ (11', par))} U {Cu ~ (11',.)}

Note that the rules R 1 through ~ are relations rat her
than functions, for a rule might "match" several parts of
a diagram.

The rules are applied to the diagram by the following
strategy:

do
if a rule of RI, R2 , R3, R4, R6 is applicable

apply it
else apply R5 (if possible)

until no more rules are applicable

When no more rules are applicable, all non-elementary
blocks can be discarded. The resulting neural network is
the largest subgraph with only vertices ofthe type (11',.).

Those units located "at the bottommost edge" of the
network are its input units. A unit is an input unit if
and only if its related n-term is located in the first ar­
gument of each surrounding ser term. The output units
are identified analogously, considering only the last ser­
arguments.

The network is uniquely determined by the term , i.e.
the transformation process is well-defined. This can be
proven since each two rules (except Rs) are commuta­
tive.

3.4 Understanding Everything

We shall now translate an example term into a
network. The term we will focus on at first is
ser(l, par(ser(2, tf(0.5), 2) , tf(1.0)) , 1). We first have to
translate it into a diagram. The first function symbol
is a ser having three arguments. Following figure 1, the
arguments have to be put into series. The first and last
arguments are "n" -terms, they represent one unit each.
Figure 4a shows the result we have got so far . We now
have to translate the par term between the input and

I • I r .. · .. ··· .. · ... · .. l. .. · · .. · :
j p:>r(.. r(2. j
: tf(o.S). :
~ 2) :

~ tf(1.0» ~
. · ... · .. 1 · · :

• I

•
r·:~:··· ·· ··:r····· · ·· · · ··· .. i
t ~~~.·~l L.::~~:l

•

• l

~
.

0.5 ~

• •
•

Figure 4: An example diagram

• •
• 1.0 1.0

i i II 0.5 ~ 0.5 ~ GQ
• • • •

• 1.0 1.0

I • I •

Figure 5: An example translation

output layers. The par term has two arguments, another
ser term and a tf term. With respect to figure 1 we have
to place them in parallel. Figure 4b depicts the result
achieved by now. Final1y, the last ser term has to be
resolved. We get two n-terms and a filter between them.
Figure 4c shows the complete diagram.

Now, the transformation rules R1 through R6 have to
be applied. Since we can see two edges with no filter on
either side of them, we apply R1 twice and get figure Sb.
Now we cannot apply any rule except Rs. So we start
resolving the tf(0.5) edge. The source and target blocks
contain two members each. That is, a maximum of 2 · 2
edges could be drawn . A filter-value of 0.5 teils us now
to draw only 4 . 0.5 = 2 edges instead. That makes one
edge per member of the target block. The projection set
Pt of the left target unit has cardinality 1 and aims at
source position \2 = 1. The projection set P2 of the
right target unit aims at source position 2·2 = 2. Thus,
the left target unit is connected to the lelt source unit
while the right one is connected to the right source unit.
The result is shown in figure 5c.

ser(mul(3. ser(mul(3. I) . ü(213))), ü(213), par{par{par(. ..))))

I on. I
I

• •• • • •••
Figure 6: A simple feature detector

Now we resolve the topmost and the bottommost
edges. The number of members of the middle block vis­
ible to the input layer is two: the bottommost block
containing two units and the tf(1.0) filter. The input
layer consists of one unit. The filter-value is 1.0, so the
full number of two edges have to be drawn. The same
holds for the output layer.

Finally, the remaining filter has to be eliminated. Re­
member that each unit is a member of itself (see sec­
tion 3.3), so the two units involved are connected via an
edge when the filter is resolved. Now the non-elementary
blocks are discarded and the result is an artificial neural
network.

Topological filters can be used to extract data from
a multidimensional receptive field, in which the arrange­
ment of filters defines the dimensionality assumed for the
data. We shall now glance at a simple implementation
of a featu.re detector that takes a subset of units ordered
in a square as input and perfonns an operation on them.
By the same technique, arrays of feature detectors can be
implemented that perform identical operations on differ­
ent but possibly overlapping sections of the input data.
Figure 6 shows the resolution of the network. The large
filter means "take only two thirds of the input segments" ,
the array of smaller filters means "of each segment (line),
only two thirds are of interest" . Using mul/smul tenns,
overlapping detector arrays of any complexity can be ex­
pressed. See section 4 for a non-trivial example.

3.5 Bug-Fixing

Not every term results in a suitable network. The follow­
ing conditions can arise that we regard as context-errors:

• If some filter-values are too smalI, some units may
be isolated, Le. do not have input or do not have
output1 .

1 Input units are always considered to "have input" and
output units never lack output.

• The number of input or output units in the derived
network will in most cases differ from the number
required by the task to be solved.

• Topological filters in the input and output layers do
not make sense at all.

Since the above error conditions can be most easily cle­
tected during the translation of a term, "bug-fixing" is
performed as a side effect of the translation process,
mainly by permanently changing the tenn into a si m­
ilar context-correct one. The following sections describe
each case in detail.

3.5.1 Isolated Units

After the transformation into a network has been fin­
ished in principle, some units may lack fan-in or fan-out.
This is always caused by one or more topological filters
carrying too small factors. Hence, we must find one or
more filters connected to a parent of the isolated node
and ensure that

• these filters themselves have respectively fan-in or
fan-out,

• if so, their factors must let pass at least one link per
member of the parent of the isolated mode.

This is accomplished by a recursive algorithm, making
use of the properties of the filter resolution rule (Rs in
section 3.3). This algorithm is outlined here:

scale (v E V)
if v is connected to a non-tf node s E V

let fn.ew +- ,!., where s has got m members
else if v is connected to a tf node t E V

scale (f)
increase /,s filter-factor to fnew

revert those parts of the translation process that have
been affected by the factor of f, translation has to
be resumed here

else (v has no connected-to-edges)
scale (parent (v)) (where v is member of parent (v))
exit!

Note that the isolation of the node v may not be over­
come after a single iteration of scale(v) followed by a
partial retranslation if there is more than one offending
filter. But the algorithm assures that, if called for an iso­
lated node v, at least one additional connected-to-edge
will be established afterwards, which will guarantee the
correctness of the algorithm.

3.5.2 Number of Input/Output Units

Although there is not hing fundamentally wrong with
networks containing any number of input or output
units, we must fix the number of input and output units
for a given task. We should not restrict the input and
output layers to be represented by n-tenns of the re­
quired value, for the input and output layers have to
carry topological infonnation. Hence, mutations and
crossovers can affect the number of input or output units,
which have to be rescaled in return by changing the n­
values and mul-/smul-factors in the input and output

regions of the term appropriately. Thus, we try to ad­
just the size of the input and output layers with minimal
effeet on their structu,re.

Since the number of units in every mul/smul subnet­
work is a product, it may happen that a given number
of, e.g., input units cannot be reached - especially if it
is a prime number. Therefore we split the rescaling pro­
cess into two phases (Jet us consider input units only for
sim plification):

1. raw-scaling: All n-values and mul-/smul-factors af­
feeting the number of input units are changed pro­
portionally until the network has slightly more in­
put units than required. Formally, slightly more
means that no single n-value or mul-/smul-factor
can be further decreased without resulting in less
input units than required. All changes performed
in the raw-scaling phase are permanently incorpo­
rated into the term, so that this process need not be
repeated as long as the term remains unchanged.

2. fine-scaling: When the term is translated into the
diagram graph (see 3.3), all mul/smul terms are ex­
panded as if they were corresponding par terms.
After this expansion, no more multiplications take
place and the superftuous units are discarded by
simply reducing some of the n-values by one. Fine­
scaling affects the derived network, ensuring the cor­
reet number of input and output units, but it obvi­
ously cannot have any effect on the term.

As an example, consider the term mul(3, 10) and a tar­
get number of 13 units. Since 13 is prime, raw scaling
cannot re ach 13 exactly, but it will result in the term
mul(2,7) indicating 14 units. After expansion, the dia­
gram looks like the one for par(7,7), which can be fine­
scaled to par(7,6) yielding 13 units as required.

Input and output scaling would be rat her problematic
if the number of input units and that of output units were
not independent, i.e. if a single atomic change to the
term were able to affeet both the number of input and the
number of output units. We prevented this by restricting
the individuals in our GA experiments to having a ser
symbol at the topmost reeursive level.

3.5.3 Filters in the Input/Output Layer
Topological filters in the input and output layers are

permanently removed from the term. This might leave
an "empty" parent symbol, which has to be removed
as weH, and so on. If less than two independent layers
for input and output persist (in the worst case a term
contains not hing but filters), the whole term is replaced
by ser(ni' n o) where ni and n o are the required number
of input and output units.

3.6 The Derivation of Shared Links

Obviously, the diagram transformation process does not
cover the derivation of shared links, i.e. links that have a
common weight parameter in BP training. Shared links
are specified by the use of smul terms. They are derived
in an additional pass after the diagram transformation
has been completed , and for every pair of units u" v it is
already known if there will be a link (u" v) between these
units or not. So we just have to choose some groups of

links and mark their respective members as slwred. We
now define how this is achieved.

First of all, the smul subterms within a term set up an
equivalence relation == c V x V on the set of blocks, in­
c1uding unit!"and filters, in the resulting diagram graph.
VJ == V2 ho!d:" rand only if

• either VI and V2 are instances of the argument of
the same smul block

• or else the parent blocks PI of VJ and P2 of V2 are
both of type smul and equivalent, PI == P2

• or else Il(vd = Il(v2) 1\ PI == P2

This means corresponding blocks within the instances of
smul-arguments are considered equivalent. In particular,
we obtain c1asses of equivalent units , and every unit in
such a cJass shall have the same vector of input edge
weights - in principle.

Since the structure of the input region for a number
of equivalent units carries topological information, the
actual grouping of the links that are to be shared needs
to have some topology-preserving properties; e.g., links
from one row of a two-dimensional reeeptive field to a
certain unit should be coupled with the links from the
corresponding row of the input region of another unit,
even if the "rows" involved v<l.ry in size.2 Therefore, we
need some more definitions:

The term for the whole network can be seen to
uniquely define a total order --< on the set of units,
namely the order in which the units occur in the written­
down term after all mul and smul symbols have been
expanded into corresponding pars.

Furthermore, we define the topological distance
ß(U,I, U,2) between two units U,l and U,2 as folIows: Con­
sider the shortest way from U,l to U,2 in the final dia­
gram graph using only member-o}edges and visiting all
units U,b between U,l and U,2, U,l --< U,b --< U,2, in the order
given by --<. This way consists of multiple alternating
ascents and des cents in the member·of tree. The maxi­
mum length of such a single ascent or descent, measured
by the number of edges involved, determines the topolog­
ical distance ß(U,l, U,2) between U,l and U,2. Figuratively,
the topological distance gives the number of coordinates
that U,l and U,2 differ in, according to our topological
interpretation of the surrounding network region.

Now we can formally express what topology­
preservation means to link-sharing: Every input edge
(u"v) to each unit v of a given equivalence dass a
with respect to == is assigned a so-called share index,
(u" v) f-t ind(u" v), so that the foHowing conditions are
satisfied:

• The first input edges get the same index for aH v E
a , i.e. ind(U,vl, v) = const. where U,vl is the smallest
unit according to --< being linked to v.3

• U,l --< U,2 => ind(u,l, v) < ind(u,2, v) for all
(U,I,V), (U,2,V).

2Such variations are particularly annoying if caused by the
fine-scaling of "identical" regions.

3The actual selection of this initial index is to ensure that
sharing takes place among equivalent units only.

ser(par(mul(2. 2).4). tf(0.5). smul(2. I))

Figure 7: An example of weight sharing

ser(2, srml(2. mul(2. I))) ser(2, mul(2, smul(2, I))) ser(2. smul(2, smul(2, I)))

• • •• •••• ••••

~'~~
• • • • • •

Figure 8: Combining mul and smul symbols

• ind(ul,vd = ind(u2,v2) "
ind(u3,vd = ind(u4,v2) => ß(Ul,U3) = ß(U2,U4)
for all (Ul,Vl),(U2,V2),(U3,vd,(U4,V2). This is
what topology-preservation formally means.

• Reducing any one of these share-indices would vi­
olate one of the above conditions. This means the
share indices are assigned continually unless the pre­
vious condition requires a gap.

Finally, all links with the same index are coupled. By
the way, all biases remain independent in every case.
Note that the above conditions do not induce a unique
set of indices, but they do induce a unique scheme of
shared weights!

Figure 7 gives an example of shared links and the idea
of topology preservation. There are a "one-dimensional"
and a "two-dimensional" receptive field for two equiv­
alent units; only the first row of the two-dimensional
region corresponds to the one-dimensional region with
respect to link sharing.

Figure 8 shows the effects of some combinations of
smul and mul symbols on weight sharing. Please refer to
the definition of = to comprehend the results in detail.

3_1 Completeness

The bad news is the term language is not complete. Net­
works exist that cannot be expressed as a term. They are
irregular, "non-structured" networks with link crossings
that cannot be derived from higher-Ievel connected-to­
edges in the diagram graph.

But such networks are quite rare in practice, i.e. hu­
man network designers usually succeed without using
networks of that kind. There seems to be no evidence
that a non-structured architecture would be required for
an ANN to learn some particular task. Furthermore, the
language can be patched so that completeness is achieved

Figure 9: An impossible network

easily. If named terms (see section 3.3) are used with a
list of irregular edges appended, every graph can be ex­
pressed. Figure 9 shows an example of an ANN that
cannot be coded as a term. Nevertheless, it can be de­
scribed by a named term:

ser(1 : a, 1 : b,l : c, 1 : d, 1 : e)

< a - c, a - d, a - c, a - e, b - d, b - e, C - e >

If named terms are used, the resulting ANN is not al­
ways a feed-forward network, since cycles of edges can
be specified, e.g. ser(1 : a,l : b) < b - a >. The feed­
forward condition has to be checked in an extra pass be­
fore the resolution rules are applied. We do not believe
that using named terms is actually necessary, because
non-structured networks can be approximated by struc­
tured networks; for example, if only one edge is omitted
in figure 9, the network can again be expressed as a term.
With respect to the Theorem of CVBENKO [1] we have
reason to hope that every function that is learned by
a non-structured network can be learned by a similar
structured network as weil. This is additionally sup­
ported by the fact that BP is capable of deleting (more
precisely: ignoring) drawn connections in principle by
their weights converging to zero.

