

A General Technique for Automatically
Optimizing Programs Through the U se of

Proof Plans

Peter Madden and lan Green

MPI-I-94-239 August 1994

Authors' Addresses

Peter Madden
Max-Planck-Institut für Informatik
Im Stadtwald
D-66123 Saarbrücken
Germany
Tel: + 49 681 302 5434
Email: maddenOmpi-sb.mpg.de

Ian Green
Department of AI
University of Edinburgh
80 South Bridge
Edinburgh EHIIHN
Scotland (UK)
Tel: + 44 31 650 2722
Email: imgClult . ac . ed. aisb

Publication Notes

To appear in the Proceedings of the Second International WorkshopjConference on Artificial Intelligence
And Symbolic Mathematical Computing (AISMC-2)

Acknowledgements

Some of the research reported in this paper was carried out when the author was an SERC Post-Doctoral
Research Fellow within the Mathematical Reasoning Group at the Department of Artificial Intelligence,
Edinburgh University. Acknowledgements are due to Jane Hesketh, Alan Smaill and, in particular, to
Alan Bundy.

1 Synopsis

In this paper we investigate how proof plans - formal patterns of reasoning for
theorem proving - can be used for controlling the synthesis of efficient functional
programs from standard sets of equational definitions. By exploiting meta-level
control strategies, a general framework for automatically synthesizing efficient pro­
grams has been developed. A key meta-level strategy is called middle-out reasoning,
henceforth MOR, which involves the controlled use ofhigher-order meta-variables at
the meta-level planning phase. This allows the planning to proceed even though
certain object-Ievel objects are (partially) unknown. Subsequent planning provides
the necessary information which, together with the original definitional equations,
will allow us to instantiate such meta-variables through higher-order unification
(HOU) procedures. MOR allows for the circumvention of eureka steps during the op­
timization process concerning, amongst other things, the identification of recursive
data-types, and unknown constraint functions. Such steps have typically required
user-intervention in more traditional ("pure") transformational systems such as un­
fold/fold [BD77]. The control provided by proof planning allows us to view such
syntheses as verification together with MOR.

The proof planning approach to controlling the synthesis of efficient programs
was originally investigated within the context of synthesizing tail-recursive pro grams
from naive definitions by using a tail-recursive generalization strategy [HBS92]. In
this paper we present a geneml framework for automatically synthesizing efficient
programs through the use of proof planning and MOR. We illustrate the methodol­
ogy by describing a novel form of generalization strategy which, together with an
induction strategy and MOR, automatically affects constmint-based optimizations:
the constmint-based genemlization proof plan is used for generating families of effi­
cient programs from definitions which indude expensive expressions.

In previous generalization proof plans, such as that described in [HBS92], MOR
has been limited to introducing (higher-order) meta-variables into goal statements
according to the pre-conditions of the generalization proof plan. We refere to this
kind of MOR as genemlization-MoR, or simply gen-MOR. We significantly extend
the mechanism by which MOR operates by allowing for the use of higher-order
meta-variables in rewrite rules in addition to those introduced via the proof plan
application. Such meta-variables are introduced via the exploitation of higher-order
recursive definition schemas. These can be viewed as higher-order schematic rule
templates. This significantly increases the scope for delaying proof commitments
until subsequent theorem proving provides the requisite information to identify the
relevant data structures. We shall refer to this usage of MOR as template MOR

Different characterizations of proofs can be formalized as proof plan pre-conditions
that subsequently effect the kind of optimization exhibited by the synthesized func­
tions. In particular, the way in which meta-variables are introduced, via gen-MoR,
into the proof of the goal statement(s) specifying the program being synthesized.
Constraint-based optimizations are, for example, characterized differently from tail­
recursive optimizations. This basically accounts for the new form of generalization
systemized in the constraint-based generalization. However, so as to illustrate many
features of the general framework we shall, in this paper, choose a running example
which consists of synthesizing an efficient program, from standard equational defini­
tions, which is both tail-recursive and constraint-based. The example will illustrate
both the usage of gen-MoR and the new template MOR

We believe that a large dass of otherwise diverse, and often ad hoc, transforma­
tion strategies can be encompassed within this uniform proof plan framework. We
show how the proof planning framework provides the necessary meta-level control
over HOU and proof structure. Furthermore, the underlying logic we use guarantees
the total correctness of the synthesized function with respect to the specification.

2

Toward the end of this paper we compare the proof planning approach to syn­
thesizing efficient programs with existing optimization strategies and discuss its
advantages.

