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ABSTRACT: 

We prove that any depth-3 circuit with MOD m gates of unbounded fan-in on the 
lowest level, AND gates on the second, and a weighted threshold gate on the top needs 
either exponential size or exponential weights to compute the inner product of two vectors 
of length n over GF(2). More exactly we prove that n(nlog n) :::; logw log M, where w is 
the sum of the absolute values of the weights, and M is the maximum fan-in of the AND 
gates on level 2. Setting all weights to 1, we got a trade-off between the logarithms of the 
top-fan-in and the maximum fan-in on level 2. 
In contrast, with n AND gates at the bottom and a Jingle MOD 2 gate at the top one can 
compute the inner product function. 
The lower-bound proof does not use any monotonicity or uniformity assumptions, and all 
of our gates have unbounded fan-in. The key step in the proof is a random evaluation 
protocol of a circuit with MOD m gates. 

Address: Ma.x Planck Institute for Computer Science, Im Stadtwald, D-66123 Saar­
bruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de 
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1. INTRODUCTION 

1.1 Class ACC 

The dass ACC consists of those languages which are accepted by sequences of bounded­
depth, polynomial circuits of AND, OR, NOT and MOD m gates, where a MOD m gate 
outputs 1 if the sum of its inputs is divisible by m, and 0 otherwise. Trus dass was first 
defined by Barrington [Ba]. 

Considerable efforts were done to prove that some restricted versions of ACC do not 
contain several "natural" languages. 

Razborov [R1] proved that the MAJORITY function needs exponential size ifit is computed 
by bounded-depth circuits with AND, OR, NOT and MOD 2 gates. 

Smolensky [Sm] generalized trus result to circuits with MOD p gates instead of MOD 20nes, 
where p is a prime or prime-power. The case, where p is a non-prime-power composite 
number, remained widely open. 

Yao [Y3] showed that any language in ACC is accepted by a depth-3 threshold circuit of 
size exp(logO(I) n). 
Beigel and Tarui [BT] proved that ACC can be recognized by a depth-2 circuit of size 
exp(logO(I) n) with a SYMMETRIC gate at the top, and AND gates on the bottom. 

Allender and Gore [AG] proved that any uniform sequence of ACC-circuits needs ex­
ponential size to compute the permanent function. U sing the uniformity assumption is 
essential here, since it is not known whether there is any langu,age in NP, or, even in 
NEXP, wruch is not an element of non-uniform ACC. 

Several results show that the computational properties of the MOD m and MOD p gates 
differ[BBR], [KM], [G3], i.e. the MOD m gates, for non-prime-power m, are "stronger" 
in some sense than the MOD p gates. 
On the other hand, we have proved in [G3] that some depth-3 circuits with fan-in k MOD 
m gates on the bottom need exponential size to compute the k-wise inner product function 
of [BNS), for any odd m, for wruch m = k (mod 2m). The k-wise inner product function 
of [BNS) can be computed by a linear-sized circuit of fan-in k AND gates on the bottom, 
but, if we allow arbitrary gates at the bottom, but restriet the fan-in to at most k - 1, 
then exponential size is needed to compute the k-wise inner product function [GH]. So 
restricting the lower fan-in severely affect the computing power of these circuits. 

Without uniformity conditions or fan-in restrietions, we give here a weight-fan-in 
trade-off for depth-3 circuits with MOD m gates of unbounded fan-in on the bottom: 

Theorem 1. Let m and n two positive integers, satisfying m ~ 2n2
, and let C be a depth-

3 circuit with 2n input variables Z = (Zl' Z2, ••• , Z2n) E {O, 1pn and their negations on the 
bottom, unbounded fan-in MOD m gates on the first, unbounded fan-in AND gates on 
the second and a weighted threshold gate Y with weights WI, W2, ••• , Wt on the top. Let M 
denote the maximum fan-in of the AND gates on the second level, and let 

t 

W = w(C) = L IWil· 
i=l 
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He computes the inner product 

for all x E {O,lpn, then 

n 

IP(x) = L X2i-l x 2imod 2 
i=l 

1 
Snlogn - O(logn):::; logwlogM 

CoroUary 2. Suppose that in threshold gate Y every weight is equal to 1. Let K denote 
the fan-in of gate Y. Then 

1 
Snlogn - O(logn):::; logKlogM. 

Proof. Use Theorem 1 with w = K. • 

1.2 Communication Complexity 

The notion of communication complexity was introdueed by Yao[Ya1]. In this model 
two players, Allee and Bob intend to eompute the value of a Boolean function f(x,y) : 
{O, l}n x {O, l}n ---? {O, I}, where Allee knows x E {O, l}n, Bob knows y E {O, l}n, both 
of them has unlimited eomputational power (i.e. Allee would eompute f(x,y). at onee 
if she also knew y). The players eommunieate through a 2-way eh annel , and function 
f is eomputed, if one of them announees the (correet) value of f(x,y). The eost of the 
eomputation is the number of bits eommunieated. 

