
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
First-Order Modal Logic Theorem

Proving and Standard PROLOG

Andreas Nonnengart

MPI–I–92–228 July 1992

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 6600 Saarbrücken

Germany

Author’s Address

Andreas Nonnengart
Max-Planck-Institut für Informatik
Im Stadtwald
W-6600 Saarbrücken 11
Germany
nonnenga@mpi-sb.mpg.de

Acknowledgements

I want to thank Detlef Fehrer, Ullrich Hustadt, Hans Jürgen Ohlbach, Renate Schmidt
and Christoph Weidenbach for the many fruitful discussions, helpful remarks and careful
reading of earlier versions.
This work has been supported by the Bundesministerium für Forschung und Technologie
(BMFT), Project LOGO.

Abstract

Many attempts have been started to combine logic programming and
modal logics. Most of them however, do not use classical PROLOG, but
extend the PROLOG idea in order to cope with modal logic formulae
directly. These approaches have the disadvantage that for each logic new
logic programming systems are to be developed and the knowledge and
experience gathered from PROLOG can hardly be utilized.
Modal logics based on Kripke-style relational semantics, however, allow
a direct translation from modal logic into first-order predicate logic by
a straightforward translation of the given relational semantics. Unfor-
tunately such a translation turns out to be rather näıve as the size of
formulae increases exponentially during the translation.
This paper now introduces a translation method which avoids such a rep-
resentational overhead. Its basic idea relies on the fact that any binary re-
lation can be replaced by equations and inequations which (under certain
circumstances) can be eliminated later on by some further transformation.
The overall approach thus works essentially for any modal logic having
a Kripke-style possible world semantics and first-order describable frame
properties. If at all, its application as a pre-processing for PROLOG is
limited merely by the possibility of having frame properties which are not
Horn or not even first-order describable.

Keywords

Modal Logics, Logic Programming, PROLOG, Theorem Proving, Automated Deduction

Chapter 1

Introduction

Modal logics have become more and more interesting in the area of artificial in-
telligence in general and automated theorem proving in particular. Most attempts
dealing with Knowledge and Belief, Time, Action, and Obligation are very closely
related to modal logics. This forced logicians to, firstly, invent logics which are able
to cope with the user’s requirements and, secondly, to develop calculi which allow
an automated reasoning within these logics.
As it is obvious that the utilization of standard Hilbert Calculi is by far not ef-
ficient enough, other calculi well-known from classical first-order theorem proving
have been taken as a model for modal logics. For instance, the tableau method had
been extended by Melvin Fitting (see [4]) in order to be able to deal with modal
logics as well. Other applications of the tableau method to modal logics can be
found in [5].
First attempts in which it was tried to allow the resolution method for reasoning in
modal logics can be found for example in [1]. The main idea behind this method is
to manipulate modal logic formulae by some set of transformation rules such that
classical resolution is possible inside modal contexts.
Translation of modal logic formulae into first-order predicate logic goes back at least
to Moore (see [6]). More elaborated techniques can be found in [3], [7] and [8].
The method proposed in this paper is in fact very closely related to these translation
approaches. It overcomes most of the problems one gets by Moore’s approach, as
it is much more efficient. In the other translation approaches the respective modal
logic properties are hidden behind some extra equational theory which can, in prin-
ciple, be put into special theory unification algorithms. I.e. they require either a
strong equality handling of the inference system used or even the possibility to deal
with theory unification.
Standard PROLOG does not directly support this. Therefore, a method is proposed
in this paper which allows derivations in the sense of [3], [7] and [8], and that with-
out some extra mechanisms like equality handling or theory resolution. In fact, it
even allows standard PROLOG to be utilized as a modal logic theorem prover since
it overcomes the problem of infinite loops which would occur after the application

1

of Moore’s attempt.

Most parts of this introductory chapter repeat the formal basis of modal logics.
The main reason for this reminder is that the following chapters partly depend on
the notation of the preliminaries. In order to avoid confusion with different kinds
of notations used in the standard literature this repetition seems convenient. The
reader interested in more detailed information on modal logic is referred to [5] and
[2].

Definition 1.1 (Algebras and Structures)
As usual, an algebra is a pair consisting of a domain and a set of functions over this
domain.
A structure is an algebra together with a set of relations over the algebra’s domain.

Definition 1.2 (The Signature of Modal Logic)
Assume the following sets of symbols:

• V is a set of variable symbols

• F is a set of function symbols

• P is a set of predicate symbols

These are called the non-logical symbols of the modal logic language under consid-
eration. The logical symbols are the well-known logical connectives and quantifiers
together with the modal operators 2 and 3. The tuple ΣM := (V,F,P) is then
called a modal logic signature.

Once we know the alphabet of the language, we are able to build sentences,
i.e. formulae, constructed from the given atoms and the logical connectives. The
following definition provides this in more detail:

Definition 1.3 (Terms, Atoms, and Formulae)
Let ΣM be a modal logic signature.
Terms, atoms and formulae are defined as follows:

• Each variable symbol is a term.

• If f is an n-place function symbol and t1, . . . , tn are terms
then f(t1, . . . , tn) is a term.

• If P is an n-place predicate symbol and t1, . . . , tn are terms
then P (t1, . . . , tn) is an atom.

• Each atom is a formula.

• If Φ and Ψ are formulae and x is a variable symbol then ¬Φ, Φ ∧ Ψ, Φ ∨ Ψ,
Φ⇒ Ψ, Φ⇔ Ψ, ∀xΦ and ∃xΦ are formulae.

• If Φ is a formula then 2Φ and 3Φ are formulae.

2

Formulae are supposed to be either true or false. Their actual truth value de-
pends on the way the respective symbols are interpreted. It is thus necessary to
define what is understood by an interpretation:

Definition 1.4 (Frames and Interpretations)
By a frame FM we understand any pair (W ,ℜ) where W is a non-empty set (of
worlds) and ℜ is an arbitrary binary relation on W called the accessibility relation
between worlds.
By a ΣM-interpretation ℑM based on a frame FM = (W ,ℜ) we understand any tuple
(D,FM,ℑloc, τ, ϕ) where

• D denotes a set of individuals; the universe of discourse

• FM is a frame

• ℑloc is a mapping from W to the set of ΣM-structures, where the respective
domains all are identical to D.
• τ denotes the actual world (the current situation)

• ϕ is a variable assignment, i.e. a function which maps domain variables to
elements of the domain D.

We will usually call ℑM a modal logic interpretation over ΣM.

Note that we assume a global universe of discourse, i.e. each element of the domain
is known in any world. We thus consider a constant domain structure. Varying
domains will be handled later.

Once it has been defined how interpretations look like, we are able to define how
formulae are to be interpreted by such an interpretation. To this end a satisfiability
relation between interpretations and formulae has to be provided such that a formula
Φ is true with respect to the interpretation ℑ iff the pair (ℑ,Φ) is an element of the
satisfiability relation. As usual we begin with the interpretation of terms:

Definition 1.5 (Interpretation of Terms)
Let ℑM = (D,FM,ℑloc, τ, ϕ) be an interpretation and let t be an arbitrary term.

ℑM(t) =

{
ϕ(t) if t is a variable symbol

f̂(ℑM(t1), . . . ,ℑM(tn)) if t = f(t1, . . . , tn)

where f̂ is the interpretation of the symbol f in the structure ℑloc(τ). In the sequel
we will use the simplified notation (ℑloc(τ))(f) instead (and similarly (ℑloc(τ))(P)
for the interpretation of the predicate symbol P in the structure ℑloc(τ)).

The following notation will be convenient for the sequel:

3

Definition 1.6
Let ϕ be a variable assignment. We define:

ϕ(y)[x/a] =

{
a if y = x
ϕ(y) otherwise

If ℑM = (D,FM,ℑloc, τ, ϕ) then we usually abbreviate (D,FM,ℑloc, τ, ϕ[x/a]) by
ℑM[x/a] and (D,FM,ℑloc, χ, ϕ) by ℑM[χ].

Now we are in a position where we can define the satisfiability relation |=M as a
relation between interpretations and formulae:

Definition 1.7 (Satisfiability)
Let ℑM = (D,FM,ℑloc, τ, ϕ) be a ΣM-interpretation where FM = (W ,ℜ) is a frame.
A formula Φ is said to hold for the interpretation ℑM if and only if ℑM |=M Φ holds,
where |=M is recursively defined as follows:

ℑM |=M P (. . . , ti, . . .) iff ℑloc(τ)(P)(. . . ,ℑM(ti), . . .)

The cases for the classical logical connectives should be clear

ℑM |=M ∀xΦ iff ℑM[x/a] |=M Φ for every a∈D
ℑM |=M ∃xΦ iff ℑM[x/a] |=M Φ for some a∈D
ℑM |=M 2Φ iff ℑM[τ

′] |=M Φ for every τ ′∈W
such that ℜ(τ, τ ′)

ℑM |=M 3Φ iff ℑM[τ
′] |=M Φ for some τ ′∈W

with ℜ(τ, τ ′)

An interpretation ℑM is said to satisfy a formula Φ if ℑM |=M Φ. Φ is called
satisfiable then and the corresponding interpretation is called a model for Φ. As
usual we call Φ unsatisfiable if no model for Φ exists.

The (propositional) modal logic K axiomatized by the axiom schema

2(Φ⇒ Ψ)⇒ (2Φ⇒ 2Ψ)

and the inference rules
Φ

2Φ

Φ,Φ⇒ Ψ

Ψ

contains exactly the theorems according to (the propositional fragment of) Defini-
tion 1.7.
Other modal logics are usually obtained by adding further axiom schemata as for
example 2Φ ⇒ Φ or 2Φ ⇒ 22Φ. It was Saul Kripke who found out that many
interesting axiom schemata correspond to certain properties of the accessibility re-
lation in the modal logic semantics. Some of these correspondences are listed below:

4

Axiom Schema Property
2Φ⇒ 3Φ ∀x∃y ℜ(x, y)
2Φ⇒ Φ ∀x ℜ(x, x)
Φ⇒ 23Φ ∀x, y ℜ(x, y)⇒ ℜ(y, x)
2Φ⇒ 22Φ ∀x, y, z ℜ(x, y) ∧ ℜ(y, z)⇒ ℜ(x, z)
3Φ⇒ 23Φ ∀x, y, z ℜ(x, y) ∧ ℜ(x, z)⇒ ℜ(y, z)

Historically these properties are called D, T, B, 4, and E respectively. Other modal
logics than K can now be generated by adding an arbitrary sequence of these extra-
properties. So e.g. the well-known modal logic S5 is referred to by KTB4 or equiv-
alently by KTE. The modal logic S4 is simply KT4 and the logic M is KT.

What is remarkable for the properties from above is that they all are first-order
properties. Therefore it is not too surprising that a translation of modal logic
formulae into first-order predicate logic can easily be done for any of the modal logics
just mentioned. However, such a translation cannot seriously be recommended for
theorem proving purposes since it produces formulae which are considerably bigger
than the original ones just because of the fact that so many additional literals have
to be introduced which stem from the underlying accessibility relation.

Nevertheless we will provide its definition, for this can be used further on for a
better and more efficient translation approach.

5

Chapter 2

Relational Translation

The definition of modal logic required the determination of signatures, terms and
formulae, and interpretations. A translation from one logic into another therefore
needs to translate each of these parts. We call such a translation a logic morphism
divided into three parts: a signature morphism, a formula morphism, and an inter-
pretation morphism.
The particular logic morphism defined in this chapter will be called Π and its re-
spective parts ΠΣ, ΠF and Πℑ.