Contents

In the remainder of this section we explain what precisely constraint-based opti­
mization is with the introduction of our running example. In §2 we briefly describe
the proofs as programs paradigm and illustrate, in §2.0.2, an (interactive) synthe­
sis of the example in §1.1. In §2.0.1 and §2.1 we describe, respectively, the object
level OYSTER proof refinement system and the meta-level CLAM proof planner. We
provide an outline of the planning strategies employed and present the notation
used to illustrate the rewriting process. In §3 we describe the general framework for
optimization by proof planning. §4 addresses one kind of optimization encapsulated
by the general framework described in §3: the use of proof plans for the purposes
of constraint-based optimization. We provide pre- and post-conditions for the ap­
plication of a constraint-based transformation proof plan, and, in §4.2 we describe
the use of higher-order schematie rule templates. In §4.3 we revisit the example
of §1.1 and show how, using proof planning together with MOR, the optimization
process is automated. In §5 we address the benefits of our approach as compared
with standard transformational approaches such as unfoldjfold.

1.1 An Exarnple Optimization

Hesketh et al. considers the automatie synthesis of tail-recursive programs from
inefficient non-tail-recursive programs using standard sets of equational definitions
[HBS92]. However, tail-recursive programs may, in turn, present scope for furt her
optimization. Consider the following two tail-recursive definitions of procedures for
simultaneously producing both the sum and reverse of the input list:!

rev..sm(nil, w) = (sum(w), w); (1)

rev..sm(hd :: tl, w) = rev..sm(tl, hd :: w) (2)

and where:
sum(nil) (3) 0;

sum(a :: x) = a + sum(x) (4)

rev..smc..t (I, x) = rev..smc(l, x, 0) (5)

rev..smc(nil, w, sum(w)) = (sum(w), w); (6)

rev..smc(hd:: tl, w, sum(w)) rev..sm(tl, hd :: w, hd + sum(w)). (7)

The rev..sm procedure has an expensive expression, sum(w), in its base-case equa­
tion (1). The program's inefficiency stems from the double traversal of its input,
which builds up a reversed list in the second parameter, w, and then finally performs
a summation of this reversed list. The inefficiency may be removed by introducing
the new constrained tail-recursive function definition, rev..smc, which uses only a
single traversal of its input list in order to obtain both the summation together with
its reversed list.

The removal of such expensive expressions has been investigated within the con­
text of program transformation and is called constraint-based transformation [Chi90]

1 Tall recursive definitions have the feature that recursive calls occur as the outermost function
of the procedure body, and an accumulator, w in the examples, is used to construct the output as
the recursion is entered.

3

(or sometimes finite differencing [RP82]). In general, it involves the replacement
of expensive expressions in program loops, or recursion, by equivalent expressions
which are incrementally maintained. As indicated by the above example, this is
done through the introduction of new parameters - constraint parameters - whose
values are specified using constraints (thus, regarding rev-smc, the constraint pa­
rameter is sum(w)). We shall call functions such as rev-sm unconstrained, and
their optimal counterparts, such as rev -smc, constrained.

[Chi90) outlines how functional programs containing expensive expressions can
be optimized using standard unfold/fold type rewrites to obtain constrained func­
tion definitions such as that for rev_smc. The unfoldjfold strategy was pioneered
by Darlington, and its most influential implementation has been within the NPL pro­
gram transformation system [BD77, Dar89). Unfoldjfold transformation typically
involves the sequential application of rewrites which use definitions (specifically us­
ing instantiated definitions to replace terms) and known properties of functions in
order to derived a target program which is independent of the source definition.
However, the identification of the new constraint parameters, as sum(w) in the
rev-smc example, constitute eureka steps, thus presenting obstac1es for providing a
general automatic procedure for constraint-base optimization. Regarding program
optimization in general, such eureka steps correspond to the problems of identifying
explicit definitions for target programs: that is, new definitions where the target
program is defined explicitly in terms of the source. Indeed, within the context
of unfoldjfold transformations, providing explicit definitions is the key to the op­
timization process: by subsequently folding the explicit definition (or derivations
thereof) with the original source equations recursion is introduced into the target
program. Further difficulties include the search involved with identifying and apply­
ing rewrites to explicit definitions in order to derive the recursive target definitions.
For example, unfoldjfold transformations are motivated by the desire to find a suc­
cessful fold. This involves extensive search and the somewhat arbitrary application
of laws thus presents difficulties regarding automation. We discuss these difficulties
in more depth in §5. .

In this paper we consider a general technique for circumventing the aforemen­
tioned eureka steps, and for reducing the search control problems in the rewriting
process, by exploiting proof plans.

2 Proofs as Programs

Constructive logic allows us to correlate computation with logical inference. This is
because proofs of propositions in such a logic require us to construct objects, such
as functions and sets, in a similar way that programs require that actual objects
are constructed in the course of computing a procedure. 2 Historically, this duality
is accounted for by the Curry-Howard isomorphism which draws a duality between
the inference rules and the functional terms of the >.-calculus [CF58, How80).

Such considerations allow us to correlate each proof of a proposition with a
specific >.-term, >'-terms with programs, and the proposition with a specification
of the program. Hence the task of generating a program is treated as the task of
proving a theorem: by performing a proof of a formal specification expressed in
constructive logic, stating the input-output conditions of the desired program, an
algorithm can be routinely extracted from the proof. A program specification can

2Thus we can not, for example, compute (or constructively prove) that there are an infinity of
prime numbers by assuming the converse and deriving a contradiction, rat her we must produce a
program that computes them (or a proof that we can always construct another one greater than
the ones known so far).

