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ABSTRACT:

We prove that any depth-3 circuit with MOD m gates of unbounded fan-in on the
lowest level, AND gates on the second, and a weighted threshold gate on the top needs
either exponential size or exponential weights to compute the inner product of two vectors
of length n over GF(2). More exactly we prove that Q(nlogn) < logw log M, where w is
the sum of the absolute values of the weights, and M is the maximum fan—in of the AND
gates on level 2. Setting all weights to 1, we got a trade—off between the logarithms of the
top—fan—in and the maximum fan-in on level 2.

In contrast, with n AND gates at the bottom and a single MOD 2 gate at the top one can
compute the inner product function.

The lower—bound proof does not use any monotonicity or uniformity assumptions, and all
of our gates have unbounded fan-in. The key step in the proof is a random evaluation
protocol of a circuit with MOD m gates.

Address: Max Planck Institute for Computer Science, Im Stadtwald, D-66123 Saar-
bruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de
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1. INTRODUCTION

1.1 Class ACC

The class ACC consists of those languages which are accepted by sequences of bounded—
depth, polynomial circuits of AND, OR, NOT and MOD m gates, where a MOD m gate
outputs 1 if the sum of its inputs is divisible by m, and 0 otherwise. This class was first
defined by Barrington [Ba)|.

Considerable efforts were done to prove that some restricted versions of ACC do not
contain several “natural” languages.

Razborov [R1] proved that the MAJORITY function needs exponential size if it is computed
by bounded—depth circuits with AND, OR, NOT and MOD 2 gates.

Smolensky [Sm| generalized this result to circuits with MOD p gates instead of MOD 2 ones,
where p is a prime or prime-power. The case, where p is a non-prime—power composite
number, remained widely open.

Yao [Y3] showed that any language in ACC is accepted by a depth—3 threshold circuit of
size exp(log®") n).

Beigel and Tarui [BT] proved that ACC can be recognized by a depth—2 circuit of size
exp(logo(l) n) with a SYMMETRIC gate at the top, and AND gates on the bottom.

Allender and Gore [AG] proved that any uniform sequence of ACC—circuits needs ex-
ponential size to compute the permanent function. Using the uniformity assumption is

essential here, since it is not known whether there is any language in NP, or, even in
NEXP, which is not an element of non-uniform ACC.

Several results show that the computational properties of the MOD m and MOD p gates
differ [BBR], [KM], [G3], i.e. the MOD m gates, for non—prime—power m, are “stronger”
in some sense than the MOD p gates.

On the other hand, we have proved in [G3] that some depth-3 circuits with fan-in £k MOD
m gates on the bottom need exponential size to compute the k-wise inner product function
of [BNS], for any odd m, for which m = k (mod 2m). The k-wise inner product function
of [BNS] can be computed by a linear-sized circuit of fan-in k¥ AND gates on the bottom,
but, if we allow arbitrary gates at the bottom, but restrict the fan-in to at most k — 1,
then exponential size is needed to compute the k-wise inner product function [GH]. So
restricting the lower fan—in severely affect the computing power of these circuits.

Without uniformity conditions or fan—in restrictions, we give here a weight—fan-in
trade—off for depth~3 circuits with MOD m gates of unbounded fan-in on the bottom:

Theorem 1. Let m and n two positive integers, satisfying m < 2"2, and let C be a depth—
3 circuit with 2n input variables z = (21,22, ..., Z25) € {0,1}2" and their negations on the
bottom, unbounded fan-in MOD m gates on the first, unbounded fan-in AND gates on
the second and a weighted threshold gate Y with weights w;, w2, ...,w; on the top. Let M
denote the maximum fan—in of the AND gates on the second level, and let

w=w(C)= Z [wi.
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If C computes the inner product
n
IP(z) = E To;_1ZT2;mod 2
=1

for all = € {0,1}?™, then
%nlogn — O(logn) < logwlog M

Corollary 2. Suppose that in threshold gate Y every weight is equal to 1. Let K denote
the fan—in of gate Y. Then

—;-nlog n — O(logn) < log K log M.
Proof. Use Theorem 1 with w =K. N

1.2 Communication Complexity

The notion of communication complezity was introduced by Yao [Yal]. In this model
two players, Alice and Bob intend to compute the value of a Boolean function f(z,y) :
{0,1}™ x {0,1}* — {0,1}, where Alice knows z € {0,1}", Bob knows y € {0,1}", both
of them has unlimited computational power (i.e. Alice would compute f(z,y) at once
if she also knew y). The players communicate through a 2-way channel, and function
f is computed, if one of them announces the (correct) value of f(z,y). The cost of the
computation is the number of bits communicated.

