
'$��'$ Æ
��
I N F O R M A T I K

 	

� �A Pra
ti
al Minimum SpanningTree Algorithm Using the Cy
lePropertyIrit Katriel, Peter Sanders and JesperLarsson Tr�a�MPI{I{2002{1{003 O
tober 2002FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U TF �URI N F O R M A T I KStuhlsatzenhausweg 85 66123 Saarbr�u
ken Germany

Authors' AddressesIrit Katriel, Peter SandersStuhlsatzenhausweg 85Max-Plan
k-Institut f�ur Informatik,66123 Saarbr�u
ken, Germanyemail: {irit,sanders}�mpi-sb.mpg.deJesper Larsson Tr�a�C&C Resear
h Laboratories, NEC Europe Ltd.,Sankt Augustin, Germanyemail: traff�

rl-ne
e.de

Abstra
tWe present a simple new algorithm for
omputing minimum spanningtrees that is more than two times faster than the best previously knownalgorithms (for dense, \diÆ
ult" inputs). It is of
on
eptual interest thatthe algorithm uses the property that the heaviest edge in a
y
le
an bedis
arded. Previously this has only been exploited in asymptoti
ally optimalalgorithms that are
onsidered to be impra
ti
al. An additional advantageis that the algorithm
an greatly pro�t from pipelined memory a

ess.Hen
e, an implementation on a ve
tor ma
hine is up to 13 times fasterthan previous algorithms. We outline additional re�nements for MSTsof impli
itly de�ned graphs and the use of the
entral data stru
ture forquerying the heaviest edge between two nodes in the MST. The latter resultis also interesting for sparse graphs.This work is partially supported by DFG grant SA 933/1-1.

KeywordsMinimum Spanning Tree, Minimum Spanning Forest, Algorithm Engineering

1 Introdu
tionGiven an undire
ted
onne
ted graph G with n nodes, m edges and nonneg-ative edge weights, the minimum spanning tree (MST) problem asks for aminimum total weight subset of the edges that forms a spanning tree of G.The
urrent state of the art in MST algorithms shows a gap betweentheory and pra
ti
e. The algorithms used in pra
ti
e are among the old-est network algorithms [4, 16, 8, 13℄ and are all based on the partitionproperty : a lightest edge leaving a set of nodes
an be used for an MST.More spe
i�
ally, Kruskal's algorithm [13℄ is best for sparse graphs. Its run-ning time is asymptoti
ally dominated by the time for sorting the edgesby weight. For dense graphs (m � n), the Jarn��k-Prim (JP) algorithm isbetter [8, 18℄. Using Fibona

i heap priority queues, its exe
ution time isO(n logn+m). Using pairing heaps [5℄ Moret and Shapiro [15℄ get quitefavorable results in pra
ti
e at the pri
e of slightly worse performan
e guar-antees (
(n logn+m log logn)).On the theoreti
al side there is a randomized linear time algorithm [9℄ andan almost linear time deterministi
 algorithm [17℄. But these algorithms areusually
onsidered impra
ti
al be
ause they are
ompli
ated and be
ause the
onstant fa
tors in the exe
ution time look unfavorable. These algorithms
omplement the partition property with the
y
le property : a heaviest edgein any
y
le is not needed for an MST.In this paper we partially
lose this gap. We develop a simpleO(n logn +m)expe
ted time algorithm using the
y
le property that is very fast on densegraphs. Our experiments show that it is more than two times faster thanthe JP algorithm for large dense graphs that require a large number of pri-ority queue updates for JP. For future ar
hite
tures it promises even largerspeedups be
ause it pro�ts from pipelining for hiding memory a

ess laten
y.An implementation on a ve
tor ma
hine shows a speedup by a fa
tor of 13for large dense graphs.Our algorithm is a simpli�
ation of the linear time randomized algo-rithms. Its asymptoti

omplexity is O(m+ n logn). When m� n logn weget a linear time algorithm with small
onstant fa
tors. The key
omponentof these algorithms works as follows. Generate a smaller graph G0 by sele
t-ing a random sample of the edges of G. Find a minimum spanning forest T 0of G0. Then, �lter ea
h edge e 2 E using the
y
le property: Dis
ard e ifit is the heaviest edge on a
y
le in T 0 [feg. Finally, �nd the MST of thegraph that
ontains the edges T 0 and the edges that were not �ltered out.Sin
e MST edges were not dis
arded, this is also the MST of G.Klein and Tarjan [11℄ prove that if the sample graph G0 is obtained byin
luding ea
h edge of G independently with probability p, then the expe
ted1