4

be schematically represented thus:

T/inputs, 30utput. spec(inputs, output)

Proofs ofsuch specifications must establish (constructively) how, for any input vec­
tor, an output can be constructed that satisfies the specification.3 Thus any syn­
thesized program is guaranteed correct with respect to the specification. Different
constructive proofs of the same proposition correspond to different ways of comput­
ing that output. By placing certain restrictions on the nature of a synthesis proof
we are able to control the efficiency of the target procedure. Thus by controlling the
form of the proof we can control the efficiency with wh ich the constructed program
computes the specified goal. Here in lies the key to synthesizing efficient programs.
For example, we can synthesize constrained functions from unconstrained ones by
placing the restriction that the new constraint parameter is some function on the
non-recursive (non-inductive) parameter (we illustrate this in §2.0.2, and in more
detail in §4.1). We can also guarantee that a synthesized program is tail recursive
by ensuring that the witnesses of the two existential quantifiers, one in the induction
hypothesis and one in the induction conclusion, are identical [Wai89].4 By making
these witnesses identical we ensure that the function does not change value as the
recursion is exited. Alternatively, we can use special schematic rules to affect the
nature of the recursion exhibited by the program under construction. In §4.2 we
illustrate how tail-recursive behaviour can be ensured through the application of
such rules.

2.0.1 The OYSTER System

The OYSTER system is an implementation of a constructive type theory which is
based on Martin-Löf type theory, [ML79].5 OYSTER is written in Quintus Prolog,
and run at the Prolog prompt level, so it is controlled by using Prolog predicates as
commands. Proof tactics can be built as Prolog programs, incorporating OYSTER

commands. The language uniformity of the logic programming environment allows
for the constructioD of meta-theorems which express more general principles, con­
cerning the object level theorem proving. So, for example, we are able to construct
tactics which combine the object-Ievel rules of the system in various ways and apply
them to proof (sub)goals.

At any stage during the development of a proofit is possible to access the extract
term of the proof constructed so far. Each construct in the extract term corresponds
to a proof construct. As such, the extract term reflects the computational content
of the proof of the theorem. The extract programs consist of A-calculus function
terms, A(X, fz) where f is the computed function and fz the output when f is
applied to input x.

For the purposes of illustrating our methodology we do not need to make the
type information contained in the proofs explicit. Indeed, it is adequate and aids
clarity to present, in this paper, our proofs in a classical framework.

2.0.2 Example: Synthesis of Constraint Function rev-smc

To illustrate the synthesis process we shall outline the synthesis of rev-smc using
the definition of the unconstrained function rev...sm. We indicate those proof steps

3Thus constructive logic ezcludes pure existence proofs where the existence of output is proved
but not identified.

4 A witness constitutes an instantiation of an existential quantifier thus providing evidence of
the existence asserted.

60YSTER is the Edinburgh Prolog implement at ion of NuPRL; version "nu" of the Proof &fine­
ment Logic system originally developed at Cornell [Horn 88, Constable el 0.186).

5

which, regarding traditional program transformation re-writing systems, correspond
to eureka steps.

A key feature of the proof plan approach to automatically synthesizing efficient
programs is to use the inefficient program definition to specify the required pro ce­
dure. We specify the output for the constrained function, rev..smc, in terms of the
unconstrained rev..sm thus:

'Vx, 'Vw, 3z. z rev..sm(x, w) (8)

We then introduce a new sub-goal, providing an explicit definition for rev..smc
which includes a constraint parameter instantiated to sum(w):

'Vx, 'Vw.rev..sm(x, w) rev..smc(x, w, sum(w)) (9)

The identification of sum(w)as the constraint parameter (required for the full iden­
tification of the explicit definition) is the first eureka step. Note that the proof sat­
isfies the constraint-based restrietion that the constraint parameter is some function
on the non-recursive (non-inductive) parameter.

Also Note that since we have provided the identity of the constraint parameter
that the proof will in fact be a verification proof. In §4.3 we illustrate how (higher­
order) meta-variables are used to partially identify such constraint parameters and
there by avoid such eurekas. That is, synthesis without eureka steps can be affected
through high er-order verification proofs.

In §4.3 we show how such eureka steps can be automated through the use of
MOR. In general terms, MOR allows us to delay choice commitments by introduc­
ing (higher-order) meta-variables at the meta-level application of rules of inference.
Subsequent planning provides the requisite information to instantiate the meta­
variables by (higher-order) unification. Thus, the main difference between verifica­
tion and synthesis proofs is precisely the identification of those structures for which
MOR is used. This idea is captured by our slogan that synthesis is equivalent to
verification plus meta-variables.