It is dear that every function ean be eomputed using n + 1 bits of .eommunieation: 
Allee sends her n bit to Bob, then Bob eomputes f(x,y), and sends this bit to Allee. 
The protoeol above is optimal if f = I D, where I D is defined as 

ID(x,y) = {I, if x =.y, 
o otherWlse 

(e.f. [Yal]). 
However, if Allee and Bob are allowed to use probabilistie bits (eoin-fiips) in their protoeol, 
they ean do better: with eommunieating only O(1og n) bits, they ean eompute I D( x) with 
high prob ability, as it was shown by several authors [Y4], [MS], [JPS], [Ra]: 

(i) Aliee ehooses a random prime 0 < p :::; n 2
, and transmits the (p, xmod p) pair to Bob. 

(ü) Bob outputs "not equal" if x ;t y (mod p) and "equal" otherwise. 

The "not equal" answer is always eorreet. The "equal" may be not. It is ineorrect if and 
only if p divides x-y =j:. 0. A rough estimation ofthe prob ability ofthis event: Ix-yl :::; 2n , 

so x - y has at most n different prime divisors. By the Great Prime Number Theorem, 
there are n( n 2 / log n) primes p under n 2 for Allee to ehoose from, so the prob ability that 
it happens to divide x - y is 

OCo
:

n
). 

Aversion of this random protoeol will play a key role in the proof of our Theorem 1. 

For a more detailed introduetion to eommunieation eomplexity see [BFS] or [1]. 
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2. PROOF OF THEOREM 1 

First we prove (Lemma 3) that a depth-2 subcircuit Ci of C correctly computes 
I P( z) on a "big enough" portion of all inputs. After that we show a probabilistic 2-player 
protocol in our Main Lemma (Lemma 6) which computes the outcome of circuit Ci with 
high prob ability. The proof then concludes with the application of a lower bound result of 
Chor and Goldreich [eGj (Theorem 7) which yields also a lower bound to the probabilistic 
communication complexity of protocols, computing the outcome of Ci, and, consequently, 
for the size and the weight of CITcuit C. 

Lemma 3. Let Cl, C2 , ••• , Ct denote the depth-2 subcircuits of C, eacb with an AND 
gate at the top, and unbounded-fan-in MOD m gates at the bottom. Let Pr denote 
the probability measure associated with the uniform distribution on {O,lpn. Then there 
exists an i (1 ~ i ~ t) such that either 

or 

111 
2 + 3w - 2~-3 ~ Pr(NOT(Ci(Z)) = IP(z)). 

Proof. 

Lemma 4. ([HMPSTj, Lemma 3.3) 
Let C be a circuit with 2n inputs, with a threshold gate T with weights W1, W2, ••• , Wt at 
the top, W = 2::=1 IWil, and suppose that the in-coming wires of gate T areconnected to 
subcircuits Cb C2 , ••• , Ct • Let A, B C {O, 1pn be disjoint sets, such that circuit C accepts 
the elements of A and rejects those in B. Let PrA (respectively, PrB) denote the uniform 
probability distribution on A (respectively, on B). Then 

Proof. See [HMPSTj. • 

Let us apply Lemma 4 to the circuit C of the statement of Lemma 3. With A 
IP-1(1), B = IP-1(O), W = w(C) we get: 

(1) 

Then 
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Lemma 5. 
1 

IPr(A) - Pr(B)1 :::; 2n / 2 • 

Proof. See [HMPST] Lemma 3.4. or [eG] .• 

Since Pr(A) + Pr(B) = 1, Lemma 5 implies: 

(2) 

(3) 

1 1 1 1 
2 - 2~+1 :::; Pr(A) :::; 2 + 2~+1 

1 1 1 1 - - -- < Pr(B) < - + --2 2~+1 - - 2 2~+1 

It is easy to see that PrA(Ci(x) = 1) = Pr(Ci(x) = 11x E A), and PrB(Ci(x) = 1) = 
Pr(Ci(x) = 11x E B), where Pr(XIY) denotes the conditional probability: 

P (XIY) = Pr(X AND Y) 
r Pr(Y). 

So, from (1) 

or 

thus 

Pr(Ci(x) = 1,x E A) 
Pr(x E A) 

Pr(Ci(X) = 1,x E B) > ~ 
Pr(x E B) w 

Pr(x E A) Pr(x E A) 1 
Pr(Ci(x) = 1,x E A) - Pr(x E B)Pr(Ci(x) = 1,x E B) ~ w ~ 3w 

using inequality (2). 