number of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both re
ursively solved MST instan
es
an be made small.It remains to �nd an eÆ
ient way to implement �ltering.King [10℄ suggests a �ltering s
heme whi
h requires an O�n log m+nn � pre-pro
essing stage, after whi
h the �ltering
an be done with O(1) time peredge (for a total of O(m)). The prepro
essing stage runs Boruvka's [4, 16℄algorithm on the spanning tree T and uses the intermediate results to
on-stru
t a tree B that has the verti
es of G as leaves su
h that: (1) the heaviestedge on the path between two leaves in B is the same as the heaviest edgebetween them in T 0. (2) B is a full bran
hing tree; that is, all the leaves of Bare at the same level and ea
h internal node has at least two sons. (3) B hasat most 2n nodes. It is then possible to apply to B Koml�os's algorithm [12℄for maximum edge weight queries on a full bran
hing tree. This algorithmbuilds a data stru
ture of size O�n log(m+nn)� whi
h
an be used to �nd themaximum edge weight on the path between leaves u and v, denoted F (u; v),in
onstant time. A path between two leaves is divided at their least
om-mon an
estor (LCA) into two half paths and the maximum weight on ea
hhalf path is pre
omputed. In addition, during the prepro
essing stage thealgorithm generates information with whi
h the LCA of two leaves
an befound in
onstant time.In Se
tion 2 we develop a simpler �ltering s
heme whi
h is based onthe order in whi
h the JP algorithm adds nodes to the MSF of the samplegraph G0. We show that using this ordering,
omputing F (u; v) redu
es toa single interval maximum query. This is signi�
antly simpler to implementthan Koml�os's algorithm be
ause (1) we do not need to
onvert the MSF ofthe sample into a di�erent tree. (2) interval maximum
omputation is morestru
tured than path maximum in a full bran
hing tree, where nodes mayhave di�erent degrees. As a
onsequen
e, the prepro
essing stage involves
omputation of simpler fun
tions and needs simpler data stru
tures.Interval maximum
an be found in
onstant time by applying a standardte
hnique that uses pre
omputed tables of total size O(n logn). The tablesstore pre�x minima and suÆx maxima [7℄. We explain how to arrange thesetables in su
h a way that F (u; v)
an be found using two table lookupsfor �nding the JP-order, one xor operation, one operation �nding the mostsigni�
ant nonzero bit, two table lookups in fused pre�x and suÆx tables andsome shifts and adds for index
al
ulations. These operations
an be exe
utedindependently for all edges in
ontrast to the priority queue a

esses of theJP algorithm that have to be exe
uted sequentially to preserve
orre
tness.In Se
tion 3 and Appendix B.1 we report measurements on
urrent high-end mi
ropro
essors that show speedup up to a fa
tor 3.35
ompared to ahighly tuned implementation of the JP algorithm. An implementation on a2

ve
tor
omputer results in even higher speedup of up to 13.Our algorithm is also interesting for sparse graphs when we are interestedin the all-pairs minimax shortest-paths problem [2, 6℄. Details are explainedin Appendix A.3.2 The I-Max-Filter AlgorithmIn Se
tion 2.1 we explain how �nding the heaviest edge between two nodesin an MST
an be redu
ed to �nding an interval maximum. The array usedis the edge weights of the MST stored in the order in whi
h the edges areadded by the JP algorithm. Then in Se
tion 2.2 we explain how this intervalmaximum
an be
omputed using one further table lookup per node, an xoroperation and a
omputation of the position of the most signi�
ant one-bitin an integer. In Se
tion 2.3 we use these
omponents to assemble the I-Max-Filter algorithm for
omputing MSTs. Appendix A presents re�nements thatredu
e the number of
a
he faults, give improved performan
e for impli
itlyde�ned graphs and explain how our algorithm
an be applied to the all-pairsminimax shortest paths problem.2.1 Redu
tion to Interval MaximaThe following lemma shows that by renumbering nodes a

ording to theorder in whi
h they are added to the MST by the JP algorithm, heaviestedge queries
an be redu
ed to simple interval maximum queries.Lemma 1 Consider an MST T = (f0; : : : ; n� 1g ; ET) where the JP algo-rithm (JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei,0 < i < n denote the edge used to add node i to the tree by the JP algorithm.Let wi, denote the weight of ei. Then, for all nodes u < v, the heaviest edgeon the path from u to v in T has weight maxu<j�v wj.Proof: By indu
tion over v. The
laim is trivially true for v = 1. For theindu
tion step we assume that the
laim is true for all pairs of nodes (u; v0)with u < v0 < v and show that it is also true for the pair (u; v). First notethat ev is on the path from u to v be
ause in the JP algorithm u is insertedbefore v and v is an isolated node until ev is added to the tree. Let v0 < vdenote the node at the other end of edge ev. Edge ev is heavier than all theedges ev0+1, : : : ev�1 be
ause otherwise the JP algorithm would have addedv, using ev, earlier. There are two
ases to
onsider (see Figure 1).3

1 4 3 850

1 4 3 850

3
84

5

1

Case 1: v’ < u

Case 2: v’ > u

v’

u
v

8
3

4

5

1

u

v’

v

Figure 1: Illustration of the two
ases of Lemma 1. The JP algorithm addsthe nodes from left to right.Case v0 � u: By the indu
tion hypothesis, the heaviest edge on the pathfrom v0 to u is maxv0<j�uwj. Sin
e all these edges are lighter than ev, themaximum over wu, : : : ,wv �nds the
orre
t answer wv.Case v0 > u: By the indu
tion hypothesis, the heaviest edge on the pathbetween u and v0 has weight maxu<j�v0 wj. Hen
e, the heaviest edge we arelooking for has weight max fwv;maxu<j�v0 wjg. Maximizing over the largerset maxu<j�v wj will return the right answer sin
e ev is heavier than the edgesev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an un
onne
ted graphrather than the MST of a
onne
ted graph. When JP spans a
onne
ted
omponent, it sele
ts an arbitrary node i and adds it to the MSF with wi =1. Then the interval maxima for two nodes whi
h are in two di�erent
omponents is 1, as we would expe
t.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n�1℄, we explain how max a[i::j℄
an be
omputed in
onstant time using prepro
essing time and spa
e O(n logn). The emphasisis on very simple and fast queries sin
e we are looking at appli
ations wheremany more than n logn queries are made. To this end we develop an eÆ
ientimplementation of a basi
 method des
ribed in [7, Se
tion 3.4.3℄ whi
h isa spe
ial
ase of the general method in [3℄. This algorithm might be of4

56 98 41 745688 7677347515 8062526530

77 80

98 98 15 75 77 80

76745275659830

65 75 77 62 767498

7452

417798

88 65 75 77

Level 0

Level 1

Level 2

98 75 34 52 77 8098 7777779898 75 75 56 77 Level 3

56Figure 2: Example of a layers array for interval maxima. The suÆx se
tionsare marked by an extra surrounding box.independent interest for other appli
ations. Slight modi�
ations of this basi
algorithm are ne
essary in order to use it in the I-Max-Filter algorithm. Theywill be des
ribed later. In the following, we assume that n is a power of two.Adaption to the general
ase is simple by either rounding up to the nextpower of two and �lling the array with �1 or by introdu
ing a few
asedistin
tions while initializing the data stru
ture.Consider a
omplete binary tree built on top of a so that the entries of aare the leaves (see level 0 in Figure 2). The idea is to store an array of pre�xor suÆx maxima with every internal node of the tree. Left su

essors storesuÆx maxima. Right su

essors store pre�x maxima. The size of an array isproportional to the size of the subtree rooted at the
orresponding node. To
ompute the interval maximum max a[i::j℄, let v denote the least
ommonan
estor of a[i℄ and a[j℄. Let u denote the left su

essor of v and let w denotethe right su

essor of v. Let u[i℄ denote the suÆx maximum
orrespondingto leaf i in the suÆx maxima array stored in u. Correspondingly, let w[j℄denote the pre�x maximum
orresponding to leaf j in the pre�x maximaarray stored in w. Then max a[i::j℄ = max(u[i℄; w[j℄).We observed that this approa
h
an be implemented in a very simple wayusing a log(n) � n array preSuf. As
an be seen in Figure 2, all suÆx andpre�x arrays in one layer
an be assembled in one array as followspreSuf[`℄[i℄ = � max(a[2`b::i℄) for odd bmax(a[i::(2` + 1)b� 1℄) elsewhere b = �i=2`�.Furthermore, the interval boundaries
an be used to index the arrays. Wesimply have max a[i::j℄ = max(preSuf[`℄[i℄; preSuf[`℄[j℄) where ` = msbPos(i�j); � is the bit-wise ex
lusive-or operation and msbPos(x) = blog2 x
, whi
his equal to the position of the most signi�
ant nonzero bit of x (starting at5

(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Fun
tion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the orderin whi
h JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n� 1℄as des
ribed in Se
tion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ andwe < preSuf[`℄[jpNum[v℄℄ thenadd e to E00return JP-MST(E00)Figure 3: The I-Max-Filter algorithm0). Layer 0 is identi
al to a. msbPos(x)
an be
omputed by a table lookup1.A further optimization stores a pointer to the array preSuf[`℄ in this layertable. As the
omputation is symmetri
, we
an
ondu
t a table lookup withindi
es i; j without knowing whether i < j or j < i.To use this data stru
ture for the I-Max-Filter algorithm we need a smallmodi�
ation sin
e we are interested in maxima of the form max a[min(i; j)+1::max(i; j)℄ without knowing whi
h of two endpoints is the smaller. Herewe simply note that the approa
h still works if we rede�ne the suÆx maximato ex
lude the �rst entry, i.e., preSuf[`℄[i℄ = max(a[i+1::(2`+1) �i=2`�� 1℄)if �i=2`� is even.2.3 Putting the Pie
es TogetherFigure 3 summarizes the I-Max-Filter algorithm and the following Theoremestablishes its
omplexity.Theorem 1 The I-Max-Filter algorithm
omputes MSTs in expe
ted timemT�lter + O(n logn+pnm) where T�lter is the time required to query the�lter about one edge.In parti
ular, if m = !(n logn), the exe
ution time is (1 + o(1))mT�lter.1Alternatively, one
ould inspe
t the exponent in a
oating point representation of x.6

Proof: Taking a sample
an be implemented to run in
onstant time persampled element. Running JP on the sample takes time O(n logn +pnm)if a Fibona

i heap (or another data stru
ture with similar time bounds)is used for the priority queue. The lookup tables
an be
omputed in timeO(n logn). The �ltering loop takes time mT�lter.2 By the sampling lemmaexplained in the introdu
tion [11, Lemma 1℄, the expe
ted number of edgesin E 00 is n=pn=m = pnm. Hen
e, running JP on E 00 takes expe
ted timeO(n logn+pnm). Summing all the
omponent exe
ution times yields the
laimed time bound.3 Experimental EvaluationThe obje
tive of this se
tion is to demonstrate that the I-Max-Filter algo-rithm is a serious
ontestant for the fastest MST algorithm for dense graphs(m � n logn). We
ompare our implementation with a fast implementa-tion of the JP algorithm. In [15℄ the exe
ution time of the JP algorithmusing di�erent priority queues is
ompared and pairing heaps are found tobe the fastest on dense graphs. We took the pairing heap from their
odeand
ombined it with a faster, array based graph representation.3 This im-plementation of JP
onsistently outperforms [15℄ and LEDA [14℄.3.1 Graph RepresentationsOne issue in
omparing MST-algorithms for dense graphs is the underlyinggraph representation. The JP algorithm requires a representation that allowsfast iteration over all edges that are adja
ent to a given node. In a linked listimplementation ea
h edge resides in two linked lists; one for ea
h in
identnode. In our adja
en
y array representation ea
h edge is represented twi
ein an array with 2m entries su
h that the edges adja
ent to ea
h sour
e nodeare stored
ontiguously. For ea
h edge, the target node and weight is stored.In terms of spa
e requirements, ea
h sour
e and ea
h target is stored on
e,and only the weight is dupli
ated. A se
ond array of size n holds for ea
hnode a pointer to the beginning of its adja
en
y array.The I-Max-Filter algorithm, on the other hand,
an be implemented towork well with any representation that allows sampling edges in time linear2Note that it would be
ounterprodu
tive to exempt the nodes in E0 from �lteringbe
ause this would require an extra test for ea
h edge or we would have to
omputeE �E0 expli
itly during sampling.3The original implementation [15℄ uses linked lists whi
h were quite appropriate at thetime, when
a
he e�e
ts were less important.7