The introduction of the new goal (9) also leaves us with the trivial proof obli­
gation that the new goal entails the original one (i.e. (9) f- (8)):

'Vx,'Vw.rev..sm(x,w) = rev..smc(x,w,sum(w)) f- 'Vx,'Vw,3z.z = rev..sm(x,w)

To prove (9) standard stepwise induction on x is used:

The Base Case: The base case is as follows:

f- 'Vw.rev..sm(nil, w) = rev..smc(nil, w, sum(w)) (10)

Using the definition of rev..sm, the left hand side of (10) rewrites to (sum(w), w):

f- (sum(w), w) = rev..smc(nil, w, sum(w))

The Step Case: The step case of the induction is:

'Vx, 'Vw.rev..sm(tl, w) = rev_smc(tl, w, sum(w)) f-

'Vx, 'Vw.rev..sm(hd:: tl, w) rev_smc(hd:: tl, w, sum(w)) (11)

We can use the definition of rev_sm to rewrite the left hand side of (11) to rev_sm(tl, hd ::
w). However the re-writing process is blocked on the right-hand side: the available
recursive definitions provide no suitable re-writes to unfold the rev..smc term any
further. Hence to arrive at the following equation:

f- 'Vx, 'Vw.rev..sm(tl, hd:: w) = rev..smc(tl, hd:: w, hd + sum(w))

6

a second eureka step is required to aHow for the re-writing of rev...smc (hd :: tl, w , sum(w))
to rev...smc(tl, hd :: w, hd + sum(w)). In §4 we illustrate how a furt her new form
of MOR aHows us to avoid the eureka step.

The step case is completed by stripping of the universal quantifiers and instan­
tiating the w in the induction hypothesis to hd :: w in the induction conclusion
(reducing the induction step to true since both hypothesis and conclusion are iden­
tical). Analyses of the base and step cases of the proof provide the base and recur­
sive branch for the rev...smc procedure. In the next section we discuss the program
extraction process.

2.1 Proof Plans - Automating the Proof Process

The induction strategy, together with other commonly used proof tactics, has
been systematized in a metalogic in the automatie plan formation program CLAM

[BvHHS90]. This consists of formal proo/ plans where each tactic is specified by
a method wh ich includes pre- and post-conditions. By using meta-level reasoning,
CLAM executes the individual proof plans to obtain a combination of tactics CU8-

tomized to the particular theorem at hand. Execution of this tactic combination,
at the object level, will then produce a proof of that theorem.

A key strategy of the CLAM proof planner is rippling. Our explanation of rippling,
and the corresponding notation, will be necessarily simplified. For a fuHy compre­
hensive account the reader should consult [BSvH+93]. In an inductive proof, the
goal of the rippling proof plan is to reduce the induction step case to terms which
can be unified with those in the induction hypothesis. This unification is called /er­
tilization, and is facilitated by the fact that the induction conclusion is structurally
very similar to the induction hypothesis except for those function symbols which
surround the induction variable in the conclusion. These points of difference are
called wave-fronts. Thus, the remainder of the induction conclusion - the skeleton
- is an exact copy of the hypothesis. Wave fronts consist of expressions with holes
- wave holes - in them corresponding to sub-terms in the skeleton. Wave-fronts are
indicated by placing them in boxes, and the wave-holes are underlined, e.g.

'rIz, 'rIw. rev...sm(tl, w) :: rev...smc (tl, w, sum(w))

I- 'rIz,'rIw.rev...sm(lhd::illt,lwJ) :: rev...smc(lhd::illt,lwJ,sum(lwJ))

To und erstand the additional notation, the arrows and terms surrounded by l J, we
must explain the function of the structural rewrite rules, or wave-rules. llippling
applies wave-rules so as to remove the difference (wave-fronts) from the conclusion,
thus leaving behind the skeleton and allowing fertilization to take place. For the
purposes of this paper we need to identify three kinds of wave-rule distinguished
by the direction in which they move wave-fronts in the conclusion. Wave-fronts
may be moved outwards, rippling-out, such that they surround the entire induction
conclusion thus allowing a match between everything in the wave-front with the
induction hypothesis. Wave-rules for rippling-out are called longitudinal wave-rules
and an upward arrow signals the outward direction of movement. Examples of
longitudinal wave rules are:

I s(u) I + V
t

~ I s(u + V) I (12)

sum(1 Hd:: Tl I) ~ I H d + sum(TI) It (13)

U+(IV+WI) ~ I(U+ V) +Wl
t

(14)

Throughout this paper upper-case variables denote meta-variables such that the
above rules are best understood as rule schemata. Note that we include (14) to

7

show that wave rules need not only be formed from the step cases of inductive def­
initions ((14) is formed from the associative law of +).6 Wave-rules mayaiso move
wave-fronts sideways, rippling sideways, such that they surround non-induction uni­
versal quantified variables (such as accumulators). The sub-terms which sideways
rippled wave-fronts surround are called sinks and are demarcated by l J. This al­
lows the wave fronts, and the universally quantified variable that they surround, to
be identified with the corresponding universally quantified variable in the hypothe­
sis. Thus again fertilization can take place. Such a wave-rule is called a transverse
wave-rule, e.g.

rev_sm(j H d :: 111' W) :::} rev-sm(TI, j H d :: !f.1)

I s(X) r + y :::} X + I s(Y) I,
(15)

(16)

Rippling into sinks typically involves an application of a longitudinal wave-rule
followed by a transverse wave rule. It mayaiso, however, require rippling-in: a
reverse application of a longitudinal wave-rule. A downward arrow signals this
inward direction of movement. In §4.3 we provide a worked example that illustrates
both kinds of wave rule, and all three directions of rippling.