By the triangle-inequality: 

1 1 Pr(x E A) 1 3w :::; Pr(Ci(x) = 1,x E A) - Pr(x E B)Pr(Ci(x) = 1,x E B) 

:::; IPr(Ci(x) = 1,x E A) - Pr(Ci(x) = 1,x E B)I + 11- ::~: = ~~ IPr(Ci(x) = 1,x E B) 

1 
:::; IPr(Ci(x) = 1,x E A) - Pr(Ci(x) = 1,x E B)I + 2~-2 

using Lemma 5 and (3). 
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Consequently 

(4) 

Let us assume now that Pr(Ci(x) = 1,x E A) > Pr(Ci(x) = 1,x E B). 

So 
1 1 

3w - 2t-2 ~ Pr(Ci(x) = 1,x E A) - Pr(Ci(x) == 1,x E B), 

and, sinee Pr(x E B) = Pr(Ci(x) = 1,x E B) + Pr(Ci(x) = O,X E B): 

1 1 
3w - 2t-2 ~ Pr(Ci(x) = 1,x E A) + Pr(Ci(x) == O,X E B) - Pr(x E B). 

From here, using the lower bound in inequality (3): 

(5) 
1 1 1 - + - - -- < Pr(C·(x) = IP(x)) 2 3w 2~-3 - t , 

beeause Pr(Ci(x) = IP(x)) = Pr(Ci(x) == 1,x E A) + Pr(Ci(x) = O,X E B). 

Similarly, if Pr(Ci(x) = 1,x E A) < Pr(Ci(x) = 1,x E B) holds, then - exehanging the 
roles of A and B - we shall get: 

(6) 
111 - + - -~ < Pr(NOT(Ci(x)) = IP(x)). 
2 3w 2"2--

• 
Lemma 6. Let g(x) = g(X1,X2, ... ,X2n) : {O, 1Fn -+ {O, 1} such that g(x) is computed by 
a depth-2 circuit Cl with an AND gate at the top and N MODm gates at the bottom. Let 
I C {l, 2, ... , 2n}, and suppose that Allee knows the values ofthe variables U = {Xi: i EI}, 
and Bob knows the values of the variables V = {Xj : j E {l, 2, ... , 2n} - I}. Let a > 2. 
Then there exists a probabilistic protocol which communicates 

O( a log N + log log m) 

bits, and for each X E {O, 1 Fn, it computes g( x) with success probability at least 

alogN + loglogm 
1- NOt-1 . 

Proof. One ean suppose that both Aliee and Bob know the cireuit Cl and index-set I. 
First, they prepare a matrix T with 2 eolumns and N rows in the following way: 

Row l of T is eorresponded to a MODm gate Gi of cireuit Cl: 
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- The first entry in rowf is the mod m sum of those inputs of gate Gi, whieh are also 
elements of set U (i.e. known for Aliee); 
- the seeond entry in row f is the mod m sum of those inputs of gate Gi, whieh are also 
elements of set V (i.e. known for Bob), 
for f = 1,2, ... , N. (If Xi is an input to Gi, then 1 - Xi is added up mod m.) 

Let us observe that Gi outputs 1 if and only if the mod m sum of row f of T is O. Cireuit 
Cl outputs 1, if and only if the mod m sum of each row of T is O. 

Sinee the first eolumn of T eonsists of sums of variables from U, this eolumn is known for 
Aliee. Similarly, the seeond eolumn of T is known for Bob. 
Aliee knows the first eolumn of T, and that also, that the eireuit outputs 1 if and only if 
every row has a mod m sum O. Consequently, Aliee knows that the only ease when the 
cireuit outputs 1 is when the seeond eolumn of T is 

where t~2 = m-til mod m, where til is the ith entry in the first eolumn of T, i = 1,2, ... , N. 

t' ean be thought of as an m-ary representation of an integer 0 :s; t' :s; m N - 1. 

Now we ean use aversion of the randomized protoeol deseribed in Seetion 1.2: 

(i) Aliee ehooses a random prime p: 

and transmits the (p, t' mod p) pair to Bob with O( a log N + log log m) bits of eom­
munieation. 

(ü) Bob outputs "Yes" if the seeond eolumn of T, interpreted as an m-ary number, t, is 
equal to t' mod p, and "No" otherwise. 

Again, the "No" ans wer is always eorreet. The "Yes" answer is ineorreet exaetly when pis 
a divisor of It - t'l :s; m N -1. By a rough estimation, t - t' has at most Nlogm different 
prime-divisors, but Aliee have had 

alog N + loglogm 

possibilities to ehoose from (using the Great Prime Number Theorem), so the failure 
prob ability is at most: 

a log N + log log m 

• N ow we are ready to prove our Theorem 1. 
Suppose that eireuit C eomputes IP(x). For i = 1,2, ... , Niet Di be defined as 
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By Lemma 3, there exists an i such that 

1 1 1 - + - - -- < Pr(D ') 2 3w 2~-3 - t 

or 
1 1 1 2n) - + - - -- < Pr({O I} - D· . 2 3w 2~-3 - , t 

Without restrieting the generality we ean assume that the first inequality holds. Let 
D = Di. Let g(x) be the funetion, eomputed by cireuit Ci. Then 

(7) v x E D: g(x) = IP(x). 

By Lemma 6, there exists a protoeol, which eomputes g(x), and its sueeess prob ability is 

(8) 1 __ a_Io_g"---N_+_I_og,,,---lo....;;g_m_ 
Na-l ' 

independently from x. 
Beeause of (7), if Alice and Bob eomputes g( x) with O( a log n + log log m) eommunieation, 
then they will get the value of IP(x) with probability (8), if x E D. 
In other words, if Allee and Bob eomputes g( x) by the protoeol of Lemma 6, then they 
will get I P(:c) with average sueeess probability 

(9) 

where the "average" is eomputed over all x E' {O, 1pn. 

We ean apply here the lower bound result of Chor and Goldreich [eG]: 

Theorem 7. [CG} Suppose tb at probabilistic protocol P, computing IP(x), bas an aver­
age success probability at least 

1 1 
"2 + e for some e > 2~ _ 2 ' 

and tbe protocol communicates - for fixed e and for fixed n - always 1'~(n) bits. Tben 

• 
, 1 

1'~(n) > n - 3 ...:. 3 log -. 
e 

We ean give a lower estimation for the average sueeess prob ability (9): 

(~ + 2.. _~) (1- alogN +loglogm) > 
2 3w 2'2-3 Na-l-
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(10) 

if N Q- 2 is not too large. 
Let us set 0: such that 

(11) 6w = N Q
-

2
• 

Then, from (10), and from Theorem 7, with ~ = N-Q+2: 

(12) "Ye(n) > n - 3(0: - 2)10gN - 0(1). 

Because of (11), the protocol of Lemma 6 has communication at most 2 log w, so (12) can 
be written: 

2 log w > n - 3(0: - 2) log N - 0(1) 

or 
logw logw 

n - 0(1) < 2logw + 3-
1 

N 10gN ~ 2logw + 3-
l
-logN 

og ogn 

using (11) and the obvious fact that N 2: n. 

From this 

n log n - O(log n) ~ 2 log w log n + 3 log w log N ~ 5 log w log N 

or 
1 
Snlogn- O(logn) ~ 10gwlogN~ 10gwlogM 

which completes the proof. • 
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3. A GENERALIZATION 

It is not difficult to see that a little modification of the proof of Theorem 1 facilitates 
giving a lower bound for circuits with EXACT gates at the bottom, instead of MOD m 
ones. Exploring this idea, we shall define a dass of functions, for which our results can be 
generalized: 

Definition 8. Boolean function / : {O, Ir ---? {O, I} is ealled pe-simple with parameter · 
m (stays for probabilistie-eommunieation-simple), if for all I C {I, 2, ... , i} there exist 
functions UI,VI : {O, l}l ---? {1,2, ... ,m} sueh that 

- U I depends only on variables {Xi : i E I}, 
- VI depends only on variables {Xi: i E {1,2, ... ,i} - I}, and 

/(X) = 1 {::=? UI(X) = VI(X). 

Now we can state 

Theorem 9. Let m and n two positive integers, satisfying m ::; 2n2
, and let C be a 

depth-3 eireuit with n input variables X = (Xl, X2, .•• , X2n) E {O,lpn and their negations 
on the bottom, gates, whieh eomputes pe-simple functions with parameter m on the first, 
unbounded fan-in AND gates on the seeond and a weighted threshold gate Y with weights 
Wl, W2, ••• , Wt on the top. Let M denote the maximum fan-in of the AND gates on the 
seeond level, and let 

t 

W = w(G) = L: IWil· 
i=l 

IfG eomputesIP(x) for all xE {O,lpn, then 

1 Sn log n - O(log n) ::; log W log M 

Proof. (Sketch) The proof is the same as that of Theorem 1, except Lemma 6 should be 
stated for a depth-2 circuit Cl with an AND gate at the top and gates, computing pc­
simple functions with parameter m, at the bottom. The probabilistic protocol of Lemma 
6 can also be applied to this dass of circuits with the same result. The further details are 
omitted here. • 
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