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Abstra
tWe present a simple new algorithm for 
omputing minimum spanningtrees that is more than two times faster than the best previously knownalgorithms (for dense, \diÆ
ult" inputs). It is of 
on
eptual interest thatthe algorithm uses the property that the heaviest edge in a 
y
le 
an bedis
arded. Previously this has only been exploited in asymptoti
ally optimalalgorithms that are 
onsidered to be impra
ti
al. An additional advantageis that the algorithm 
an greatly pro�t from pipelined memory a

ess.Hen
e, an implementation on a ve
tor ma
hine is up to 13 times fasterthan previous algorithms. We outline additional re�nements for MSTsof impli
itly de�ned graphs and the use of the 
entral data stru
ture forquerying the heaviest edge between two nodes in the MST. The latter resultis also interesting for sparse graphs.This work is partially supported by DFG grant SA 933/1-1.
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1 Introdu
tionGiven an undire
ted 
onne
ted graph G with n nodes, m edges and nonneg-ative edge weights, the minimum spanning tree (MST) problem asks for aminimum total weight subset of the edges that forms a spanning tree of G.The 
urrent state of the art in MST algorithms shows a gap betweentheory and pra
ti
e. The algorithms used in pra
ti
e are among the old-est network algorithms [4, 16, 8, 13℄ and are all based on the partitionproperty : a lightest edge leaving a set of nodes 
an be used for an MST.More spe
i�
ally, Kruskal's algorithm [13℄ is best for sparse graphs. Its run-ning time is asymptoti
ally dominated by the time for sorting the edgesby weight. For dense graphs (m � n), the Jarn��k-Prim (JP) algorithm isbetter [8, 18℄. Using Fibona

i heap priority queues, its exe
ution time isO(n logn+m). Using pairing heaps [5℄ Moret and Shapiro [15℄ get quitefavorable results in pra
ti
e at the pri
e of slightly worse performan
e guar-antees (
(n logn+m log logn)).On the theoreti
al side there is a randomized linear time algorithm [9℄ andan almost linear time deterministi
 algorithm [17℄. But these algorithms areusually 
onsidered impra
ti
al be
ause they are 
ompli
ated and be
ause the
onstant fa
tors in the exe
ution time look unfavorable. These algorithms
omplement the partition property with the 
y
le property : a heaviest edgein any 
y
le is not needed for an MST.In this paper we partially 
lose this gap. We develop a simpleO(n logn +m)expe
ted time algorithm using the 
y
le property that is very fast on densegraphs. Our experiments show that it is more than two times faster thanthe JP algorithm for large dense graphs that require a large number of pri-ority queue updates for JP. For future ar
hite
tures it promises even largerspeedups be
ause it pro�ts from pipelining for hiding memory a

ess laten
y.An implementation on a ve
tor ma
hine shows a speedup by a fa
tor of 13for large dense graphs.Our algorithm is a simpli�
ation of the linear time randomized algo-rithms. Its asymptoti
 
omplexity is O(m+ n logn). When m� n logn weget a linear time algorithm with small 
onstant fa
tors. The key 
omponentof these algorithms works as follows. Generate a smaller graph G0 by sele
t-ing a random sample of the edges of G. Find a minimum spanning forest T 0of G0. Then, �lter ea
h edge e 2 E using the 
y
le property: Dis
ard e ifit is the heaviest edge on a 
y
le in T 0 [ feg. Finally, �nd the MST of thegraph that 
ontains the edges T 0 and the edges that were not �ltered out.Sin
e MST edges were not dis
arded, this is also the MST of G.Klein and Tarjan [11℄ prove that if the sample graph G0 is obtained byin
luding ea
h edge of G independently with probability p, then the expe
ted1



number of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both re
ursively solved MST instan
es 
an be made small.It remains to �nd an eÆ
ient way to implement �ltering.King [10℄ suggests a �ltering s
heme whi
h requires an O�n log m+nn � pre-pro
essing stage, after whi
h the �ltering 
an be done with O(1) time peredge (for a total of O(m)). The prepro
essing stage runs Boruvka's [4, 16℄algorithm on the spanning tree T and uses the intermediate results to 
on-stru
t a tree B that has the verti
es of G as leaves su
h that: (1) the heaviestedge on the path between two leaves in B is the same as the heaviest edgebetween them in T 0. (2) B is a full bran
hing tree; that is, all the leaves of Bare at the same level and ea
h internal node has at least two sons. (3) B hasat most 2n nodes. It is then possible to apply to B Koml�os's algorithm [12℄for maximum edge weight queries on a full bran
hing tree. This algorithmbuilds a data stru
ture of size O�n log(m+nn )� whi
h 
an be used to �nd themaximum edge weight on the path between leaves u and v, denoted F (u; v),in 
onstant time. A path between two leaves is divided at their least 
om-mon an
estor (LCA) into two half paths and the maximum weight on ea
hhalf path is pre
omputed. In addition, during the prepro
essing stage thealgorithm generates information with whi
h the LCA of two leaves 
an befound in 
onstant time.In Se
tion 2 we develop a simpler �ltering s
heme whi
h is based onthe order in whi
h the JP algorithm adds nodes to the MSF of the samplegraph G0. We show that using this ordering, 
omputing F (u; v) redu
es toa single interval maximum query. This is signi�
antly simpler to implementthan Koml�os's algorithm be
ause (1) we do not need to 
onvert the MSF ofthe sample into a di�erent tree. (2) interval maximum 
omputation is morestru
tured than path maximum in a full bran
hing tree, where nodes mayhave di�erent degrees. As a 
onsequen
e, the prepro
essing stage involves
omputation of simpler fun
tions and needs simpler data stru
tures.Interval maximum 
an be found in 
onstant time by applying a standardte
hnique that uses pre
omputed tables of total size O(n logn). The tablesstore pre�x minima and suÆx maxima [7℄. We explain how to arrange thesetables in su
h a way that F (u; v) 
an be found using two table lookupsfor �nding the JP-order, one xor operation, one operation �nding the mostsigni�
ant nonzero bit, two table lookups in fused pre�x and suÆx tables andsome shifts and adds for index 
al
ulations. These operations 
an be exe
utedindependently for all edges in 
ontrast to the priority queue a

esses of theJP algorithm that have to be exe
uted sequentially to preserve 
orre
tness.In Se
tion 3 and Appendix B.1 we report measurements on 
urrent high-end mi
ropro
essors that show speedup up to a fa
tor 3.35 
ompared to ahighly tuned implementation of the JP algorithm. An implementation on a2



ve
tor 
omputer results in even higher speedup of up to 13.Our algorithm is also interesting for sparse graphs when we are interestedin the all-pairs minimax shortest-paths problem [2, 6℄. Details are explainedin Appendix A.3.2 The I-Max-Filter AlgorithmIn Se
tion 2.1 we explain how �nding the heaviest edge between two nodesin an MST 
an be redu
ed to �nding an interval maximum. The array usedis the edge weights of the MST stored in the order in whi
h the edges areadded by the JP algorithm. Then in Se
tion 2.2 we explain how this intervalmaximum 
an be 
omputed using one further table lookup per node, an xoroperation and a 
omputation of the position of the most signi�
ant one-bitin an integer. In Se
tion 2.3 we use these 
omponents to assemble the I-Max-Filter algorithm for 
omputing MSTs. Appendix A presents re�nements thatredu
e the number of 
a
he faults, give improved performan
e for impli
itlyde�ned graphs and explain how our algorithm 
an be applied to the all-pairsminimax shortest paths problem.2.1 Redu
tion to Interval MaximaThe following lemma shows that by renumbering nodes a