Definition 2.1 (The Signature Morphism ΠΣ)
Let ΣM := (V,F,P) be a modal logic signature.
For each f in F let f ′ be a new function symbol and for each P in P let P ′ be a new
predicate symbol. Additionally we assume a sort symbol, W , which is supposed to
represent the sort of worlds under consideration and D as a sort symbol representing
the sort of individuals.
Then let F′ = {f ′ | f ∈ F} ∪ {ι}, P′ = {P ′ | P ∈ P} ∪ {R}, and S = {D,W}.
We then define: ΠΣ(ΣM) = (V,F′,P′,S)
ΠΣ(ΣM) will usually be called the (sorted) predicate logic signature generated from
ΣM.

Obviously the symbols R and ι are supposed to represent the accessibility relation
ℜ and the “actual” world τ respectively.

Definition 2.2 (The Formula Morphism ΠF)
There are actually two parts to be defined: a translation of terms and a translation
of formulae. For convenience both are given by ΠF.
Let t be an arbitrary term and let u be a world term, i.e. either a variable symbol
or the world constant ι. We define ΠF(t, u) by induction on the structure of t:

ΠF(x, u) = x
ΠF(f(t1, . . . , tn), u) = f ′(u,ΠF(t1, u), . . . ,ΠF(tn, u))

6

Now let Φ be an arbitrary modal logic formula.
ΠF(Φ, u) is inductively defined by1:

ΠF(P (t1, . . . , tn), u) = P ′(u,ΠF(t1, u), . . . ,ΠF(tn, u))

ΠF(¬Φ, u) = ¬ΠF(Φ, u)

ΠF(Φ ∨Ψ, u) = ΠF(Φ, u) ∨ ΠF(Ψ, u)

ΠF(Φ ∧Ψ, u) = ΠF(Φ, u) ∧ ΠF(Ψ, u)

ΠF(∀x:D Φ, u) = ∀x:D ΠF(Φ, u)

ΠF(∃x:D Φ, u) = ∃x:D ΠF(Φ, u)

ΠF(2Φ, u) = ∀v:W R(u, v)⇒ ΠF(Φ, v)

ΠF(3Φ, u) = ∃v:W R(u, v) ∧ ΠF(Φ, v)

The initial call for the translation of an arbitrary formula Φ is then ΠF(Φ, ι), where
ι denotes the initial (or actual) world.

Definition 2.3 (The Interpretation Morphism Πℑ)
Let ℑM = (D,FM,ℑloc, τ, ϕ) be an interpretation over the signature ΣM.
For any function symbol f in ΣM let ℑloc(τ)(f) = f̂τ and define f̂ as:

f̂(τ, t1, . . . , tn) = f̂τ (t1, . . . , tn)

Analogously for any predicate symbol P let ℑloc(τ)(P) = P̂τ and define

P̂ (τ, t1, . . . , tn) = P̂τ (t1, . . . , tn)

Now letM be a ΠΣ(ΣM)-structure with:

• M(f ′) = f̂

• M(P ′) = P̂

• M(R) = ℜ
• M(ι) = τ

• M(D) = D
• M(W) =W

Then we define: Πℑ(ℑM) = (M, ϕ).
We usually call Πℑ(ℑM) the (classical) interpretation generated from ℑM.

As we now have a translation from first-order modal logic into first-order pred-
icate logic, we have to show that the translation indeed behaves as desired, i.e. we
have to show that whenever a modal logic formula has a model then also its trans-
lation has one and vice versa. The corresponding proofs are performed by induction
over the structure of modal logic formulae. To this end the following auxiliary lemma
turns out to be useful:

1Note that we have to consider a two-sorted predicate logic because of the two sorts W and D.

7

Lemma 2.4
Let ℑM = (D, (W ,ℜ),ℑloc, τ, ϕ) be an interpretation over the signature ΣM, Φ be a
modal logic formula, χ be a world from W , and u be some world term. Then

Πℑ(ℑM[χ]) |=PL ΠF(Φ, ι) iff Πℑ(ℑM)[u/χ] |=PL ΠF(Φ, u)

Proof: First we have to show that the respective interpretations of terms are
identical.
This will be done as usual by induction over the term structure:

Πℑ(ℑM[χ])(ΠF(x, ι)) = ϕ(x)
= Πℑ(ℑM)[u/χ](ΠF(x, u))

Πℑ(ℑM[χ])(ΠF(t, ι)) = Πℑ(ℑM[χ])(ΠF(f(. . . , ti, . . .), ι))

= Πℑ(ℑM[χ])(f
′(ι, . . . ,ΠF(ti, ι), . . .))

= f̂(χ, . . . ,Πℑ(ℑM[χ])(ΠF(ti, ι)) . . .)

= f̂(χ, . . . ,Πℑ(ℑM)[u/χ](ΠF(ti, u)), . . .)
by induction hypothesis

= Πℑ(ℑM)[u/χ](f
′(u, . . . ,ΠF(ti, u), . . .))

= Πℑ(ℑM)[u/χ](ΠF(f(. . . , ti, . . .), u))

Now we can start to prove the lemma for arbitrary modal logic formulae.
Note that if Φ is an atom then the proof works similar to the case of the complex
terms from above. Also if Φ = ¬Ψ or Φ = Ψ1 ◦ Ψ2, where ◦ is any classical logical
connective, there is no problem at all. Even if Φ = ∀x:D Ψ or if Φ = ∃x:D Ψ no
difficulties do occur.
Therefore consider the case where Φ = 2Ψ:

Πℑ(ℑM[χ]) |=PL ΠF(2Ψ, ι)

iff Πℑ(ℑM[χ]) |=PL ∀v:W (R(ι, v)⇒ ΠF(Ψ, v))

iff Πℑ(ℑM[χ])[v/ξ] |=PL R(ι, v)⇒ ΠF(Ψ, v)
for any world ξ

iff ℜ(χ, ξ) implies Πℑ(ℑM[χ])[v/ξ] |=PL ΠF(Ψ, v)
for any world ξ

iff ℜ(χ, ξ) implies Πℑ(ℑM[χ][ξ]) |=PL ΠF(Ψ, ι)
by induction hypothesis

iff ℜ(χ, ξ) implies Πℑ(ℑM[ξ]) |=PL ΠF(Ψ, ι)

iff ℜ(χ, ξ) implies Πℑ(ℑM)[v/ξ] |=PL ΠF(Ψ, v)
by induction hypothesis

8

iff ℜ(χ, ξ) implies Πℑ(ℑM)[u/χ][v/ξ] |=PL ΠF(Ψ, v)
u is not free in ΠF(Ψ, v)

iff Πℑ(ℑM)[u/χ][v/ξ] |=PL R(u, v)⇒ ΠF(Ψ, v)

iff Πℑ(ℑM)[u/χ] |=PL ∀v:W (R(u, v)⇒ ΠF(Ψ, v))

iff Πℑ(ℑM)[u/χ] |=PL ΠF(2Ψ, u)

and similarly for Φ = 3Ψ

Thus soundness of the translation can be proved as follows:

Lemma 2.5
Let ℑM be an interpretation over ΣM, and Ψ a modal logic formula. Then

ℑM |=M Ψ iff Πℑ(ℑM) |=PL ΠF(Ψ, ι)

Proof: As usual we first have to consider the evaluation of terms. Therefore we
have to show that ℑM(t) = Πℑ(ℑM)(ΠF(t, ι)) for an arbitrary term t.

ℑM(x) = ϕ(x)
= Πℑ(ℑM)(ΠF(x, ι))

ℑM(f(. . . , ti, . . .)) = f̂(χ, . . . ,Πℑ(ℑM)(ΠF(ti, ι)) . . .)
by induction hypothesis

= Πℑ(ℑM)(f
′(ι, . . . ,ΠF(ti, ι), . . .))

= Πℑ(ℑM)(ΠF(f(. . . , ti, . . .), ι))

Thus the relational translation behaves as desired on the evaluation of terms.
With that we can now prove the lemma by induction on the structure of Ψ.
Note that the base case (where Ψ is a literal) and the cases where Ψ is composed
by two fomulae and a classical logical connective are again obvious. Also there are
no problems if Ψ is a quantified formula.
Therefore consider the case where Ψ = 2Φ:

ℑM |=M 2Φ

iff ℜ(τ, χ) implies ℑM[χ] |=M Φ
for any world χ

iff ℜ(τ, χ) implies Πℑ(ℑM[χ]) |=PL ΠF(Φ, ι)
by induction hypothesis

iff ℜ(τ, χ) implies Πℑ(ℑM)[w/χ] |=PL ΠF(Φ, w)
by Lemma 2.4

iff Πℑ(ℑM)[w/χ] |=PL R(ι, w)⇒ ΠF(Φ, w)

iff Πℑ(ℑM) |=PL ΠF(2Φ, ι)

and analogous for Ψ = 3Φ

9

Hence relational translation is sound in the sense that for any interpretation satis-
fying a modal logic formula Φ there is a predicate logic interpretation satisfying the
translated version of Φ. Or in other words, the translation preserves satisfiability. In
particular, if the accessibility relation ℜ for the given interpretation obeys certain
properties the corresponding generated predicate logic interpretation satisfies the
respective translations.
Now it is necessary to show that also unsatisfiability is preserved, i.e. the translation
is complete. To this end a “reverse-translation” is defined which generates a modal
logic interpretation from a given predicate logic interpretation. Note that in proving
the soundness of the reverse-translation the completeness of the actual translation
is shown.

Definition 2.6 (The Mapping Π−1
ℑ)

Let ℑPL = (M, ϕ) be a classical interpretation over the signature ΠΣ(ΣM).
Let furthermore ℑM = (D, (W ,ℜ),ℑloc, τ, ϕ) be an interpretation over ΣM where:

• ℜ =M(R)
• W =M(W)
• D =M(D)
• τ =M(ι)

• for any τ ′ in W : ℑloc(τ
′)(f) = f̂τ ′ and ℑloc(τ

′)(P) = P̂τ ′

Then we call ℑM = Π−1
ℑ (ℑPL) the (modal logic) interpretation generated from ℑPL.

Lemma 2.7
Let ℑPL be a classical interpretation over the signature ΠΣ(ΣM), and χ ∈ M(W).
Then for any modal logic formula Φ:

ℑPL[u/χ] |=PL ΠF (Φ, u) iff Π−1
ℑ (ℑPL)[χ] |=M Φ

Proof: Works similar to the soundness proof in Lemma 2.5. It is thus sufficient
to consider the critical case where Φ = 2Ψ.

ℑPL[u/χ] |=PL ΠF(Φ, u)

iff ℑPL[u/χ] |=PL ∀v:W R(u, v)⇒ ΠF(Ψ, v)

iff ℜ(χ, ξ) implies ℑPL[u/χ][v/ξ] |=PL ΠF(Ψ, v)

iff ℜ(χ, ξ) implies ℑPL[v/ξ] |=PL ΠF(Ψ, v)
since u is not free in ΠF(Ψ, v)

iff ℜ(χ, ξ) implies Π−1
ℑ (ℑPL)[ξ] |=M Ψ

by the induction hypothesis

iff ℜ(χ, ξ) implies Π−1
ℑ (ℑPL)[χ][ξ] |=M Ψ

iff Π−1
ℑ (ℑPL)[χ] |=M 2Ψ

Corollary 2.8
Let ℑPL be a classical model for ΠF(Φ, ι). Then Π−1

ℑ (ℑPL) is a model for Φ.
Proof: Follows easily from Lemma 2.7 if u is set to ι and χ is set toM(ι) = τ .