4 U sing the Code as an Input Language
for Simulators

If a network is to be put into a simulator, the schematic
structure is usually known to the user, and thus the net­
work can be easily encoded. The ZIP code reader by
LeCun et al. [12] can be considered a suitable real-world
problem. The network consists of 1256 units and more
than 50,000 edges, most of them with shared weights.
The units are arranged in overlapping feature detectors
in a regular but non-trivial pattern. While the inter­
connection matrix takes several megabytes of memory
and the BIGNET-specification [13] still fills a couple of
pages, the term representation is quite handy:
ser(

par(mul(16,16)),
mul(I2, ser(tf(0.3I25), smul(8, ser(tf(0.3I25), smul(8, 1))))),
tf(0.6667),
mul(I2, ser(tf(0.625), smul(4, ser(tf(0.625), smul(4, 1))))),
30,10

Modelling networks can be made easier and complete­
ness can be assured if parlially named terms are used. In

partially named terms only those nodes are given a name
that are to get an edge of the separate edge-list. A net­
work with three layers of 25 units each and a single short­
cut from layer #1 to layer #3 could be expressed in this
manner by ser(par(1 : a, 24), 25, par(1 : b, 24» < a - b >.
Note that the same network could be written (more ele­
gantly) with a topological filter of value 25125 parallel to
the hidden units.

5 The Genetic Algorithm

We used our term code in a genetic algorithm that is to
find ANN architectures for given problems. The pheno­
types are back-propagation networks with the transfer
functions identity for input units and the sigmoid func­
ti on x H 1/(1 + exp(-x» for hidden and output units.
The GA follows the well-known standard scheme eval­
uate. reduce. select. produce. Below we briefly describe
those aspects of the GA that are directly influenced by
the characteristics of the genetic code and the problem,
i.e. mutation, crossover, and the evaluation of the indi­
viduals.

5.1 Mutation Operators

Since Our genetic code is obviously much more structured
than binary strings, mutation operators are more com­
plicated to write down, but easier to understand and to
contro!. They are a set of term replacement rules, and
mutating a genotype means randomly choosing a sub­
term in the genotype, a mutation rule being applicable
to that subterm, and in most cases some additional rule­
specific parameters. The application of the selected rule
to the selected subterm yields the "mutant".

In the following list of mutation rules, small letters
represent numbers or subterms and capital letters rep­
resent (possibly empty) sequences of subterms. Rule­
specific context-conditions are labelIed with ©, and rule­
specific parameters are listed after #.

forgetSer:
©

forgetPar:
©

extendSer:
extendPar:

liftMul:
liftSmul:
liftlPar:

liftS er:
liftPar:

dropMul:
dropSmul:

ser(A, x, B) -t ser(A, B)
length(A 0 x 0 B) ? 3
relative position of x

par(A, x, B) -t par(A, B)
length(A 0 x 0 B) ? 2
relative position of x

ser(A, B) -t ser(A, x, B)
par(A,B) -t par(A,x,B)
relative position of x
x is a new randomly created term

mul(n,x) -t x
smul(n, x) -t x
par(x) -t x

ser(A,ser(B), C) -t ser(A, B, C)
par(A, par(B), C) -t par(A, B, C)
relative position of the subterm to be
"lifted"

X -t mul(n, x)
x -t smul(n, x)
n

drop1Par: x -t par(x)

dropSer: ser(A, B, C) -t ser(A, ser(B), C)
© length(B) ? 2/\ length(A 0 C) ? 1
start and end of B within the argu-

ment list, obeying the condition

dropPar: par(A, B, C) -t par(A, par(B), C)
© length(B) ? 1
start and end of B within the argu-

ment list, obeying the condition

resizeMuI: mul(n, x) -t mul(r . n, x)
resizeSmul: smul(n, x) -t smul(r . n, x)
resizeN: n-tr·n
© r . n ? 2 (mul, smul).
© r . n ? 1 (n).
r

changeTf: tf(p) -t tf(p + r)
© O:5p+r:51
r

share: mul(n,x) -t smul(n,x)
unshare: smul(n,x) -t mul(n, x)

expand: mul(n,x) -t par(x, ... ,x)

twiceSer: ser(A, x, B) -t ser(A, x, x, B)
twicePar: par(A, x, B) -t par(A, x, x, B)
relative position of x

ttInSer: ser(A,B) -t ser(A,tf(r),B)
© length(A) ? 1/\ length(B) ? 1
relative position to insert the new

filter
r

The application probability of each rule as weil as the
bounds for the randomly chosen parameters in the above
list can be specified by the user of the GA. In other
words, it is possible to supply the GA with some knowl­
edge of the task to be performed. For instance, nobody
would expect that the "optimal" network for xor and
the optimal one for backgammon will be similar in size.
Thus, the GA should converge faster if the mutation
strategy can be adjusted at least to the estimated "size"
of the task and the required architecture. Furthermore,
there is no reason why it should lail to converge even if
the controlling parameters chosen are inconvenient.

5.2 Crossover

In contrast to the mutation operators, crossover is ex­
tremely simple for our genetic code. If there are two
terms a and b to be crossed-over, choose an arbitrary
subterm of a and one of band simply swap them. The
only context-condition is that neither a nor b themselves
may be chosen as subterms for swapping. The definition
of the language ensures that either modified individual
is also a term of the language if a and bare.

5.3 Evaluation

The phenotypes are trained by back-propagation in
batch mode with the usual total square error cost func­
tion and a separate set of test patterns. Termination

criteria are the error on the training set and an upper
bound to the number of BP epochs. The following en­
hancements to "traditional" back-propagation (e.g. [2])
are used:

• Dynamic adaptation of the 1) (learning rate) and Cl

(momentum) parameters after SALOMON [10]. This
method removes the necessity of choosing the "cor­
reet" parameters by hand and is capable of adjust­
ing the parameters for varying local properties of
the error space .

• Gradient normalization, i.e. the steps in the weight
space depend on the graDient's direetion but not on
its magnitude. This solves the problem that the
convergence of traditional BP slows down substan­
tially if the error "landscape" becomes relatively
flat, while steep slopes may cause jumps which are
much too long.

Our universal quality function q for a single individual
is

where
et: final error on the test set
np: number of iree weight parameters in the

network
nl: number of links in the network
ep: BP epoch number with the smallest test error
nn: num ber of term nodes in the genotype
c.;: user-defined scaling constants

Component nn refers to the genotype rather than the
phenotypej its purpose is to encourage the GA to de­
velop compact representations (note that there might be
"redundancies" in the genotype without any influence on
the phenotype but affeeting the set of possible crossover
operations). The exponential ftmction reDuces the nu­
merical differences so that the qualities can be reason­
ably USeD as relative production probabilities.

6 Results

In this section we present some experiments carried out
with the tenn representation and the genetic algorithm
outlined above.

6.1 Identity Function

First we testeD our GA on the eight-dimensional identity
function as an example of a very "smalI" problem. The
training set consisted of the eight possible patterns with
only one unit "high" (1) and the others "low" (0), the
test set containeD similar but somewhat noisy patterns.4

We used a population size of 40 parents and 120 off­
spring. The quality was measured by the test error,
Cl = 1, the number of weight parameters and the num­
ber of term nodes, C2 = Cs = 0.001, and the training

4This is a typical training environment for the popular
encoder prohlen) and a network with three hidden units. Of
course we did not predetermine the network architecture, but
the "classic" 8-3-8 encoder would be a suitable solution even
though it cannot learn the identity function for all possible
inputs.

outpuIle.yer

1
1

9
\

1
Figure 10: The identity network

time, C4 = 0.0001 (refer to section 5.3). This means we
were interested in finding a network that learns the iden­
tity function and is minimal with respeet to the amount
of infonnation incorporated. The mutation probability
was set to 0.7 and the crossover probability to 0.8. The
networks were trained for at most 500 epochs or until
the training error dropped below 10-10 •

In the following we show the milestones of the evolu­
tion, represented by the genotypes of the best individu­
als of each generation. Note that, for most representa­
tion schemes known, it would not have been possible to
present the evolution process in such a compact form:

Gen. Best Individual, Comment
1 ser~8,8)

64 independent eDges
2 ser(8, tf(0.125),8)

8 independent edges
3 ser(smul(4, 2), tf(0.25), smul~4, 2))

16 eDges, 4 connection-weights
4,5 ser(8, tf(0.24),smul(8, 1»

15 edges, 2 connection-weights
6 ser(8, ser(tf(0.125), smul(8, 1»)

optimal phenotype

Apart from the redundant inner ser node, the best
individual of the sixth generation is an optimal solution,
beeause our GA insists on independent input and output
layers (see seetion 3.5.2). Figure 10 depicts the resulting
network, which contains eight edges with a single shared
weight parameter. The share index "2" is printed at the
eDges.

While. the milestones of evolution presented above are
in a sense characteristic of our identity experiments, this
is not quite the case for the convergence speed. We car­
rieD out 6 experiments under equal conditions, with the
optimal phenotype shown evolving after 6, 16, 20, 17,
32, and 7 generations, which makes 16.3 generations on
average.

6.2 Two-Spirals Problem

The two-spirals problem provides a good test of network
topology optimization strategies beeause it has proven
to be very hard to solve by backpropagation-baseD net­
works. Actually, some results indicate that short-cut
connections could be necessary to succeed, and standard

3
:
~

......
0.0,,)6

0

"" Q,0003
äi
~

0.D0CI2

O.DClO1

0,0000

12 ,.
generation

Figure 11 : Two-spirals problem - mean quality

..,

BP has been reported to require at least 20,000 cycles
for a solution (FAHLMANN , LEBIERE [11]).

The problem can be outlined as folIows: There are two
interlocking spirals in the input plane, each going around
a common centre point three times. The network's task
is to decide whether a given point, represented by a pair
of real-valued coordinates, belongs to the first or to the
second spiral. Hence, two input units are mapped to one
output unit.

Our population again contained 40 parents producing
120 descendants. Mutation and crossover probabilities
were 0.7 and 0.8 respectively. The networks were trained
for a (rather optimistic!) maximum of 12,000 epochs or
until a training error of 0.1, which guarantees a hit rate
of 100% on the training set. It seems to be favourable to
start with a very smalliearning rate; we chose 1/ = 10-4 •

The training set comprised only 100 points, leaving 94
further ones as a test set to examine the networks' abil­
ity to generalize. In contrast, up to now all 194 patterns
have usually been taken as training cases and general­
ization neglected.

Figure 11 shows the development of the mean qual­
ity of the entire population during the experiment. The
"winner" of the experiment evolved in the 8th genera­
tion. Its evaluation terminated after 5322 cycles due to
the training error, with a minimal test error of 2.16 in
epoch 5319. This obviously means a hit rate of 100% on
the training set, while the hit rate on the test set (which
we unfortunately could not measure directly) might have
been 91.5% making 8 misses at worst, but probably was
in the area of 100% as weil. In addition, the test error
was almost certainly still decreasing when training ter­
minated. Figure 12 presents the phenotype of our cham­
pion. It contains 28 hidden units arranged in only two
hidden layers, and it is particularly surprising in that it
does not show any shortcuts at all.

On the one hand, this network is quite a bit larger than
the two-spirals networks proposed in literature, which
comprise between 10 and 20 hidden units. On the other
hand , we seem to have set up a new landmark with re­
spect to the time back-propagation requires to learn this
problem, particularly in view of the generalization re­
sults. Furthermore, in some generations a network with

12 .. .
11 .. .
10 .. . , .. .
8

f 7

i ' ~ 5
•
3
2

Figure 12: The two-spirals champion

o 1 2 3 • 5 6 7 • • 10 11 12 13 ,. 15 16 17 l' 1. 20 21 22 ZJ 2. 25 :zs %I

lInII trW~na errar

Figure 13: Training the two-spirals champion with en­
hanced BP

only 19 hidden units and a minimal test error between
3 and 6 was best. In general, solutions with two hid­
den layers similar in size, but no shortcuts, were clearly
favoured by the GA.

When we examined the probability of our winner's
successfully learning the task, it turned out that the
astonishing results are in part a merit of the BP en­
hancements in use (see section 5.3). Standard back­
propagation did not discover any correlation between
input and output in any of 21 trials over 20,000 epochs
each. But with parameter adaptation and gradient nor­
malization turned on, 28 out of 63 trials (44%) were quite
successful, i.e. showed training errors below 3.0, after at
most 20,000 epochs. Figure 13 depicts the frequencies of
the final training errors when rounded to integers.

Furthermore, the mean quality diagram confirms a
typical problem of the evaluation of neural network ar­
chitectures, the noise in the quality space as mentioned
in the introduction. Although the fittest individual of ev­
ery generation was ensured to survive, the minimal test
error happened to increase again in some generations.
We tried to reduce this noise by restricting the initial
weights to the relatively small interval [-0.1; 0.1], wh ich
appeared to be a suitable compromise between obtain-

ing reproducable results and successful back-propagation
training.

7 Conclusion

The results presented show that our term representation
enables a genetic algorithm to quickly find a network ar­
chitecture that solves a given task in principle even if this
task is rather difficult with respect to back-propagation
strategy. Such a first solution may be more complicated
than necessary, but our GA also performed quite weil
in reducing the networks in a subsequent phase, even
though "Iocal optimizations" do not seem to be the prin­
cipal strong point of this representation scheme.

During our experiments, it turned out that the very
compact and handy genotype.5 constitute an advantage
that cannot be appreciated enough: Every genetic algo­
rithm for optimizing network architectures will be con­
trolled by a number of parameters, and the human ex­
perimentor has to adjust them in "real-world" applica­
tions. Therefore he should have an idea what the GA
is doing (wrong?) at any time, which is quite easy to
find out with a representation scheme like ours, but will
be difficult and arduous if the genotypes are bunches of
link specifications, at worst being represented in binary
form.

Further investigation on ANN optimization using the
term code should focus on problems requiring really large
networks (Le. more than 100 units at least), which would
significantly reduce the in:Buence of the random initial
population on the convergence speed and the results of
the GA.

By the way, in all of our experiments we have never
found an indication that the incompleteness of the term
representation is a serious problem in this field. Es­
pecially, for tasks requiring substantially big networks
there can hardly be any objective criteria to identify an
"optimal" network because of the noisy quality space and
the existence of contradictory aspects of quality (e.g. er­
ror, network size, and training time).

Finally, even if no genetic optimization is involved at
all, we think our representation language could be of
great help in fields like simulator experiments or talking
about network architectures. This holds particularly if
incompleteness is overcome by the use of parlially named
terms.

8 Acknowledgements

We wish to mention that our work in this field was en­
couraged by Michael Scholz and Eckart Schau of the De­
partment of Applied Computer Science at the Technical
University of Berlin, and the publication of this paper
was motivated by Iwan Santibanez-Koref of the Depart­
ment of Bionics and Evolution Technique. In addition,
Christoph Reichert, Eckart Schau, and Michael Scholz
provided parts of the evaluation software we used in our
experiments.

References

[1] G. Cybenko, "Approximation by Superpositions of
a Sigmoidal Function", Mathematics of Control,
Signals, and Systems 2, pp. 303-314, 1989

[2] D. E. Rummelhart, G. E. Hinton, R J. Williams:
"Learning Internal Representations by Error Prop­
agation", Parallel Distributed Processing: Explo­
rations in Microstructures of Cognition, Vol I, MIT
Press, Cambridge, 1986.

[3] D. E. Goldberg: "Genetic Algorithms in Search,
Optimization, and Machine Learning", Addison­
Wesley, Reading, 1989

[4] I. Rechenberg: "Evolutionsstrategie ", Frommann­
HolzbQog, Stuttgart, 1973

[5] I. Rechenberg: "Evolutionsstrategie '94",
Frommann-Holzboog, Stuttgart, 1994

[6] J. R Koza, J. P. Rice: "Genetic Generation of
Both the Weights and Architecture for a Neural
Network", IEEE Press, VolII, 1991

[7] S. A. Harp, T. Samad, A. Guha: "Designing
Application-Specific Neural Network Structure Us­
ing the Genetic Aigorithm", Advances in Neural
Information Processing Systems 2, Morgan Kauf­
mann, San Mateo, 1990

[8] U. Utecht, K. Trint: "Mutation Operators for
Structure Evolution of Neural Networks" , proposed
to be published in Proceedings of the Third Con­
ference on Parallel Problem Solving !rom Nature,
Jerusalem, 1994

[9] F. Gruau: "Cellular Encoding as a Graph Gram­
mar", ISM, 7/93

[10] R. Salomon: "Verbesserung konnektionistischer
Lernverfahren, die nach der Gradientenmethode
arbeiten", Dissertation, Technical University of
Berlin, 1991

[11] S. E. Fahlmann, C. Lebiere: "The Cascade-
Correlation Learning Architecture", Advances in
Neural Information Processing Systems 2, Morgan
Kaufmann, San Mateo, 1990

[12] Y. Le Cun, B. Boser, J. S. Denker, D. Hendersen,
RE Howard, W. Hubbard, L. D. Jackel: "Back­
propagation Applied to Handwritten Zip Code
Recognition"; Neural Computation I, pp. 541ff,
1989

[13] A. Zell, N. Mache, R Hübner, M. Schmalzl, T. Som­
mer, G. Mamier, M. Vogt: "SNNS - User Manual",
University of Stuttgart, Report 8/92

Evolving Neural N etworks with Minimal Topology

Ralf Salomon
International Computer Science Institute,

1947 Center St., Suite 600
Berkeley, CA 94704-1198

rs@icsi.berkeley.edu

Abstract

While constructing and training neural net­
works, one faces the chalJenging question of
how to determine an appropriate topology for
the network to be trained. The concurrent pro­
cess of learning a network and minimizing its
topology can be seen as an optimization in a
multimodal function. In this article we show
how the collective learning procedure, which ef­
ficiently optimizes those function, can be suc­
cessfully applied to evolve a minimal neural
network's topology.

1 INTRODUCTION

While constructing and training neural networks, one
faces the challenging question of how to determine an
appropriate topology for the network to be trained. Usu­
ally, one has a certain amount of experience and makes
an educated guess for t.he number of hidden units and
hidden layers needed. The number of hidden units, and
consequently the number of connections, has an influence
on the generalization properties of the trained network
and the number of training epochs needed.

In the neural network community, there is a common
assumption that a network with too many weights do not
generalize weil (Le Cun, 1990). However, if the number
of connections is below a certain threshold the network
is not able to learn the given task. On the other hand ,
a larger number of hidden units normaJly decreases the
number of training epochs. Thus, one has to find a good
compromise which could be difficult beforehand.

In the past, several strategies have been developed to
automize the process of determining a neural networks
topology. In the skeletonization approach (Mozer, 1989),
a relevance is assigned to each hidden unit . Once, learn­
ing has obtained a specified accuracy it calculates the
relevance of aJl hidden units. Then the procedure re­
moves the hidden unit with the least relevance and con­
tinues the training proc.ess. The optimal brain damage
approach (Le Cun, 1990), involves the computation of
a salience for each parameter (weight) . After a speci­
fied criterion is obtained those weights with the lowest
saliency are removed and training is proceeded. Yet an­
other common approach starts with a small network and

adds new hidden units when no further learning progress
is attainable. Thus, this approach is reverse of those
described above. An alternative approach is given in
(Schiffmann, 1990). This alternative features a genetic
algorithm which constructs different topologies at each
generation. In a subsequent step, these networks are
trained for a specified amount of time and the resulting
error is used as a fitness value. By means of the genetic
algorithm and backpropagation learning this procedure
is able to produce smaJl networks over time.

The approaches described so far have at least one of
the following drawbacks. (1) A procedure which removes
hidden units or single connections has to start with a suf­
ficiently large network. But what is sufficiently large? If
the initial network is too large, training time and re­
moving process are unnecessarily long. (2) Adding hid­
den units from time to time might result in a network
which represents the requested functionality but the fi­
nal topology could be far away from the minimum. (3)
Separating the training from the topology modification
process requires a criterion after which the training has
to be stopped. An unappropriate choice slows down the
overall convergence speed. (4) The hybrid approach pro­
posed by Schiffmann requires the specification of a max­
imal number of training epochs. Thus, the procedure
is not able to find topologies which need more training
time than that. In addition, this specification requires a
certain degree of problem knowledge apriori.

In the next section, we show how a method, called
collective learning, can be successfully applied evolving
topologies which are very elose to the minimum.

2 THE PROCEDURE

In (Salomon, 1994) we proposed the collective learn­
ing procedure for optimizing multimodal functions which
have many local and only one global optimum. Collec­
tive learning is a hybrid scheme which is loosely inspired
by evolutionary considerations and provides a significant
improvement in global convergence compared to other
methods as can be seen in Table 1. This table presents
a short comparison of the number of function evalua­
tions needed when applying the genetic algorithm vari­
ant of collective leaning (CLGA) and PGA (Mühlenbein,
1991) to Rastrigin's function fex) = 200 + L;~l x; -
10 cos(2 7r xd. One can see that collective learning is up

n - 20 n - 50 n - 100 n - 200 n - 400
PGA 9900 42753 109072 390768 7964400
Collective LearningliA 4600 8650 12650 23750 31150

Table 1: Number of Function Evaluations Needed by Collectice Learning and PGA when Applying to Rastrigin's Highly
Multimodal Function f(i) = 200 + L:~~l x~ - 10 cos(2 'Ir xi) for Several Dimensions (20 to 400).

to two orders of magnitude faster than PGA.
The collective learning procedure is based on a genetic

algorithm or evolution strategy (Rechenberg, 1973) re­
spectively, and a modified self-adapting backpropagation
algorithm (Salomon, 1992) working as a local learning
procedure. The basic idea is that the genetic algorithm
produces offspring with slightly modified topologies as
well as slightly modified learning parameters like learn­
ing rate 1] , moment um G, and that backpropagation al­
lows each offspring to perform local learning steps.

To generate new offspring the procedure (the ge­
netic algorithm or the evolution strategy part) randomly
choose one or two parents and constructs a new offspring
by me ans of mutation and cross-over. In addition, the
procedure maintains a construction as weil as a destruc­
tion probability for each object. These probabilities were
inherited in the same way as the learning parameters
mentioned above. According to these probabilities, the
procedure removes and adds connections as weil as hid­
den units. Therefore, a network can grow or shrink. Af­
ter all modifications are done, the procedure removes all
hidden units which have no input or no direct J indirect
connection to any output in order to obtain correct and
useful topologies.

To establish some biological components, collective
learning maintains one population of size p. Then, in
each generation it produces 0 offspring, changes their
topology, and determines their initial weights as well
as local learning parameters by means of mutation and
multiple-point crossing-over . Before collective learning
makes the necessary selection , it gives each individual
time to perform exact/y one local backpropagation step.

In the subsequent selection phase the procedure se­
lects the best p individuals according to the following
scherne: For each individual the procedure maintains an
age count and it caUs an individual young iff the age
count is below a given boundary. In the first stage, the
procedure selects all young individuals and then, in the
second stage, it uses the current fitness - with respect
to the given task - to select further objects. Note that
the individuals perform only one step and not, as in sev­
eral other approaches, the total or a major part of the
whole learning process. This sort of hybrid optimization
process is known as Lamarckian learning (Grefenstette,
1991) , and the main idea behind this approach is that
young and promising networks with promising features
have enough time adapting to the given task before they
fee I any selection pressure.

A crucial point using a genetic algorithm or evolu­
tion strategy as an optimization scheme is the definition
of an appropriate fitness function . This is because the
fitness value decides which networks are better than oth­
ers and consequently decides which networks will survive

in the next generation . Within the context of evolving
minimal topologies the procedure has two distinguished
goals. First, the network should posses as less connec­
tions as possible, and second , the network's output has
to be within a specified accuracy. To this end, the fitness
function q has two parameters and is defined as folIows :

{
me+C

q(me , #c) = me + #c
if me > ac
otherwise (1)

whereas #c is the number of connections, C a huge
constant (e .g. 1000), ac the specified accuracy and me
the maximal error occurring on any output and any pat­
tern . The above definition of the fitness function guar­
an tees that any network which has obtained the specified
accuracy has a better fitness value than any other net­
work with more connections.

3 RESULTS AND DISCUSSION
In our experiments we used standard feed forward net­
works without restrictions to the number of hidden units
and hidden layers, and I(x) = 1J(1+e-") as the squash­
ing function. Unless otherwise stated, we used in all tri­
als a population size of p = 50, 0 = 4 offspring, and a
bound of age = 11 for young objects.

We started our experiments with the 4-x-4 encoder
task, where the standard topology consists of 2 fully in­
terconnected hidden units with a total of 22 connections.
This task is fairly simple. However, it is worth to study
it because this task is weil understood and our experi­
ments give further insights in the minimization process.
During various trials , the procedure developed different
solutions with mostly two or three and occasionally four
hidden units. Normally, after a few generations the first
solution consists of approximately 50 connections. In
the ongoing optimization process, the total number of
connections are reduced. Generally, the final solutions
consist of 12 to 15 connections.

A typical run can be seen in Figure 1. Here, the x
and y axes represent the number of generations and the
fitness value respectively. As described above, the fit­
ness value is the sum of the number of connections and
the maximal error iff the accuracy is within its spec­
ification (i.e. 0.3) . One can see that the best network
after 860 generations has only 17 connections, after 2700
generations 16 connections and so forth. Finally, after
6500 generations the procedure ends up with a network
of merely 12 connections including all bias links. One
may wonder, how such a sparse network can perform
the desired task. In this case, there are solely four con­
nections from the input to the hidden layer and the two
hidden units generate the following four activation pat­
terns: (0.0,0 .5) , (0.5,1 .0) , (0.5,0.0) , and (1.0,0.5).

50

45

40

35

30

25

20

15

10

~ I I I I , ' Fitness ofia 4-x-4 Encoder
: ow••-•··~ •·~···••-'-•·•-•••-·,.-•·•H••-•••-•••-•••-•••-•••-•••-+-•••--••-•••-·---~·----·--•-.. •-•••.;.,,, .. , .. , .. ,, ... ,,,_,,,_,,. __ ,,, .. ,,, .. ,,,_,,,_

_______ ;.. __________ .. _____________________ ,. __________________ ~------·-·--···-···"'·-···-···-···-···-···;..,,, ________________ _

··-·-··---·--•-··-- ! ~ ... _ -

. ' . : ---------------------···-···-···-···-···- ·-···-···-.. ·-···-· ------···-·····-·- ______________________ .. _____________ _
;

__________ ,... ______________________ , ____________________ J ______ -------------~------- ··-···-···----..:. ··-···-··----------------·-···-···-···-
;

··-· ----~----- .. -· .. -···-···---~----- .. -- f---··- ~ .. -···- ··-···-···-.. -~ .. ·- .. -.. -- .. -- .. -- .. ·:-·----.. -... -........ _

........... - -... -... -.•. -... -............ , ------· , - -................. _
I L L I I

........................ r··-.. ·-·---·-.. ·---r---·-·---··-··---·-r-·-----------.,----·-............ ._,. __ r .. ·----···----·-

---------- -.,-----------,---------r------------, ----·-·---------;---.. ·----------·-·..--··-·---·-5

0
0

!

1000 2000 3000 4000 5000 6000 7000

Figure 1: Fitness (Number of Connections plus Maximal
Error) of a 4-x-4 Encoder.

Furthermore, we used collective learning to evolve a
neural network for a pattern recognition task. Here,
the procedure came up with the first solution consist­
ing of 305 connections after 30 generations. In the sub­
sequent optimization process, the procedure needed an
additional 330 generations to shrink the network to 106
connections. Finally, after the 750th generation the net­
work was shrunk to 25 connections.

In addition, we applied our procedure to other tasks.
For example, if one allows an encoder network having
short cuts from the input to the output layer then all
hidden units vanish during the optimization process and
the final network consists of exactly eight connections
(two per each output unit).

We also applied our procedure to the well known
exclusive-or (XOR) problem. In this case, the procedure
needs approximately 150 generations to construct a net­
work with 8 connections, 183 generations to shrink it to
7 connections, and finally ends up with 6 connections
after 900 generations.

4 CONCLUSION

In this article, we have shown how to evolve a neural
network's minimum topology by applying the collective
learning procedure that is devoted minimizing multi­
modal functions. The link between multimodal functions
and evolving topologies is the following. Removing hid­
den units or particular connections results in a modified
representations in the hidden layer(s). Thus, an ongo­
ing learning process can get stuck in a local minima.
To overcome these local minima, the collective learning
procedure generates different topologies and significantly
modifies all connections of new offspring. By means of
the described selection process, the procedure eventually
overcomes these local optimia. Applied to the 4-x-4 en­
coder task, the procedure found solutions with merely
twelve connections in a resonable amount of time. Cur­
rently, we are investigating other topology modification
operators as well as different fitness functions. We are
also applying the procedure to more realistic tasks.

Acknowledgements
We gratefully acknowledge David Stoutamire for help­

ful discussions and polishing up and thanks in particular
to Jerome Feldman for his support.

References

[1] John J. Grefenstette. Lamarckian learning in multi­
agent environments. In Proceedings of the Fourth In­
ternational Conference on Genetic Algorithms. Mor­
gan Kaufman Publisher, 1991.

[2] Yann le Cun, John S. Denker, and Sara A. Solla.
Optimal brain damage. In David S. Touretzky, edi­
tor, Advances in Neural Information Processing Sys­
tems II, pages 598-605. Morgan Kaufmann Publish­
ers, 1990.

[3] Michael C. Mozer. Skeletonization: A technique for
trimming the fat from a network via relevance as­
sessment. In David S. Touretzky, editor, Advances
in Neural Information Processing Systems I, pages
107-115. Morgan Kaufmann Publishers, 1989.

[4] H. Miihlenbein, M. Schomisch, and J. Born. The
parallel genetic algorithm as function optimizier. In
Proceedings of the Fourth International Conference
on Genetic Algorithms. Morgan Kaufman Publisher,
1991.

[5] lngo Rechenberg. Evolutionsstrategie. Problemata.
Frommann-Holzboog, 1973.

[6] Ralf Salomon. Improved global convergence by
means of collective learning. In The Third Annual
Conference on Evolutionary Programming. World
Scientific Publishing, 1994.

[7] Ralf Salomon and J. Leo van Hemmen. A new learn­
ing scheme for dynamic self-adaptation of learning­
relevant parameters. In International Conference on
Artificial Neural Networks, pages 1047-1050. North­
Holland, 1992.

[8] Wolfram Schiffmann and Klaus Mecklenburg. Ge­
netic generation of backpropagation trained neu­
ral networks. In International Conference on Par­
allel Processing in Neural Systems and Computers
(ICNC), Dusseldorf, FR Germany, pages 205-208.
Elsevier Science Publishers B.V., 1990.

Simulation of Global Illumination:

Abstract

An Evolutionary Approach

Brigitta Lange, Markus Beyer

Fraunhofer Institute for Computer Graphics
Wilhelminenstr. 7

D-64283 Darmstadt
F .R.G.

This paper presents a new approach to optimize the global illumination simula­
tion by Evolutionary Algorithms. It is shown that Evolutionary Algorithms have
the potential to achieve good approximations to the solution of the Rendering
Equation a multidimensional integral equation modelling radiant light transfer.

In contrast to Monte Carlo evaluation irradiance information gained during
sampling is exploited efficiently. Thus the simulation process becomes self­
organizing and is not limited to any apriori assumptions on irradiance dis­
tribution, which allows the system to adjust optimally to a particular lighting
situation and results in a better convergence towards the accurate value of the
Rendering Equation.

Prom a general classification of variance reduction techniques and Evolutio­
nary Algorithms two different evolution models for the optimization of global
illumination are derived: one describes the evolution of an optimal sampie ray dis­
tribution and the other represents an evolutionary subdivision of the integration
domain into intervals of optimal confidence.

1 Introduction

In computer graphics the attainable degree of realism strongly depends on the
simulation model of global illumination. In general for every elementary surface
area within a scene the total irradiance incident from the entire half-space has
to be accounted for. In a mathematical formulation this leads to a system of
complex integral equations also known as Rendering Equation [Kaj86]. Since
there exists no closed form analytical solution the Rendering Equation is solved
approximately by applying Monte Carlo methods.

Monte Carlo integration is a stochastic process, where the integration do­
main, i.e. the half-space of irradiance, is sampled by a finite set of random rays.
The integral is estimated by the weighted average of irradiance values calculated
for each sam pie ray direction. The major problem of Monte Carlo integration is
to determine an optimallocation and density of sampies in order to guarantee
some bound on the variance of the estimate, which is equivalent to finding a
probability density function that is a good primary estimator for the function

being integrated. In general this is impossible, since the irradiance distribution
over the hemisphere above a point on a surface has many local peaks of different
magnitude and both, location and magnitude of these local intensity maxima
are unknown in advance.

Many weIl known techniques for variance reduction (e.g. importance samp­
ling, stratified sampling) have been applied to the global illumination problem.
Yet even with these techniques, there are many scenes for which current Monte
Carlo algorithms fail to yield good approximations; since they have one substan­
tial drawback: they rely on apriori assumptions on irradiance distribution.

Unfortunately the only way to gain information about irradiance distribution
is by actually evaluating it . The goal , therefore, is to optimize the simulation
process in such a way that this information is exploited effectively allowing the.
system to adapt itself to the actual irradiance distribution.

The techniques presented here contribute towards a solution to this problem
by means of Evolutionary Algorithms (EA) . In the past Evolutionary Algorithms,
which are directed search techniques based on the model of natural evolution ,
have been applied successfully to many global optimization problems. We de­
cided to approach the global illumination problem by Evolutionary Algorithms
because they have the capability of evaluating extremely noisy and disconti­
nuous objective functions without needing any predefined models and provide
mechanisms for self-adaptation.

First , we will analyze variance reduction techniques for Monte Carlo simu­
lation of radiant light transfer. Then a short description of Evolutionary Al­
gorithms is given, and two suitable representations for the global illumination
problem as evolutionary process, where each implements a different evolution
model , are investigated . The outline of the algorithms is described and it is
shown, that by Evolutionary Algorithms a better convergence of the estimate
towards the solution of the Rendering Equation is achieved, which in turn results
in an improvement of image quality.

2 Simulation Model

The production of realistic images requires the ability to simulate the propa­
gation of light in an environment, i.e. the ability to completely account for
the global illumination arising from complex interreflections within the envi­
ronment . Therefore the light transfer model and the simulation algorithm used
are the most important characteristics of a realistic renderer. The light transfer
model governs the quality of the simulation results. The simulation algorithm
affects the simulation speed and the accuracy of the results.

In classical radiation theory radiant light transfer between surfaces can be
characterized by an integral equation modelling the radiance of light leaving a
point on a surface in a particular direction . The radiance of a surface is the
sum of the emitted and the reflected radiance. For a given point on a reflecting
surface the total hemisphere of incoming radiation has to be accounted for in
order to calculate the emitted radiance. Thus the radiance Lout of an elemental

projected surface area dw emitted in direction (Or, ~r) is obtained by integrating
the incident radiation Linover all directions (O,~) ofthe total hemisphere a (see
Fig. 1), which leads to the following alternative form ofthe Rendering Equation:

where Le(Or , ~r) is the emitted radiance in direction (Or, ~r) and p(Or, ~r, 0, ~) is
the bidirectional reflectance of the surface. The Lin again are emitted radiances
of other surfaces in the environment which have to be solved for all surfaces
simultaneously.

Since it is not possible to find a closed form analytical solution there exist two
general methods for approximating this complex multidimensional integral equa­
tion: finite- element methods and Monte Carlo methods. The former approach
yields radiosity algortithms and the latter approach yields stochastic ray-tracing
algorithms where light paths are followed from the eye all the way back to the
light sources. These light paths correspond to Markov Chains [Kaj86]. Thus for
every visible.object point the hemisphere of incident radiation is sampled by a
finite set of randomly selected rays (paths) [Lang 1].

Fig. 1. Geometry for radiant light transfer calculations.

The advantages of Monte Carlo methods are its elegance and generality. They
are easy to implement and handle arbitrary surface geometries and reflectance
functions in a clean uniform way. Monte Carlo ray-tracing can simulate a lot
more lighting effects all in a physical and mathematical way correct.

Unfortunately the basic Monte Carlo technique is extremely slow to converge
and has an inherent limitation: sampling noise. Several techniques for variance

reduction try to alleviate this problem, but rendering typical global illumination
effects such as indirect diffuse reflections still requires a lot of computational ef­
fort. By analyzing common variance reduction techniques for global illumination
we will derive the requirements for a new optimization technique which further
reduces the variance in order to achieve the best approximation.

2.1 Variance Reduction

Although it is possible to approximate the Rendering Equation using uniform
stochastic sampling and sample-mean Monte Carlo integration [Rub8l], the con­
vergence under most conditions is so slow, that such a solution is impractical.

The key to optimal convergence lies in variance reduction. This is achieved by
altering the probability density in such a way, that the information gained from
each sampIe is maximized. There have been made several attempts to increase
the efficiency of the Monte Carlo solution through variance reduction techniques
like importance sampling and stratification ([Dre9l], [Kir9l], [Lan9l], [Shi9l],
[War92]). A specific cause of noise is highly non-uniform irradiance distribution.
The problem is that the emitted radiance Lout is essentially the product of the
incident radiation Lin with a reflection term p. Generally we can obtain accu­
rate information about the reflection term but not about Lin. For this reason
importance sampling distributes the random variables according to the surfa­
ces reflection properties and sam pIes where the reflection term p is large, but
usually does not consider the irradiance distribution. However if Lin is highly
non uniform (for example 99light comes from only lpredictor of the important
sampling directions, leading to high variance [Vea94].

Stratification is effective if the domain of integration can be partitioned into
strata within which the variance is smaller than the difference between their
means. In the context of rendering stratification is preformed explicitly by esti­
mating the integrals of direct and indirect irradiance independently. This may
become inefficient if there are too many light sour ces in the scene, because in this
case it is very difficult to generate a set of appropriate sam pIe rays. Although
these variance reduction techniques reduce the number of sampIes, they have to
rely on apriori assumptions about irradiance distribution. In order to reduce
the variance of the estimated irradiance to tolerable levels for arbitrary surfaces,
it still requires tracing thousands of rays, even if a combination of importance
sampling and stratification is used. This is due to the fact, that the irradiance
usually is a multimodal function, thus it is hard to determine a good primary
estimator without any previous knowledge.

Another fundamental problem of classical variance reduction techniques is,
that the information gained during the simulation process is not sufficiently
exploited. The sampIes are distributed only once according to a predefined pro­
bability density function. Furthermore the irradiance information gained from
each sam pIe ray decreases with respect to the total number of sampIe rays.
Therefore an adaptive sampling technique is needed which is superior to Monte
Carlo sampling, in that it efficiently exploits irradiance information gained du-

ring the sampling process itself, thus giving the stochastic process a direction
and improving the simulation process towards optimal convergence.

In the past Evolutionary Algorithms have proven to be powerful methods for
global optimization problems in different fields of research, not using any prede­
fined internal model of the objective function. They are robust even in the case
of multimodal objective functions and provide mechanisms for self-adaptation .
Due to these properties they are weIl suited to optimize the simulation of global
illumination.

3 Evolutionary Algorithms

In nature, evolution, which is the process of adaptation of living organisms to
their environment, can be regarded as a very powerful optimization method.
Thus developing nature analogous problem solving strategies seems to be pro­
mising .

Evolutionary Algorithms are directed search techniques with a great ver­
satility, that mimic the effects of evolution and natural selection. The most
important ones being Evolution Strategies ([Rech73], [Schw75], [Schw77]) and
Genetic Algorithms ([GoI89], [HoI75]), they share common concepts but differ in
their implementation. Each of these approaches is based upon a collective lear­
ning process within a population of individuals representing points in the search
space of potential solutions to a problem given by the objective function. The
individuals of an arbitrarily initialized start population adapt to their environ­
ment, by evolving towards better and better regions of the search space (in terms
of the objective function) by means of probabilistic se1ection and genetic opera­
tors (mutation and recombination) in such a way, that the average quality of the
individuals increases. Each individual is assigned a quality value which usually
depends on the objective function. Selection is an operator of the evolutionary
process that favors individuals of higher fitness to reproduce more often than
those of lower fitness, thus guaranteeing survival of the fittest, and giving the
process a direction. The recombination operator allows the exchange of genetic
information, whereas the mutation operator accounts for genetic innovation.

Evolutionary Algorithms have shown to be useful methods for the exploration
of large search spaces using simulated systems of variation and selection. They
achieve much of their breadth by ignoring information except that concerning
payoff and they can tolerate extremely noisy function evaluation. Furthermore
they find near optimal results quickly after searching only small portions of
the search space. Due to these properties they seem to be weIl suited for the
optimization of the sampling process in order to approximate the Rendering
Equation.

If we want to apply Evolutionary Algorithms to the problem of calculating
the total radiation incident to a given point, we first have to formulate the ra­
diation calculation as an optimization problem. Next we have to find a suitable
evolutionary model for the optimization problem above and define an Evolutio­
nary Algorithm to solve it. The algorithm has to be designed in such a way, that

it produces successively better approximations to the integral equation by ex­
ploring the total hemisphere of incident radiation; searching for those regions or
sampIe ray directions that contribute significantly to the irradiance. Thus incre­
asing the average information gained from each sam pIe and converging towards
an optimal sam pIe ray distribution.

In the following two different approaches to the global illumination problem
by evolutionary algorithms will be presented. In contrast to the classical design
of an EA, we have not chosen every individual to be a full representation of the
solution. This would imply a population of ray distributions, which seems rather
impractical , not only from the computational efficiency point of view, but also
from the difficulties in defining an appropriate quality measure for individual
ray distributions, as weIl as difficulties in designing suitable genetic operators.

4 Evolution of Sampie Ray Distributions

As mentioned earlier, the approximation accuracy in the context of Monte Carlo
integration strongly depends on the sampIe ray distribution. This means we are
looking for an optimal distribution resembling the actual irradiance distribution
in order to reduce the variance of the estimate.

In a figurative sense our first evolution model can be described as folIows: the
hemisphere of incident radiation to an object point represents the biosphere for
a population of ray individuals. These ray individuals now have to adapt to their
environment by finding optimalliving conditions for themselves. Thus they have
to search for attractive places to settle down. With increasing attractiveness of
their actual residence on the hemisphere their willingness to move decreases. The
attractiveness or quality of life at a certain place depends on the irradiance at
that place as weIl as on the population density of its surroundings.

The goal of this settlement process is to find a suitable settlement structure,
where the living conditions for all ray individuals are approximately equal. In
contrast to classical Evolutionary Algorithms, where only one individual repre­
senting the optimal solution is searched for.

The process of finding an optimal settlement structure corresponds to the
ability of the EA to exploit the information gained by individuals during the
settlement process. In order to have no loss of irradiance information accumula­
tive cartographic irradiance maps are produced during the settlement process.
The process terminates if the irradiance map of the hemisphere has a certain
state of accuracy.

In order to find aB attractive regions of the hemisphere quickly and at the
same time achieve an overall representative settlement structure, the Evolutio­
nary Algorithm has to be implemented in such a way that there is always a
balance between exploration of the hemisphere and exploitation of the informa­
tion gained by it .

4.1 Implementation

In the evolutionary model outlined above, a ray individual is defined by its ray
direction (0, 4» related to the local sphere coordinate system wi th cone angle 0
and circumferential angle 4> . This representation is appropriate, since it allows
a problem specific design of the genetic operators. Furthermore individuals that
are elose to each other in the representation space are also elose in the problem
space [Mich92].

An initial population Po of J..l ray individuals is represented by a set of random
ray directions equally or stochastically distributed over the total hemisphere of
a visible surface point within the scene:

(2)

where
Oi E [0 . .. iJ ' 4>i E [0 ... 271"] (Vi E {1, ... ,J..l}) .

The evaluation of the initial population Po is performed in four steps, one
for the calculation of the irradiance incident from each individual ray direction
and three to calculate a fitness value for each ray individual.

The irradiance Lin : JR3 x I - C (where C = JR3 is the color space of
RGB triplets) associated with each ray individual corresponds to the objective
function of the general EA.

The fitness !fit : C x 1- [0 ... 1] of a single ray individual is determined by
the difference between the individual's irradiance and an assumed background
radiance for that direction. Since the overall contribution of the background ra­
diance to the total irradiance can be calculated in advance, the main effort of the
evolutionary search procedure can be spend on those regions of the hemisphere,
where the irradiance differs significantly from the background radiance, i.e. re­
gions, where the gain in information for the evaluation of the reflected radiance
is high. In combination with the selection procedure, !fit is responsible for the
exploitation of information gained during the evolution process, thus conduc­
ting a local search for regions considered to be important for the total reflected
radiance.

The fitness value !fit only depends on the irradiance value measured by ray
tracing. Therefore it does not describe the living conditions of each ray indivi­
dual completely according to the settlement model defined above. In order to
satisfy this model, also the population density distribution over the hemisphere
has to be taken into account. The sharing function !share : [0 .. . 1]~ - [0 ... 1]~
considers the distance between all individuals within the population and reduces
the fitness value calculated for each ray individual by !fit according to the popu­
lation density of its neighborhood. Therefore it also reduces the fitness difference
within the population, and in combination with the selection procedure it leads
towards aglobaI search process exploring the total hemisphere.

In order to achieve an appropriate balance between exploration and exploi­
tation, i. e. between global and local search, the fitness values given by !fit are
scaled by the scaling function !Kale : [0 ... 1]~ - [0 ... 1]~ before !share is applied .

fscale is constructed in such a way that the minimum fitness value ffit rWD within
the population remains unchanged whereas all other fitness values are scaled li­
nearly so that the maximum scaled fitness value fscalemu does not exceed ffit rWD

times a constant factor mscale .

The functionality described so far allows to initialize and rate the popula­
tion of rays which then will evolve until a termination condition is reached . If
for a number of successive generations there is no significant change in the ra­
diance value estimated, then is assumed that no more gain in information can
be achieved and the process terminates.

A new population is derived from the old one by first generating an inter­
mediate generation of J1. + >'0 individuals, where >'0 is the number of offsprings.
Then from this inter mediate generation the J1. best individuals are selected in
terms of their scaled and shared fitness values.

The offsprings are produced by randomly selecting a subpopulation of >'0
parents and applying a genetic mutation operator m : 1>'0 -+ 1>'0.

The mutation operator is the most important operator of the process. It is
designed in such a way that it models a directed search for attractive regions
of the hemisphere, thus allowing the individuals to move around with the goal
to find a place with higher quality of life. It produces new individuals through
altering the ray directions of the parents in dependence of their scaled and shared
fitness values.

As a result we achieve an implicit stratification of the hemisphere into dif­
ferent regions, which are sampled according to the irradiance information they
provide. Thus an optimal sampie distribution is evolved, which becomes noti­
ceable in a significant reduction of overall noise.

Based on the observation that the indirect irradiance tends to change slowly
over a surface [War92], the evolved ray distribution can serve as a start popula­
tion for neighboring object points. Thus information is exploited not only during
the sampling process but also within the image space.

Figure 2 shows a typical sampie ray distribution produced by Monte Carlo
simulation with importance sampling and the corresponding sampie distribution
optimized by the Evolutionary Algorithm (for the geometry ofthe corresponding
scene refer to Fig. 4). Comparing both reveals that the Monte Carlo algorithm
spends a lot of its effort in regions of the hemisphere, where the irradiance
information is low. In contrast, the Evolutionary Algorithm directs the sampling
process towards those regions with large payoff in irradiance information, which
particularly becomes evident by the concentration of rays in the range of the
white light source.

One problem of this algorithm, however, lies in the final evaluation of the
integral. Since there exists no analytical descriptionof the probability density
function the evolved ray individuals have to be mapped to a hemispherical grid,
which leads to an undesirable increase of computational cost and mayeven result
in approximation errors. In order to avoid the explicit mapping of rays to solid
angles, we have developed an alternative evolutionary algorithm, where solid
angles are implicitly accounted for.

5 Evolutionary Stratification

The concept here is to maximize the confidence in our estimate of the integrand
by an evolutionary stratification of the hemisphere. The integration domain is
subdivided adaptively by means of probabilistic selection and mutation in such
a way that the estimated value of the integral in each stratum is equal. If the size
of the strata does not change within certain limits, the optimal approximation
result is reached.

5.1 Implementation

In this evolution model the hemisphere represents a population of irradiated
solid angles. For computational efficiency each individual is defined by a spherical
triangle with an associated mean irradiance value obtained by the sam pIe rays
at its vertices (see Fig. 3).

Initially the hemisphere is subdivided into four spherical triangles of equal
size. Each individual is evaluated by determining its local and regional fitness
value. The local fitness is obtained by calculating the mean irradiance value.
The regional fitness of an individual is determined by the maximum deviation (in
RG B-primaries) from the mean irradiance values of its direct neighbors weighted
by its area size. Thus the regional fitness is a measure for confidence or quality
of life.

The goal now is to reduce the variance of the estimate by achieving a stra­
tification of the hemisphere into solid angles (shperical triangles) of equal con­
fidence. In each generation the integral is evaluated and the size of the solid
angles is adjusted. Therefore the mutation operator models a population growth
by cell-splitting, i.e. subdividing the individuals into new triangles. Parents are
selected by Roulette wheel, where the chance for being selected for sub division
is proportional to the triangles regional fitness. The process terminates if all
individuals have an almost equal quality of life (see Fig. 3).

The advantages of this method are its fast convergence and computational
efficiency, because the evolution process and the evaluation ofthe integral can be
effectively combined by using the same data structures. It produces successively
better approximations to the integral equation by exploring the hemisphere, sear­
ching for those solid angles that contribute significantly to the total irradiance.
Thus increasing the average information value of the sampIes and converging to­
wards the best approximation, which in turn results in an improvement of image
quality (see Fig. 4).

6 Conclusions

The main objective approximating the Rendering Equation is to minimize the
variance of the estimate. This implies an optimization of the sampIe ray distri­
bution used . Since the irradiance distribution over the hemisphere is unknown
in advance, Monte Carlo sampling techniques, which use predefined prob ability

density functions, have to rely on apriori assumptions and are mostly inefficient.
Adaptive sampling techniques are superior, because they use information gained
during the sampling process itself to generate a subset of new sampIes in each
adaptation step. We have shown that in order to exploit this information nature
analogous techniques like Evolutionary Algorithms can be successfully applied.
In contrast to classical Monte Carlo methods the first Evolutionary Algorithm
presented above achieves a self-adaptation of the sam pIe ray distribution to a
particular lighting situation. In order to avoid computational effort for the fi­
nal evaluation of the integral, an alternative evolutionary approach has been
investigated . In this approach not sampIe directions but solid angles are sub­
ject to evolution. The confidence in the estimate is maximized by evolutionary
subdividing the integration domain according to local and regional irradiance
information, which in turn results in a fast convergence towards the optimum.

References

[Dre91] Drettakis, G.; Fiume, E.: Structure-Directed Sampling, Reconstruction and
Data Representation for Global fllumination . Proceedings of the Second Eu­
rographics Workshop on Rendering, 1991.

[Go189] Goldberg, David E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, Massachusetts: Addison- -Wesley, 1989.

[HoI75] Holland, John H.: Adaptation in natural and artificial Systems. Ann Arbor,
Michigan: The University of Michigan Press, 1975.

[Kaj86] Kajiya, James T.: The Rendering Equation. In: Computer Graphics (SIG­
GRAPH '86 Proceedings) 20(4) , August 1986, S. 143-150.

[Kir91] Kirk, David; Arvo, James: Unbiased Variance Reduction for Global fllumina­
tion. Proceedings of the Second Eurographics Workshop on Rendering, 1991.

[Lan91] Lange, Brigitta: The Simulation of Radiant Light Transfer with Stochastic
Ray-Tracing. Proceedings of the Second Eurographics Workshop on Rende­
ring, 1991.

[Mich92] Michalewicz , Zbigniew: Genetic Algorithms + Data Structures = Evolution
Programs. Berlin; Heidelberg: Springer, 1992.

[Rech 73] Rechenberg, logo: Evolutionsstrategie. Stuttgart: Frommann-Holzboog,
1973.

[Rub81] Rubinstein, Reuven Y. : Simulation and the Monte Carlo Method. New York:
Wiley & Sons, 1981.

[Schw75] Schwefel, Hans-P.: Evolutionsstrategie und numerische Optimierung. Tech­
nische Universitä.t Berlin, Fachbereich Verfahrenstechnik, Dissertation, 1975.

[Schw77] Schwefel, Hans-P.: Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie. Basel, Birkhä.user, 1977.

[Shi91] Shirley, Peter S.: Physically Based Lighting Calculations for Computer Gra­
phics. Urbana, University of Illinois, PhD Thesis, 1991.

[Vea94] Veach, Eric; Guibas, Leonidas: Bidirectional Estimators for Light Transport .
Proceedings of the Fifth Eurographics Workshop on Rendering, 1994.

[War92] Ward , Gregory J.: The RADIANCE Lighting Simulation System. Global Illu­
mination, ACM SIGGRAPH'92; Course Notes of the 19th Annual Conference
& Exhibition on Computer Graphics and Interactive Techniques, July 1992.

Construction of Conflict-Free Routes for Aircraft in Case of
Free-Routing with Genetic Algorithms

Ingrid Gerdes
Gennan Aerüspace Research Establishment

Institute für Flight Guidance, Trafik Systems Analysis
PO 3267, D-38022 Braullschweig, Germany

E-Mail gerdes@ibr.cs.tu-bs.de, Tel. (+49)(531) 295-2279, Fax (+49)(531) 295-2899

Abstract

This paper describes a special genetic algo­
rithm for the creation of flight routes for air­
craft in the airspace. A detailed description of
the problem and the implemented algorithm is
presented together with a test of two mutation
types for a special gene. A short theoretical
discussion about the building block hypothesis
will be given. Furthermore the results of several
experiments with a randomly generated flight
scenario and a real-trafik scenario are lined out.
Altogether the paper shows the initial stages in
finding a solution to decrease the delay in the
airspace and to use the airspace more efticiently.

1 Introduction

At the moment the air traftic control systems in many
countries have to cope with increasing traftic congestions
and therefore with an increasing delay. These conges­
tions are caused by the growing air traftic over the last
years together with the airs pace structure with its over­
loaded sectors and prescribed standard routes. This does
not mean that the airspace itself is overloaded, too. lm­
provements are necessary for a better use of the airspace
around the prescribed routes. A possible new strategy
could be 'Free-Routing', meaning that there would not
be a system of prescribed routes and all aircraft may use
the direct link between start and destination airport if
no conflict would occur with other aircraft. But if all
aircraft will use their own routes, this will lead to a very
complex system and it will be impossible for the con­
trollers to locate impending conflicts. A proposal how
to find the best routes without conflicts is presented
by the tool ROGENA (free ROuting with GENetic
Algorithms) [4]. This paper will give a short description
about the present state of ROGENA.

2 Description of the Problem

Over the last years a constant increase in air traftic could
be recognized. As mentioned before, for facing the in­
creasing traftic it is necessary to change the airspace
structure and the operational procedures. The capac­
ity problem does not only depend on the high number

of aircraft but also on the strategies for the use of the
airspace.

A big problem for an increase in airspace capacity is
caused by the airs pace sectors and standard flight routes.
Each sector has its own limited number of aircraft which
can be handled and every aircraft normally uses a stan­
dard route (normally not the direct link) between start
and destination airport (figure 1). In case of aircraft
on different routes this reduces the number of points
where conflicts can occur to those ones at crossing points
of routes. Therefore, talking about congested airspace
means talking about congested standard routes. The
limited number of aircraft for each sector or on each
route is responsible for the increasing delay. Such a sit­
uation is very problematic for those aircraft wh ich have
missed the sheduled time slot for departure or are not
planned in advance.

A possible solution for increasing the airspace capacity
could be found in giving up these standard routes. This
strategy is called 'Free-Routing', which includes the per­
mission to fly in any direction in any level at any time if
the controller allocate such a route. This would lead to
the following advantages:

• The whole airspace would be usable for air traftic.

• It would be easier to find new slots or a new route
if the time of departure has changed.