Rippling has numerous desirable properties. A high degree of control is achieved
for applying the rewrites since the wave-fronts in the rule schemas must correspond
to those in the instance. This leads to a very low search branching rate. Rippling
is guaranteed to terminate since wave-front movement is always propagated in a
desired direction toward some end state (a formal proof of this property is presented
in [BSvH+93]).

Other strategies formalized in proof plans, in addition to induction, rippling,
MOR and fertilization, include symbolic evaluation and tautology.

3 General Technique for Optimization by Proof
Plans

Constraint-based optimization is representative of only one of the kinds of opti­
mization possible by using our general technique. The synthesis of tail-recursive
programs from naive definitional equations has also been implemented as a tail­
recursive proof plan [HBS92]. Other kinds of optimization that we are now inves­
tigating include deforestation transformations, fusion transformations and tupling
transformations [Wad88, Chi90, Pet84]. In this section we describe the general
technique for controlling the syntheses of efficient programs from the definitions of
inefficient programs. The technique encapsulates all the aforementioned kinds of
optimizations. We intend to continue expanding this range of optimizations.

Proof plans are used to control the (automatie) synthesis offunctional programs,
specified in a standard equational form, &, by using the proofs as programs principle.
The goal is that the program extracted from a constructi ve proof of the specification
is an optimization of that defined solely by &. Thus the theorem proving process is
a form of program optimization allowing for the construction of an efficient, target,
program from the definition of an inefficient, source, program.

The proof planning approach to optimization is depicted by fig.1 where we show
the general form of the inductive generalization proof. The strategy can involve four
main steps. Firstly, a target program specification, S, is formed from the source
program's equational definitions &. S is then set up as the conjecture to prove.

6Indeed, rippling is not restricted to being employed solely within inductivf proof plans. Other
forms of mathematical proof mayaiso be controlled using the rippling technique [WNB92].

8

Secondly, the technique involves sequencing into the proof of S a new sub-goal,
g. The sub-goal g is produced as an output of the constraint-based generalization
proof-plan. g is partially identified by the use of higher-order (HO) meta-variables,
thus initiating the gen-MoR process. The application of the sequencing rule produces
two subgoals: the first being the original goal S with g as an additional hypothesis
(the so-called justification goal), and the second being g itself.1 The inductive
proof, PI, of (sub)goal g is then responsible for synthesizing the more efficient
computation of the input-output relation specified in S. g will be some form of
generalization on S, such as in tail-recursive generalization [HBS92], or, as in our
example, it may place additional constraints on S so as to affect constraint based
synthesis. Whatever the relation between Sand g, the main requirements are
that a more efficient procedure can be synthesized through proving g than through
proving Sand that g entails S.

The application of the constraint-based generalization proof plan, the induction
proof plan and any subsequent proof plans (such as symbolic evaluation) is auto­
matically co-ordinated by the CLAM proof planner according to the which proof plan
has it's pre-conditions satisfied by the current goal statement. So, for example, the
pre-conditions of a generalization proof plan will be satisfied by S, the proof plan
will be applied producing the corresponding post-conditions. These post-conditions
will satisfy the pre-conditions of the induction proof plan which will then be sub­
sequentlyapplied. Proof plans may also be applied as sub-plans. For example the
ripple proof plan is called within the application of the induction proof plan.

HO Meta-variables
introduced by
gen-mor

Template mor
may be used to
introdoce further
meta-variables.
All meta-variables
inatantiated by
hou

mor may be used
for justification proof

Template mor
may be ueed to
introduce fUMher
meta-variables.
All meta-variables
instantiated by
hou

Figure 1: Form of Generalization Synthesis Proof

The third step of the strategy consists of using gen-MOR to fully identify g through
higher-order unification (HOU). Recall that this is the case if only the form, but
not the precise content of g, is known at the sequencing step. HOU instantiates the
meta-variables by matching subsequent proof derivations with the available rewrite
rules (which will always include those formed from &).8 In this way, the need to

7In some case, the proof of the justification goal mayaIso require MOR. This is not the case
with the example we shall use where the justification goal is trivial.

8 Many eflicient functions can be synthesized without the use o(higher-order meta-variables. In
such cases MOR is not required. and fig.l would simply resemble a 'standard existential inductive
proof (i.e. we would omit the sequencing step and the justification proof P2).

9

treat the identification of 9 as a eureka step is removed by higher-order unification
using rewrite rules formed from the available definitional equations.