10

Thus both soundness and completeness of relational translation have been shown.
Now assume that there is a modal logic formula Φ to be proved valid in some par-
ticular modal logic, say KT4. This can be performed by proving the unsatisfiability
of ¬Φ. In order to do this the relational translation technique allows to translate
¬Φ into Ψ = ΠF (¬Φ, ι) and to prove the unsatisfiability of Ψ instead, provided the
necessary additional axioms of the modal logic under consideration are added. In
this example the respective axioms T and 4 have to be included, i.e. ∀x R(x, x) and
∀x, y, z R(x, y) ∧ R(y, z)⇒ R(x, z). The following theorem fixes this in general. It
is hereby assumed that ML is an arbitrary modal logic as e.g. KDB4, and that ML∗

represents the set of corresponding additional axioms (which are seriality, symmetry,
and transitivity in the case of KDB4).

Theorem 2.9
Φ is a theorem of the modal logic ML if and only if any predicate logic interpretation
satisfying the ML-Axioms is a model for ΠF(Φ, ι). Or, more formally:

|=ML Φ iff ML∗ |=PL ΠF(Φ, ι)

Proof: Assume |=ML Φ and assume further that there exists a predicate logic in-
terpretation which satisfies the axioms of ML∗ but not the formula ΠF(Φ, ι). Then
this PL-interpretation satisfies ΠF(¬Φ, ι). However, Corollary 2.8 then guarantees
the existence of a modal logic interpretation which satisfies ¬Φ and this contradicts
the assumption that |=ML Φ.
On the other hand assume that every predicate logic interpretation which is a model
for the ML∗-Axioms also satisfies ΠF(Φ, ι) and that there is a modal logic inter-
pretation which is an ML-model for ¬Φ. But then there exists a predicate logic
interpretation satisfying the ML∗-Axioms which is model for ΠF(¬Φ, ι) which again
contradicts the assumption.

11

Chapter 3

Functional Simulation

The main idea behind functional simulation is the replacement of binary predicates
inside formulae by special equations. Under certain circumstances it is then possible
to eliminate even these equations. Such circumstances do in fact have a syntactic
counterpart, i.e. a characteristic kind of occurrence.
However, introduction of such equations requires additional sorts to be introduced.
These sorts are called functional simulators and consist of (as the name suggests)
functions.

Definition 3.1 (Functional Simulators)
Let S and T be two non-empty denumerable sets and let R be a non-empty binary
relation over S × T .
Then define for any pair (x, y) in S × T : (x, y) ≈ (u, v) iff x = u.
Obviously ≈ denotes an equivalence relation. It is thus possible to introduce equiv-
alence classes []≈ by:

[(x, y)]/≈ = {(u, v) ∈ R | (x, y) ≈ (u, v)}

and
R/≈ = {[(x, y)]/≈ | (x, y) ∈ R}

Both [(x, y)]/≈ and R/≈ are denumerable, therefore there exist surjective mappings
θ : Nat→ R/≈ and δi : Nat→ θ(i).
Then define fj = {δk(j) | k ∈ Nat}. We call FR = {fj | j ∈ Nat} a functional
simulator of R on S × T .

The following definition turns out to be useful for the sequel:

Definition 3.2
Let R ⊆ S × T . An element s∈S is called normal w.r.t. R if there exists a t ∈ T
such that (s, t) ∈ R.

Some of the properties of functional simulators are given by the following lemma:

12

Lemma 3.3
Let R be a binary relation over S × T , where both S and T are denumerable and
let FR be a functional simulator of R on S × T . Then

• FR denotes a denumerable set of partial functions from S to T

• If x is normal w.r.t. R then any f ∈FR is defined on x.

• Thus, if R is left-total, i.e. any x∈S is normal w.r.t. R,

• If R is left-total then for any u∈S and any f ∈FR: R(u, f(u)) then FR denotes
a denumerable set of total functions from S to T .

and for any u∈S and any v∈T

• If R(u, v) then there exists an f ∈FR such that f(u) = v

• If u is normal w.r.t. R then for any f ∈FR: R(u, f(u))

Proof: Obvious by construction.

Recall that by definition 1.7 we have that:

ℑ |=M 3Φ iff ℜ(τ, χ) and ℑ[χ] |=M Φ for some χ ∈ W

Since ℜ ⊆ W ×W there exists a functional simulator Fℜ for ℜ on W ×W with
properties given in Lemma 3.3. The above thus implies:

τ is normal and for some f ∈Fℜ f(τ) = χ and ℑ[χ] |=M Φ

This on the other hand can be simplified to:

τ is normal and for some f ∈Fℜ: ℑ[f(τ)] |=M Φ

since χ does not occur in Φ.
Recall again the two steps from above: firstly, the positive occurrence of the acces-
sibility relation ℜ has been replaced by some equation and secondly, this equation
could be eliminated by some easy simplification step.
It is thus possible to define a new formula morphism, namely one which performs
exactly the above. This certainly has its effect also on the signature morphism. We
therefore assume two more non-logical symbols: FR and N which denote the sort
given by the functional simulator of ℜ and the predicate “Normal” respectively.

Definition 3.4 (Negation Normal Form)
A formula Φ is in negation normal form if it contains no implication or equivalence
and all negations occur solely in front of the atoms.

13

Obviously any arbitrary formula can be transformed into an equivalent one which
is in negation normal form. We will assume in the sequel that any formula is in
negation normal form. This is reasonable since the change in the definition of the
formula morphism ΠF will treat 2-formulae different to 3-formulae. The duality of
2 and 3 would therefore cause problems without something like a negation normal
form.

Definition 3.5 (The Formula Morphism Π⋆
F)

Let Φ be a modal logic formula in negation normal form.

Π⋆
F(3Φ, u) = N(u) ∧ ∃f :FR Π⋆

F(Φ, f(u))

In any other case Π⋆
F behaves as ΠF.

Remark 3.6 Although the quantification over functions suggests a second-order
quantification we indeed have not got beyond classical (many-sorted) first-order
predicate logic. The reason is that we in fact do not consider all functions which
map worlds to worlds but, as Lemma 3.3 shows, merely a denumerable subset of
those. Hence it is possible to view a functional simulator just as a usual sort.

Although the results of Π⋆
F are usually of smaller size than the results of ΠF they

become rather unreadable. We therefore use a slightly different notation, the so-
called world-paths. I.e. we assume a function “apply” which accepts two arguments,
namely a function, say f , and an element of the function’s domain, say x, and results
in the value of f(x). Any term of the form fn(fn−1(. . . f1(x) . . .)) thus becomes
apply(fn, apply(fn−1, . . . , apply(f1, x) . . .)) which again is simplified to the world-
path [x f1 . . . , fn]. As an example consider the translation of the modal logic formula
33P .

Π⋆
F(33P, ι) = ∃x∃y N(ι) ∧N(x(ι)) ∧ P ′(y(x(ι)))

= ∃x∃y N([]) ∧N([x]) ∧ P ′([x y])

Note that ι itself is thus represented by the “empty world-path” [] then. This
notation has two advantages; firstly, it is a bit more compact and secondly, the
variables appearing in world-paths directly correspond to the modal operators of
the translated formula and that even in the order they occur there. Sometimes we
even omit the square brackets if it is obvious where they are supposed to be.

Definition 3.7 (Simulator Axiom)
According to Lemma 3.3 we call the formula Sim = Sim1∧Sim2 the simulator axiom
for R where

Sim1 = ∀u, v:W R(u, v)⇒ ∃x:FR [ux] = v
Sim2 = ∀u:W ∀x:FR N(u)⇒ R(u, ux)

Theorem 3.8
Let ML be a modal logic and let Φ be a modal logic formula. Then

|=ML Φ iff ML∗ ∧ Sim2 |=PL Π⋆
F(Φ, ι)

14

where ML∗ denotes the correspondence axioms for the modal logic ML.
Proof: By Theorem 2.9 we know that |=ML Φ iff ML∗ |=PL ΠF(Φ, ι). This, on
the other hand, is equivalent to |=ML Φ iff ML∗ ∧ Sim |=PL ΠF(Φ, ι) because for
every binary relation there exists a functional simulator1.
Furthermore it can easily be shown that every predicate logic interpretation over the
signature ΠΣ(ΣM) which is a model for Sim also satisfies the formula ΠF(Φ, u) ⇔
Π⋆

F(Φ, u). Therefore ML∗ ∧ Sim |=PL ΠF(Φ, u) ⇔ Π∗
F(Φ, u). Hence ML∗ ∧ Sim |=PL

ΠF(Φ, ι) iff ML∗ ∧ Sim |=PL Π⋆
F(Φ, ι).

Since the set of interpretations satisfying ML∗ ∧ Sim is a subset of the set of inter-
pretations satisfying ML∗ ∧ Sim2 the only thing which remains to be shown is:

ML∗ ∧ Sim |=PL Π⋆
F(Φ, ι) implies ML∗ ∧ Sim2 |=PL Π⋆

F(Φ, ι)

To this end we show that if ML∗ ∧ Sim2 ∧ Π⋆
F(Ψ, ι) is satisfiable then also ML∗ ∧

Sim ∧ Π⋆
F(Ψ, ι) is. Therefore assume that ML∗ ∧ Sim2 ∧ Π⋆

F(Ψ, ι) is satisfiable but
Ξ = ML∗ ∧ Sim∧Π⋆

F(Ψ, ι) is not. Then there exists a ground instance of the clause
normal form for Ξ such that each path through it is unsatisfiable. In particular, all
those paths leading through the ground instances of the literal uf = v which stems
from Sim1 have to be unsatisfiable. However, nowhere in the clause set there is
another occurrence of the symbol f , thus this literal and therefore the whole clause
is superfluous and can be omited. From this it follows what has been claimed.
Now, if every interpretation which satisfies ML∗ ∧ Sim is a model for Π⋆

F(Φ, ι) then
also each interpretation which satisfies ML∗ ∧ Sim2 because otherwise for some in-
terpretation ℑ it holds that ℑ |=PL ML∗ ∧ Sim2 but ℑ is no model for Π⋆

F(Φ, ι). By
the above there is an interpretation ℑ′ then which satisfies ML∗ ∧ Sim2 and which
is not a model for Π⋆

F(Φ, ι). But this contradicts our assumption and we are done.

Summarizing: assume there is a formula Φ to be proved valid for modal logic
ML. If the modal logic ML is not just K then there do exist some correspondence
axioms ML∗ which reflect the properties of the underlying accessibility relation. As
it has been shown in Theorem 3.8 proving the ML-validity of Φ is tantamount to
proving the validity of the first-order predicate logic formula ML∗∧Sim2∧Π⋆

F(Φ, ι).

1Of course, this actually requires a further logic morphism from the given predicate logic to
another predicate logic with an additional sort for the functional simulator. Nevertheless, this can
be done quite easily and is therefore omitted here.

15

Chapter 4

Horn Clauses

The following definition is the usual one for Horn Clauses:

Definition 4.1 (Horn Clauses)
A first-order predicate logic formula is called in Horn form iff each clause of its
clause normal form contains at most one positive literal.

Note that each of the correspondence axioms for the modal logics we consider is
Horn.