in the sample size and that allows fast iteration over all edges. In parti
ular,it is suÆ
ient to store ea
h edge on
e. Our implementation for I-Max-Filteruses an array in whi
h ea
h edge appears on
e as (u; v) with u < v and theedges are sorted by sour
e node (u).4 Only for the two small graphs for whi
hthe JP-algorithm is
alled it generates an adja
en
y array representation (seeFigure 3).To get a fair
omparison we de
ided that ea
h algorithm gets the originalinput in its \favorite" representation. This de
ision favors JP be
ause the
onversion from an edge array to an adja
en
y array is mu
h more expensivethan vi
e versa. Furthermore, I-Max-Filter
ould run on the adja
en
y arrayrepresentation with only a small overhead: during the sampling and �lteringstages it would use the adja
en
y array while ignoring edges (u; v) with u > v.3.2 Filtering A

ess PatternIn the implementation, we a

ess the interval maxima data stru
ture by JPorder of sour
e node rather than by the order in whi
h the edges happen tobe stored. In Appendix A.1 we explain why this in
reases the
a
he eÆ
ien
yof these a

esses. With the graph representation we use, this a

ess patternadds one irregular
a
he a

ess per node, when a

essing the �rst edge of anode's list. In order for the optimization to be bene�
ial, these n additionalirregular a

esses need to be
ompensated by the more regular a

esses to thetable. For very small densities, then, we might lose. In the results reportedhere (for graphs with up to 10,000 nodes), this a

ess sequen
e resulted in aspeedup of about 5 per
ent. For graphs with more nodes, the table is largerand so is the impa
t of this heuristi
. For instan
e, on graphs with 25,000nodes and just over 31,000,000 edges we observed a speedup of 11 per
ent onthe SUN. All reported exe
ution times are with this optimization enabled.3.3 Implementation on Ve
tor-Ma
hinesA ve
tor-ma
hine has the
apability to perform operations on ve
tors (in-stead of s
alars) of some �xed size (in
urrent ve
tor-ma
hines 256 or 512elements) in one instru
tion. Ve
tor-instru
tions typi
ally in
lude arithmeti
and boolean operations, memory a

ess instru
tions (
onse
utive, strided,and indire
t), and spe
ial instru
tions like pre�x-summation and minimumsear
h. Ve
torized memory a

esses
ir
umvent the
a
he. The �ltering loop4These requirements
ould be dropped at very small
ost. In parti
ular, I-Max-Filter
an work eÆ
iently with a
ompletely unsorted edge array or with an adja
en
y arrayrepresentation that stores ea
h edge only in one dire
tion. The latter only needs spa
e form+ n node indi
es and m edge weights. 8

of Figure 3
an readily be implemented on a ve
tor-ma
hine. The edgesare stored
onse
utively in an array and
an immediately be a

essed in ave
torized loop; indire
t memory a

ess makes ve
torized lookup of sour
eand target verti
es possible. For the �ltering itself, bitwise ex
lusive or andtwo additional table lookups in the preSuf array are ne
essary. Using thepre�x-summation
apabilities, the edges that are not �ltered out are stored
onse
utively in a new edge array. Also the
onstru
tion of the preSuf data-stru
ture
an be ve
torized. The only possibility for ve
torization in theJP-MST algorithm is the loop that s
ans and updates adja
ent verti
es ofthe vertex just added to the MST. We divide this loop into a s
anning loopwhi
h
olle
ts the adja
ent verti
es for whi
h a priority queue update isneeded, and an update loop performing the a
tual priority queue updates.Using pre�x-summation the s
anning loop
an immediately be ve
torized.For the update there is little hope, unless a favorable data stru
ture allowingsimultaneous de
rease-key operations
an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and
om-piled using GNU g++ version 3.0.4 with optimization level -O6. We usea SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ pro
essors. InAppendix B.1 we also give measurements on a Dell Pre
ision 530 work-station with 1.7 GHz Intel P4 Xeon pro
essors that show similar results.Sour
e
odes are available at http://www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.We performed measurements with four di�erent families of graphs, ea
hwith adjustable edge density � = 2m=n(n� 1). This in
ludes all the familiesin [15℄ that admit dense inputs. A test instan
e is de�ned by three param-eters: the graph type, the number of nodes and the density of edges (thenumber of edges is
omputed from these parameters). Ea
h reported resultis the average of ten exe
utions of the relevant algorithm; ea
h on a di�er-ent randomly generated graph with the given parameters. Furthermore, theI-Max-Filter algorithm is randomized be
ause the sample graph is sele
tedat random. Despite the randomization, the varian
e of the exe
ution timeswithin one test was
onsistently very small (less than 1 per
ent), hen
e weonly plot the averages.Worst-Case: � � n(n� 1)=2 edges are sele
ted at random and the edges areassigned weights that
ause JP to perform as many De
rease Key operationsas possible [15℄.Linear-Random: � � n(n � 1)=2 edges are sele
ted at random. Ea
h edge(u; v) is assigned the weight w(u; v) = ju� vj where u and v are the integer9

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 4: Worst-Case graph, 10000 nodes, SUN.

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 5: Linear-Random graph, 10000 nodes, SUN.IDs of the nodes.Uniform-Random: � �n(n� 1)=2 edges are sele
ted at random and ea
h isassigned an edge weight whi
h is sele
ted uniformly at random.Random-Geometri
:[15℄ Nodes are random 2D points in a 1 � y re
tan-gle for some stret
h fa
tor y > 0. Edges are between nodes with Eu
lideandistan
e at most � and the weight of an edge is equal to the distan
e be-tween its endpoints. The parameter � indire
tly
ontrols density whereasthe stret
h fa
tor y allows us to interpolate between behavior similar to
lassUniform-Random and behavior similar to
lass Linear-Random.

10

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 6: Uniform-Random graph, 10000 nodes, SUN.3.5 Results on Mi
ropro
essorsFigures 4{6 show exe
ution times per edge on the SUN for the three graphfamilies Worst-Case, Linear-Random and Uniform-Random for n = 10000nodes and varying density. We
an see that I-Max-Filter is up to 2.46 timesfaster than JP. This is not only for the \engineered" Worst-Case instan
esbut also for Linear-Random graphs. The speedup is smaller for Uniform-Random graphs. On the Pentium 4 (see Appendix B.1) JP is even fasterthan I-Max-Filter on the Uniform-Random graphs. The reason is that for\average" inputs JP needs to perform only a sublinear number of de
rease-key operations so that the part of
ode dominating the exe
ution time of JPis s
anning adja
en
y lists and
omparing the weight of ea
h edge with thedistan
e of the target node from the
urrent MST. There is no hope to besigni�
antly faster than that. On the other hand, we observed a speedupof up to a fa
tor of 3.35 on dense Worst-Case graphs. Hen
e, when we saythat I-Max-Filter outperforms JP this is with respe
t to spa
e
onsumption,simpli
ity of input
onventions and worst-
ase performan
e guarantees ratherthan average
ase exe
ution time.On very sparse graphs, I-Max-Filter is up to two times slower than JP,be
ause pmn = �(m) and as a result both the sample graph and the graphthat remains after the �ltering stage are not mu
h smaller than the originalgraph. Hen
e, the runtime is equivalent to two runs of JP on the input.Appendix B.2 in
ludes similar plots for Random-Geometri
 graphs withdi�erent stret
h fa
tors y. When the area from whi
h node lo
ations aresele
ted is
lose to a square, the behavior of the MST algorithms is similarto that on the Uniform-Random graphs. As the stret
h fa
tor in
reases, thegraph be
omes
loser to a Linear-Random graph. This is re
e
ted in the11

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 7: Worst-Case graph, 10000 nodes, NEC SX-5results, whi
h show that the bene�t from �ltering in
reases with the stret
h.3.6 Results On A Ve
tor Ma
hineFigures 7{9 show similar measurements on a NEC SX-5 ve
tor
omputer.For ea
h of the two algorithms (JP and I-Max-Filter), runtimes per edge areplotted for s
alar as well as ve
torized version. The results of the s
alar
odeshow, on
e again, that JP is very fast on Uniform-Random graphs while I-Max-Filter is faster on the diÆ
ult graphs. In addition, we
an see that onthe \diÆ
ult" inputs I-Max-Filter bene�ts more than JP from ve
torization.This is to be expe
ted; JP be
omes less ve
torizable when many de
reasekey operations are performed, while the exe
ution time of I-Max-Filter isdominated by the �ltering stage, whi
h in turn is not sensitive to the graphtype. As a
onsequen
e, we see a speedup of up to 13 on the \diÆ
ult"graphs 5.5
omparing the ve
torized versions of JP and I-Max-Filter.
12

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 8: Linear-Random graph, 10000 nodes, NEC SX-5

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 9: Uniform-Random graph, 10000 nodes, NEC SX-513

4 Con
lusionsWe have seen that the
y
le property
an be pra
ti
ally useful to designimproved MST algorithms for rather dense graphs. An open question iswhether we
an �nd improved pra
ti
al algorithms for sparse graphs thatuse further ideas from the asymptoti
ally best theoreti
al algorithms. Oneissue is whether redu
ing the number of nodes based on Boruvka's [4, 16℄algorithm has
ompetitive speed. On
urrent ma
hines this seems a bitunlikely for sequential internal memory algorithms. But node redu
tion hasgreat potential for parallel and external-memory implementations.Referen
es[1℄ J. Abello, A. L. Bu
hsbaum, and J. R. Westbrook. A fun
tional ap-proa
h to external graph algorithms. Algorithmi
a, 32:437{458, 2002.[2℄ R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. Prenti
eHall, 1993.[3℄ N. Alon and B. S
hieber. Optimal prepro
essing for answering on-lineprodu
t queries. Te
hni
al Report TR 71/87, Tel Aviv University, 1987.[4℄ O. Boruvka. O jist�em probl�emu minim�aln��m. Pr�a
e, Moravsk�ePrirodovede
k�e Spole
nosti, pages 1{58, 1926.[5℄ M. L. Fredman. On the eÆ
ien
y of pairing heaps and related datastru
tures. Journal of the ACM, 46(4):473{501, July 1999.[6℄ T. C. Hu. The maximum
apa
ity route problem. Operations Resear
h,9:898{900, 1961.[7℄ J. J�aj�a. An Introdu
tion to Parallel Algorithms. Addison Wesley, 1992.[8℄ V. Jarn��k. O jist�em probl�emu minim�aln��m. Pr�a
a Moravsk�eP�r��rodov�ede
k�e Spole�
nosti, 6:57{63, 1930. In Cze
h.[9℄ David Karger, Philip N. Klein, and Robert E. Tarjan. A randomizedlinear-time algorithm for �nding minimum spanning trees. J. Asso
.Comput. Ma
h., 42:321{329, 1995.[10℄ V. King. A simpler minimum spanning tree veri�
ation algorithm. Al-gorithmi
a, 18:263{270, 1997. 14

[11℄ P. N. Klein and R. E. Tarjan. A randomized linear-time algorithm for�nding minimum spanning trees. In Pro
eedings of the Twenty-SixthAnnual ACM Symposium on the Theory of Computing, pages 9{15,Montr�eal, Qu�ebe
, Canada, 23{25 May 1994.[12℄ J. Koml�os. Linear veri�
ation for spanning trees. In IEEE, editor, 25thannual Symposium on Foundations of Computer S
ien
e, O
tober 24{26, 1984, Singer Island, Florida, pages 201{206, 1109 Spring Street,Suite 300, Silver, 1984. IEEE Computer So
iety Press. IEEE
atalogno. 84CH2085-9.[13℄ J. B. Kruskal. On the shortest spanning subtree of a graph and thetraveling salesman problem. Pro
eedings of the Ameri
an Mathemati
alSo
iety, 7:48{50, 1956.[14℄ K. Mehlhorn and S. N�aher. The LEDA Platform of Combinatorial andGeometri
 Computing. Cambridge University Press, 1999.[15℄ B. M. E. Moret and H. D. Shapiro. An empiri
al analysis of algorithmsfor
onstru
ting a minimum spanning tree. In Workshop Algorithmsand Data Stru
tures (WADS), number 519 in LNCS, pages 400{411.Springer, August 1991.[16℄ Nesetril, Milkova, and Nesetrilova. Otakar boruvka on minimum span-ning tree problem: Translation of both the 1926 papers,
omments,history. DMATH: Dis
rete Mathemati
s, 233, 2001.[17℄ S. Pettie and V. Rama
handran. An optimal minimum spanning treealgorithm. In 27th ICALP, volume 1853 of LNCS, pages 49{60. Springer,2000.[18℄ R. C. Prim. Shortest
onne
tion networks and some generalizations.Bell Systems Te
hni
al Journal, pages 1389{1401, November 1957.[19℄ D. D. Sleator and R. E. Tarjan. A data stru
ture for dynami
 trees.Journal of Computer and System S
ien
es, 26(3):362{391, 1983.
15

iFigure 10: The a
tive set for sour
e node with jpNum = i.A Algorithmi
 Re�nementsA.1 Ca
he EÆ
ien
yBy
arefully sele
ting the order in whi
h the edges are �ltered, we
an redu
ethe spa
e requirements of the interval maxima data stru
ture from O(n logn)to O(n). Assume that the edges are stored as pairs (i; j) and that they aresorted by sour
e node (i). We propose to �lter the edges in the order thattheir sour
e nodes were inserted by the JP algorithm.Let the a
tive set Ai be the set of pre�x and suÆx arrays that
an be a
-
essed while �ltering the edges (u; v) su
h that jpNum[u℄ = i (see Figure 10).Note that ea
h a
tive set
ontains at most logn arrays
orresponding to thesour
e node and logn arrays
orresponding to the target node: from ea
hlayer, one pre�x array to the right of the sour
e node and one suÆx arrayto its left are a
tive. When �ltering iterates over the edges by nonde
reasingjpNum of the sour
e node i, ea
h pre�x or suÆx array be
omes a
tive in Aion
e, stays a
tive for a while, and then be
omes ina
tive forever. This meansthat the arrays
an be generated on-the-
y instead of in a prepro
essing stagesu
h that ea
h pre�x or suÆx array is generated at most on
e and not morethan 2n spa
e is required at a time.Even if the whole O(n logn) table is
al
ulated in a prepro
essing stage,this observation gives us a way to improve
a
he eÆ
ien
y: �ltering the edgesin the order des
ribed above redu
es the irregularity of
a
he a

essed su
hthat at any point in time, O(n) a
tive entries are in
a
he.A.2 Impli
itly De�ned GraphsMany appli
ations of MSTs work with
omplete graphs that are de�ned im-pli
itly by an ora
le fun
tion that returns the edge weight for any pair ofnodes [2℄. In this
ase our algorithm
an be implemented to work withlinear spa
e: Run JP on an impli
itly de�ned sample of the graph by pi
k-ing sample edges with sour
e v only when v is inserted into the tree. For16

the �ltering stage, we are free to iterate over the edges (u; v) su
h that(jpNum[u℄; jpNum[v℄) are visited in in
reasing lexi
ographi
 order. This notonly allows us to
ompute lookup tables just in time as des
ribed in Ap-pendix A.1 but also means that these arrays are just s
anned leading to onlyO(n + n2=B)
a
he faults overall for
a
he blo
ks of size B. Furthermore,the inner loop from Figure 3
an be rewritten in su
h a way that most valuesare kept in registers. Only
omputing the pre�x maximum for the targetnode will require a single table lookup. Edges that are not �ltered out arenot stored but immediately inserted into the MST of edges seen so far. Usingdynami
 trees this
an be implemented to run in O(n) spa
e and O(logn)time per opertation [1, 19℄. All in all, we get an O(n2) time O(n) spa
ealgorithm for impli
itly de�ned graphs with very favorable
onstant fa
tors.A.3 All-Pairs Minimax Shortest PathsA minimax shortest path from u to v is a path P from u to v that minimizesthe weight of the heaviest edge on P . An important appli
ation of minimumspanning trees is the observation that a minimax shortest path
an be ob-tained by taking the unique path from u to v in the minimum spanning tree[2, 6℄. In parti
ular, the heaviest edge weight on this path
an be
omputedin
onstant time using O(n logn+m) prepro
essing time by running the JPalgorithm on the input and
onstru
ting the lookup tables des
ribed in Se
-tions 2.1 and 2.2. Our
ontribution here is a very simple method with better
onstant fa
tors for the queries.B More Experimental ResultsB.1 Results on an Intel pro
essorFigures 11{13 show exe
ution time on a PC per edge for the three graphfamilies Worst-Case, Linear-Random, and Uniform-Random, for n = 7000nodes and varying density (Currently this ma
hine la
ks suÆ
ient memoryfor reliable measurements with n = 10000).B.2 Random-Geometri
 graphsFigures 14{16 show exe
ution time per edge on a PC for three families ofRandom-Geometri
 graphs; with stret
h fa
tors y = 2; 160 and 500. In the�rst family, the nodes are spread in something
lose to a square, and the MSTalgorithms behave as on the Uniform-Random graphs; JP is faster be
ause17

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 11: Worst-Case graph, 7000 nodes, PC.
0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 12: Linear-Random graph, 7000 nodes, PC.
0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 13: Uniform-Random graph, 7000 nodes, PC.18

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 14: Random-Geometri
 graph, stret
h fa
tor 2, 7000 nodes, PC.

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 15: Random-Geometri
 graph, stret
h fa
tor 160, 7000 nodes, PC.there are few de
rease keys operations. As y in
reases, the graphs be
ome
loser to the Linear-Random family and the plots, a

ordingly, re
e
t anin
reasing gain from �ltering.B.3 Larger graphs with �xed densityFigures 17 and 18 show the e�e
t of in
reasing the size of a Linear-Randomgraph while keeping the density �xed at 0.1. The results show again thatI-Max-Filter is faster than JP on large graphs and that I-Max-Filter bene-�ts more from the ve
tor ma
hine. Furthermore, these e�e
ts be
ome moresigni�
ant as the graph size in
reases.
19

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 16: Random-Geometri
 graph, stret
h fa
tor 500, 7000 nodes, PC.

0

50

100

150

200

250

300

350

400

450

500

1000 10000 100000

T
im

e
pe

r
ed

ge
 [n

s]

Number of nodes

Prim (Linear-Random)
I-Max (Linear-Random)

Figure 17: Linear-Random graph, density 0.1, SUN.
20

0

200

400

600

800

1000

1200

1400

1000 10000 100000

T
im

e
pe

r
ed

ge
 [n

s]

Number Of Nodes

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 18: Linear-Random graph, density 0.1, NEC SX-5.Graph Type Edge Density Filter Time (se
) Total Time (se
)Uniform-Random 0.5 4.75 6.26Uniform-Random 0.9 8.80 10.70Linear-Random 0.5 4.56 5.90Linear-Random 0.9 8.72 10.36Worst-Case 0.5 4.15 5.60Worst-Case 0.9 7.73 9.34Table 1: Filtering time
ompared to other stages. All graphs are with 10000nodes.B.4 Lower Order Terms Of The I-Max-Filter algorithmTable 1 shows the runtime on a SUN of the �ltering stage as well as thetotal running time of the I-Max-Filter algorithm, for several instan
es. Thedi�eren
e between the two �gures is the time required for generating a sampleof the edges,
onverting it to adja
en
y list form, running JP on it and afterthe �lter stage,
onverting the remaining edges into adja
en
y list form andrunning JP on them. The results indi
ate that the �ltering stage stronglydominates the exe
ution time. 21

������ kI N F O R M A T I KBelow you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. Theyare available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Mostof the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have anyquestions
on
erning ftp or WWW a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
hare not ne
essarily free of
harge)
an be ordered either by regular mail or by e-mail at the address below.Max-Plan
k-Institut f�ur InformatikLibraryattn. Anja Be
kerStuhlsatzenhausweg 8566123 Saarbr�u
kenGERMANYe-mail: library�mpi-sb.mpg.deMPI-I-2002-4-002 F. Drago, W. Martens, K. Myszkowski,H. Seidel ?MPI-I-2002-4-001 M. Goesele Tutorial Notes ACM SM 02 A Framework for theA
quisition, Pro
essing and Intera
tive Display of HighQuality 3D ModelsMPI-I-2002-2-008 W. Charatonik, J. Talbot Atomi
 Set Constraints with Proje
tionMPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the E�e
tiveness of Logi
 in ComputerS
ien
e in Honour of Moshe VardiMPI-I-2002-1-008 P. Sanders, J.L. Tr�a� The Fa
tor Algorithm for All-to-all Communi
ation onClusters of SMP NodesMPI-I-2002-1-002 F. Grandoni In
rementally maintaining the number of l-
liquesMPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the SteinerproblemMPI-I-2001-4-005 H.P.A. Lens
h, M. Goesele, H. Seidel A Framework for the A
quisition, Pro
essing andIntera
tive Display of High Quality 3D ModelsMPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Inje
tiveDomainMPI-I-2001-4-003 K. Daubert, W. Heidri
h, J. Kautz,J. Dis
hler, H. Seidel EÆ
ient Light Transport Using Pre
omputed VisibilityMPI-I-2001-4-002 H.P.A. Lens
h, J. Kautz, M. Goesele,H. Seidel A Framework for the A
quisition, Pro
essing,Transmission, and Intera
tive Display of High Quality3D Models on the WebMPI-I-2001-4-001 H.P.A. Lens
h, J. Kautz, M. Goesele,W. Heidri
h, H. Seidel Image-Based Re
onstru
tion of Spatially VaryingMaterialsMPI-I-2001-2-006 H. Nivelle, S. S
hulz Pro
eeding of the Se
ond International Workshop of theImplementation of Logi
sMPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based de
ision pro
edures for the universaltheory of some
lasses of distributive latti
es withoperatorsMPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher OrderNatural Dedu
tion using Type TheoryMPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms onCompletely Unimodel Hyper
ubesMPI-I-2001-2-002 P. Maier A Set-Theoreti
 Framework for Assume-GuaranteeReasoningMPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally OrderedDivisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Redu
tion Te
hniques for the Steiner TreeProblem: A Combination of Alternative-andBound-Based Approa
hesMPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Te
hniques for the Steiner ProblemMPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees inHypergraphsMPI-I-2001-1-004 S. Hert, M. Ho�mann, L. Kettner, S. Pion,M. Seel An Adaptable and Extensible Geometry KernelMPI-I-2001-1-003 M. Seel Implementation of Planar Nef PolyhedraMPI-I-2001-1-002 U. Meyer Dire
ted Single-Sour
e Shortest-Paths in LinearAverage-Case TimeMPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Conne
ted NetworksMPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperboli
 Hausdor� Distan
e for Medial AxisTransformMPI-I-2000-4-002 L.P. Kobbelt, S. Bis
ho�, K. K�ahler,R. S
hneider, M. Bots
h, C. R�ossl,J. Vorsatz Geometri
 Modeling Based on Polygonal MeshesMPI-I-2000-4-001 J. Kautz, W. Heidri
h, K. Daubert Bump Map Shadows for OpenGL RenderingMPI-I-2000-2-001 F. Eisenbrand Short Ve
tors of Planar Latti
es Via ContinuedFra
tionsMPI-I-2000-1-005 M. Seel, K. Mehlhorn In�maximal Frames: A Te
hnique for Making LinesLook Like SegmentsMPI-I-2000-1-004 K. Mehlhorn, S. S
hirra Generalized and improved
onstru
tive separationbound for real algebrai
 expressionsMPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First S
heduling of ParallelComputations with Syn
hronization VariablesMPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristi
 for Telephone GossipingMPI-I-2000-1-001 E. Althaus, O. Kohlba
her, H. Lenhof,P. M�uller A bran
h and
ut algorithm for the optimal solution ofthe side-
hain pla
ement problemMPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy ImageCompressionMPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. S
hobbens Axioms for Real-Time Logi
sMPI-I-1999-3-004 J. Raskin, P. S
hobbens Proving a
onje
ture of Andreka on temporal logi
MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. S
hobbens Fully De
idable Logi
s, Automata and Classi
alTheories for De�ning Regular Real-Time LanguagesMPI-I-1999-3-002 J. Raskin, P. S
hobbens The Logi
 of Event Clo
ksMPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and theHigher-Order Mat
hing Problem in the Simply TypedLambda Cal
ulusMPI-I-1999-2-008 A. Bo
kmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in FixedDimensionMPI-I-1999-2-007 G. Delzanno, J. Raskin Symboli
 Representation of Upward-
losed SetsMPI-I-1999-2-006 A. Nonnengart A Dedu
tive Model Che
king Approa
h for HybridSystemsMPI-I-1999-2-005 J. Wu Symmetries in Logi
 ProgramsMPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Ja
quemard,M. Veanes De
idable fragments of simultaneous rigid rea
habilityMPI-I-1999-2-003 U. Waldmann Can
ellative Superposition De
ides the Theory ofDivisible Torsion-Free Abelian GroupsMPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite TreesMPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to re
ognize a
orre
t Voronoi diagram ofline segmentsMPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDAMPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?MPI-I-1999-1-004 M. Nissen, K. Weihe How generi
 language extensions enable \open-world"desing in JavaMPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Con
urrent A

ess to Parallel Disks

MPI-I-1999-1-002 N.P. Boghossian, O. Kohlba
her,H.-. Lenhof BALL: Bio
hemi
al Algorithms LibraryMPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoreti
al and Experimental Study on theConstru
tion of SuÆx Arrays in External MemoryMPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the FirstElementary Closure of a Polyhedron