In traditional program transformation, eureka steps mayaiso occur du ring the
identification of the recursive branche(s) of the target program definition. Within
the context of proof synthesis, this would correspond to providing the requisite
recursive date-types at the induction step case of the proof. The application of
template MOR, the fourth step of the strategy, allows us to circumvent such eu­
reka steps by introducing meta-variables during the rippling stages of the induction
step. Template MOR applies higher-order schematic rewrite-rules which have the
effect of introducing new HO meta-variables. These allow for the delaying of proof
commitments concerning the identity of recursive data-types until further proof de­
velopment enables the meta-variables to be instantiated (more detail is provided in
§4.2).

The precise nature of g, the induction rule applied to g, the kind ofhigher-order
rewrite-rule employed by template MOR, and any restrictions on how the meta­
variables are instantiated, fuHy determine the type of recursion constructed in the
target proof (and thereby the efficiency of the extract algorithm). The complete
synthesis process is mechanical and the resulting program is guaranteed to satisfy
the program specification (S).

4 Proof Plans for Controlling Constrained (TaB)
Recursion

Recall that the main objective of constraint based transformations is the replace­
ment of expensive expressions in programs. Constraint-based transformations cover
a wide variety of function types. Three kinds of constraint-based transformation
may be distinguished according to the properties ofthe expensive expression (s): the
expensive expression(s) may occur either at the repetitive pI aces ofrecursive defini­
tions, or in the terminating branches of a procedure, or the expensive expression is
based on the fixed, or constant, parameter of a recursive function. We shall for now
only consider an example of the latter kind - e.g. the rev..sm example - although
what is said here concerning proof restrictions and pre- and post-conditions for the
constraint based generalization proof plan applies to the other kinds of constraint­
based transformation.

4.1 Pre- and Post-Conditions For Constraint-Based Gener­
alization

Recall that the identification of the new constraint parameter in rev..smc, as
sum(w) is a eureka step. The eureka step can be circumvented by MOR: intro­
ducing a new parameter identified in terms of meta-variables (which will then be
subsequently instantiated through HOU). To ensure that we obtain the efficient con­
strained function definition we place the restriction that the new constraint param­
eter will be some function, represented by a meta-variable M, on the non-recursive
(non-inductive) parameter, i.e. w, of the original rev..sm program.

In general, this constraint based restrietion ensures the removal of the expensive
expression, and is implemented as a CLAM proof plan method. The input goal for
the constraint based proof plan is of the foHowing form:

"Ix, Vy, 3z. z fn(x, YJ (17)

where y is a vector that denotes 0 or more additional parameters. The effects will
consist of a synthesis and a justification goal where the former is of the following

10

general form (where the constraint parameter is partially identified by M(y), and
where M is a meta-variable):

fm (x, y, M(i})) (18)

and where the justification goal requires a trivial proof that (18) r- (17), viz:

'Vx, 'VY.fn(x, y) = fm(x, y, M(i})) r- 'Vx, 'Vy,3z.z = fn(x, i}) (19)

We also require that the target of the constraint-based synthesis is to tail-recursive.
Unlike the tail-recursive syntheses reported in [HBS92], proofs of goals such as (18)
are equality proofs as opposed to existential proofs (a direct proof of (17) would
constitute an existential proof, but we require the introduction of the meta-variable
in the manner described). Thus, we cannot use the tail-recursive restrictions on the
identity of existential quantifiers described in [HBS92].9 Instead, for such equal­
ity proofs, we achieve the desired tail-recursive form through the application of
schematic, or higher-order, rule templates mentioned in §3.

4.2 Higher-order Rule Templates

The constraint-based proof plan has access to higher-order rule templates. These
are higher-order rule schemas which, upon application, provide partially identified
recursive definitions. The templates are designed to provide definitions of the de­
sired form from which new higher-order wave-rules may be formed. These wave-rules
facilitate the rippling process and the higher-order metar-variables introduced into
the proof, as a result of their application, become instantiated through subsequent
theorem proving.

In our example we desire, in addition to containing constraint parameters, a tail­
recursive program which takes three arguments. Thus, the corresponding template
is as follows:

F(nil, W, D) ~ G3 (W, D) (20)

F(IHd::ll~,W,D) ~ F(Tl,IGl(Hd,H~Ji,IG2(Hd,Q)I) (21)

where Gl, G2 and G3 are second-order meta-variables. In general, for a function of
n arguments there will be n meta-variables Al, ... , An:

Fn(nil, Al, ... , An) ~ Gn(Al! ... , An)

Fn(1 Hd:: 11I,A1! ... ,An) ~ Fn(Tl,IGl(Hd,~ 1, .. ·,IGn_l(Hd,~ !)
Such a use of high er-order variables within rule schemas is a new kind of MOR. It

is not the same as the MOR which introduces meta-variables in the constraint-based
proof plan preconditions (nor as MOR is identified in previous publications such as
[HBS92]). Although both uses employ the meta-variables to stand in for "unknown
constructs", the pre-condition usage delays proof commitments by partially identi­
fying goal statements, whereas the above usage constructs partially identified (wave)
rule templates. The above example corresponds to a tail-recursive template. This
allows us to introduce furt her meta-variables during re-writing (i.e. to delay further
proof commitments), in addition to those introduced by the proof plan precondi­
tions, whilst ensuring that the function being constructed adheres to a tail-recursive
form.

9That is, that the witnesses of the two existential quantifiers, one in the induction hypothesis
and one in the induction conclusion, should be identical. This would ensure that the value of the
function before the recursion is entered (determined by the induction hypothesis) to be the same
as the value as the recursive cal1 is exited (determined by the induction conclusion) .

11

4.3 The Synthesis of rev_smc Revisited

We now repeat the rev-smc example except this time we include the rippling an­
notations so as to illustrate how the eureka steps are circumvented, and how search
is tamed, through the use MOR. 10 HO meta-variables are used to postpone the
commitments to existential witnesses and the identification of the new constrained
goal. As in §2.0.2, the specification goal is,

Vx, Vw, 3z. z = rev_sm(x, w) (22)

This forms the input to the constraint-based proof plan (the pre-conditions of which
ensure that this is the first successfully applied proof plan). The output consists of
the synthesis goal (23):

r Vx ,Vw.rev-sm(x, w) = rev_smc(x, w, M(w)) (23)

and the trivial justification goal:

Vx,Vw.rev-sm(x,w) = rev-smc(x,w,M(w)) r Vx,Vw,3d.d = rev_sm(x,w)

where M is a (higher-order) meta-variable, and M(w) the partially identified con­
straint parameter. (23) is set up as the conjecture to prove (the specification goal).

Amongst the rewrite rules are those formed from the available recursive defini­
tions given in §1.1. (25) and (27) are wave rules formed from the recursive branches
(2) and (4) .. The non-wave rules (24) and (26) are formed from the corresponding
terminating branches (1) and (3).

rev-sm(nil, w) ::} (sum(w), w); (24)

rev_sm(1 Hd:: TII' W) ::} rev_sm(TI, 1 Hd:: Wh (25)

sum(nil) ::} 0; (26)

f sum(j Hd:: Tl) ::} 1 H d + sum(TI) I

t
(27)

As yet, rev-smc, is undefined, but this is precisely where the use of the transforma­
tion templates comes into play: by instantiating F in the higher-order rewrites (20)
and (21), we introduce second-order meta-variables GI, Gz and G3, and provide a
partially identified tail recursive definition for rev-smc which yields the following
schematic rewrites:

rev-smc(nil, W, D)

rev-smc (I H d :: 111' W, D)

::} G3 (W, D) (28)

::} rev_smc(TI, I G1(Hd,H~) !,IGz(Hd,Q) 1029)

Note that (29) can now be employed as a higher-order wave-rule. All we have
assumed here is that rev-smc is a tail-recursive program with three arguments, we
have not begged the question concerning the identity of the recursive data-types for
the rev-smc definition.

Following V-introduction, induction is performed on (23) yielding the following
induction cases: 11

lDlt should become dear that the example is an instance of the general framework represented
by fig.I.

11 A feature of the goal-directed proofs is that introduction rules have the effect of eliminating
existential quantifiers in the consequents of sequents. Conversly, elimination rules have the effect
of introducing an existential instantiation in the hypotheses.

12

Proof Base: The base case is as folIows:

~ Vw. rev_sm(nil, w) = rev-smc(nil, w, M(w))

By symbolic evaluation (using the rewrite yielded by (1) and (28):

~ Vw. (sum(w), w) = G3(W, M(w))

(30)

(31)

(31) reduces to true by tautology, and HOU instantiates G3(w, d) to (d, w) and M
to >.x.sum(x).

Proof Step: The identification of M(w), the constraint-parameter, as sum(w)
during the base case proof enables us to instantiate M to sum in the step case
of the proof. Thus, at the induction step we have the following sequent to prove
(where (32) is the induction hypothesis, and (33) the induction condusion):

Vw. rev-sm(tl, w) = rev-smc(tl, w, sum(w)) (32)

~ Vw.rev-sm(lhd::ilJ,lwj) = rev-smc(lhd::tLl,lwj,sumUwj)) (33)

Rippling sideways using, on the l.h.s., (25) and, on the r.h.s.,(29):

We then ripple-in using (27) and in the process instantiates G2 to >.x, y.x+y through
HOU:

Fertilization with the induction hypothesis, (32), now applies: w in the induction
hypothesis is instantiated to hd :: w from the induction conclusion. In the process,
GI is instantiated to >.x, y.x :: y.

Analysis of the proof yields the desired tail-recursive program with the constraint­
parameter sum(w):

rev-smc ([], w, sum(w)) = (sum(w), w);

rev-smc(h :: t, w, sum(w)) = rev-smc(t, h:: w, h + sum(w))

4.4 Fixed expensive expressions

In the case of functions where the expensive expression is based on a fixed, or con­
stant, parameter of a recursive function no MOR is required. For example, consider
the following function:

g(nil,€) = nil;

g(h::t,€) = sqr(€)xh::g(t,€).

Here the second parameter, €, remains constant throughout the recursion (and hence
so will the expensive expression, based on the constant, sqr(€)).

Again, the procedure we follow to optimize this function, by lifting the expensive
expression out of the recursion, is to introduce a new (generalized) function with an
additional parameter, d, which will be a function on the non-recursive parameter,
€. However, in the case of fixed parameters, there is no need for meta-variables
since in such cases we know that d is to be identified with the constant expensive
expression sqr(€).

13

Hence the new (generalized) function, g_new, is introduced as folIows:

'rIx, 3d.g(x, f) = g_new(x, f, d) where d = sqr(f) (34)

After applying induction, followed by rippling, an analysis of the resulting proof
yields the following optimization:

g_new(nil, f, d) = nil;

g_new(h :: t, f, d) = d x h :: g_new(t, f, d).

5 Benefits and Comparisons

Using proof plans to synthesize efficient algorithms presents search and control
advantages over the unfold/fold approach to transformation [BD77]. Unfold/fold
transformations are motivated by the desire to find recursive terms which can be
used for folding with definitional equations. This involves quite extensive search in
order to find a successful fold.

The proof plan analysis, on the other hand, is motivated by the desire to find
witnesses at the induction step of a synthesis proo[. Once this has been achieved,
through rippling, which may include MOR, then the proof is completed in much the
same way as any inductive synthesis proof: by a process of unfolding until all terms
in the conclusion match terms in the proof hypotheses. The fact that in rippling, the
wave-fronts in the proof must correspond to those in the wave-rule schemas provides
considerable control with a low branching rate. The unfold/fold transformations on
the other hand require numerous applications of laws for which any overall strategy
is difficult to characterize. Thus rippling is far easier to automate. The most per­
suasive empirical evidence for this being within the context of automatie proof plan
application through the automation of the rippling out process (cf. [BSvH+93]).

A further benefit of the rippling strategy is that it is guaranteed to terminate:
wave-fronts are always propagated in a direction toward achieving a match between
conclusion and hypothesis.

Rippling, incorporated with MOR, allows us to circumvent eureka steps required
by sequential rewriting transformation strategies such as unfold/fold. This clearly
aids automation since key decisions regarding the identity of recursive terms in the
target program can be delayed, rat her than user-supplied, until subsequent planning
provides the requisite information.

By providing the characteristics of the various generalizations, in the form of
restrietions on the proof, we can ensure that the desired optimization is built into
the algorithm being synthesized.

Since any of the synthesis proofs must satisfy the specification formed from
the standard equational form, &, of the function being synthesized then the proof
extract program is guaranteed to satisfy the specification, and hence to compute
the function defined by &.

By proving that the synthesized program satisfies the original specification, we
avoid the need to establish that any rewrite rules used are in themselves correctness
(equivalence) preserving. This will, as a general rule, require as much effort as
providing an explicit proof of correctness for the source to target transformations.
For example, many of the systems that employ the unfold/fold strategy rewrite the
recursive step(s) of a source program through the application of various equality
lemmas, each of which needs to be proved (by induction) if the source to target
transformation is to preserve equivalence [TT84, Dar89]

14

6 Conel usion

We described a general technique for controlling the synthesis of efficient pro grams
using automatie proof planning. The technique encapsulates a diverse range of pro­
gram optimizations, and benefits from the principled search and control strategies
of proof plans. In particular, the syntactic pattern matching properties of rippling
mean that we avoid the control problems encountered by the arbitrary application
of rules and laws in program transformation systems. The optimization process is
automatie and correctness is guaranteed. The technique circumvents eureka steps
which have prevented total automation in program transformation systems. This
has been achieved by incorporating MOR into proof plans.

Referenees

[BD77] R.M. Burstall and J. Darlington. A transformation system for devel­
oping recursive programs. Journal of the Association for Computing
Machinery, 24(1):44-67, 1977.

[BSvH+93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip­
pling: A heuristic for guiding inductive proofs. Artijicial Intelligenee,
62:185-253, 1993. Also available from Edinburgh as DAI Research Pa­
per No. 567.

[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam
system. Research Paper 507, Dept. of Artificial Intelligence, Edinburgh,
1990. Appeared in the proceedings of CADE-10.

[CF58]

[Chi90]

[Dar89]

[HBS92]

[How80]

[ML79]

[Pet84]

H.B. Curry and R. Feys. Combinatory Logie. North-Holland, 1958.

W. N. Chin. Automatie Methods for Program Transformation. PhD
thesis, University of London (Imperial College), 1990.

J. Darlington. A functional programming environment supporting ex­
ecution, partial evaluation and transformation. In PARLE 1989, pages
286-305, Eindhoven, