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Abstract 

In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. 

Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs 

an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We 

incorporate statistical priors on the object geometry to improve the reconstruction quality if additional 

knowledge about the class of original shapes is available. The priors can be formulated analytically or 

learned from example geometry with known manifold tessellation. The statistical objective function is 

approximated by a linear programming / integer programming problem, for which a globally optimal solu-

tion is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demonstrating that a 

statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where 

sampling conditions are violated. 
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1. Introduction 

Reconstruction of surfaces from point clouds is a key problem in computer graphics: The canonical area of 

application is reconstructing manifold meshes from 3D scanner data. The 3D scanning device yields a set 

of unorganized points and the task of the reconstruction algorithm is to retrieve a valid triangle mesh repre-

sentation of the acquired object. Reconstruction from point clouds arises in other application areas as well: 

For example, the problem of extracting a low dimensional, probably curved, manifold from which a set of 

high dimensional data points, corrupted by noise, are originating is a classic machine learning problem. In 

computer graphics, such non-linear manifold learning techniques have been used for example for finding 

low dimensional parametrizations of BRDF [MPB*03]  or articulated motion [GMH*04]  from input data 

samples. 

From a formal perspective, a surface reconstruction algorithm gets a set of point samples as input that have 

been taken from an unknown smooth manifold. Exploiting additional knowledge about the sampling 

process and expectations on the shape of the original manifold, the reconstruction algorithm’s task is to 

reconstruct the original manifold as closely as possible. Typically, the output is a triangle mesh that has to 

obey to topological consistency conditions (no T-junctions, 2-manifold triangulation). Conceptually, the 

problem can be decomposed into two separate tasks: First, the reconstruction algorithm has to determine 

the topology
1 of the surface. This means a parametrization of the surface (typically a triangle mesh) has to 

be found that is homeomorphic to the original surface. Second, the reconstruction algorithm has to recon-

struct the geometry, i.e., find the optimal embedding of the computed topology in Rn. In practice, this usual-

ly means that a base mesh that is topologically equivalent to the original surface has to be refined and 

smoothed in order to obtain a final surface that is close to the data points but does not contain noise arti-

facts from the scanning process. Given a mesh, this can be formulated as a regularized least-squares fitting 

problem [DTB06] , [JWB*06].  

A large number of methods for surface reconstruction have been proposed. These methods can be roughly 

divided into two classes: Level set methods reconstruct geometry and topology in one step by fitting an 

implicit function to the data points. These methods typically do not give guarantees on the validity of the 
                                                           

1 We use the term topology in the sense of local surface connectivity structure. This is a more detailed piece of information than the 
mathematical global topology (characterized only by a few numbers such as genus and number of connected components). 

(a) 2D input data (b) smooth reconstruc-
tion 

(c) with learned priors (d) 3D input data (e) 3D reconstruction 

Figure 1: This paper discusses a new technique that extracts the most likely connectivity structure of 

one and two dimensional manifolds. (a) Improperly sampled 2D input data; within large parts of the 

object, the noise level is comparable to the local feature size. (b) Reconstruction with simple smooth-

ness assumptions. (c) Using prior knowledge about the shape geometry, a mostly correct reconstruction 

is obtained. (d) Noisy sample of the Stanford bunny data set (e) Topologically correct 3D reconstruc-

tion. 
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reconstructed topology [HDD*92], [TB99], [CBC*01], [OBA*03]. The second class is the class of Delau-

nay triangulation based techniques that reconstruct a mesh that is homeomorphic to the original surface if 

certain sampling conditions are satisfied [ABK98], [ACK01]. Usually, this means that the spacing between 

sample points must be at most a fraction of the local feature size, which is the distance from points to the 

medial axis of the original surface. Mesh filtering techniques can be applied subsequently in order to re-

move noise artifacts [TAU95], [DMS*99].  

Our paper addresses the problem of topology reconstruction. Our perspective, however, is different from 

earlier work: Our goal is the reconstruction of the most likely surface in a statistical sense. This means, the 

task is to find the reconstruction that has a maximum a posteriori probability density for representing the 

original surface well, given the input data points and prior assumptions on the class of expected original 

surfaces. Computing the most likely reconstruction often resembles real world reconstruction tasks more 

closely than reconstruction under classic sampling conditions: In many real-world applications, the input 

point clouds have been acquired by some process (3D scanning, data collection) for which it is very hard to 

enforce strict sampling conditions. Therefore, we cannot hope for a correct reconstruction, but we still 

might aim at finding the most likely reconstruction.  

Statistical techniques in 3D surface reconstruction have recently gained some interest [DTB06], [JWB*06]. 

However, these previous techniques all consider only the problem of smoothing a surface in a statistically 

optimal sense. They explicitly or implicitly require a connectivity graph or mesh as input and only perform 

statistically optimal smoothing in a Bayesian maximum a posteriori sense. In case no mesh is given, these 

techniques cannot be applied [DTB06] or create artifacts in case of undersampled input point clouds 

[JWB*06]. 

Our paper tries to complement these techniques by a Bayesian formulation of topology reconstruction: We 

first derive a generative statistical model of sampling points from meshes and use Bayes’ rule to derive an 

inference problem. We then approximate this model to obtain a computationally tractable formulation, 

which is solved by an integer programming based optimization algorithm. We apply an implementation of 

this algorithm to several 2D and 3D data sets. The a priori model of the reconstructed surfaces can be 

learned from example data sets; alternatively, a simpler general analytical smoothness model can be em-

ployed. 

The resulting optimization problems are computationally intense. Therefore, our current implementation is 

limited to handling rather small data sets. In terms of computation times, the technique is not yet competi-

tive to state of the art 3D reconstruction algorithms. We see the main contributions of this work in for the 

first time examining a statistical formulation of the topology reconstruction problem. In particular, this 

allows for incorporating explicit models of the acquisition process as well as prior knowledge about the 

class of objects in an easy and general way. It turns out that the incorporation of such prior knowledge can 

significantly improve the reconstruction quality. 
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2. Related Work 

Surface reconstruction is a classic problem in computer graphics. However, only a few statistically moti-

vated approaches exist that are able to take prior knowledge into account. In this section we give a brief, 

non-exhaustive overview of general surface reconstruction techniques and focus in particular on robust and 

statistical techniques. 

Implicit functions: Based on pioneering work of Hoppe et al [HDD*92], a large number of approaches 

employ implicit function fitting for surface reconstruction. Turk and O’Brien [TB99] use globally sup-

ported radial basis functions for fitting.  The complexity can be reduced using a fast multipole method 

[CBC*01]. Ohtake et al. [OBA*03]  define the surface locally via quadratic functions that are blended 

using partition of unity weights. Moving Least Squares (MLS) approaches are a special case of implicit 

function-based-techniques. They define a surface as an invariant set of a projection operator. The projection 

operator is defined as a numerical optimization step on a locally constructed implicit function [ABC*03]. 

Implicit function based reconstruction techniques typically do not give guarantees for topological correct-

ness of the solutions. Kolluri R. [KOL05] proves topological correctness and bounded approximation error 

for an MLS scheme under sampling conditions similar to those required by Voronoi based reconstruction 

algorithms (see below).  

Mesh Smoothing: A number of filtering techniques have been proposed to remove noise from triangle 

meshes, in analogy to image filtering operations [TAU95], [DMS*99], [DMS*00]. These techniques and 

their follow up work require a topologically correct mesh as input. 

Voronoi- / Delaunay-based techniques: Amenta and colleagues approached the reconstruction problem 

from a computational geometry point of view [ABK98], [ACK01]. Under sufficient sampling conditions 

(sample spacing smaller than a fraction of the distance to the medial axis of the original shape), the re-

stricted Delaunay triangulation is homeomorphic to the original surface, and it can be computed by labeling 

poles in the 3D Delaunay tetrahedrization. The original algorithms are quite sensitive to noise. This prob-

lem has been addressed in [MAV*05], which extends the power crust algorithm to noisy samplings with a 

noise level not exceeding a fraction of the local feature size. Another extension towards robustness is pro-

posed in [KSB04]: After labeling Voronoi cells and poles, a global graph cut optimization algorithm is 

employed to extract a globally optimal surface. Their approach is efficient and robust to noise and outliers. 

Alliez et al. [ACT*07] propose an algorithm employing a mixture of implicit function fitting and Voronoi 

tessellation that solves a general eigenvalue problem to avoid fixing normal orientations locally. However, 

the two latter techniques are not able to take into account specific prior knowledge. In addition, they are 

based on a cell decomposition of space, and thus, in contrast to our algorithm, hard to generalize to the case 

of low dimensional manifolds embedded in higher dimensional spaces (d > 3). The idea of enforcing topo-

logical consistent triangulations using linear programming was introduced in [AM00], [AGJ00] and 

[AGJ02]. We extend this idea to a global, statistically-based optimization method that permits using geo-

metric shape priors. 
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Statistical learning: Only a few previous surface reconstruction techniques have been based on a statistical 

framework. Steinke et al. [SSB05] use support vector machines for reconstruction, hole filling and morph-

ing between datasets. Pauly et al. [PMG04] quantify uncertainty in point cloud data by looking at locally 

interpolated surface pieces.  As highlighted in the introduction, Diebel et al. [DTB06] describe a Bayesian 

mesh filtering technique, and Jet al. [JWB*06] use a Bayesian approach to point cloud filtering. An im-

proved, faster and adaptive version is described by Huang et al. [HAW07]. Both algorithms do not attempt 

an explicit topology reconstruction; in this sense our technique is complementary to their approaches. Us-

ing example shapes to define prior knowledge has been proposed in [GSH07] and [DTB06]. Gal et al. use 

shape matching with example shapes to improve MLS surface fitting results and Diebel et al. learn distribu-

tions of angles in meshes, similar to our prior model. Neither of the two approaches aims at topology re-

construction. A technique for statistical topology reconstruction has been proposed by Aupetit [AUP05]: It 

maximizes the likelihood of a set of segments generating data point samples using an EM algorithm. Re-

sults are reported on very low complexity 2D reconstructions. The technique does not use any geometric 

priors in the reconstruction. Therefore, it probably does not generalize to more complex reconstruction 

tasks. Niyogi et al. [NSW04] provides a prove and precise conditions under which one can infer the correct 

topology of an embedded manifold from a noisy sample. The authors also include an estimate of the proba-

bility of the reconstruction being correct. 
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3. Statistical Model 

We formulate our reconstruction as Bayesian inference problem: We model the creation of data sets as a 

two step random experiment. First, the original scene S is chosen from a probability space ΩS according to 

a prior distribution p(S) that models our expectations of the objects we have to deal with. Then, in a depen-

dent random experiment, a data set of sample points D from S is determined, governed by a measurement 

distribution (likelihood) p(S | D) defined on a probability space ΩS × ΩD, where ΩD comprises the set of all 

possible point clouds generated by the data acquisition process. 

3.1 Probability Spaces 

First, we need to define the probability space we are operating on. In this paper, we will consider both the 

reconstruction of 1-manifolds (curves), from 2D point samples and the reconstruction of 2-manifolds (sur-

faces), from 3D point samples. In the 2D case, we assume that curves are piecewise linear, that is, they 

consist of a finite set of straight line segments. In 3D, we model piecewise linear objects by triangle mesh-

es. According to our Bayesian reconstruction approach, we assume that the original surfaces have been of 

this type, i.e. have been piecewise linear. In addition, we also assume that we know an upper limit for the 

complexity; no input will have more than a fixed number nmax of segments / faces. This is no restriction in 

practice but makes the formal formulation easier. 

This leads to the following definition of the probability space of original scenes: ΩS is the set of all sets of 

line segments (2D) / triangles (3D) of size no larger than nmax and which are topologically consistent. A set 

of line segments is considered to be topologically consistent, if the following conditions hold: 

2D topological consistency: The line segments form a set of closed2 curves, i.e., every vertex is incident to 

exactly two line segments. In addition, the curve is a 1-manifold: No line segments are allowed to intersect. 

For the 3D case, the conditions are very similar: 

3D topological consistency: We again demand for a closed 2-manifold, i.e., every edge of a triangle must 

be incident to exactly one other triangle; intersections in the interior of triangles as well as non-manifold 

conditions at vertices (more than one surface fan) or edges (more than two adjacent triangles) are not al-

lowed. 

This means, we will a priori exclude topologically invalid objects from our probability space so that they 

cannot be the result of the reconstruction. 

                                                           

2 For simplicity, we consider closed curves and surfaces only in this paper. A generalization to manifolds with boundary is mostly 
straightforward. 
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3.2 Likelihood Model 

Next, we define the measurement model. Given we know that a piecewise linear curve (2D) or triangle 

mesh (3D) has been the original model, we need to evaluate the likelihood that a set of data points has 

emerged from this original surface. Similar to [WJH*07], we assume that the data acquisition process sam-

ples the input manifold independently for each point according to a sampling distribution psampl(x), x ∈ S. 

Each sample is then independently distorted by Gaussian noise according to a normal distribution function 

Nµ (x), σ(x). The likelihood of a single sample point given the original surface S is therefore given by: 

,)()()|( )(),( xdxxd xx dNpSp
S

isampli ∫ −⋅= σµ
 (1) 

For simplicity, we assume uniform sampling and unbiased, identically distributed Gaussian noise with an 

isotropic covariance matrix characterized by a single global standard deviationσ. Equation (1) then simpli-

fies to: 

xdxd dNSp
S

ii ∫ −= )()|( σ
 (2) 

As each sampling point is created independently, the overall likelihood of n data points di is given by: 

∏
=

=
n

i

i SpSDp
1

)|()|( d   (3) 

In negative log space, this corresponds to the potential function 

.)(log)|(
1
∑ ∫

=

−=
n

i S

i dNSDE xdxσ
 (4) 

Let si be the i-th out of nS segments (lines segments, triangles) the original scene S consists of. We then 

obtain the final neg-log-likelihood as: 

.)(log)|(
1 1
∑ ∑∫

= =

−=
n

i

n

j s

i dNSDE
S

j

xdxσ
 (5) 

3.3 Prior Model 

Any reconstruction problem is only well defined, if additional assumptions on the original input model are 

made, such as smoothness or other types of simplicity assumptions. The topological constraints imposed so 

far are not yet sufficient in order to constrain the geometric embedding of the surface. In particular, a space 

filling surface densely covering the area adjacent to the data points might obtain a higher score than a sim-

ple smooth surface, as more of the surface area would be concentrated close to the data points. Within a 

Bayesian inference framework, prior probabilities on the original models (in our case, the distribution P(S) 

given on ΩS) are used to regularize the problem. In this paper, we consider two types of priors – simple 

smoothness assumptions and shape priors learned from example data [DTB06]. Both types of priors can be 

expressed with the same formalism: 

2D shape priors: In the 2D case of reconstructing piecewise linear, 1-manifold curves, we formulate our 

priors in terms of distributions of discretized curvature. We assume that we are given a probability distribu-

tion pcurv(κκκκ) on unsigned curvature values κκκκ. We then formulate the prior probability as a Markov random 

field: For each pair of adjacent line segments in our solution S, we compute the curvature of a simple inter-
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polating curve3 at the center point and assign a clique potential proportional to this distribution function to 

each pair. A modification of pcurv(κκκκ) will allow us to specify different expectations on the space of original 

models. For example, an exponential distribution µ e
-µ

 
κκκκ will prefer smooth objects, with smoothness con-

trolled by the parameter µ. A mixture with a Gaussian model with maxima around discrete angles such as 

90° and 180° will prefer objects with right angle corners. 

3D shape priors: In the 3D case, we follow the same concept. We compute a curvature value according 

to the angle at which two adjacent triangles meet over their common edge. By controlling this distribution 

function, we can describe different classes of original objects. 

In both cases, we obtain a 2-clique Markov random field for the prior distribution, given as: 

( )∏=
Sss

jicurv

ji

sspSp
in adjacent  ,

),()( κ  (6) 

In neg-log space, this corresponds to a potential of the form 

,)(
in adjacent  ,

)(
,∑=

Sss

curv

ji

ji

eSE   (7) 

where e(curv) encodes pairwise penalties for having adjacent segments in the solution. If the curvature across 

these segments meets our prior expectations, the penalty will be smaller than otherwise. 

3.4 Inverse Problem 

Having defined the likelihood and prior models, the probability function to be optimized by a best recon-

struction S is given by Bayes rule: 

)(

)()|(
)|(

Dp

SpSDp
DSp =  (8) 

As p(D) is constant during optimization, it is sufficient to minimize the sum of the two remaining neg-log-

probabilities: 

)()|()|(minarg  :compute SESDEDSE
S

+=   (9) 

                                                           

3 In the actual implementation, we do not need to perform this step explicitly; therefore, we do not specify an implementation here. A 
canonical choice could be interpolating quadratic spline curves. 
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4. Discretization and Optimization 

So far, we have developed a statistical model that assigns a probability density to every triangle mesh of 

bounded complexity that approximates the data. The remaining problem is to devise an algorithm that 

computes the solution that maximizes the a posteriori probability density. Unfortunately, a direct optimiza-

tion of the exact statistical potential functions is a very difficult problem. Therefore, we have to replace our 

strict model with an approximation that can be handled computationally.  

4.1 Discrete and Continuous Optimization 

We have a continuous and a discrete component in our model, which have to be optimized simultaneously. 

The discrete component is the topological graph of segments (i.e., the graph of line segments or the triangle 

mesh). We have to determine this graph, choosing only from topologically valid solutions, in a way such 

that a good geometric embedding can be obtained. The continuous component is the placement of the ver-

tices; given a topology, we need to place the segments in space so as to maximize the likelihood of the data. 

The first simplification we perform is to remove the continuous problem and replace it by a fully discrete 

optimization problem.  

For this purpose, we define a set K of keypoints that are to be connected with segments (two keypoints with 

a line segments in 2D, three keypoints with a triangle in 3D). The keypoints are obtained by subsampling 

the input data points with a Poisson disc sampler. The Poisson disc sampler tries (in a greedy manner) to 

keep as many of the original data points as possible while maintaining a minimum distance εkey between all 

data points. The sample spacing εkey is chosen above the noise level in the data (the noise level σ is either 

known in advance, due to scanner characteristics, or it is set empirically) so that angles between connecting 

segments are meaningful and can be used to evaluate our priors. During the optimization, we will fix the 

location of these keypoints, thus removing the continuous optimization component. In a postprocessing 

step, we can then use a Bayesian smoother (such as [DTB06], [JWB*06]) to optimize the geometric em-

bedding4. In order to improve the quality of keypoint placement, we perform an additional, heuristic opti-

mization. A typical data set in a reconstruction set will consist of “good” and “bad” parts; in the good parts, 

the geometry is simple (e.g. locally flat, no nearby parts) and topology reconstruction is easy, while bad 

parts are more challenging. We try to estimate good parts by performing a principal component analysis in 

a Euclidian neighborhood of cσ (typically c ≈ 2.5 which is chosen empirically) of the original data. The 

ratio between the smallest and the largest eigenvalue estimates how well a Euclidian neighborhood covers 

the original surface patch. We use the ratio to smoothly blend between the computed average of the neigh-

borhood and the original position of the keypoint. This behavior pre-smoothes the results in areas where the 

                                                           

4 It might appear natural to iterate this process; however, fixing the topology is so decisive for the result of the smoothing step that an 
iterated topology computation would not improve the result further [Jenke et al. 2006]. 
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normal deviation is small and does not change anything where the situation is ambiguous. As this step is 

done during Poisson disc sampling, it automatically generates a smooth and less dense sampling of areas 

that appear simple to our heuristic and produce more keypoints (distributed over a volumetric area of noisy 

points in the 3D case) if no pre-smoothing can be performed. In practice, this heuristic reduces the sam-

pling requirements considerably and leads to better reconstruction results.  

Having defined a set of keypoints, we next compute a set of candidate segments our algorithm has to 

choose from. For this purpose, in the 2D case, we connect all pairs of points within distance of c′εkey with 

line segments that are potentially included in the solution (typically: c′ ≈ 3, hence enclosing at least 2 

neighbor points of Poisson-sampled keypoints). In the 3D case, we create all triangles of three points that 

can be included in a ball of radius c′εkey.  

We now obtain a purely discrete optimization problem: The variables to be optimized are the segments si ∈ 

{0,1}, j = 1…k, where si = 1 refers to including and si = 0 to excluding the segment si from the solution. 

4.2 Approximate Likelihood 

The next problem we are facing is that our likelihood model is non-local: Due to the logarithm in Equation 

(5), the increment in penalty for a single segment depends on the set of already chosen segments. If the data 

points are already well covered with segments, the increment is smaller than in the case where some data 

point that was previously uncovered obtains a nearby segment for the first time. In order to obtain a local, 

linear model, we employ an approximate likelihood that computes the segment matching score for each 

segment separately: 

.
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  (10) 

The matching function match(di, sj) is computed as a normalized sum over all reciprocal distances of data 

points di which lie in the radius σ around the segment sj. Hence only the points which are approximated by 

the segment do contribute to the matching score. We approximate the integral over the Gaussian noise in 

Equation (1) by a simple quadratic point-to-segment distance. Our approximate likelihood has an artifact 

we need to remove: We can obtain an optimal score by using no segments at all. In order to discourage 

such zero solutions, we assign negative costs to edges by subtracting a fixed constant from the energy asso-

ciated with each edge. This constant is set to the maximum of all data costs that can occur.  

Effectively, Equation (10) moves the logarithm of Equation (5) inside the sum, thus allowing us to express 

the matching term as a sum of penalties ej
(data) that occur for selecting each individual segment, independent 

of the others. The adverse effect of this is that covering an area of dense data points with two nearby edges 

still alters the likelihood, which is not statistically warranted. We can afford this type of approximation in 

our case because we enforce strict topological validity. In typical cases, it is not possible to create topologi-

cally correct solutions of Poisson-sampled keypoints with multiple line segments covering the same set of 

data points. We also drop the surface area term from Equation (5), which has only a minor effect on the 

solution.  
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4.3 Approximate Prior 

The prior is a 2-clique Markov random field. This means, if we use indicator variables to turn on and off 

individual segments, the log-probability potential will be quadratic in these variables. For the optimization, 

this causes additional costs that we want to avoid. Therefore, we employ a simplified prior term that is 

linear in the indicator variables5. This is done by computing the 2-clique potentials for all pairs of potential-

ly adjacent segments {si, sj} and computing the average of this score for the two segments si, sj involved. 

The averaged scores are stored in a prior variable e(prior)(si). In addition to the curvature based prior, we also 

penalize large segments (long edges in the 2D case), as they are more “dangerous”: Large segments are 

more likely to connect disconnected parts of the object. Therefore, it is preferable to employ small ones as 

long as they are available. For the 2D case we simply penalize long edges and favor short ones. In the 3D 

case we use the maximal length of all triangle sides and penalize larger triangles in this sense. This addi-

tional prior could be considered as a “nearest neighbor prior”. 

Learning the prior: By computing the prior scores based on the smoothness of the shape we prioritize 

smooth regions over the sharp ones. However in some situations it is necessary to reconstruct sharp features 

(see Fig.1.a). In order to achieve this, we employ a training stage enabling us to incorporate prior know-

ledge of the sampled data set to support the solution process. As training data we use a pre-defined segment 

set with correct topological and manifold connections. We use the training data to compute a histogram of 

the curvature. For the 2D case we sample three points which are topologically connected within a certain 

radius. The angle, between these segments, having one of the sampling points in common, represents one 

sample of the histogram. As the keypoints are placed at a rather uniform spacing by the Poisson disc samp-

ler, the angles are a reasonable approximate measure of curvature. The histogram is then sampled to com-

pute the 2-clique potential for the adjacent segments {si, sj}. This enables us to prefer segment pairs which 

have higher occurrence in the training data. The additional information helps to reconstruct segments which 

have a higher probability to belong to the correct solution. Figures 2 and 3 show the differences between 

trained and non-trained priors in the solution. 

4.4 Optimization 

With the approximations made so far, we have introduced a simpler energy function. We have to optimize 

the linear function: 

( )∑
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λ  (11) 

where λ is a weighting factor to trade-off the influence of data matching and prior assumptions. For large 

λ the solver prefers smooth and short segments over segments that fit the data points well, while data fitting 

dominates for small λ. In addition to minimizing this score, we also need to enforce topologically correct 

solutions. We account for this requirement by introducing a set of linear constraints. As shown in [AM00], 

[AGJ00], and [AGJ02] topological correct tessellations can be characterized by linear inequality con-

straints. Each segment (line segment, triangle) is characterized by a variable si that is either zero or one. In 

the 2D case, the following linear constraints are necessary and sufficient in order to obtain topologically 

correct tessellations: 

                                                           

5 Please note that a prior distribution in the Bayesian sense is a subjective assumption; therefore, the approximate model is not 
“wrong” in a technical sense. However, it models our original intention less closely. 
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2D Topological Validity Constraints: 

Let Ei be the set indices j of all line segments sj that are incident to one and the same vertex vi. Let E(k)(si), k 

∈ {1,2}, be the same set, but indexed by one adjacent segment si and an indicator k that chooses one of its 

two vertices. We require that at every vertex either no line segments meet, or exactly two, if at least one is 

present. This can be formulated by the following constraints: 
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  (12) 

Next, we need to avoid intersections within segments, which can also lead to non-manifold results. Let Ii be 

the set of all segment indices, a given segment si intersects with (not counting segments that just touch at 

the vertices). We can then setup linear constraints as follows: 
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Each of these constraints avoids intersections with the corresponding segment si, but does not impose any 

constraints if the considered segment is not in the solution set. 

3D Topological Validity Constraints: 

In the 3D case, our segments are triangles. We can apply the same sets of constraints. For the manifold 

constraints (12), we now constrain the number of triangles that can meet via a shared edge. For this pur-

pose, we just have to let Ei be the set of all triangles that meet at an edge, and E(k)(si), k ∈ {1,2,3} be the 

sets of edge-incident triangle indices. Otherwise, the constraints are the same. The intersection constraints 

(13) are formulated exactly in the same way; for triangles, we do not include intersections that occur at 

shared vertices or shared edges only. A difference in the triangulation case is that triangles can also meet at 

a common vertex. We apply the same solution that is proposed in [AGJ00]: For each vertex vi, we compute 

all manifold fans Fi
(j) of triangles connected via edges that are incident to this vertex. Then, we disallow 

that two of them are present at the same time by requiring: 
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However, the number of such constraints can be large and impose a very high computational burden upon 

the optimization algorithm. Therefore, again following [AGJ00], we only create necessary constraints on 

demand: After having computed a solution, we check for non-manifold results at vertices and switch on the 

necessary constraints to avoid these. Then we solve again. In order to reduce the computational costs of 

multiple such solution passes, we first only re-solve the problem in a 1-ring neighborhood of the modified 

vertices, keeping the rest of the solution fixed. If this turns out to be infeasible, we try again in a 2-ring 

neighborhood, then a 4-ring and so on, until we finally would try to recompute a global solution, after at 

most O(log nS) steps. In practice the re-solving in a 1-ring neighborhood already determines the solution 

with respect to the constraints. 

In order to solve the resulting integer programming problem, we have tested two alternatives: First, using a 

continuous linear programming solver and relaxing the problem such that the variables si might assume any 

value within an interval [0,1]. This solution is fast, as solving very large linear programs is nowadays a 

standard problem for which very efficient algorithms are known. However, the algorithm might output 
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indecisive solutions, such as assigning scores of 0.5 to two intersecting edges. In our experience, relaxed 

solutions work well for 2D examples with very strong priors (large λ). For other cases as well as 3D exam-

ples, we often obtained indecisive solutions in problematic areas, where sampling conditions are violated. 

The second alternative is using a full integer programming solver. This is more costly, as NP-hard classes 

of integer programs exist. In practice, we were able to solve problems of our kind with up to about 2000 

unknowns. With discrete integer programming, no uncertainty artifacts occur and we always obtain a topo-

logically correct solution. This technique has been used for all examples shown in this paper. 
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5. Implementation and Results 

We have implemented our algorithm in C++, using the freely available linear programming solver SCIP 

[ACH04], which is capable of solving continuous and integer programming problems. The 3D results have 

been rendered using Geomview. Timings were obtained using an AMD Opteron 2218 CPU with 2.6GHz 

and 3GB RAM. Table 1 summarizes the example scenes and the timing results. Figures 2-6 show example 

reconstructions of the corresponding sampling data sets. 