It is clear that every function can be computed using n + 1 bits of communication:
Alice sends her n bit to Bob, then Bob computes f(z,y), and sends this bit to Alice.
The protocol above is optimal if f = ID, where ID is defined as

1, ifz =
ID(z:y) = {0,otherwigsle,
(cf. [Yal]).
However, if Alice and Bob are allowed to use probabilistic bits (coin—flips) in their protocol,
they can do better: with communicating only O(log n) bits, they can compute I D(z) with
high probability, as it was shown by several authors [Y4], [MS], [JPS], [Ra]:

(i) Alice chooses a random prime 0 < p < n?, and transmits the (p, zmod p) pair to Bob.
(ii) Bob outputs “not equal” if z Z y (mod p) and “equal” otherwise.

The “not equal” answer is always correct. The “equal” may be not. It is incorrect if and
only if p divides  —y # 0. A rough estimation of the probability of this event: |z—y| < 2%,
so ¢ — y has at most n different prime divisors. By the Great Prime Number Theorem,
there are {}(n?/logn) primes p under n? for Alice to choose from, so the probability that

it happens to divide z — y is
o (log n) .
n

A version of this random protocol will play a key role in the proof of our Theorem 1.

For a more detailed introduction to communication complexity see [BFS] or [L].
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2. PROOF OF THEOREM 1

First we prove (Lemma 3) that a depth-2 subcircuit C; of C correctly computes
IP(z) on a “big enough” portion of all inputs. After that we show a probabilistic 2—player
protocol in our Main Lemma (Lemma 6) which computes the outcome of circuit C; with
high probability. The proof then concludes with the application of a lower bound result of
Chor and Goldreich [CG] (Theorem 7) which yields also a lower bound to the probabilistic
communication complexity of protocols, computing the outcome of C;, and, consequently,
for the size and the weight of circuit C.

Lemma 3. Let C1,Cs,...,C; denote the depth-2 subcircuits of C, each with an AND
gate at the top, and unbounded—fan—-in MOD m gates at the bottom. Let Pr denote
the probability measure associated with the uniform distribution on {0,1}?™. Then there
exists an ¢ (1 > 1 > t) such that either

1 1 1
- - _ < . =
2 3w 2773~ Pr(Ci(z) = 1P(=))
or
L L < PyNOT(Ci(2)) = IP())
273w 233 il
Proof.

Lemma 4. ([HMPST], Lemma 3.3)

Let C be a circuit with 2n inputs, with a threshold gate T' with weights wy, w2, ..., w; at
the top, w = Z:=1 |w;|, and suppose that the in—coming wires of gate T' are connected to
subcircuits Cy,Cs,...,Cy. Let A, B C {0,1}*™ be disjoint sets, such that circuit C accepts
the elements of A and rejects those in B. Let Pry (respectively, Prp) denote the uniform
probability distribution on A (respectively, on B). Then

1
ax [Pra(C;(z) = 1) — Prg(Ci(z) = 1)| > =
max [Pra(Cile) = 1) - Pra(Ci(e) = )| 2 1

Proof. See [HMPST]. |}

Let us apply Lemma 4 to the circuit C of the statement of Lemma 3. With 4 =
IP71(1), B=1IP71(0), w=w(C) we get:

(1) Ji: 1<i<t, [Pra(Ci(z)=1)-Prp(Ci(z)=1)| > %

Then



Lemma 5.

1
[Px(4) - Px(B)| < 57

Proof. See [HMPST] Lemma 3.4. or [CG]. |}
Since Pr(A) 4+ Pr(B) = 1, Lemma 5 implies:

1 1 1 1
@) 2 gm SPA S5+ om

1 1 1 1
) 2 Em sPB) st o

It is easy to see that Pry(Ci(z) =1) = Pr(C,-(:c)b= 1|z € A), and Prp(Ci(z) = 1)
Pr(Ci(z) = 1|z € B), where Pr(X|Y') denotes the conditional probability:

_ Pr(X AND Y)
Pr(XI¥) =~ ps
So, from (1)
PH(Ci(z) = 1]z € 4) = Pr(Ci(z) = 1le € B) 2
Pr(Ci(z) =1,z € 4) Pr(Ci(z) =1,z € B) S 1
Pr(z € A) Pr(z € B) T w
thus
Pr(Ci(z) = 1,2 € 4) — f:;((z—gg;Pr(Ci(z) —1,z€B)|> -%we—A) > o

using inequality (2).
By the triangle-inequality:

Pr(z € A)

1
< . = Bl s
=5 Pr(Ci(z) =1,z € A) Pr(z € B)

Pr(C,-(:c) =1,z € B)‘

< |Pr(Ci(z) = 1,2 € A) — Pr(Ci(z) =1,z € B)| + |1 — L2 E A; [Pr(Ci(e) = 1,2 € B)

~ Pr(zeB

< IPr(Ci(z) = 1,2 € 4) — Pr(Ci(z) = 1,z € B)| + 221_2

2
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Consequently

(4) 1 2% < |Px(Ci(z) = 1,z € A) — Px(Ci(=) = 1,z € B)|.

3w

Let us assume now that Pr(Ci(z) =1,z € 4) > Pr(C;(z) =1,z € B).

So
1 1

3w 232

<Pr(Ci(z) =1,z € A) — Pr(Ci(z) =1,z € B),

and, since Pr(z € B) = Pr(C;i(z) =1,z € B) + Pr(Ci(z) = 0,z € B):

1 1

3w 7

From here, using the lower bound in inequality (3):

(5) R 2%1_3 < Pr(Ci(z) = IP(a)),

3w

because Pr(C;(z) = IP(z)) = Pr(C;i(z) =1,z € A) + Pr(Ci(z) = 0,z € B).
Similarly, if Pr(Ci(z) = 1,z € A) < Pr(Ci(z) = 1,z € B) holds, then — exchanging the
roles of A and B — we shall get:

(6) e 2_1—_3 < Pr(NOT(Ci(z)) = IP(x)).

Lemma 6. Let g(z) = g(z1,%2,...,Z2n) : {0,1}*™ — {0,1} such that g(z) is computed by
a depth-2 circuit C; with an AND gate at the top and N MOD,, gates at the bottom. Let
I c{1,2,...,,2n}, and suppose that Alice knows the values of the variables U = {z; : 1 € I},
and Bob knows the values of the variables V = {z; : j € {1,2,...,2n} — I'}. Let a > 2.
Then there exists a probabilistic protocol which communicates

O(alog N + loglog m)
bits, and for each = € {0,1}*", it computes g(z) with success probability at least

alog N + loglogm
Na-1 )

Proof. One can suppose that both Alice and Bob know the circuit C; and index-set I.
First, they prepare a matrix T' with 2 columns and N rows in the following way:
Row £ of T is corresponded to a MOD,,, gate G, of circuit Cj:

6



— The first entry in row £ is the mod m sum of those inputs of gate G;, which are also
elements of set U (i.e. known for Alice);

— the second entry in row £ is the mod m sum of those inputs of gate G;, which are also
elements of set V' (i.e. known for Bob),

for £=1,2,...,N. (If Z; is an input to Gy, then 1 — z; is added up mod m.)

Let us observe that G, outputs 1 if and only if the mod m sum of row £ of T is 0. Circuit
C; outputs 1, if and only if the mod m sum of each row of T is 0.

Since the first column of T consists of sums of variables from U, this column is known for
Alice. Similarly, the second column of T is known for Bob.

Alice knows the first column of T', and that also, that the circuit outputs 1 if and only if
every row has a mod m sum 0. Consequently, Alice knows that the only case when the
circuit outputs 1 is when the second column of T is

t' = (t'12>t;2a -"atgvz)

where t}, = m—t;; mod m, where t;; is the i** entry in the first column of T, 7 = 1,2, ..., N.

t' can be thought of as an m-ary representation of an integer 0 < #' < m?® — 1.

Now we can use a version of the randomized protocol described in Section 1.2:

(i) Alice chooses a random prime p:
2<p< N%logm

and transmits the (p,t' mod p) pair to Bob with O(alog N + loglog m) bits of com-
munication. . _

(ii) Bob outputs “Yes” if the second column of T, interpreted as an m—-ary number, , is
equal to t' mod p, and “No” otherwise.

Again, the “No” answer is always correct. The “Yes” answer is incorrect exactly when p is
a divisor of |t —t'| < m® — 1. By a rough estimation, ¢ — ' has at most N logm different
prime—divisors, but Alice have had

N<logm

alog N + loglogm

possibilities to choose from (using the Great Prime Number Theorem), so the failure
probability is at most: '
alog N +loglogm
Ne-1 )

[ |
Now we are ready to prove our Theorem 1.
Suppose that circuit C computes IP(z). For i = 1,2,..., N let D; be defined as
D; = {z € {0,1}*" : C;(z) = IP(z)}.
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By Lemma 3, there exists an ¢ such that

1 1

1
it —— . & :
2 T 3w 255 = P
o 1 1 1
S 4= - —— < Pr({0,1}*" — D).
2+3w 2?_3_Pr({,1} )

Without restricting the generality we can assume that the first inequality holds. Let
D = D;. Let g(z) be the function, computed by circuit C;. Then

(7) VzeD: g(z)=IP(z).
By Lemma 6, there exists a protocol, which computes g(z), and its success probability is

alog N + loglog m
(8) 1 - Na_l ?

independently from z.

Because of (7), if Alice and Bob computes g(z) with O(a log n +loglog m) communication,
then they will get the value of IP(z) with probability (8), if z € D.

In other words, if Alice and Bob computes g(z) by the protocol of Lemma 6, then they
will get TP () with average success probability

alog N + loglogm
(9) Pr(D)(1 - TR,

where the “average” is computed over all z € {0,1}2™.
We can apply here the lower bound result of Chor and Goldreich [CG]:

Theorem 7. [CG] Suppose that probabilistic protocol P, computing IP(z), has an aver-
age success probability at least

+ ¢ fors > !
= € 10T SoIme ¢ -_—_—
2 2%z — 2’

and the protocol communicates — for fixed ¢ and for fixed n — always ~.(n) bits. Then
) 1
Ye(n) >n —3 = 3log .

We can give a lower estimation for the average success probability (9):

(1 1 1 )(1__alogN+loglogm> >

2 3w 2T Na-1



1 1
3w No—2

1
- g
(10) >+

if N*~2 is not too large.
Let us set « such that

(11) | 6w = N2,

Then, from (10), and from Theoreﬁl 7, with ¢ = N—o+2;

(12) Ye(n) > n — 3(a—2)log N — O(1).

Because of (11), the protocol of Lemma 6 has communication at most 2log w, so (12) can

be written:
2logw >n — 3(a—2)log N — O(1)

or

1
n—0(1) < 2logw + 3 = log N < 2logw + 3Ing log N
log N logn
using (11) and the obvious fact that N > n.
From this
nlogn — O(logn) < 2logwlogn + 3log wlog N < 5log wlog N
or

%nlogn — O(logn) < logwlog N < logw log M

which completes the proof. |



3. A GENERALIZATION

It is not difficult to see that a little modification of the proof of Theorem 1 facilitates
giving a lower bound for circuits with EXACT gates at the bottom, instead of MOD m
ones. Exploring this idea, we shall define a class of functions, for which our results can be
generalized:

Definition 8. Boolean function f : {0,1}* — {0,1} is called pc—simple with parameter
m (stays for probabilistic-communication—simple), if for all I C {1,2,...,£} there exist
functions uy,vr : {0,1}* — {1,2,...,m} such that

— ur depends only on variables {z; : i € I},

— vy depends only on variables {z; : ¢ € {1,2,...,£} — I}, and

f(2) =1 <= ui(z) = vi(z).

Now we can state

Theorem 9. Let m and n two positive integers, satisfying m < 2"2, and let C be a
depth-3 circuit with n input variables = = (21,22, ...,Z2,) € {0,1}?™ and their negations
on the bottom, gates, which computes pc—simple functions with parameter m on the first,
unbounded fan-in AND gates on the second and a weighted threshold gate Y with weights
wi,Wa,...,w; on the top. Let M denote the maximum fan-in of the AND gates on the

second level, and let
1

w=w(C)= Z |ws].

=1

If C computes IP(z) for all z € {0,1}?", then

%nlog n — O(logn) < logwlog M

Proof. (Sketch) The proof is the same as that of Theorem 1, except Lemma 6 should be
stated for a depth-2 circuit C; with an AND gate at the top and gates, computing pc-
simple functions with parameter m, at the bottom. The probabilistic protocol of Lemma
6 can also be applied to this class of circuits with the same result. The further details are
omitted here. W
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