• The delay would decrease.

• Noise and pollution would be uniformly distributed.

But the introduction of free routing will lead to a major
disadvantage. It would be nearly impossible for airspace
controllers to detect conflicts between aircraft in ad­
vance. Because there are no longer fixed points where
conflicts can occur, a system is needed which is able to
develop routes between start and destination points in
such a way that conflicts with other aircraft are avoided.

3 Formalization of the Problem

When applying genetic algorithms to free routing, one
has to be aware of certain facts. Firstly, free-routing is
more complicated as e.g. a TSP [2] because there is no
predefined number of way points which should be used
by the aircraft. Furthermore there are forbidden areas in
airspace (e.g. militaryairspace I thunderstorms) and it

is necessary to avoid conflicts with other moving aircraft.
Finally, conflict probability depends on the time when an
aircraft arrives at a specific point in the airspace. This
leads to a very complicated fitness landscape.

3.1 Formalization

For the formalization of free routing with genetic Algo­
rithms an area of 200 x 200 Nautical Miles (NM) was
covered by a grid of 20 x 20 squares of size 10 x 10 NM
and 441 numbered grid nodes. A route is defined as a
sequence of nodes (way points). Flying a route means
moving on the links between the nodes which follow suc­
cessively in the sequence. Therefore the actual position
of the aircraft is not necessarily a grid node. The prin­
ci pie idea of the algorithm is based on the modGA of
Michalewicz [6]. However, several modifications have
to be included for a significant improvement in perfor­
mance. The size of the population is 60 chromosomes
(or routes).

The information is coded as a chromosome of length
11 with numbers of way points in the first 10 genes which
could be used for the definition of a route. The informa­
tion in the last gene is the number of actually used points
which ranges from 1 to 10. Theoretically it is possible
to get a solution with the use of all ten genes but several
runs with the GA without the last gene have shown very
bad results. Because it is necessary to arrange ten points
straigth on a line instead of one or two it has taken more
than 600 runs for getting just the diagonal between the
upper right and the lower left corner of the grid. Like
in biological chromosomes the unused information is not
lost but stored for the moment it would be needed.

For representing the information in a gene integer
numbers were chosen. In this way it is easier to code the
node numbers and handle the genetic operators. Apply­
ing a crossover operator to a chromosome then means an
exchange of way points in a very simple way. In case of
mutation it is possible to change the content of a gene
direct to a new way point. No repair algorithm is neces­
sary. Furthermore it must be mentioned that the coding
of a route is not unique. It is possible to code the same
route e.g. with 2 or with 3 points where in the latter case
e.g. the second point could lie on the diagonal between
the others.

3.2 Evaluation

The following formula describes the evaluation function
which is to be minimized:

eval(chromosome) = (length of route) *
(1 + 0.2 * (number of

conflicts with other aircraft»

For a better handling of local optima this type of defi­
nition includes the number of conflicts. Routes with con­
flicts will not be automatically removed from the popu­
lation and therefore short routes with a small number of
conflicts then have the chance to change under crossover
or mutation to good routes without conflicts, e.g. if there
is a local optimum surrounded by routes with conflicts,

there is now a good possibility to jump over such a bar­
rier of conflicts out of the local optimum.

3.3 Selection

As mentioned before the implemented GA is based on
the modGA. Therefore it is necessary to select chro­
mosomes for 3 different groups. Most of the selections
are made dependent on the evaluation value (stochastic
sampling). The first group includes 30 different chro­
mosomes which remain unchanged. The best 3 chromo­
somes for this group are chosen by the ELITIST model
[5] , the remaining 27 with stochastic sampling without
replacement. The 16 chromosomes of the second group
will undergo crossover and the remaining 14 chromo­
somes in the third group will be treated with the mu­
tation operator. Both are selected with stochastic sam­
pling with replacement.

3.4 Crossover

Depending on the 'number of used points' two different
types of crossover are applied . lf the pair of chromosomes
affected by crossover uses more than one way point for at
least one chromosome two point crossover is applied. In
the other case the operator must be one point crossover
because it is not possible to use the normally better two
point crossover [8] for a length under two. The crossover
points were selected randomly between first and 10th
position.

3.5 Mutation

As before for crossover two different types of mutation
are in use, each with a probability of 50 %. Again the
gene for the mutation is selected with the use of a random
generator. We use

• Non-Bounded-Mutation (normal mutation) with
the same probability of 1/441 to be selected as the
new node for each node of the grid.

• One-Bounded-Mutation with selection of one of the
eight points next to the old one.

The second type simulates a limited hill climbing in the
surrounding of a given solution.

3.6 Building Block Hypothesis

The building block hypothesis says that schemata with
short defining length; low order, and high fitness have
the better chance to survive crossover and mutation than
other schemata. Applying the building block hypo thesis
to the algorithm of ROGENA gives the impression that
we have to cope with a high defining length for each
schema. This is caused by the number of used points
wh ich is necessary for each schema and occurs in a last
position. Another problem is the time dependence of
each solution. E.g. a route with 6 points where the last
3 points form a very short route without conflicts could
change to a bad route with conflicts at the last three po­
sitions with a mutation on the first three genes. Because
of this it is more important to have a good beginning of
a route instead of a good ending since each gene will be
influenced by the preceding genes.

Altogether this means that good schemata would have
a high defining length. But if we look closer at this

Figure 1: Air space structure over Northern Germany with sectors (black lines), standard routes (grey lines) and the
German border .

problem it can be recognized that according to the two
point crossover it does not make any difference whether
. the number of used genes are in the last or in the first
position if we treat the chromosomes like acting on a
circle [8]. If the last gene is moved to the first position
we have a small defining length.

Analyzing the structure of good solutions more care­
fully shows that a good schema normally has defined
first positions and 'don't-care-symbols' at the end. Good
schemata with a high defining length are schemata with
high order, too.

4 Mutation of the 'Number of Used
Points'

At the beginning of the evolution process the routes with
high numbers of way points are very long because they
were generated by random. In this case the evaluation
function leads to bad values. Therefore higher numbers
in the 11 th positions (number of used genes) of the chro­
mosomes will get lost within the first simulation runs. To
prevent this loss a mutation at this gene must be carried
out. Again two types of mutation have been applied to
this gene:

• random mutation, and

• increase by one ('+1').

As mentioned before, the second type will not lead to
a loss of good solutions. As test case a scenario with
20 flights was chosen and 6 runs of ROGENA were con­
ducted for each type. The results of these tests can be
found in table 1. The table contains the results for all
flight, where the direct route leads to conflicts with other

aircraft. The 'Number of Ale' means the number of
this flight in the sequence of arriving aircraft within the
scenario. For each aircraft 200 runs of ROGENA were
made. It can be 0 bserved easily that '+ 1 ' leads to bet ter
results for each flight within this limited number of runs
than the random mutation does. But another very im­
portant point is the number of nodes used for the found
route. As mentioned before increasing the number of
used points often leads to bad routes and this makes it
difficulty to get routes with higher number in an appro­
priate time. For type ' + l' this increase occured earlier
than for the random type (figure 2).

Figure 1 shows the progress of fitness of the best so­
lution for type '+1' and type 'Random'. For both types
the graph with the best final result was chosen. It can
be easily recognized, that type' + 1 ' shows better results
at an earlier state than in the case of type random. Be­
cause of this result the type '+1' mutation was chosen
as the normal mutation for the gene which contains the
number of used points.

5 The Algorithm of ROGENA

ROGENA is a program which is driven by a flight sched­
ule. This schedule contains a number of flights with the
following information:

1. Time when the aircraft enters the system.

2. x- and y-co-ordinate of the start-point.

3. x- and y-co-ordinate of the destination-point.

4. Speed.

5. Priority type of flight (number between 1 and 6).

Number Type '+1' Type 'Random'
of Ale o Nodes o Length o Nodes o Length Direct

7 2 242.74 2 242.74 242.44
9 1 210.44 1 210.44 210.16
10 1.83 120.42 1.16 120.70 119.34
12 1.16 211.57 1 211.57 211.56
15 1.83 188.20 1.5 188.21 188.17
16 1.66 208.83 1 208.93 207.00
20 2.33 191.11 2 194.50 186.37
0 1.68 196.18 1.38 196.72

Table 1: Comparison between mutation types '+1' and 'Random'.

route
length

340

320

300

280-1 I-Type '+1'

260

230

210

190

Type Random

1

170 I I •
o 20 40 60 80 100 120 140 160 180 200 run

Figure 2: Best solutions of type '+ l' and type Random over the time in dependence of the number of runs.

The lowest number could stand e.g. for an aircraft type
like B747 with a high speed and a high number of pas­
sengers. An aircraft with a high priority type like 6 are
e.g. sm all general aviation aircraft.

An update of the position of the aircraft which has
already entered the system is made every 10 seconds of
flight time. Distances between aircraft are calculated on
the basis of the actual positions.

If a new aircraft enters the system the following pro­
cess is executed:

Step 1: Checking the direct link between start and des­
tination point for conflicts. If there are no confliets
assign the direct link as flight route for the new air­
craft and resurne normal simulation. If there are
conflicts continue with step 2.

Step 2: Start of the genetic algorithm of ROGENA.
Create a first generation of 60 random generated
routes between the start and destination point.
Evaluate these routes and select 30 routes which will
survive this run without changes. Select 16 routes
to wh ich crossover will be applied and 14 routes for
mutation. Evaluate the new generation and repeat
this process until an appropriate conflict-free route
is found. lf a route is found resurne norrnal simula­
tion with the new route for the new aircraft. If no
short route with a good evaluation value is found af­
ter a certain number of runs of the genetic algorithm
continue with step 3.

Step 3: Check the system for those aircraft which have
a conflict with the direct link for the new aircraft.
If the new aircraft has a lower priority type than
the other aircraft, choose the one with the highest
priority type and the highest number of conflicts.
Remove this aircraft from the system and construet
a new route for the new aircraft according to step
2. After this continue with step 2 for the removed
aircraft . If there is no aircraft with a higher priority
type assign the best route found in step 2 to the new
aircraft and resurne simulation.

6 Results

In this section the results of two different experiments
with ROGENA are described.

• The first type of experiment (scenario 1) was carried
out with 3 randomly generated test-scenarios. Each
has included 20 flights with an interval of 30 seconds
between the starting times and random-generated
speed between 300 and 600 knots (Nautical Miles
per hour). For these scenarios a comparison be­
tween the length of the direet routes ignoring pos­
sible conflicts and the confliet-free routes generated
by ROGEN A was made.

• Scenario 2 is composed of real aircraft (A/c) tra­
jectories which were extraeted from radar data from
the north of Germany (figure 1). Starting time for
each aircraft was the actual time when the aircraft
crossed the border of the grid, respectively. Start
and destination points were the positions where the
aircraft had entered and left the grid. Each of the

three scenarios contained the data of a special flight
level. The comparison was made between the mea­
sured length of the radar tracks and the routes gen­
erated by ROGENA.

For both types of scenarios there was no reassignment
necessary, e.g. step 3 of the genetic algorithms did not
apply.

A comparison between the length of the direct routes
and the ROGENA routes shows that the requirement to
avoid conflicts does not increase the length of the route
dramatically in spite of the high number of moving air­
craft (figure 2). The average loss per confliet is 1.24 NM
but this value must be seen in connection with the sum
of the route length. The average of the ROG ENA routes
in percent of direct routes is 100.16 %. It can be said
that all aircraft are able to fly a route which is very near
to the direct route. If this program would allow more
aircraft to enter a sector than in the moment the delay
for every aircraft caused by the avoidance of conflicts
would be sm all in comparison to the increased number
of handled aircraft.

The results in table 3 which represent scenario 2
with real traffic show just a small number of conflicts
and shorter routes for ROGENA than for the standard
routes. This confirms the assumption that free-routing
works weIl and would not lead to a high number of con­
flicts. The gain is caused by using the direct routes. But
we have the highest gain in scenarios with more con­
fliets. The sum of length for all routes are not as high as
for the generated scenarios in table 2 because the routes
of the traffic scenarios are divided into different levels
of airspace and it was necessary to simulate these levels
one after the other.

Not all scenarios were as good as the three ones shown
above in table 3. For one scenario a bad value for a
ROGENA-route was found. The main reason for this
was that the route was very short and resolution for the
grid points not high enough.

7 Conclusions

The forecasts for the future air traffic demand show a
further increase of aircraft movements in order of 4.5
% per year. This will make it necessary to find new
strategies for the usage of airspace and to develop new
tools which areable to reduce the controller work load.

In order to get a tool which is applicable to the air
traffic control system much more details have to be in­
vestigated including the possibility to climb and descend
to other levels, the flight behaviour of aircraft (e.g. how
they are flying curves) , sm aller squares for the grid and
the conneetion between adjoining seetor grids.

Since ROGENA has to rely on the navigation accuracy
with which the aircraft are able to fly the assigned route
the equipment of the aircraft is very important.

Finally additional theoretical analysis for the algo­
rithm of ROGENA will be carried out including the
schema theorem, influence of crossover and mutation op­
erators and the relation between the number of conflicts
per route in a population and the average number of

Number of Route Length ~Sum~ ROGENA in Loss per
A/C I Conf. DIRECT ROGENA % ofDIRECT Conflict

20 7 3734.47 3742.17 100.21 -1.10
20 3 3240.99 3244.05 100.09 -1.02
2L -~ _315:l.96 :3158.41 100.17 -1.82

Table 2: Scenario 1. Comparison between the length of direct links with conflicts and the length of routes created
with ROGENA.

Number of Route Length _~Sum) ROGENA in Gain per
A/C I Conf. Traffic 1 ROGENA % of Traffic Route

12 0 834.43 820.29 98.31 1.18
22 2 1647.70 1602.07 97.31 2.02
31 2 1747.24 1714.00 98.10 1.07

Table 3: Scenario 2. Comparison between the length of standard routes in areal trafiic scenario and more direct
routes generated by ROGENA.

:.: , ...• _,._, .. , .•... ,. - ...

[.:.:-"1 .~ - ._ .. :. I ~~jj
.......

~:~~,. ~·.'FU:~~
.'-:'~ ".7 J,

, ----- -•.•. :.: ...
. :::::~~~~:::::::::;: ;:

[7:-;-:::-:--, ~
IJ~~~W . . . '. I

r-~ :,.~~ .. , ~ f7

Figure 3: Example for the solution of a generated scenario with remaining route for each aircraft in black, aircraft
as circles with radius half of the minimum separation between aircraft and the border in grey.

used nodes. A comparison between the genetic algo­
rithm of ROGENA and other optimization algorithms
like simulated annealing and hillclimbing will be carried
out. Furthermore there will be a test of the applicabil­
ity of genetic programming [7] for the creation of routes
within ROGENA.

References

[1] Casadei, G. / Palareti, A. / ProH, G.: Classifier Sys­
tem in Trafiic Management, Artificial Neural Nets
and Genetic Algorithms, in : Proceedings of the In­
ternational Conference in Innsbruck, Austria 1993.

[2] Fogei, D.B.: An Evolutionary Approach to the Trav­
elling Salesman Problem, Biological Cybern., Vol. 60,
pp. 104-109

[3] Fox, B.R. / Me Mahon, M.B.: Genetic Operators for
Sequencing Problems, in: Rawling, G.: Foundation
of Genetic Algorithms, Morgan Kaufmann Publish­
ing, Los Altos CA 1991.

[4] Gerdes, I.S.: Application of Genetic Algorithms to
the Problem of Free-Routing of Aircraft, in : Pro­
ceedings of ICEC'94, Volume 11, IEEE, Orlando
1994.

[5] Goldberg, D.E.: Genetic Algorithms in Search, Op­
timization and Machine Learning, Addison Wesley
Publishing Company, Reading/Massachusetts 1989.

[6] Michalewicz, Z.: Genetic Algorithms + Data Struc­
tures = Evolution Programs, Springer Verlag Berlin,
1992.

[7] Soucek, B. and IRIS Group: Dynamic, Genetic, and
Chaotic Programming, Wiley, New York, 1992.

[8] Whitley, D.: A Genetic Algorithm Tutorial, Col­
orado State University, Department of Computer Sci­
ence, Technical Report CS-93-103, March 1993.

Genetic Algorithms at Siemens

.J ochen Heistermann

Siemens AG München
Otto-Hahn-Ring 6

31730 Munich
ZFESTSN 44

e-mail: Jochen.Heistermannazfe.siemens.de

Abstract. The purpose of trus contrioution is
i:Wofold. First. a model will be presented. which
allows the estimation of the runtime "f Genetic
Algorithms 'GAi. A mathematical modells
presented with the purpose of seeing genetie
alg~rithms (GA) from an abstract standpoint.
The model sees GA as a process. whieh copies
~enes frlJm one generation to the other by
preferring good. genes to inferior ones. The
algorithm finally reaches a point. where there is
only one allele left for' each g';!ne in the
p0l>ulation. Seeond. an overview of practical GA
applications at Siemens will be given. The
applieations are from different fields like :luclear
fuel management. neural learning of problems
from speech and vision. fuzzy control or filter
development. Most of trus paper is part 01'
[Hei941.

1. The Model

1.1 Basic Assumptions

When designing a GA for a specific problem
the developer of aGA has to be a ware of how
the genetic operators work. There are
various good explanations with regard to
standard operators for example - but there
are relative few studies about the exact
quantitative influence of the genetic
operators during the whole evolutionary
process. One purpose ofthe model presented
here is to till this gap.

From an abstract point of view the main
task of GA is to copy genes from one gene­
ration to the nen. The genes of the actual
generation will be spread into :he n.ext
generation according to their quality. In the
beginning a GA has a large gene pool.

The better alleles supercede the inferior
ones oy seiection mutation "lorks :3.S a
countereffect somehow). Eventually all
individuals of the tJopuiation share :he
same gene material. Reaching this state
means degeneration of ehe population to a
single point in the search :;;pace - the
algorithm .should stop there at ehe latest.
For a designer of GA i.s 01' major interest
how long this process takes in dependence to
his genetic operators.

By inspecting the evolutionary process in
the population it becomes necessary to
evaluate the mean value and variance of a
variable A that counts .he number of
generations, until there is only one allele
left for a single gene position.

How is a generation modelled? Consider a
ballot containing n balls. The balls are all
different by having individual numbers.
The ballot corresponds ~o one gene position
and each ball to one possible allele for that
gene. One ball stands for an allele already
contained in the population. Assume that
all n initial individuals in the starting
population have a different allele. The
evolution process works in the following
way: one ball is taken out of the ballot.
copied. put back into the ballot and the new
copy saved. Repeat this n times and finally a
dupHcate ballot i.s produced.

Ifa ball with number K:t (xE{1,2, ... ,n}) is n.ot
copied it dies out. The question iso "how long
will it take until the population is reduced
to one bail?". More precisely:
1) What is the mean value of A \A counts

the number of generations. which is
equivocal oi the number of ballots used)
until there 1S only one sort of balls K:t
remaining?

2) What is the standard deviation of A?

From intuition one always expects the same
distribution of balls in the ballot, but by
random drift all but one sort will eventually
die out (Random drift is generally described
using the elementary probability theory),
for example [Fe168]). Convergence to a final
state lfinal state meaning . -:mly one ball
with some Kx remaining) can be described
by markov ehains [Kem60J. Aballot with i
balls of sort Kx :jE{0,1,2, ... ,n}) eorresponds
to a system state with i zeroes and (n-i) ones.
The state Si. (iE{0,1,2, ... ,n}) shows the aetual
number i of a sort of balls Kx . Of significant
interest is the probability distribution Pij,
whieh contains the probabilities ~hat the
system changes from state Si. to Sj. Each
member Si in the process ehain of sueeessive
states depends only on its predecessor . the
proeess requires no memory. The P ij can oe
placed into a matrix, whieh contains all
transitional probabilities in order to move
from one state Si to Sj üj E {0,1,2, ... ,n}). For
example: Si = 5 and Sj = 11 . meaning that
five balls of K x are in the first ballot and
eleven balls of Kx in the new one. The states
of the markov ehain are binomial
distributed:

p .. =
I)

with IKxl = i the number ofballs oftype K x.
It is then possible to construct a matrix P'
eontaining all state transitions Pij

(ijE{0,1,2, ... ,n}). The states 1,2, ... ,n-1 are
transient; only 0 and n are sta tionary. The
matrix P'm contains the me an values that Si
ehanges to Sj in exaetly m i,m € ~l) steps. To
ealeulate how often astate j is visited within
the whole proeess one formuiates the
equation:

~ n
.) ""' """ , m suml1 =, ') p ...

'J ~ ~ 1J
m= 1i=0

The matrix P is defined as the sum of the
infinite ehain of the infinite number of
transition matrices. The sum has a finite
value. because the system reaehes a final

state 1,0 or 1) with probaoility 1 [Fel681. The
most interesting fact is that the sum of each
row contains the mean value of how long it
takes to reach one ot"the final states.

The next step is to build a matrix Q by
removing the rows and columns with
number 0 and n from P. Q then contains
information exclusiviely about the
transient states. This matrix will be
discussed during the rest of the paper. The
mean value of A (A is the number .:>f
generations before reaehing a tinal state)
will be calculated. The probability of A = 1
ist Pin I with i usually 1 in the initial
population). The probability for the direet
transition from so me state Si to sn is \iin)n.
The equation required to arrive at the final
state in exactly j steps is

P(A=j) = (nO ... 0) Qj-l *

(Gn~r.·· (D:lrr
We can now compute the mean value of A by
summing up the P(A::: j) for 1 S j S -r, W hich
is modelled as a finite sum in the form

lC

E(A) = (nO ... O»j * Qj-l *
. ----

j = 1

;« i (~)n (~ln ... (n-1\ nJ T

,n/ , n I . n)

This formula can be brought to a closed
form. what is teehnieally complieated. The
details are presented in [Hei93J. The final
form. whieh shows a formula without
infinite sums is given as

-2
E(A) = (nO ... O) (I-Q)

l' i ((~r (:)" (n:l n .
\

i
/

When computing the standard deviation cr
one has also to evaluate ELo\2) :

:x:

E(A 2) = (n 0 ... 0) :L/ * ~ - 1

j= 1

((~ \ln (!)n (~\nlT
n " \n \ n))

\ ,

and the eventual result being (see again
[Hei93i for the details)

2 -3
E(A)=lnO ... O) (I+Q) (I-Q)

l (~r (:)" .. (n:l r r
This formula obtains the mean value and
standard deviation of A.

Figure 1 shows the statistics for E(A) and
cr(Al. The x-axis contains the various
population sizes. The y-axis shows the
outcome for E(A) and a(AL The medium
curve models E(A) and the two remaining
curves show the range of the standard
deviation.

EtA) develops linearly . a result also
achieved by Goldberg [Gol87]. The
convergence shown in figure 1 needs more
generations, because Goldberg looked
exclusively at binary coding of genes. The
deviation is very widespread leading to very
different result in practise .

1.2 The Multi-Gene Model
Until now we have only considered one
single gene posmon. For "real life
examples" one would not wait unti1 the last

position had reached a homogenous 3tate,
but rather interrupt :he GA when a percen­
tage cf genes are in their final state. It is
possible to estimate this interruption point
by using Tschebyschetrs inequation:

.>
IJ-

P (i X - E (X) ! < a) ;:?: 1 - - .
.)

a-

Generally the fact that a percentage Z of the
genes are in their final state is enough to
stop the algorithm in practise. With a value
of a2/a 2 = 1 - z we can arrive at the further
equation of:

. 1
a = IJV--

1 - z·

The minimal percentag~ of genes, which
should be in their final state, is thus
assessable . The value of ooa" can be
computed from the formula above .

Figure :2 presents results. which are an
expansion offigure 1. The x· and y-axis have
the same meaning as in figure 1. The lowest
curve shows the probability that 10% or
more of the genes are in their final state.
The remammg curves show the
probabilities for the different percentages of
genes reaching their final state. For
example: a population size of 50 takes more
than a 100 generations to assume that 75%
ofthe genes have reached their final state .

1.3 Selection
To provide selection the model from chapter
2 has to be enlarged in a way that selection
of the balls corresponds to their quality.
Concerning the quality variation of the
balls one uses differing matrices P and Q.

i
I n

~ = t
\ j

) * (: ' 11\ K :'t ; .\

J i"lltK , .r i n-i~I " Il\P -K l)
.. :'t l:

. n-j

. " (i '" il(K) + ;n - i) " 11(: - K .'

, :n - i) * 11tp - K)) .

. :'t :t

This quality dependent approach leads to a
new formula for the matrix elements Pij. "i"
denotes the number of K x , on-i'; the number
of the remaining balls in the ballot. p-K x
stands for all of the balls with the exception
of Kx• and ll(Kx; being the quality of Kx.
Each allele .. ;ill get an own quality - we
would like to demonstrate ~ow quality
dependent selection wiil snorten the
convergence rate. E"l'erimenting with
varying selection scenarios leads to the
following results:

Surprising results were attained when
comparing the mean values of A in reiation
to the various selection advantages. A
selection advantage of 70/30 leads to a cut
in the expectation of A from 196 to 5 at a
population size of 100. For larger
populations the difference will be even
greater. From the graph one can state that
selection reduces the linear growth of A
with the number of individuals to a
logarithmic growth.

2. The Applications

2.1 Nuc1ear Fuel Managem~nt
The search for an optimal arrangement of
fresh and burnt fuel and control material
within the core of a pressurized water
reactor represents a formidable optimi­
zation problem. In-core fuel management
for pressurized water reactors entails
identifying the arrangement of fresh and
partially burnt fuel and burnable poisons
within the core that optimizes the
performance of the reactor over the next
operating cyc1e, while ensuring that
operational constraints are always satisfied.
Typical objectives might be to maximize the
cyc1e-length, to minimize the power peaking
or the individual assembly and region
averaged burnups. The optimization
problems consists of shuffiing the assem­
blies around in the core and to evaluate the
consequences with a .3imulation program
based on partial difference equations.

A core contains 193 fuel assemblies with
quarter core symmetrie. After each cycle
around 25% - 35% of the fuel elements must
be replaced. The old fuel has to be rear­
ranged to yield optimal core performance.
The optimization problem is devided into
several (dependent) steps.

1. Select a number offresh fuel elements.
2. Select k out of n elements to fill the core
and store the others for one more cycle.
3. Place the elements selected under 1; and
2) into the core .
4. Give each element an orientation ieach
element has four orientations).

AGA for possible solving the problem:
1. Build an initial population
Choose a number how many new elements
will be taken for each individual. Take
randomly 193-n elements from the rest.
Give those elements a random orientation.

2. Genetic operator crossing-over
Make a cut through the core and take one
half of the cut from one random element of
the population and the other half from
another random choosen individual.
Combine the core elements with respect to
replace fuel elements, which may be
contained twice in the new individual by
random fuel elements.

3. Genetic operator mutation
Mutate an individual by
- changing the orientation of single ele­
ments.
- switch two elements in the core randomly.
- replace core elements with elements from
the reserve objects.

A different genetic approach to that problem
is discussed in [Po0931. Our work i.3 now
concentrated on building models to evaluate
the goal function.

2.2 Neural learning of problems from
speech and vision
!wo real world examples were choosen from
speech and image processing for evaluating
different learning approaches. The data
were used for practical industrial applica­
tions at Siemens. Many experiments were

performed and their results were carefully
analyzed.

A phoneme is the smallest significanr.
language unit. The data sets were coded
from colloquial language. Each 10 ms a
discrete fourier transformation about ;:he
last 20 ms of fluently speech was performed
to code the short term language signal. The
signals were transformed :0 ceps;;ral
coefficients. which were !"epresented by a
vector of 16 real numbers. The second
application dealt with hand written
numbers. The numbers were stored as
binary pictures with different size and
orientation. To avoid the use of too many
neurons the pictures were raste red with
16x16 pixels. The NN's had to identify all
those pictures correctly.

We implemented several algorithms· ~wo of
them genetic to compare their performance
for problems ofvarying difficulty.

The two genetic based algorithms :
GA + GradCGA)
GA nave its strength in exploring the
database in the beginning of the
optimization process. They can find
promising regions of the search space with
high probability. Gradient search
algorithms (Grad) are strong dependent on
their starting position ün case of a non­
convex search space) being strong in fast
convergence. It is obvious that an
algorithm, starting with GA to fmd a good
starting point and finishing the training
session with Grad, will be a promising
approach. The strength of both algorithms
could thereby combined.

GradCGA)
The optimal step size varies through
gradient search from step to step.
Optimization theory offers a variety of line
searcn methods. Those methods required a
lot of objective function computations - in
case of~"N they might be very expansive. To
salve this problem, a simple GA could help.
After having worked out the gradient the
objective function was computed using the
actual step size. The step size was then
mutated to a larger and a shorter value and
the two corresponding objecti "-e function

values were computed. The best of the three
values was taken. This method offered a
simple, ~ast and very smooth adaptation to
the step size. PTactical experiments showed
that the optimal step size changed slowly
within short time intervals, but
dramatically for longer terms. The other
four algorithms are based on gradient
descent methods combined with methods
like conjugate gradient search. The SUt
different optimization algorithms were
compared with respect to the two exampies.
Two ex am pies based on data from practical
applications were studied for different
problem sizes. Larger problems were 50lv-ed
best by a hybrid algorithm. where a GA first
found a good starting point for gradient
descent. The step size of the gradient search
was also controlled by a simple genetic
algorithm. If the problems were medium
sized, a gradient method with genetic
controlled step size outperformed all other
algorithms. Simple problems were solved
easily by all the proposed algorithms. Error
backpropaga-tion was the best approach,
because it did not calculate the objective
function.

2.3 Fuzzy Control
Fuzzy systems ha ve some parameters like
membership functions or ruIes, which have
influence on the behavior of the system. If
the fuzzy system can be evaluated by a goal
function the development of the fuzzy
controller is a complex: optimization
problem itself. Genetic optimization is used
on two different problem areas in the fuzzy
system: first, the exaet position of the
membership function and second, one bit for
each rule, which switches rules on and off.

At Siemens there is some work in progress
to evaluate the usefulness of GA for fuzzy
systems [Tau93J. [Wo193J. Basically, Tautz
differs between two types of fuzzy systems -
driven by expert knowledge or adaptive to
an objective function. The second type of
fuzzy system is a eandidate for optimization
withGA.

The first problem is then coding of the fuzzy
system. Tautz codes the membership fune­
tions by five genes. Assuming that the
membership funetions are trapezoid-shaped

its shape can be fixed by the four corner
points. In addition to that one more gene
switches the membership functions on or
ofT. Each mle of the fuzzy system is
controlled by two more genes. The first gene
5witches :he rule ODJofT and the second gene
chooses a membership function. if the
condition of the corresponding rule is
fulfilled.

As an example to evaluate his system Tautz
choosed a fuzzy-PI-controller . With the GA
the controller was able to adapt himself to
global optimum for different tasks by using
between 2000 and 5000 individuals.

2.4 Filter development
Acustic filters are important components in
the fast growing filter market. There is a
linear connection between the geometrical
structure of the filter and its function. To
optimize the structure of the filter a genetic
algorithm is used as part of the automatic
filter design tool [Hei931.

The filters have thetask to strenghten the
incoming signal in a special frequence area
and to surpress the signal otherwise. The
function of the filter can easily be computed
from the filter design by using Fast Fourier
Transformations.

The structure ofthe filter was modeled by a
very specialized GA, which was optimized in
performance to construct filters in less than
two minutes. The algorithm is now part of
the filter development design tool.

References:
[Akt901 Aktas, A et al.; Classification of
Coarse Phonetic Categories in Continuous
Speech: Statistical Classifiers vs. Temporal
Flow Connectionist Network; Intern. Conl.
on Acoustics, Speech, and Signal
Processing; New Mexico 1990.
[Fe1681 FeIler,W.: An introduction to
probability theory and its applications:
Wiley New York 1968.
[Go1871 Goldberg,D.E.: Finite Markov
Chain Analysis of Genetic Algorithms: in
Grefenstette,J.J.: 2nd Interna tional
Conference on Genetic Algorithms;
Lawrence Earlbaum Assoc., Hillsdale 1987.

[Go189J Goldberg,D.E.: Genetic algorithms;
Addison-Wesley 1989.
[Hei91] Heistermann, J.: A Parallel Hybrid
Learning Approach to Artificial Neural
N ets; Proceedings of the ~hird IEEE
Symposium on Parallel and Distributed
Processing; Dallas 1991.
[Hei921 Heistermann.J.: Genetische
Algorithmen und ihre _\nwendung als
Lernverfahren für neuronale Netze: Disser­
tation an der .J.W.v.Goethe -Universität:
Frankfur t am)lain 1993.
[Hei931 Heistermann, J.: Schropp, 1.;
Ruppel, C.: Optimierung '70n Obertlächen­
wellenfiltern mit genetischen Algorithmen;
NTIVI :.Siemens-interne Tagung);
München 1993.
[Hei941 Heistermann.J.: Genetische Algo­
rithmen - Theorie und Praxis evolutionärer
Optimierung; Leipzig 1994.
[Ho1751 Holland.J.H.: Adaptation in
Natural and Artificial Systems; Ann Arbor
The University ofMichigan Press 1975.
[Kem601 Kemeny,J.G.; SneIl.J.L.: Finite
Markov Chains; Van Nostrand Princeton
1960.
[Po0931 Poon. P.W.; Parks, G.T.:
Application of Genetic Algorithms To In­
Core N uclear Fuel Management Optimiza­
tion; Joint International Conference on
Mathematical Methods and Super­
computing In Nuclear Applications; Karls­
ruhe 1993.
[Pre881 Press, W.H.; Flannery. B.P.;
Teukolsky, S.A.: Vetterling, W.T.:
Numerical Recipes in C; Cambridge
University Press New York 1988.
[Rec731 Rechenberg,I.: Evolutionsstrategie:
Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution;
Friedrich Frommann Stuttgart-Bad
Cannstatt 1973.
[Rum86J Rumelhart, D.E.; Hinton, G.E.;
Williams. R.J.: Learning Internal Repre­
sentations by Error Propagation; in
Rumelhart. D.E.; McCLelland. J.L. \Eds.):
Parallel Distributed Processing Vol.1; MIT
Press Cambridge Massachusetts 1986.
[Sch77] Schwefel,H.-P.: ~umerische
Optimierung von Computer-Modellen
mittels der Evolutionsstrategie; Birkhäuser
Basel und Stuttgart 1977.

[Tau94J Tautz. W.: Genetische Algorithmen
zum Entwurf von Fuzzy-Systemen: XTIV"2
I Siemens-interne Tagung:1; Nürnberg 1994.
[Tro91] Troll. A.: Optimierungsverfahren
für die Lernphase bei Neuronalen ~etzen:
Diplomarbeit an der LMU München,
Fachbereich Mathrnatik; München 1991.
[Whi89a] Whitley, D. , Bogart. C.: The
evolution of connectivity: Pruning neural
networks using genetic algorithms: Proc. 01'
the 3rd Intern. Joint Conf. on Neural
~etworks 1989.
[Whi89bl Whitley, D., Hanson. T.:
Optimizing neural networks üsing faster ,
more accurate genetic search; Proc. of the
3rd Intern. Conf. on Genetic Algorithms
1989.
[WoI94] Wolf, T.: Optimierung 'Ton Fuzzy­
Systemen mit Neuronalen Netzen und
genetischen Algorithmen; NTIV2 (Siemens­
interne Tagung); Nürnberg 1994.

250 r ,
I

225 L
I
I
I

I
200 ~

175 l
i
I

150 ~ 125

100

I Eu\.) 51/491 Ci,··· El

I EU\.) 55/45 1 - - -

I EfAl 70/30 I -'-

• iI
.. '

2'
.' • il

i! • '

75 -

50

25 ... ------------­-

o 10 20 30 40 50 60 70 80 90 100

Figure 1: Mean value and standard deviation of A

001 06 OS OL 09 OS Ot 08 0(; 01 0

0

02

001

021

00(:
/

/
/ OSz,

/ _.-%06
/

---%02 j / 00f:
c / G •••• D %01 I

! .,
(V)3: I osr

250
E (A)

225 I a(AJ .3 •••• €J

200

175

~ 150

125 ~
I .Ill

100 I

r • Cl'

I ,a'
75 r ' e'

.Ilt •

50 r ,1iI'

25

0

0 10 20 30 40 50 60 70 80 90 100

Figure 3: Convergence to a final state under selection

Authors Index

Aditya, S.-K 91
Aharoni , G 50
Bäck, T 86
Banzhaf, W 16
Barak, A 50
Bayoumi, M 91
Beyer, M 1:32
Biebricher, C. K 5
Blickle, T. :33
Bruns, R 98
Davidor, Y 50
Gerdes, I. 14:3
Gitler, D 50
Heistermann, .J 150
Höfferer, M 100
Jakobs, S 84
Khuri, S 86
Klawonn, F. 27
Knaus, B. 100
Lange, B 132
Lursinsap, C. 91
Maresky, J 50
Mühlenbein, H ' 7
Musial, M 117
Nissen, V. 55
Riegler, A 73
Ryan, C 39
Salomon, R 129
Scheffer, T 117
Thiele, L. :3:3
Winiwarter, W 100

o

mPD
_____________ I N F 0 R M A T I K ____________ _

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. If you have any questions concerning ftp
access, please contact reportslQmpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mai! or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: kraemerOmpi-sb.mpg.de

MPI-I-94-241 J . Hopf

MPI-I-94-239 P. Madden, 1. Green

MPI-I-94-238 P. Madden

MPI-I-94-235 D. A. Plaisted

MPI-I-94-234 S. Matthews, A. K. Simpson

MPI-I-94-233 D. A. Plaisted

MPI-I-94-232 D. A. Plaisted

MPI-I-94-230 H. J. Ohlbach

MPI-I-94-228 H. J. Ohlbach

MPI-I-94-226 H. J. Ohlbach, D. Gabbay, D. Plaisted

MPI-I-94-225 H. J. Ohlbach

MPI-I-94-224 H. Ai't-Kaci, M. Hanus, J. J. M. Navarro

MPI-I-94-223 D. M. Gabbay

MPI-I-94-218 D. A. Basin

MPI-I-94-216 P. Barth

MPI-I-94-209 D. A. Basin, T. Walsh

MPI-I-94-208 M. Jaeger

MPI-I-94-207 A. Bockmayr

MPI-I-94-201 M. Hanus

MPI-I-93-267 L. Bachmair, H. Ganzinger

Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the
KI-94 Workshop

A General Teclmique for Automatically Optimizing
Programs Through the Use of Proof Plans

Formal Methods for Automated Program
Improvement

Ordered Semantic Hyper-Linking

Reflection using the derivability conditions

The Search Efficiency of Theorem Proving
Strategies: An Analytical Companson

An Abstract Program Generation Logic

Temporal Logic: Proceedings of the ICTL Workshop

Computer Support for the Development and
Investigation of Logics

Killer Transformations

Synthesizing Semantics for Extensions of
Propositional Logic

Integration of Declarative Paradigms: Proceedings
of the ICLP'94 Post-Conference Workshop Santa
Margherita Ligure, Italy

LDS - Labelled Deductive Systems: Volume 1 -
Foundations

Logic Frameworks for Logic Programs

Linear 0-1 Inequalities and Extended Clauses

Termination Orderings for Rippling

A probabilistic extension of terminological Iogics

Cutting planes in constraint Iogic programming

The Integration of Functions into Logic
Programming: A Survey

Associative-Commutative Superposition

	94-2410001
	94-2410002
	94-2410003
	94-2410004
	94-2410005
	94-2410006
	94-2410007
	94-2410008
	94-2410009
	94-2410010
	94-2410011
	94-2410012
	94-2410013
	94-2410014
	94-2410015
	94-2410016
	94-2410017
	94-2410018
	94-2410019
	94-2410020
	94-2410021
	94-2410022
	94-2410023
	94-2410024
	94-2410025
	94-2410026
	94-2410027
	94-2410028
	94-2410029
	94-2410030
	94-2410031
	94-2410032
	94-2410033
	94-2410034
	94-2410035
	94-2410036
	94-2410037
	94-2410038
	94-2410039
	94-2410040
	94-2410041
	94-2410042
	94-2410043
	94-2410044
	94-2410045
	94-2410046
	94-2410047
	94-2410048
	94-2410049
	94-2410050
	94-2410051
	94-2410052
	94-2410053
	94-2410054
	94-2410055
	94-2410056
	94-2410057
	94-2410058
	94-2410059
	94-2410060
	94-2410061
	94-2410062
	94-2410063
	94-2410064
	94-2410065
	94-2410066
	94-2410067
	94-2410068
	94-2410069
	94-2410070
	94-2410071
	94-2410072
	94-2410073
	94-2410074
	94-2410075
	94-2410076
	94-2410077
	94-2410078
	94-2410079
	94-2410080
	94-2410081
	94-2410082
	94-2410083
	94-2410084
	94-2410085
	94-2410086
	94-2410087
	94-2410088
	94-2410089
	94-2410090
	94-2410091
	94-2410092
	94-2410093
	94-2410094
	94-2410095
	94-2410096
	94-2410097
	94-2410098
	94-2410099
	94-2410100
	94-2410101
	94-2410102
	94-2410103
	94-2410104
	94-2410105
	94-2410106
	94-2410107
	94-2410108
	94-2410109
	94-2410110
	94-2410111
	94-2410112
	94-2410113
	94-2410114
	94-2410115
	94-2410116
	94-2410117
	94-2410118
	94-2410119
	94-2410120
	94-2410121
	94-2410122
	94-2410123
	94-2410124
	94-2410125
	94-2410126
	94-2410127
	94-2410128
	94-2410129
	94-2410130
	94-2410131
	94-2410132
	94-2410133
	94-2410134
	94-2410135
	94-2410136
	94-2410137
	94-2410138
	94-2410139
	94-2410140
	94-2410141
	94-2410142
	94-2410143
	94-2410144
	94-2410145
	94-2410146
	94-2410147
	94-2410148
	94-2410149
	94-2410150
	94-2410151
	94-2410152
	94-2410153
	94-2410154
	94-2410155
	94-2410156
	94-2410157
	94-2410158
	94-2410159
	94-2410160
	94-2410161
	94-2410162
	cover-hinten_2099-2897-300dpi