Figure 2 shows the Floor-Plan 2D data set and its topological reconstruction. The original surface contains 

only 90° and 180° angles between adjacent segments making it hard to compute correct topology using just 

smoothness assumptions. Using a training data set, consisting of only simple rectangles, the optimizer 

learns to prefer corners as well as flat regions, computing a solution that reconstructs the correct object 

topology. A similar effect can be observed in Figure 1a-c, which shows a very noisy sampling of a 2D logo 

image, with points offset by noise up to the medial axis of the shape in the narrow regions. Again, employ-

ing learned shape priors improves over the simple smoothness assumptions (we learn the curvature distri-

bution of the original, high resolution 2D logo). Figure 3 shows reconstruction of boundary curves of the 

letters, A, B and C. Again, a priori knowledge about the segment curvature helps the optimizer to find a 

more suitable solution. Since the optimizer prefers smooth segment-to-segment connections the non-trained 

solution looks more rotund. 

For the 3D case we use point clouds with different noise levels generated from the Stanford Bunny dataset. 

Figure 5 shows the corresponding reconstructions.  Our algorithm is capable to reconstruct also very noisy 

datasets as shown on the right part of Figure 5. However, the estimated “most likely” topology does not 

match the correct topology anymore, which of course is expected. In particular, we obtain an additional 

connected component at the second ear of the bunny for medium noise level, and two such segments for the 

very high noise level (standard deviation of 5% of the scene size, i.e. we have a significant number of 

points up to 10% away on both sides of the model). The computation time increases for very noisy exam-

ples as the problem becomes less clearly determined. 

Choosing parameters: We have to trade-off prior assumptions and data fitting to define the reconstruction 

task. Experimentally, we found that λ ≈ 5/2 provides a good computation time to result quality ratio with 

respect to our example data sets. In addition, we had to adjust the relative weight of the segment size in the 

prior manually for the examples. Choosing parameters also affects the computation time: The speed of the 

integer programming solver depends on the optimization problem. In our case, it turns out that a large 

weight on curvature priors tends to increase the running time, while preferring short edges (obviously) 

decreases the running time. As intuitively expected, PCA-presmoothing also decreases the running time.  
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6. Conclusions and Future Work 

In this paper, we have presented a statistically based approach to topology reconstruction, in the sense of 

reconstructing a topologically matching base mesh for a noisy sample of data points. The algorithm guaran-

tees to output topologically valid, closed meshes. Using this technique, it is possible to obtain plausible 

solutions in the presence of strong noise artifacts. A particular feature of the Bayesian formulation is that 

prior knowledge can be incorporated into the optimization. This allows the algorithm to account for ex-

pected object features such as sharp angles and thus obtain significantly improved reconstructions. 
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Figure 2: Floor-Plan 2D example. (a) Data set with 1645 sampling points. (b) Nearest neighbor connec-

tion between the keypoints (1151 edges). (c) Reconstructed topology with 285 edges. (d) Reconstruction 

incorporating training data (e). The reconstruction time is 2.79 sec. 

Figure 3: ABC example. (a) 2032 sampling points. (b) 1293 Segments defined by nearest neighbor connec-

tion. (c) Reconstructed topology with 351 segments. (d) Reconstruction with training data support. The 

reconstruction time is 3.81 sec. 

 Figure 4: Circles 2D Example: Left: Data set with 1346 sampling points. Center: Solution space contains 

890 edges. Right: The topologically correct solution with 245 segments. Reconstruction time is 1.97 sec 
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Figure 5: Stanford Bunny 3D data set. From left to right: different noise levels σ1=0.01, σ2=0.02 and 

σ3=0.05. Reconstructions times: t1=146, t2=831 and t3=3260 sec. 

 data set σ (noise) input points keypoints 
candidate seg-

ments 

chosen seg-

ments 
comp. time (sec) 

2D 

ABC 
0.002 2032 353 1315 353 4.29 

0.005 2032 397 1683 397 7.63 

floor plan 
0.002 1645 291 1190 291 3.5 

0.005 1645 293 1225 293 4.11 

circles 
0.002 1346 243 835 243 1.84 

0.005 1346 245 890 245 1.97 

3D 

Stanford 

Bunny 

0 5085 153 867 302 98 

0.02 5085 150 779 292 831 

Table 1: Performance of the algorithm for different objects and noise levels. The noise level is given as 

absolute standard deviation of additive Gaussian noise; all scenes are contained in a unit bounding box.
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