At this stage it looks as if it was already possible to utilize PROLOG as a
theorem proving tool for modal logics. However, a simple examination shows that
the particular way PROLOG is dealing with formulae often leads to infinite loops
under the occurrence of certain theory axioms as e.g. symmetry or transitivity. Such
loops can sometimes be omitted by wisely ordering the theory axioms, although this
is not always possible. At least in cases where a non-theorem is tried to be proved,
PROLOG runs into loops, regardless of whether the modal logic is decidable or not.

Example 4.2
Consider the formula 2P ⇒ 3P which is not valid for the modal logic KB. Running
PROLOG as a theorem prover means to negate the formula, derive the clause normal
form and add the additional clause for Symmetry. The resulting PROLOG program
then is:

P (u) ← R(ι, u)
R(u, ux) ← N(u)
R(u, v) ← R(v, u)

← P (v), R(ι, v)

It can immediately be seen that PROLOG runs into an endless loop although the
modal logic KB is in fact decidable.

In the following chapter some simplifications will be presented which not only
avoid these kinds of loops but also simplify the inference mechanism considerably.

16

A further remark should be added: The translation approach introduced results
in formula of many-sorted first-order predicate logic although PROLOG cannot
distinguish between different sorts, unless they are distinguished explicitly by some
extra sort predicate symbols. So, how can standard PROLOG be utilized? The
simple answer is: we neither need to include unary sort predicate symbols nor do
we need to extend standard PROLOG in order to be able to deal with these sorts
because of the particular structure of the translation results. Variables of different
sorts can only occur on certain positions inside clauses and these positions cannot be
mixed up by unification. Therefore PROLOG does not have to be able to distinguish
explicitly between diffferent sorts; in some sense it does so implicitly.

17

Chapter 5

Simplifications

In this chapter some of the most useful simplifications will be introduced. They are
based partly on syntactic, partly on semantic grounds.

5.1 Serial Modal Logics

Applying the functional simulation approach to binary predicate symbols like the
accessibility relation symbol for modal logics has the advantage that the frequent
occurrence of pure R-clauses is totally avoided. This in fact reduces the size of the
search space considerably.
For serial modal logics it is even the case that the number of clauses is reduced even
more. This is stated by the following lemma:

Definition 5.1
Let Φ be a modal logic formula. By flat(Φ) we understand the first-order predicate
logic formula we gain from Φ after ignoring the modal operators, i.e. we define:

flat(2Φ) = flat(Φ)
flat(3Φ) = flat(Φ)

For all the other cases “flat” is just the usual homomorphic extension.

Lemma 5.2
Let Φ be a (serial) modal logic formula in negation normal form.

1. Π⋆
F(Φ, u) is Horn iff flat(Φ) is Horn (for arbitrary u)

2. The clause normal form of Π⋆
F(Φ, ι) contains exactly as many clauses as the

clause normal form of flat(Φ)

Proof: The first part is proved by induction over the structure of Φ:
Base case: Φ is a literal. This is obviously trivial
Induction step: There is no problem if Φ = ∀xΨ or Φ = ∃xΨ. Therefore proofs for
the following cases remain to be performed:

18

1. Φ = Φ1 ∧ Φ2

flat(Φ) is Horn if and only if flat(Φ1) is Horn and flat(Φ2) is Horn. This is
equivalent to Π⋆

F(Φ1, u) is Horn and Π⋆
F(Φ2, u) is Horn by induction hypothesis

and thus equivalent to Π⋆
F(Φ, u) is Horn.

2. Φ = Φ1 ∨ Φ2

Call a formula clause-negative if its clause normal form contains no positive
literal.
flat(Φ) is Horn if and only if flat(Φ1) is Horn and flat(Φ2) is Horn and ei-
ther flat(Φ1) is clause-negative or flat(Φ2) is clause-negative (or both). Sup-
pose w.l.o.g. that flat(Φ1) is clause-negative. An easy induction shows that
Π⋆

F(Φ1, u) is then clause-negative as well. The desired result thus follows by
induction hypothesis.

3. Φ = 2Ψ

flat(Φ) is Horn iff flat(Ψ) is Horn
iff Π⋆

F(Ψ, v) is Horn for any v
iff ∀v R(u, v)⇒ Π⋆

F(Ψ, v) is Horn
iff Π⋆

F(Φ, u) is Horn

4. Φ = 3Ψ

Π⋆
F(3Ψ, u) is Horn iff Π⋆

F(Ψ, v) is Horn
iff flat(Ψ) is Horn
iff flat(Φ) is Horn

For the second part of the lemma note that seriality means that every world is
normal. Thus ∀u:W N(u) holds. With this the translation morphism Π⋆

F can
slightly be changed to:

Π⋆
F(3Φ, u) = ∃x:FR Π⋆

F(Φ, ux)

and the correctness of the second claim of the lemma is evident.

Thus our translation approach results in clause sets which look very similar to
the clauses we would get if we ignored the modal operators at all. The only source
of inefficiency remaining is the set of theory axioms which stem from the particular
modal logic under consideration. However, it turns out that in many cases these
theory axioms can be significantly simplified. Some of these simplifications make
use of particular structure modal formulae get after translation, namely that they
do not contain any positive R-literal. We fix this in the following Lemma:

Lemma 5.3
Let Φ be an arbitrary modal logic formula in negation normal form and let t be an
arbitrary world-path. Then the clause normal form of Π⋆

F(Φ, t) contains no positive
R-literal.

19

Proof: Easy induction on the structure of Φ. The only critical cases are those
where Φ has a modal operator as a top symbol. So assume Φ = 2Ψ.
Π⋆

F(Φ, t) = ∀u R(t, u)⇒ Π⋆
F(Ψ, u) by definition of the formula morphism Π⋆

F. Thus
the clause normal form of Π⋆

F(Φ, t) contains no positive R-literals if and only if
Π⋆

F(Ψ, u) contains no positive R-literals and this holds because of the induction hy-
pothesis.
Now consider the other case where Φ = 3Ψ.
Then Π⋆

F(Φ, t) = ∃x:FR Π⋆
F(Ψ, tx) which also contains no positive R-literals accord-

ing to the induction hypothesis and we are done.

In the following sections this property will play an important rôle on simplifica-
tion. In fact these are not merely simplifications but also some sort of transforma-
tions necessary in order to be able to utilize PROLOG as a modal logic inference
machine, for the non-simplified versions often lead to infinite loops because of the
particular PROLOG control. As it will be shown, the simplification avoids such
possible loops.

5.1.1 The Modal Logic KD

KD is the “smallest” serial modal logic with Kripke-style possible world semantics.
From the above we know that the formula morphism Π⋆

F can be altered to:

Π⋆
F(2Φ, u) = ∀v:W R(u, v)⇒ Π⋆

F(Φ, v)
Π⋆

F(3Φ, u) = ∃v:FR Π⋆
F(Φ, [uv])

Since every world is normal (i.e. ∀u:W N(u)) also the simulator axiom Sim2 can be
simplified, namely to: ∀u:W ∀x:FR R(u, ux). Thus the theory clause for seriality,
which is ∀u:W R(u, [u f(u)]), becomes superfluous. Its responsibilities are captured
already by the simplified simulator axiom and no further theory axiom needs to be
included.

Example 5.4
Consider the formula 232Φ ⇒ 332Φ to be proved valid in the modal logic KD.
The first thing to be done is to negate the theorem since PROLOG acts as a refuta-
tion procedure. The resulting formula then has to be translated by Π⋆

F into first-order
predicate logic and we get:

Π⋆
F(232Φ ∧223¬Φ, ι)

= Π⋆
F(232Φ, ι) ∧ Π⋆

F223¬Φ, ι)
= ∀x∃y ∀z Φ([x y z]) ∧ ∀x∀y ∃z ¬Φ([x y z])

Transformation into clause normal form finally results in:

Φ([x f(x) z]) ∧ ¬Φ([u v g(u, uv)])

20

This is already in Horn form, thus the resulting PROLOG version is:

Φ([x f(x) z]).
← Φ([u v g(u, uv)]).

Running this as a program is a trivial task for PROLOG, hence the formula can
easily be proved valid in modal logic KD1.

Those readers familiar with Hans Jürgen Ohlbach’s thesis on resolution for modal
logics might recognize this as the functional translation approach from modal logic
to predicate logic. In fact, for the modal logic KD, there is actually no difference
between the method proposed here and Ohlbach’s approach (in the constant domain
case). For other modal logics however, the two translation methods become different
as can be seen e.g. in the next section.

5.1.2 The Modal Logic KDB

As shown already for the modal logic KD it is not necessary to include the correspon-
dence axiom for seriality; its responsibilities are captured by the simplified simulator
axiom R(u, ux). Now, the modal logic KDB is based on serial and symmetric frames.
Thus there is, in principle, the clause R(u, v)← R(v, u) (i.e. symmetry of R) to be
added. We will now show how this additional clause can be simplified.

Suppose that during the PROLOG derivation the query R(α, β) occurs. There
are two possibilities to solve this goal: either by the simulator axiom R(u, ux) or
by the symmetry clause. There is indeed no other possibility remaining because
Lemma 5.3 guarantees that no other clause has an R-literal as a head. Now, the
latter case produces a new goal, namely R(β, α). Again this new goal can only
be solved either by R(u, ux) or by the symmetry clause. But this time another
application of the symmetry clause would not lead to anything new. Therefore this
new goal indeed has to be solved by R(u, ux). Since this case evaluation is complete
we have found out that R(α, β) succeeds if and only if either α = [β x] or β = [αx]
for some x (which is not necessarily a variable). Thus, instead of the symmetry
clause R(u, v)← R(v, u) it is sufficient to take the unit clause R(ux, u) in addition
to R(u, ux).
The following example shows the impact of this simplification.

Example 5.5
Consider the following formula to be proved valid for KDB:

323P ⇒ 3P

1Note again that the world-path notation has been used merely for readability. In the ac-
tual PROLOG implementation the world-paths have to be expanded to the respective function
applications.

21

Negation and transformation into Horn form results in the following Horn clause
set:

P [u b(u)] ← R(a, u). From 323P
R(u, ux). The first theory clause
R(ux, u). The second theory clause

← P [v], R(ι, v) From 3P

where a and b are skolem functions (constants).
Running PROLOG with this set of clauses results in the following derivation
(brackets are omitted whereever their actual occurrence is obvious):

← R(a, u), R(ι, [u b(u)])
← R(ι, [a x b(ax)]) backtrack
← R(ι, b(ι))
← yes

In order to get a better understanding on why this translation fits much better to
our desired purposes and is even necessary if we want to utilize PROLOG, we try
to prove the above theorem with the help of the (unmodified) relational translation:

Example 5.6
Consider again the formula: 323P ⇒ 3P . Negation, relational translation and
transformation into Horn form results in the following Horn clause set:

R(ι, a).
R(x, b(x)) ← R(a, x).
P (b(x)) ← R(a, x).
R(u, v) ← R(v, u).
R(u, f(u)).

← P (y), R(ι, y).

Running this as a PROLOG program results in an infinite loop. In fact, a closer
examination of the clause set shows that there is no possible arrangement of the
given clauses such that an infinite loop can be avoided, although the set of clauses
is indeed unsatisfiable.

Note that the application of functional simulators guarantees that such cases of
infinite loops are impossible.
Another remark: Even when relational translation without functional simulation
does not run into a loop for given theorems, it will always loop for non-theorems.
These endless loops are also avoided by the functional simulation approach.

5.1.3 The Modal Logic KD4

Similarily to the case of KDB we proceed with the modal logic KD4, i.e. the modal
logic characterized by the serial and transitive frames. The correspondence axiom

22

to be added is (in its PROLOG form):

R(u,w)← R(u, v), R(v, w)

Now assume again a query R(α, β). It is easy to see that this query can be solved
if and only if β = [αx1, . . . xn] where the xi are elements of FR. Or, in other words,
any ground R(α, β) can be solved iff α is a proper prefix of β.
The same property however, we get if we take the clause R(u, vx)← R(u, v) instead
of the transitivity clause R(u,w)← R(u, v), R(v, w). Thus we have found a suitable
simplification for the theory clauses, namely by adding the two clauses

R(u, ux).
R(u, vx)← R(u, v)

to the clauses of the input formula. Note again that also this simplification is only
possible because we can assume that there are no other clauses which contain positive
R-Literals.

A closer examination of the simplications performed so far shows that the sim-
plified clauses are in fact derivable from the original theory clauses by a single
resolution step. This suggests that another resolution possibility also results in a
suitable simplified clause for transitivity, namely R(u, v) ← R(ux, v). But there is
a big difference between this kind of simplification and the former one which has
to do with the PROLOG control. Both behave well whenever the input formula
is indeed a theorem of the logic KD4. On non-theorems however, their behaviour
differs considerably because the clause R(u, v) ← R(ux, v) will run into an endless
loop whereas the first simplification will always terminate. Moreover, the second
simplification indeed requires that the simulator axiom comes before the transitiv-
ity axiom, so there are quite some good reasons to prefer the first simplification
R(u, vx)← R(u, v) over R(u, v)← R(ux, v).
Another thing should be remarked at this stage: Since the simplification we pre-
sented all were derivable from the theory axioms by a single resolution step we
could equally try to simplify the already simplified version by another resolution
step, which then results in: R(u, uxy). This unit clause is obviously correct, but
unfortunately it is not sufficient as a substitute for R(u, vx)← R(u, v) because not
all possible self-resolutions steps have been taken into account. This was no prob-
lem with the first simplification because self-resolution didn’t lead to anything new.
Thus the only further “simplification” would be to add the (infinitly many) unit
clauses R(u, uxy) and R(u, uxyz) and so on, but this obviously is impossible.

5.1.4 The Modal Logic S4 (or KT4)

For S4 it is (in analogy to KD4) possible to simplify the transitivity axiom repre-
sented by the clause R(u,w)← R(u, v), R(v, w) to R(u, vx)← R(u, v).
In addition the axiom R(u, u) has to be added in order to guarantee reflexivity of the

23

underlying accessibility relation. Both together, however, imply R(u, ux); thus this
unit clause doesn’t need to be included any more. The theory axioms thus become:

R(u, u).
R(u, vx) ← R(u, v)

5.1.5 The Modal Logic S5 (or KTB4, KDB4, KTE, KDBE)

This modal logic is determined by an accessibility relation which is an equivalence,
i.e. any two worlds either access each other or there is no R-connection whatsoever
between them2. However, it is a well known property of modal logics that the
consideration of R-connected frames is sufficient. (This can be found, for instance,
in [2] or in [9].) W.l.o.g. we can thus assume that, for S5, each world has access to
any other world (and to itself of course). Hence we do not have to include all the
correspondence axioms; the simple unit-clause R(u,w) will do as well.
And again, since the whole theory on the accessibility relation R is given by a single
unit clause, its effect can be directly put into the formula morphism, i.e. the mapping
Π⋆

F changes to:
Π⋆

F(2Φ, u) = ∀v:W Π⋆
F(Φ, v)

where the other cases remain as in Definition 2.2.
Although it might not be very surprising, the simplicity of how this approach allows
to reason within first-order S5 is striking.

5.1.6 The Modal Logic KDE (or KD5)

Working with KDE is almost as easy as with S5, since euclidity is very closely related
to equivalence. Under the assumption that the frames we consider are R-connected
(and this can be assumed w.l.o.g.), it guarantees that any two worlds which both are
not identical to the actual world, have access to each other. In fact this holds for any
two worlds which are accessed somehow. Thus a suitable unit-clause to be added is
simply R(ux, vy) instead of the more complicated R(v, w)← R(u, v), R(u,w). Fur-
thermore this means that the unit-clause R(u, ux) which usually has to be included
for any serial modal logic, can be simplified to R(ι, x). Both unit clauses R(ux, vy)
and R(ι, x) do not interfere since the latter can can only be used for an R-query
with ι as the first argument and the former only for R-queries where ι is not the
first argument. This allows to incorporate the two theory clauses directly in the
translation by:

Π⋆
F(2Φ, ι) = ∀x:FR Π⋆

F(Φ, [x])
Π⋆

F(2Φ, u) = ∀v:W ∀x:FR Π⋆
F(Φ, [vx])

if u ̸= ι

The other cases remain unchanged

2Two worlds u and v are R-connected iff there exist x1, . . . , xn with R(xi, xi+1) or R(xi+1, xi)
and u = x1 and v = xn, i.e. they belong to the same R-equivalence class.

24

This shows that reasoning within KDE is almost as easy as within S5.

5.1.7 The Modal Logic KD4E (or KD45)

The only difference between KDE and KD4E lies in the fact that in KD4E any
world but the actual world ι can be accessed by ι which is not necessarily true for
KDE. This can be utilized by changing the unit-clause R(ux, vy) to R(u, vy), i.e. ι
is the only world which possibly cannot be accessed. Obviously R(u, vy) subsumes
R(u, ux) therefore even R(u, ux) can be omitted.
Here again we are in the fortunate situation that the background theory of the
accessibility relation can be described by a single unit clause. Hence its effect can
also be put directly into the formula morphism which thus changes to:

Π⋆
F(2Φ, u) = ∀v:W ∀x:FR Π⋆

F(Φ, vx)

and the other cases remain as in Definition 2.2.
Note that for both, KDE and KD4E, the additional assumption that ι has access to
itself (or even is accessed somehow) leads to S5.

5.1.8 The Modal Logic KT (or T or M)

This modal logic is characterized by the reflexive frames. Thus the additional theory
axioms are simply:

R(u, ux).
R(u, u).

Unfortunately these two unit clauses do not allow any further simplification as it
was possible in the previous cases. Nevertheless they behave slightly better than
pure relational translation because, firstly, the extra clauses which contain nothing
but R-literals are avoided and, secondly, 3-formulae get smaller.

5.2 Non-Serial Modal Logics

If seriality is not assumed the additional “normality”-predicate introduced by the
formula morphism must not be ignored. This means that the simplifications in-
troduced above have to take care of the additional N -symbol because they will be
introduced as well by the (unsimplified) clause R(u, ux) ← N(u). Therefore the
transitivity clause R(u, vx)← R(u, v) becomes R(u, vx)← N(v), R(u, v), the sym-
metry clause R(ux, u) becomes R(ux, u)← N(u) and the euclidity clause R(ux, vy)
becomes R(ux, vy) ← N(u), N(v). Thus the additional PROLOG clauses to be
added are:

25

R(u, ux) ← N(u) for K
R(ux, u) ← N(u) for B
R(u, vx) ← N(v), R(u, v) for 4
R(ux, vy) ← N(u), N(v) for E (or 5)
R(u, vy) ← N(v) for K4E (or K45)

Some problems might arise in the non-serial case because there is no such nice result
as in Lemma 5.2. I.e. whether or not a formula is Horn after translation can’t be
found out by simply looking at its “flattened” form. Getting similar results for
non-seriality is a matter for future work.

26

Chapter 6

Varying Domains

In varying domains we do no more assume that there is a single domain common
to all worlds, i.e. each world might have its own universe of discourse. This slightly
changes some of the former definitions from Chapter 1. For instance, interpreta-
tions do not refer to a unique domain, but the respective domains are all given by
the mapping ℑloc which maps worlds to structures. Also the satisfiability relation
changes accordingly:

Definition 6.1 (Satisfiability in Varying Domains)
Let ℑM = (D,FM,ℑloc, τ, ϕ) be a modal logic interpretation.

ℑM |=M ∀x:D Φ iff ℑM[x/a] |=M Φ for every a in the domain of ℑloc(τ)

ℑM |=M ∃x:D Φ iff ℑM[x/a] |=M Φ for some a in the domain of ℑloc(τ)

The other cases remain as in Definition 1.7

This new definition obviously has its immediate effect on the relational transla-
tion of modal logic formulae. In addition to the new predicate symbol R we also
have to add a symbol E which is supposed to represent the “existence” relation.

Definition 6.2 (The Formula Morphism)

ΠF(∀x:D Φ, u) = ∀x:D E(u, x)⇒ ΠF(Φ, u)

ΠF(∃x:D Φ, u) = ∃x:D E(u, x) ∧ ΠF(Φ, u)

All other cases remain as in Definition 2.2.

Note that by this definition it is easy to see that constant domains are a spe-
cial case of varying domains since in constant domains the additional unit clause
E(u, x) which just states that any element occurs in every world simplifies the above
definition to Definition 2.2.

We omit the soundness and completeness proofs of this formula translation since
they do not provide anything particularly new.

27

More interesting is a closer look at the E-predicate and where it occurs inside trans-
lated formulae. As a matter of fact, any occurrence of it is very similar to the
occurrences of R-predicates inside translated formulae. Thus, the introduction of
functional simulators for this “existence” predicate allows for a considerable simpli-
fication as follows:

Lemma 6.3
Let FE be a functional simulator for the binary relation E. Then each element of
FE denotes a total function and the relational translation can be modified to:

Π⋆
F(∀x:D Φ, u) = ∀y:FE ΠF(Φ, u)[x/uy]

Π⋆
F(∃x:D Φ, u) = ∃y:FE ΠF(Φ, u)[x/uy]

where ΠF(Φ, u)[x/uy] means that any occurrence of x inside ΠF(Φ, u) is to be re-
placed by [u y].

Proof: Totality of the functions is guaranteed by the fact that the domain of any
world is not empty.
Soundness and completeness of the translation morphism Π⋆

F follows similarly to
Theorem 3.8 and Section 5.1.1.

Note that no further simulator axiom is to be included.

This translation already takes into account that there is no further theory behind
the “existence”-predicate. Very often, however, one is interested in certain extra
properties as e.g. increasing domains or decreasing domains. These are handled in
the following two sections.

6.1 Increasing Domains

The characteristic axiom schema for increasing domains is:

∀u, v:W ∀x:D E(u, x) ∧R(u, v)⇒ R(v, x)

i.e. if the domain element x exists in world u und v is accessible from u then x exists
in v as well. W.l.o.g. we assume that the accessibility relation is not symmetric
because this would immediately force a constant domain structure which has been
handled already before.
In arbitrary varying domains the only theory clause to be included was the simple
unit clause ∀u:W ∀x:FE E(u, u x) and in fact, we were able to work this up by
modifying the formula morphism just as in the case for the logic KD.
For more complicated modal logics the additional theory axioms could not be simpli-
fied to a single unit clause and therefore a translation had to be chosen which allows
the occurrence of negative R-literals, but nevertheless also allowed a simplification

28

of the theory axioms. Similar things happen here for increasing domains. First of
all, the translation morphism from above has to be changed to:

Π⋆
F(∀x:D Φ, u) = ∀x:D E(u, x)⇒ ΠF(Φ, u)

Π⋆
F(∃x:D Φ, u) = ∃y:FE ΠF(Φ, u)[x/uy]

i.e. Π⋆
F behaves on ∀-formulae like it does on 2-formulae. It is easy to see that the

clause normal form of the translation of any modal logic formula which is in negation
normal form contains no positive E-literal.
Now we are in a position where we can try to simplify the theory axiom for increasing
domains, again analogously to the simplification of accessibility relation properties
given earlier.
A first simplification is:

∀u:W ∀x:FR ∀y:D E(ux, y)← E(u, y)

if R is serial or

∀u:W ∀x:FR ∀y:D E(ux, y)← N(u), E(u, y)

if seriality of R is not assumed.
It can easily be checked that the additional assumption of R’s transitivity does not
lead to anything futher. Also reflexivity has no effect not yet stated by the above
simplification. Therefore this simplification is indeed characteristic for increasing
domains if we consider the modal logics K, KD, KT, K4, KD4, and S41.

Euclidity of the accessibility relation also doesn’t lead to particular problems.
Note again, that frames which obey euclidity either form an equivalence closure (a
non-degenerated cluster as it was called in [9]) or a single world followed by such an
equivalence closure. Obviously there are constant domains inside clusters. Thus the
only additional axioms to be added are those which state that any domain element
occurs in any world different from the initial world ι, and this can simply be done
by the unit clause ∀u:W ∀x:FR ∀y:FE E(ux, vy). This even allows to simplify the
simulator axiom E(u, ux) to E(ι, [x]) and indeed these two unit clauses suffice for
both, KD5 and KD45.
Adding reflexivity or symmetry immediately leads to constant domains and the
non-serial cases are captured by the slightly modified clause

∀u, v:W ∀x:FR ∀y:FE E(ux, vy)← N(u)

6.2 Decreasing Domains

The characteristic axiom schema for decreasing domains is:

∀u, v:W ∀x:D E(u, x) ∧R(v, u)⇒ R(v, x)

1Note that the simplified axiom also guarantees that domain elements exist in worlds which can
be accessed by more than one R-step, regardless of whether R is transitive or not.

29

Its similarity to the axiom schema for increasing domains suggests an analogous
way of dealing with it. The reader may verify by himself that the theory clauses
to be added then are E(u, u yE) and E(u, z) ← E(uxR, z) for KD, KT, KD4, and
KT4 and E(ι, [xE]) and E(u, v xR yE) for KD5 and KD45. It is evident that for the
non-serial modal logics the respective N -literals have to be taken into account.

30

Chapter 7

Conclusion

In this paper an approach is presented which allows to reason within modal logics by
some appropriate translation into first-order predicate logic. One of the aims of this
development was to avoid theory unification and/or equality handling (see [7] and
[8]) such that even an inference machine like PROLOG can be utilized as a theorem
prover for modal logics. For two main reasons this translation had to be different to
the one proposed by Moore in [6]. First of all, Moore’s approach (which is essentially
the relational translation from chapter 2) produces formulae which contain lots and
lots of literals (clauses) which merely express features of the accessibility relation
such that proofs of even small theorems become fairly complicated and lengthy if at
all feasible. The other reason has to do with the PROLOG control. As it was shown
in some examples, the purely relational translation may produce formulae which
(although they are in Horn form) do not terminate when interpreted by PROLOG.
This holds in particular for properties like “Symmetry” and “Transitivity”. It is one
of the big advantages of the approach proposed in this report that such loops are
impossible.

The main idea behind the method presented here is the functional simulation
of the accessibility relation by a suitable set of functions. This turned out to have
two main advantages: it decreases the size and the number of clauses and it allows
significant simplifications on the set of theory clauses. These simplifications were
the key to the utilization of PROLOG as an inference machine for modal logics as
they avoid infinite loops which are inevitable for many cases in the pure relational
translation approach.

The work on functional simulation of accessibility relations is still in the begin-
ning. There are certainly more possible applications to modal logics which could
not be handled in this paper. A short collection of some immediate ideas follows in
the next chapter.

31

Chapter 8

Further Work

The whole approach seems strong and flexible enough to deal with much more cases
than introduced here. So, for example, we can think of further modalities, i.e.
further accessibility relation properties not mentioned above. Another possibility is
the examination of multi-modalities as it is very common in the area of multi-agent
systems. Nevertheless there certainly are some limitations of this method and these
should be mentioned as well, as far as they are known up to now.

8.1 Other Accessibility Relation Properties

The properties considered so far are actually the most common ones occurring in
the standard literature. At the time being we haven’t examined much more possible
properties in detail. So e.g. another quite interesting property is density. An acces-
sibility relation R is called dense if for any two worlds u and v with R(u, v) there
is a world w such that both R(u,w) and R(w, v) hold. Obviously this property is
only interesting in frames where reflexivity is not assumed because otherwise such
a possible candidate can trivially be found. The additional clauses should thus be:

R(u, f(u, v)) ← R(u, v).
R(f(u, v), v) ← R(u, v).

It is not easy to see how these two clauses can be simplified according to the tech-
niques we introduced for the various modal logics. Nevertheless there is a simple unit
clause which seems to cover all the responsibilities of the two clauses from above,
namely R(u f(u, ux), ux) which states that for any world u and any R-successor ux
of u there is a world accessible from u which can access ux. Whether this is indeed
a characteristic axiom for density has not been examined in detail up to now and is
left as an open question.

32

Example 8.1
Prove: 23P ⇒ 233P in KD(dense):

P (ua) ← R(ι, u)
R(u, ux).
R(uf(u, ux), ux).

← P (w), R(b, v), R(v, w)
← R(ι, u), R(b, v), R(v, ua)
← R(b, v), R(v, xa)
← R(by, xa)
← yes

Another pretty interesting property which frequently occurs in the literature is
directedness. An accessibility relation R is directed if for any worlds u, v and w with
R(u, v) and R(u,w) there exists a world which is accessible by both v and w. This
forces a sort of confluence on the accessibility relation.
This property can be expressed by two clauses, namely:

R(v, f(u, v, w)) ← R(u, v), R(u,w)
R(w, f(u, v, w)) ← R(u, v), R(u,w)

Again it seems not easy to simplify these two clauses. However, if we consider
the unit clause R(ux, u y f(u, ux, uy)) it looks as if it covers all the possibilities of
the two unsimplified clauses since it expresses that for any two worlds which have
a common predecessor there exists a world accessible from the second one which
can be accessed by the first one as well. Proving that this unit clause is indeed
characteristic for directed world structures is again a matter of future work.

Example 8.2
Prove: 32P ⇒ 23P in KD(directed):

P (u) ← R(a, u)
R(u, ux).
R(ux, u y f(u, ux, uy)).

← P (v), R(b, v)
← R(a, u), R(b, u)
← R(b, ax)
← yes

In transitive frames an even simpler version of the directedness axiom seems
sufficient, namely R(u, v f(u, v)), i.e. for any two worlds u and v there is a world
accessible from v which is also accessible from u. It is not explicitly required that
u and v share a common predecessor because this is guaranteed by the transitivity
property anyway.

33

Although it hasn’t been checked in detail up to now, a suitable axiomatization of
the modal logic S4.2 thus simply contains the three unit clauses:

R(u, [ux])
R(u, u)
R(u, [v f(u, v)])

Finally, let us consider accessibility relations which are partially functional. This
property can be expressed by the axiom schema

3Φ⇒ 2Φ

i.e. if some world can be accessed then this world is the only accessible one.
The corresponding axiom is thus:

∀u, v, w R(u, v) ∧R(u,w)⇒ v = w

Two resolution steps with the unit clause R(u, ux) result in the equation ux = uy.
We cannot put this equation as an additional clause to our Horn formulae because
standard PROLOG wouldn’t know how to deal with it. However, we can have a
closer look at what this equation can possibly cause. There is actually only one
case where this equation can come into play and that is by replacing any world-path
prefix [α1 . . . αnβ] by [α1 . . . αny]. This effect can be put already into the translation
such that the Π⋆

F can be changed to

Π⋆
F(3Φ, u) = ∀y:FR Π⋆

F(Φ, uy)

All the other cases remain as in Definition 3.5.

Example 8.3
Prove: 33P ⇒ 32P in KD(functional)
Negation and transformation into clause normal form results in:

P ([x y]).
← P ([z1 z2])

PROLOG evidently has no problems with this.

8.2 Multi-Modalities

As an example let us consider an epistemic logic for multiple agents. The most
common modal logic for representing believes is K45 (or KD45), i.e. it is assumed
that the agent has full introspection, i.e. s/he knows what s/he knows and s/he

34

knows what s/he doesn’t know1. For each agent a assume an accessibility relation
(epistemic alternative relation) Ra. Now recall that the additional theory clause to
be introduced for K45 was R(u, vx)← N(v) which states that any world not equal
to the initial one (if there is one) can be accessed from everywhere. Something
similar has to happen for multiple K45-modalities. However, we actually do not
want to express that for every agent a Ra(u, vxa)← Na(v) holds for arbitrary u and
v but only for those which are Ra-connected to ι. I.e. we want to be sure that both u
and v can be accessed by agent a starting from ι. If there is only one modality then
this is indeed equivalent to Ra(u, vxa) ← Na(v). Therefore we have to introduce
further predicates which are supposed to express that certain worlds belong to the
epistemic alternatives of certain agents. Let us use the symbol W indexed with the
agents identifier to denote these predicates. Thus the theory clause becomes now:

∀u, v ∀x: Agents∀y:FRx Rx(u, vy)← Nx(v),Wx(u),Wx(v)

Certainly this is not yet enough; it still has to be expressed when Wx(u) is true for
some agent x and some world denoted by the world-path u. However, this is fairly
simple: u is an x-accessible world if either u is just the initial world ι or it is a world
which is accessed from some x-accessible world by a simulator function for x2.
Summarizing we get the following translation rules

Π⋆
F(2agentΦ, u) = ∀v:W Ragent(u, v)⇒ Π⋆

F(Φ, v)
Π⋆

F(3agentΦ, u) = Nagent(u) ∧ ∃v:W Π⋆
F(Φ, uv)

and the following theory clauses

Rx(u, uyx) ← Nx(u).
Rx(u, vyx) ← Nx(v),Wx(u),Wx(v).
Wx(ι).
Wx([v yx]) ← Wx(v).

Note that the clause Rx(u, uyx) ← Nx(u) has to be included again because it is no
longer subsumed by other theory clauses.

If we consider the modal logic KD45 as the one which suits to epistemic logic (i.e.
we assume that the agent’s belief is consistent) it is worth noting that the translation
from above does not change. The reason is that although the accessibility relation
of each agent might be serial it is not necessarily true that all the other agents
know about this. It is nowhere stated in the above translation morphism definition

1There is still an argument on whether it is really appropriate to take any logic based on K as an
epistemic logic. Also it is questionable to allow full introspection. I believe that the reason behind
this argument is that we usually assume a very strong connection between “knowing” something
and “being aware of” something. If we represent Knowledge and Belief by KD45 we essentially
handle them as ‘knowing in principle; s/he could know it, if s/he just thought about it long enough.

2This certainly will look slightly different in the actual PROLOG implementation. For instance,
W would be represented by some binary predicate whose first argument is an agent and second
argument is a world-path (or actually a world-term using “apply”-functions).

35

that the world u is indeed an epistemic alternative of the agent under consideration.
Thus the additional normality predicate has to be kept.
However, the theory clauses do change a bit. First of all there is another possibility
for a world to be normal: it just may be x-accessible. But this simplifies the second
theory clause from above and we finally get

Rx(u, uyx) ← Nx(u).
Rx(u, vyx) ← Wx(u),Wx(v).
Wx(ι).
Wx([v yx]) ← Wx(v).
Nx(u) ← Wx(u).

This way, we have the possibility to reason within a multi-agent scenario where
each of the agents’ believes works according to the modal logic K45 (or KD45).

As it stands, the respective belief spaces are entirely independent. Nevertheless,
one usually wants to have a possibility to express something like a mutual belief
of a set of agents. A formula Φ is mutually believed if every agent believes Φ and
every agent believes that every other agent (and he himself) believes Φ and so
on for arbitrary long belief sequences. Thus mutual belief is a further modality
although very closely related to the individual belief modalities. Let us examine the
properties it obeys: First of all we certainly cannot assume reflexivity, for what is
mutually believed is not necessarily true in the reality (the whole group of agents
might be mistaken). On the other hand, from the consistency assumption of the
individual agents’s believes it follows directly that mutual belief has to be consistent
as well. Similarly, transitivity and euclidity of the individual accessibility relations
directly induces both transitivity and euclidity to mutual belief. Thus we have to
choose a K45 (KD45) modality for mutual belief as well. Let us call the mutual
belief accessibility relation RMB. Then we have for any two arbitrary worlds u
and v that RMB(u, v yMB) because by definition every world (but ι) is accessible by
RMB. This does unfortunately not yet work perfectly together with the individual
simulator functions. The problem is that mutual belief subsumes individual belief
but this cannot be proved from the above since it is not obvious for the inference
machine that it is allowed to instantiate mutual belief simulator function variables
with individual belief simulator function symbols. Fortunately this problem can be
solved quite easily: we just have to change RMB(u, v yMB) to

RMB(u, v yx)

where x ranges over the set of agents for which the mutual belief holds. With this
we can now easily prove that mutual belief subsumes individual belief.

Example 8.4
Prove: 2MBP ⇒ 2JohnP in multiple KD45 (and mutual belief)

36

The clause form we get after translation is (together with the derivation):

P (u) ← RMB(ι, u).
NJohn(ι).
RMB(u, vyx).
the other theory clauses are not necessary

← P (aJohn)
← RMB(ι, aJohn)
← yes

It thus takes two simple inference steps to prove the theorem.

8.3 Restrictions

A necessary condition for the method proposed here to work is that the accessibility
relation properties have to be first-order predicate logic definable. Unfortunately
not all modal logics have a first-order describable frame property. As an example
consider the following axiom schema:

3Φ ∧2(Φ⇒ 3Φ)⇒ 23Φ

It represents the discreteness of the underlying accessibility relation, i.e. it guaran-
tees that for any two worlds there are only finitely many in between. This cannot be
expressed in first-order predicate logic; therefore there is no suitable correspondence
axiom to be included and our approach won’t work.
Similarly there is no first-order correspodence axiom for the schema:

23Φ⇒ 32Φ

which is known as the McKinsey axiom. The correspondence formula for this schema
would indeed require a so-called Henkin-quantifier (or “branching” quantifier) which
can’t be expressed in first-order predicate logic.

But there is a further restriction if we insist on using PROLOG as an inference
machine: the correspondence axiom might not be Horn. One example of such a non-
Horn property is linearity. In a linear frame any two worlds are comparable, i.e. for
any u and v: either they are identical or v is accessible from u or u is accessible from
v. This is a typical non-Horn formula and hence causes problems for PROLOG.
Nevertheless, most accessibility relation properties one is usually interested in are
Horn and this makes the whole approach feasible for many applications.

Another possibility for some undesired behaviour of the method lies again in
the particular way PROLOG is dealing with clauses and with literals inside clauses.
Recall that the predicate logic formulae we get after translation look very similar
to their respective flattened forms (i.e. the formulae we would get if we ignored the

37

modal operators at all). PROLOG tends to run into loops whenever there are modal
logic formulae whose flattened form is a predicate logic tautology. For instance con-
sider the formula 2P ∨2¬P . Its flattened form is just P ∨¬P which is a tautology.
Its translated version is (in PROLOG notation): P (u) ← R(ι, u), R(ι, v), P (v), i.e.
P is true in any accessible world if it is true in some accessible world. Such a for-
mula typically occurs when knowing whether is to be expressed because it is “known
whether” P is true if and only if either P is known to be true or ¬P is known to
be true. It is evident that a Horn clause like this one is a hot candidate for being a
cause of infinite loops in PROLOG. However, it does not necessarily produce loops
as can be seen in the example in the following chapter.

38

Chapter 9

Example: the red hat puzzle

Assume three people, Annie, Bernard and Charlotte, seated in a row such
that Annie sees both Bernard and Charlotte, Bernard sees Charlotte and
Charlotte (the unhappy one) isn’t able to see anyone of the others. Each
of them wears a hat but none of them knows the colour of his own hat.
However, they are told that at least one of the hats is red. Then they are
asked whether there is one of them who knows something about the colour
of his hat. Annie is the first who answers and she says: “Unfortunately,
I don’t know whether my hat is red.” Then Bernard says: “Neither do
I, I’m afraid.” Finally Charlotte raises a hand and says: “Well, but I
know. Evidently I am wearing a red hat!” How does she know?

Let us try to solve this puzzle with the help of the approach presented in this paper.
First of all we have to represent the given information logically. I.e. we have to
express that both Annie and Bernard know whether Charlotte has got a red hat
and that in addition Annie also knows whether Bernard’s hat is red. “Knowing
whether” can be represented by “either knowing that . . . or knowing that not . . . ”.
We therefore get the following formulae:

2A red(B) ∨2A ¬red(B) for: Annie knows whether Bernard’s hat is red
2A red(C) ∨2A ¬red(C) for: Annie knows whether Charlotte’s hat is red
2B red(C) ∨2B ¬red(C) for: Bernard knows whether Charlotte’s hat is red

The next information we got is that at least one of the hat’s is red, which is repre-
sented by:

red(A) ∨ red(B) ∨ red(C)

Finally, we know that neither Annie nor Bernard know whether their respective hats
are red:

¬(2A red(A) ∨2A ¬red(A))
¬(2B red(B) ∨2A ¬red(B))

These are essentially the facts given in the puzzle. It might be not too surprising,
however, that this is not yet enough in order to derive the desired solution. For

39

instance, although these are the given facts, it is not said anywhere yet that the
three candidates indeed know that these are the facts. And even this wouldn’t be
sufficient because it also has to expressed that everyone knows that each of the
others knows the facts and so on. In other words, any of the above formulae has to
occur in the context of a mutual belief operator1. Thus we finally get the follwing
set of formulae:

2MB(2Ared(B) ∨2A¬red(B))
2MB(2Ared(C) ∨2A¬red(C))
2MB(2Bred(C) ∨2B¬red(C))
2MB(¬(2Ared(A) ∨2A¬red(A)))
2MB(¬(2Bred(B) ∨2A¬red(B)))

and the theorem
2Cred(C)

which states that Charlotte knows that her hat is red. Now, these six formulae
have to be translated with the help of our formula morphism and we get after
transformation into clause normal form (without theory axioms):

¬RMB(ι, u) ∨ ¬RA(u, v) ∨ red(v,B) ∨ ¬RA(u,w) ∨ ¬red(v,B)
¬RMB(ι, u) ∨ ¬RA(u, v) ∨ red(v, C) ∨ ¬RA(u,w) ∨ ¬red(v, C)
¬RMB(ι, u) ∨ ¬RB(u, v) ∨ red(v, C) ∨ ¬RB(u,w) ∨ ¬red(v, C)
¬RMB(ι, u) ∨ red(u,A) ∨ red(u,B) ∨ red(u,C)
¬RMB(ι, u) ∨ ¬red([u aA(u)], A)
¬RMB(ι, u) ∨ red([u bA(u)], A)
¬RMB(ι, u) ∨ ¬red([u cB(u)], B)
¬RMB(ι, u) ∨ red([u dB(u)], B)
¬red([eC], C) the negated theorem

The first problem already arises: there is a non-Horn clause, namely the fourth
one. However this problem is not too hard to be solved. The above clause set can
be made Horn if we just replace any occurrence of red by ¬r and, of course, any
occurence of ¬red by r2. Hence, what remains to be done is that we have to agree
on the properties of the individual belief operators. For simplicity we do not assume
anything particular but consistency (seriality). This is not even necessary but it
simplifies the derivation. We therefore assume that the consistency of the respective
agent’s knowledge is mutually believed and this can be represented by the simple
unit clause: Rx(u, u yx).
The mutual belief accessibility relation is transitive over the individual believes and
we thus get the two clauses:

RMB(u, u yx)
RMB(u, v yx)← RMB(u, v)

1Note that, if we (humans) solve this puzzle, we implicitly assume such a mutual belief without
really thinking about it.

2This is a usual way which fairly often works to transform non-Horn clauses into Horn clauses.

40

As long as there is no explicit agent’s reasoning about mutual belief (i.e. the first
argument of the relation is always ι) this can even be simplified to

RMB(ι, v yx)

But still we are not ready yet. From the above it follows quite easily that e.g. Annie
believes that either Bernard or Charlotte has a red hat. It is even so that Bernard
can derive this. However, we have not expressed that Bernard trusts in Annie’s
believes, not even what the colour of the other’s hats is concerned. Nevertheless,
this can be fixed easily if we assume that the correctness of the individual believes
on the other’s hat colours is mutually believed, i.e. 2MB(2xred(y)⇒ red(y))3.

We are now almost done with the necessary preparations; the above clause set
can be given to PROLOG and we can try to run it as a program. But, evidently,
we do so after arranging the clauses in a way such that the potential candidates for
infinite loops come last and we get the following final Horn clause set:

r([u aA(u)], A) ← RMB(ι, u).
r([u cB(u)], B) ← RMB(ι, u).
r([eC], C).
r([u kx(u)], y) ← r(u, y), RMB(ι, u).
r(v,B) ← RA(u, v), RA(u,w), RMB(ι, u), r(w,B).
r(v, C) ← RA(u, v), RA(u,w), RMB(ι, u), r(w,C).
r(v, C) ← RB(u, v), RB(u,w), RMB(ι, u), r(w,C).

RMB(ι, [v yx]).

Rx(u, [u yx]).

← r([u bA(u)], A), RMB(ι, u).
← r([u dB(u)], B), RMB(ι, u).
← r(u,A), r(u,B), r(u,C), RMB(ι, u).

Modulo the actual implementation of the world paths this is a clause set which
solves the puzzle. The readers which are interested in the “real” PROLOG program
might try to run the following “pure” PROLOG code:

World paths like [uαx . . . βy] are represented by terms as:

app(s(β, y), app(. . . , app(s(α, x), u)))

where the function symbol s(u, v) is used to denote that u is a belief function for
agent v, written earlier as uv. “app” obviously is the application function and
“rel(agent,u,v)” means that world v is accessible from world u by the relation Ragent,
i.e. Ragent(u, v). Finally, “initial” denotes the initial world ι and rMB denotes the
mutual belief accessibility relation.

3We could also use “Knowledge” instead of “Belief” with the difference that something is known
if it is belived and true.

41

r(app(s(a(U),annie),U),annie) :- rMB(initial,U).
r(app(s(c(U),bernard),U),bernard) :- rMB(initial,U).
r(app(s(e,charlotte),initial),charlotte).
r(app(s(k(U),X),U),Y) :- r(U,Y),rMB(initial,U).
r(V,bernard) :- rel(annie,U,V),rel(annie,U,W),rMB(initial,U),r(W,bernard).
r(V,charlotte) :- rel(annie,U,V),rel(annie,U,W),rMB(initial,U),r(W,charlotte).
r(V,charlotte) :- rel(bernard,U,V),rel(bernard,U,W),rMB(initial,U),r(W,charlotte).

rMB(initial,app(s(Y,X),V)).

rel(X,U,app(s(Y,X),U)).

:- r(app(s(b(U),annie),U),annie),rMB(initial,U).
:- r(app(s(d(U),bernard),U),bernard),rMB(initial,U).
:- r(U,annie),r(U,bernard),r(U,charlotte),rMB(initial,U).

It might be interesting to have a look at the proof PROLOG produces and to
translate it back into modal logic.

given 2MB(red(Annie) ∨ red(Bernard) ∨ red(Charlotte))
implies 2MB2A(red(Annie) ∨ red(Bernard) ∨ red(Charlotte))
given 2MB3A¬red(Annie)

by 2MB¬(2Ared(Annie) ∨2A¬red(Annie))
resolvent 2MB3A(red(Bernard) ∨ red(Charlotte))
given 2MB(2Ared(Bernard) ∨2A¬red(Bernard))
resolvent 2MB(2Ared(Bernard) ∨3Ared(Charlotte))
given 2MB(3A¬red(Bernard) ∨ red(Bernard))

by 2MB(2xrY ⇒ rY)
resolvent 2MB(red(Bernard) ∨3Ared(Charlotte))
implies 2MB2B(red(Bernard) ∨3Ared(Charlotte))
given 2MB3B¬red(Bernard)

by 2MB¬(2Bred(Bernard) ∨2B¬red(Bernard))
resolvent 2MB3B3Ared(Charlotte)
given 2MB2B(2Ared(Charlotte) ∨2A¬red(Charlotte))

by 2MB(2Ared(Charlotte) ∨2A¬red(Charlotte))
resolvent 2MB3B2Ared(Charlotte)
given 2MB2B(3A¬red(Charlotte) ∨ red(Charlotte))

by 2MB(2xrY ⇒ rY)
resolvent 2MB3Bred(Charlotte)
given 2MB(2Bred(Charlotte) ∨2B¬red(Charlotte))
resolvent 2MB2Bred(Charlotte)

42

given 2MB(3B¬red(Charlotte) ∨ red(Charlotte))
by 2MB(2xrY ⇒ rY)

resolvent 2MBred(Charlotte)
implies 2Cred(Charlotte)

To be fair: the program loops if the full theory of mutual belief is included. The
reason behind this is that the full mutual belief clauses sometimes act as a world
generator, i.e. they are always able to generate new worlds such that any later goal
which for some reason must fail and therefore backtracks will be called again and
again thus producing all worlds which can possibly be generated. However, this is
actually a problem of PROLOG itself. Solutions to such problems are therefore out
of the scope of this paper.

43

Appendix A

Summary

In this chapter we summarize the PROLOG clauses which have to be added to the
database for the most common modal logics and repeat the respective formula mor-
phisms. The first part contains the theory axioms for constant domain modal logics
and the second part provides the necessary E-clauses which capture the varying
domain case. These are the extra clauses to be added to the clause set of the con-
stant domain case. For readability we omitted to indicate the sorts of the respective
variables since different sorts cannot be mixed up during the PROLOG derivations
anyway as it was explained earlier.

A.1 Constant Domains

A.1.1 Serial Modal Logics

Let Φ be an arbitrary modal logic formula in negation normal form.
The formula morphism Π⋆

F for the constant domain, serial modal logic case is then
defined as:

Π⋆
F(x, u) = x

Π⋆
F(f(t1, . . . , tn), u) = f ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(P (t1, . . . , tn), u) = P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(¬P (t1, . . . , tn), u) = ¬P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(Φ ∨Ψ, u) = Π⋆

F(Φ, u) ∨ Π⋆
F(Ψ, u)

Π⋆
F(Φ ∧Ψ, u) = Π⋆

F(Φ, u) ∧ Π⋆
F(Ψ, u)

Π⋆
F(∀x Φ, u) = ∀x Π⋆

F(Φ, u)

Π⋆
F(∃x Φ, u) = ∃x Π⋆

F(Φ, u)

Π⋆
F(2Φ, u) = ∀v:W R(u, v)⇒ Π⋆

F(Φ, v)

44

Logic Synonym Extra-Clauses

KD none R(u, ux).
KT T, M R(u, u).

R(u, ux).
KD4 none R(u, ux).

R(u, vx)← R(u, v).
KDB none R(u, ux).

R(ux, u).
KDE none R(ι, x).

R(ux, vy).
KT4 S4 R(u, u).

R(u, vx)← R(u, v).
KTB B R(u, u).

R(u, ux).
R(ux, u).

KTB4 S5, KT5, KDB4 R(u, v).
KD4E weak S5 R(u, vx).

Table A.1: Constant Domain, Serial Modal Logics

Π⋆
F(3Φ, u) = ∃x:FR Π⋆

F(Φ, ux)

with initial call Π⋆
F(Φ, ι)

The theory clauses to be added to the PROLOG database can be found in Table
A.1. Note that, as shown in Section 5.1.1, adding the extra unit clause for KD is
not necessary if the translation is changed accordingly. The same obviously holds
for the modal logics KTB4 and KD4E for their background theory is also reflected
by a single unit clause.

A.1.2 Non-Serial Modal Logics

For non-serial modal logics the formula morphism does not change considerably.
The main difference lies in the extra literals which cover the possibility of having
non-normal worlds.

Table A.2 contains the PROLOG clauses which are to be added to the result of
the formula morphism.

45

Logic Synonym Extra-Clauses

K none R(u, ux)← N(u).
K4 none R(u, ux)← N(u).

R(u, vx)← N(v), R(u, v).
KB none R(u, ux)← N(u).

R(ux, u)← N(u).
KE none R(ι, x)← N(ι).

R(ux, vy)← N(u), N(v).
KB4 none R(u, v)← N(ι).
K4E K45 R(u, vx)← N(v).
KBE KB5, KB45, KB4E R(u, v)← N(ι)

Table A.2: Constant Domain, Non-Serial Modal Logics

Π⋆
F(x, u) = x

Π⋆
F(f(t1, . . . , tn), u) = f ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(P (t1, . . . , tn), u) = P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(¬P (t1, . . . , tn), u) = ¬P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(Φ ∨Ψ, u) = Π⋆

F(Φ, u) ∨ Π⋆
F(Ψ, u)

Π⋆
F(Φ ∧Ψ, u) = Π⋆

F(Φ, u) ∧ Π⋆
F(Ψ, u)

Π⋆
F(∀x Φ, u) = ∀x Π⋆

F(Φ, u)

Π⋆
F(∃x Φ, u) = ∃x Π⋆

F(Φ, u)

Π⋆
F(2Φ, u) = ∀v:W R(u, v)⇒ Π⋆

F(Φ, v)

Π⋆
F(3Φ, u) = N(u) ∧ ∃x:FR Π⋆

F(Φ, ux)

with initial call: Π⋆
F(Φ, ι)

A.2 Varying Domains

A.2.1 Serial Modal Logics

Π⋆
F(x, u) = x

Π⋆
F(f(t1, . . . , tn), u) = f ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(P (t1, . . . , tn), u) = P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(¬P (t1, . . . , tn), u) = ¬P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

46

Π⋆
F(Φ ∨Ψ, u) = Π⋆

F(Φ, u) ∨ Π⋆
F(Ψ, u)

Π⋆
F(Φ ∧Ψ, u) = Π⋆

F(Φ, u) ∧ Π⋆
F(Ψ, u)

Π⋆
F(∀x Φ, u) = ∀x E(u, x)⇒ Π⋆

F(Φ, u)

Π⋆
F(∃x Φ, u) = ∃y:FE Π⋆

F(Φ, u)[x/uy]

Π⋆
F(2Φ, u) = ∀v:W R(u, v)⇒ Π⋆

F(Φ, v)

Π⋆
F(3Φ, u) = ∃x:FR Π⋆

F(Φ, ux)

with initial call: Π⋆
F(Φ, ι)

The theory clause is the simple unit clause: E(u, ux).

A.2.2 Non-Serial Modal Logics

Π⋆
F(x, u) = x

Π⋆
F(f(t1, . . . , tn), u) = f ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(P (t1, . . . , tn), u) = P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(¬P (t1, . . . , tn), u) = ¬P ′(u,Π⋆

F(t1, u), . . . ,Π
⋆
F(tn, u))

Π⋆
F(Φ ∨Ψ, u) = Π⋆

F(Φ, u) ∨ Π⋆
F(Ψ, u)

Π⋆
F(Φ ∧Ψ, u) = Π⋆

F(Φ, u) ∧ Π⋆
F(Ψ, u)

Π⋆
F(∀x Φ, u) = ∀x E(u, x)⇒ Π⋆

F(Φ, u)

Π⋆
F(∃x Φ, u) = ∃y:FE Π⋆

F(Φ, u)[x/uy]

Π⋆
F(2Φ, u) = ∀v:W R(u, v)⇒ Π⋆

F(Φ, v)

Π⋆
F(3Φ, u) = N(u) ∧ ∃x:FR Π⋆

F(Φ, ux)

with initial call: Π⋆
F(Φ, ι)

With theory clause E(u, ux) again.

A.2.3 Increasing and Decreasing Domains

The formula morphism does not change for these special cases, however there is a
further theory clause which has to be contained in the clause set, namely:

E(ux, y)← E(u, y) for the case of increasing domains

and
E(u, y)← E(ux, y) for the case of decreasing domains

which just states that any domain element y which exists in world u (ux) also exists
in world ux (u respectively).

Note that the theory axiom for decreasing domains may lead to infinite loops
for input formulae which are not theorems. This does not hold, however, for K5 or
stronger ones (as e.g. K45 or KD5). Here the theory clauses can be simplified to
E(ux, y) and E(ι, [x]) in the serial, increasing domain case, and to E(ux, y)← N(u)

47

and E(ι, [x]) in the non-serial, increasing domain case. For decreasing domains we
analogously get E(u, vxy) and E(ι, [x]) (serial) and E(u, vxy)← N(v) and E(ι, [x])
(non-serial) which cannot run into endless loops.

48

References

[1] Mart̀ın Abadi and Zohar Manna. Modal theorem proving. In Proceedings 8th
CADE, LNCS 230. Springer, 1986.

[2] B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[3] Luis Farinas del Cerro. A simple deduction method for modal logic. Information
Processing Letters, 14(2), 1982.

[4] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.

[5] G. Hughes and M. Cresswell. An Introduction to Modal Logic. Menthuen, Lon-
don, 1968.

[6] R. Moore. Reasoning About Knowledge and Action. PhD thesis, MIT, Cam-
bridge, 1980.

[7] Hans Jürgen Ohlbach. A Resolution Calculus for Modal Logics. PhD thesis,
University of Kaiserslautern, Germany, 1989.

[8] Hans Jürgen Ohlbach. Semantics-based translation methods for modal logics.
Journal of Logic and Computation, 1(5):691–746, 1991.

[9] Krister Segerberg. An essay in classical modal logic. Technical Report 13, Uni-
versity of Uppsala, Filosofiska Studier, 1971. Volume 1-3.

49