ording to theorder in whi
h they are added to the MST by the JP algorithm, heaviestedge queries 
an be redu
ed to simple interval maximum queries.Lemma 1 Consider an MST T = (f0; : : : ; n� 1g ; ET ) where the JP algo-rithm (JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei,0 < i < n denote the edge used to add node i to the tree by the JP algorithm.Let wi, denote the weight of ei. Then, for all nodes u < v, the heaviest edgeon the path from u to v in T has weight maxu<j�v wj.Proof: By indu
tion over v. The 
laim is trivially true for v = 1. For theindu
tion step we assume that the 
laim is true for all pairs of nodes (u; v0)with u < v0 < v and show that it is also true for the pair (u; v). First notethat ev is on the path from u to v be
ause in the JP algorithm u is insertedbefore v and v is an isolated node until ev is added to the tree. Let v0 < vdenote the node at the other end of edge ev. Edge ev is heavier than all theedges ev0+1, : : : ev�1 be
ause otherwise the JP algorithm would have addedv, using ev, earlier. There are two 
ases to 
onsider (see Figure 1).3
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Figure 1: Illustration of the two 
ases of Lemma 1. The JP algorithm addsthe nodes from left to right.Case v0 � u: By the indu
tion hypothesis, the heaviest edge on the pathfrom v0 to u is maxv0<j�uwj. Sin
e all these edges are lighter than ev, themaximum over wu, : : : ,wv �nds the 
orre
t answer wv.Case v0 > u: By the indu
tion hypothesis, the heaviest edge on the pathbetween u and v0 has weight maxu<j�v0 wj. Hen
e, the heaviest edge we arelooking for has weight max fwv;maxu<j�v0 wjg. Maximizing over the largerset maxu<j�v wj will return the right answer sin
e ev is heavier than the edgesev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an un
onne
ted graphrather than the MST of a 
onne
ted graph. When JP spans a 
onne
ted
omponent, it sele
ts an arbitrary node i and adds it to the MSF with wi =1. Then the interval maxima for two nodes whi
h are in two di�erent
omponents is 1, as we would expe
t.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n�1℄, we explain how max a[i::j℄ 
an be 
omputed in
onstant time using prepro
essing time and spa
e O(n logn). The emphasisis on very simple and fast queries sin
e we are looking at appli
ations wheremany more than n logn queries are made. To this end we develop an eÆ
ientimplementation of a basi
 method des
ribed in [7, Se
tion 3.4.3℄ whi
h isa spe
ial 
ase of the general method in [3℄. This algorithm might be of4
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tionsare marked by an extra surrounding box.independent interest for other appli
ations. Slight modi�
ations of this basi
algorithm are ne
essary in order to use it in the I-Max-Filter algorithm. Theywill be des
ribed later. In the following, we assume that n is a power of two.Adaption to the general 
ase is simple by either rounding up to the nextpower of two and �lling the array with �1 or by introdu
ing a few 
asedistin
tions while initializing the data stru
ture.Consider a 
omplete binary tree built on top of a so that the entries of aare the leaves (see level 0 in Figure 2). The idea is to store an array of pre�xor suÆx maxima with every internal node of the tree. Left su

essors storesuÆx maxima. Right su

essors store pre�x maxima. The size of an array isproportional to the size of the subtree rooted at the 
orresponding node. To
ompute the interval maximum max a[i::j℄, let v denote the least 
ommonan
estor of a[i℄ and a[j℄. Let u denote the left su

essor of v and let w denotethe right su

essor of v. Let u[i℄ denote the suÆx maximum 
orrespondingto leaf i in the suÆx maxima array stored in u. Correspondingly, let w[j℄denote the pre�x maximum 
orresponding to leaf j in the pre�x maximaarray stored in w. Then max a[i::j℄ = max(u[i℄; w[j℄).We observed that this approa
h 
an be implemented in a very simple wayusing a log(n) � n array preSuf. As 
an be seen in Figure 2, all suÆx andpre�x arrays in one layer 
an be assembled in one array as followspreSuf[`℄[i℄ = � max(a[2`b::i℄) for odd bmax(a[i::(2` + 1)b� 1℄) elsewhere b = �i=2`�.Furthermore, the interval boundaries 
an be used to index the arrays. Wesimply have max a[i::j℄ = max(preSuf[`℄[i℄; preSuf[`℄[j℄) where ` = msbPos(i�j); � is the bit-wise ex
lusive-or operation and msbPos(x) = blog2 x
, whi
his equal to the position of the most signi�
ant nonzero bit of x (starting at5



(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Fun
tion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the orderin whi
h JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n� 1℄as des
ribed in Se
tion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ andwe < preSuf[`℄[jpNum[v℄℄ thenadd e to E00return JP-MST(E00)Figure 3: The I-Max-Filter algorithm0). Layer 0 is identi
al to a. msbPos(x) 
an be 
omputed by a table lookup1.A further optimization stores a pointer to the array preSuf[`℄ in this layertable. As the 
omputation is symmetri
, we 
an 
ondu
t a table lookup withindi
es i; j without knowing whether i < j or j < i.To use this data stru
ture for the I-Max-Filter algorithm we need a smallmodi�
ation sin
e we are interested in maxima of the form max a[min(i; j)+1::max(i; j)℄ without knowing whi
h of two endpoints is the smaller. Herewe simply note that the approa
h still works if we rede�ne the suÆx maximato ex
lude the �rst entry, i.e., preSuf[`℄[i℄ = max(a[i+1::(2`+1) �i=2`�� 1℄)if �i=2`� is even.2.3 Putting the Pie
es TogetherFigure 3 summarizes the I-Max-Filter algorithm and the following Theoremestablishes its 
omplexity.Theorem 1 The I-Max-Filter algorithm 
omputes MSTs in expe
ted timemT�lter + O(n logn+pnm) where T�lter is the time required to query the�lter about one edge.In parti
ular, if m = !(n logn), the exe
ution time is (1 + o(1))mT�lter.1Alternatively, one 
ould inspe
t the exponent in a 
oating point representation of x.6



Proof: Taking a sample 
an be implemented to run in 
onstant time persampled element. Running JP on the sample takes time O(n logn +pnm)if a Fibona

i heap (or another data stru
ture with similar time bounds)is used for the priority queue. The lookup tables 
an be 
omputed in timeO(n logn). The �ltering loop takes time mT�lter.2 By the sampling lemmaexplained in the introdu
tion [11, Lemma 1℄, the expe
ted number of edgesin E 00 is n=pn=m = pnm. Hen
e, running JP on E 00 takes expe
ted timeO(n logn+pnm). Summing all the 
omponent exe
ution times yields the
laimed time bound.3 Experimental EvaluationThe obje
tive of this se
tion is to demonstrate that the I-Max-Filter algo-rithm is a serious 
ontestant for the fastest MST algorithm for dense graphs(m � n logn). We 
ompare our implementation with a fast implementa-tion of the JP algorithm. In [15℄ the exe
ution time of the JP algorithmusing di�erent priority queues is 
ompared and pairing heaps are found tobe the fastest on dense graphs. We took the pairing heap from their 
odeand 
ombined it with a faster, array based graph representation.3 This im-plementation of JP 
onsistently outperforms [15℄ and LEDA [14℄.3.1 Graph RepresentationsOne issue in 
omparing MST-algorithms for dense graphs is the underlyinggraph representation. The JP algorithm requires a representation that allowsfast iteration over all edges that are adja
ent to a given node. In a linked listimplementation ea
h edge resides in two linked lists; one for ea
h in
identnode. In our adja
en
y array representation ea
h edge is represented twi
ein an array with 2m entries su
h that the edges adja
ent to ea
h sour
e nodeare stored 
ontiguously. For ea
h edge, the target node and weight is stored.In terms of spa
e requirements, ea
h sour
e and ea
h target is stored on
e,and only the weight is dupli
ated. A se
ond array of size n holds for ea
hnode a pointer to the beginning of its adja
en
y array.The I-Max-Filter algorithm, on the other hand, 
an be implemented towork well with any representation that allows sampling edges in time linear2Note that it would be 
ounterprodu
tive to exempt the nodes in E0 from �lteringbe
ause this would require an extra test for ea
h edge or we would have to 
omputeE �E0 expli
itly during sampling.3The original implementation [15℄ uses linked lists whi
h were quite appropriate at thetime, when 
a
he e�e
ts were less important.7



in the sample size and that allows fast iteration over all edges. In parti
ular,it is suÆ
ient to store ea
h edge on
e. Our implementation for I-Max-Filteruses an array in whi
h ea
h edge appears on
e as (u; v) with u < v and theedges are sorted by sour
e node (u).4 Only for the two small graphs for whi
hthe JP-algorithm is 
alled it generates an adja
en
y array representation (seeFigure 3).To get a fair 
omparison we de
ided that ea
h algorithm gets the originalinput in its \favorite" representation. This de
ision favors JP be
ause the
onversion from an edge array to an adja
en
y array is mu
h more expensivethan vi
e versa. Furthermore, I-Max-Filter 
ould run on the adja
en
y arrayrepresentation with only a small overhead: during the sampling and �lteringstages it would use the adja
en
y array while ignoring edges (u; v) with u > v.3.2 Filtering A

ess PatternIn the implementation, we a

ess the interval maxima data stru
ture by JPorder of sour
e node rather than by the order in whi
h the edges happen tobe stored. In Appendix A.1 we explain why this in
reases the 
a
he eÆ
ien
yof these a

esses. With the graph representation we use, this a

ess patternadds one irregular 
a
he a

ess per node, when a

essing the �rst edge of anode's list. In order for the optimization to be bene�
ial, these n additionalirregular a

esses need to be 
ompensated by the more regular a

esses to thetable. For very small densities, then, we might lose. In the results reportedhere (for graphs with up to 10,000 nodes), this a

ess sequen
e resulted in aspeedup of about 5 per
ent. For graphs with more nodes, the table is largerand so is the impa
t of this heuristi
. For instan
e, on graphs with 25,000nodes and just over 31,000,000 edges we observed a speedup of 11 per
ent onthe SUN. All reported exe
ution times are with this optimization enabled.3.3 Implementation on Ve
tor-Ma
hinesA ve
tor-ma
hine has the 
apability to perform operations on ve
tors (in-stead of s
alars) of some �xed size (in 
urrent ve
tor-ma
hines 256 or 512elements) in one instru
tion. Ve
tor-instru
tions typi
ally in
lude arithmeti
and boolean operations, memory a

ess instru
tions (
onse
utive, strided,and indire
t), and spe
ial instru
tions like pre�x-summation and minimumsear
h. Ve
torized memory a

esses 
ir
umvent the 
a
he. The �ltering loop4These requirements 
ould be dropped at very small 
ost. In parti
ular, I-Max-Filter
an work eÆ
iently with a 
ompletely unsorted edge array or with an adja
en
y arrayrepresentation that stores ea
h edge only in one dire
tion. The latter only needs spa
e form+ n node indi
es and m edge weights. 8



of Figure 3 
an readily be implemented on a ve
tor-ma
hine. The edgesare stored 
onse
utively in an array and 
an immediately be a

essed in ave
torized loop; indire
t memory a

ess makes ve
torized lookup of sour
eand target verti
es possible. For the �ltering itself, bitwise ex
lusive or andtwo additional table lookups in the preSuf array are ne
essary. Using thepre�x-summation 
apabilities, the edges that are not �ltered out are stored
onse
utively in a new edge array. Also the 
onstru
tion of the preSuf data-stru
ture 
an be ve
torized. The only possibility for ve
torization in theJP-MST algorithm is the loop that s
ans and updates adja
ent verti
es ofthe vertex just added to the MST. We divide this loop into a s
anning loopwhi
h 
olle
ts the adja
ent verti
es for whi
h a priority queue update isneeded, and an update loop performing the a
tual priority queue updates.Using pre�x-summation the s
anning loop 
an immediately be ve
torized.For the update there is little hope, unless a favorable data stru
ture allowingsimultaneous de
rease-key operations 
an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and 
om-piled using GNU g++ version 3.0.4 with optimization level -O6. We usea SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ pro
essors. InAppendix B.1 we also give measurements on a Dell Pre
ision 530 work-station with 1.7 GHz Intel P4 Xeon pro
essors that show similar results.Sour
e 
odes are available at http://www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.We performed measurements with four di�erent families of graphs, ea
hwith adjustable edge density � = 2m=n(n� 1). This in
ludes all the familiesin [15℄ that admit dense inputs. A test instan
e is de�ned by three param-eters: the graph type, the number of nodes and the density of edges (thenumber of edges is 
omputed from these parameters). Ea
h reported resultis the average of ten exe
utions of the relevant algorithm; ea
h on a di�er-ent randomly generated graph with the given parameters. Furthermore, theI-Max-Filter algorithm is randomized be
ause the sample graph is sele
tedat random. Despite the randomization, the varian
e of the exe
ution timeswithin one test was 
onsistently very small (less than 1 per
ent), hen
e weonly plot the averages.Worst-Case: � � n(n� 1)=2 edges are sele
ted at random and the edges areassigned weights that 
ause JP to perform as many De
rease Key operationsas possible [15℄.Linear-Random: � � n(n � 1)=2 edges are sele
ted at random. Ea
h edge(u; v) is assigned the weight w(u; v) = ju� vj where u and v are the integer9
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I-MaxFigure 5: Linear-Random graph, 10000 nodes, SUN.IDs of the nodes.Uniform-Random: � �n(n� 1)=2 edges are sele
ted at random and ea
h isassigned an edge weight whi
h is sele
ted uniformly at random.Random-Geometri
:[15℄ Nodes are random 2D points in a 1 � y re
tan-gle for some stret
h fa
tor y > 0. Edges are between nodes with Eu
lideandistan
e at most � and the weight of an edge is equal to the distan
e be-tween its endpoints. The parameter � indire
tly 
ontrols density whereasthe stret
h fa
tor y allows us to interpolate between behavior similar to 
lassUniform-Random and behavior similar to 
lass Linear-Random.

10
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ropro
essorsFigures 4{6 show exe
ution times per edge on the SUN for the three graphfamilies Worst-Case, Linear-Random and Uniform-Random for n = 10000nodes and varying density. We 
an see that I-Max-Filter is up to 2.46 timesfaster than JP. This is not only for the \engineered" Worst-Case instan
esbut also for Linear-Random graphs. The speedup is smaller for Uniform-Random graphs. On the Pentium 4 (see Appendix B.1) JP is even fasterthan I-Max-Filter on the Uniform-Random graphs. The reason is that for\average" inputs JP needs to perform only a sublinear number of de
rease-key operations so that the part of 
ode dominating the exe
ution time of JPis s
anning adja
en
y lists and 
omparing the weight of ea
h edge with thedistan
e of the target node from the 
urrent MST. There is no hope to besigni�
antly faster than that. On the other hand, we observed a speedupof up to a fa
tor of 3.35 on dense Worst-Case graphs. Hen
e, when we saythat I-Max-Filter outperforms JP this is with respe
t to spa
e 
onsumption,simpli
ity of input 
onventions and worst-
ase performan
e guarantees ratherthan average 
ase exe
ution time.On very sparse graphs, I-Max-Filter is up to two times slower than JP,be
ause pmn = �(m) and as a result both the sample graph and the graphthat remains after the �ltering stage are not mu
h smaller than the originalgraph. Hen
e, the runtime is equivalent to two runs of JP on the input.Appendix B.2 in
ludes similar plots for Random-Geometri
 graphs withdi�erent stret
h fa
tors y. When the area from whi
h node lo
ations aresele
ted is 
lose to a square, the behavior of the MST algorithms is similarto that on the Uniform-Random graphs. As the stret
h fa
tor in
reases, thegraph be
omes 
loser to a Linear-Random graph. This is re
e
ted in the11
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Figure 7: Worst-Case graph, 10000 nodes, NEC SX-5results, whi
h show that the bene�t from �ltering in
reases with the stret
h.3.6 Results On A Ve
tor Ma
hineFigures 7{9 show similar measurements on a NEC SX-5 ve
tor 
omputer.For ea
h of the two algorithms (JP and I-Max-Filter), runtimes per edge areplotted for s
alar as well as ve
torized version. The results of the s
alar 
odeshow, on
e again, that JP is very fast on Uniform-Random graphs while I-Max-Filter is faster on the diÆ
ult graphs. In addition, we 
an see that onthe \diÆ
ult" inputs I-Max-Filter bene�ts more than JP from ve
torization.This is to be expe
ted; JP be
omes less ve
torizable when many de
reasekey operations are performed, while the exe
ution time of I-Max-Filter isdominated by the �ltering stage, whi
h in turn is not sensitive to the graphtype. As a 
onsequen
e, we see a speedup of up to 13 on the \diÆ
ult"graphs 5.5
omparing the ve
torized versions of JP and I-Max-Filter.
12



0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e 
pe

r 
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 8: Linear-Random graph, 10000 nodes, NEC SX-5
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Figure 9: Uniform-Random graph, 10000 nodes, NEC SX-513



4 Con
lusionsWe have seen that the 
y
le property 
an be pra
ti
ally useful to designimproved MST algorithms for rather dense graphs. An open question iswhether we 
an �nd improved pra
ti
al algorithms for sparse graphs thatuse further ideas from the asymptoti
ally best theoreti
al algorithms. Oneissue is whether redu
ing the number of nodes based on Boruvka's [4, 16℄algorithm has 
ompetitive speed. On 
urrent ma
hines this seems a bitunlikely for sequential internal memory algorithms. But node redu
tion hasgreat potential for parallel and external-memory implementations.Referen
es[1℄ J. Abello, A. L. Bu
hsbaum, and J. R. Westbrook. A fun
tional ap-proa
h to external graph algorithms. Algorithmi
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iFigure 10: The a
tive set for sour
e node with jpNum = i.A Algorithmi
 Re�nementsA.1 Ca
he EÆ
ien
yBy 
arefully sele
ting the order in whi
h the edges are �ltered, we 
an redu
ethe spa
e requirements of the interval maxima data stru
ture from O(n logn)to O(n). Assume that the edges are stored as pairs (i; j) and that they aresorted by sour
e node (i). We propose to �lter the edges in the order thattheir sour
e nodes were inserted by the JP algorithm.Let the a
tive set Ai be the set of pre�x and suÆx arrays that 
an be a
-
essed while �ltering the edges (u; v) su
h that jpNum[u℄ = i (see Figure 10).Note that ea
h a
tive set 
ontains at most logn arrays 
orresponding to thesour
e node and logn arrays 
orresponding to the target node: from ea
hlayer, one pre�x array to the right of the sour
e node and one suÆx arrayto its left are a
tive. When �ltering iterates over the edges by nonde
reasingjpNum of the sour
e node i, ea
h pre�x or suÆx array be
omes a
tive in Aion
e, stays a
tive for a while, and then be
omes ina
tive forever. This meansthat the arrays 
an be generated on-the-
y instead of in a prepro
essing stagesu
h that ea
h pre�x or suÆx array is generated at most on
e and not morethan 2n spa
e is required at a time.Even if the whole O(n logn) table is 
al
ulated in a prepro
essing stage,this observation gives us a way to improve 
a
he eÆ
ien
y: �ltering the edgesin the order des
ribed above redu
es the irregularity of 
a
he a

essed su
hthat at any point in time, O(n) a
tive entries are in 
a
he.A.2 Impli
itly De�ned GraphsMany appli
ations of MSTs work with 
omplete graphs that are de�ned im-pli
itly by an ora
le fun
tion that returns the edge weight for any pair ofnodes [2℄. In this 
ase our algorithm 
an be implemented to work withlinear spa
e: Run JP on an impli
itly de�ned sample of the graph by pi
k-ing sample edges with sour
e v only when v is inserted into the tree. For16



the �ltering stage, we are free to iterate over the edges (u; v) su
h that(jpNum[u℄; jpNum[v℄) are visited in in
reasing lexi
ographi
 order. This notonly allows us to 
ompute lookup tables just in time as des
ribed in Ap-pendix A.1 but also means that these arrays are just s
anned leading to onlyO(n + n2=B) 
a
he faults overall for 
a
he blo
ks of size B. Furthermore,the inner loop from Figure 3 
an be rewritten in su
h a way that most valuesare kept in registers. Only 
omputing the pre�x maximum for the targetnode will require a single table lookup. Edges that are not �ltered out arenot stored but immediately inserted into the MST of edges seen so far. Usingdynami
 trees this 
an be implemented to run in O(n) spa
e and O(logn)time per opertation [1, 19℄. All in all, we get an O(n2) time O(n) spa
ealgorithm for impli
itly de�ned graphs with very favorable 
onstant fa
tors.A.3 All-Pairs Minimax Shortest PathsA minimax shortest path from u to v is a path P from u to v that minimizesthe weight of the heaviest edge on P . An important appli
ation of minimumspanning trees is the observation that a minimax shortest path 
an be ob-tained by taking the unique path from u to v in the minimum spanning tree[2, 6℄. In parti
ular, the heaviest edge weight on this path 
an be 
omputedin 
onstant time using O(n logn+m) prepro
essing time by running the JPalgorithm on the input and 
onstru
ting the lookup tables des
ribed in Se
-tions 2.1 and 2.2. Our 
ontribution here is a very simple method with better
onstant fa
tors for the queries.B More Experimental ResultsB.1 Results on an Intel pro
essorFigures 11{13 show exe
ution time on a PC per edge for the three graphfamilies Worst-Case, Linear-Random, and Uniform-Random, for n = 7000nodes and varying density (Currently this ma
hine la
ks suÆ
ient memoryfor reliable measurements with n = 10000).B.2 Random-Geometri
 graphsFigures 14{16 show exe
ution time per edge on a PC for three families ofRandom-Geometri
 graphs; with stret
h fa
tors y = 2; 160 and 500. In the�rst family, the nodes are spread in something 
lose to a square, and the MSTalgorithms behave as on the Uniform-Random graphs; JP is faster be
ause17
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Figure 11: Worst-Case graph, 7000 nodes, PC.
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Figure 12: Linear-Random graph, 7000 nodes, PC.
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Figure 13: Uniform-Random graph, 7000 nodes, PC.18
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Figure 14: Random-Geometri
 graph, stret
h fa
tor 2, 7000 nodes, PC.
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Figure 15: Random-Geometri
 graph, stret
h fa
tor 160, 7000 nodes, PC.there are few de
rease keys operations. As y in
reases, the graphs be
ome
loser to the Linear-Random family and the plots, a

ordingly, re
e
t anin
reasing gain from �ltering.B.3 Larger graphs with �xed densityFigures 17 and 18 show the e�e
t of in
reasing the size of a Linear-Randomgraph while keeping the density �xed at 0.1. The results show again thatI-Max-Filter is faster than JP on large graphs and that I-Max-Filter bene-�ts more from the ve
tor ma
hine. Furthermore, these e�e
ts be
ome moresigni�
ant as the graph size in
reases.
19
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Figure 16: Random-Geometri
 graph, stret
h fa
tor 500, 7000 nodes, PC.
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Figure 17: Linear-Random graph, density 0.1, SUN.
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Figure 18: Linear-Random graph, density 0.1, NEC SX-5.Graph Type Edge Density Filter Time (se
) Total Time (se
)Uniform-Random 0.5 4.75 6.26Uniform-Random 0.9 8.80 10.70Linear-Random 0.5 4.56 5.90Linear-Random 0.9 8.72 10.36Worst-Case 0.5 4.15 5.60Worst-Case 0.9 7.73 9.34Table 1: Filtering time 
ompared to other stages. All graphs are with 10000nodes.B.4 Lower Order Terms Of The I-Max-Filter algorithmTable 1 shows the runtime on a SUN of the �ltering stage as well as thetotal running time of the I-Max-Filter algorithm, for several instan
es. Thedi�eren
e between the two �gures is the time required for generating a sampleof the edges, 
onverting it to adja
en
y list form, running JP on it and afterthe �lter stage, 
onverting the remaining edges into adja
en
y list form andrunning JP on them. The results indi
ate that the �ltering stage stronglydominates the exe
ution time. 21
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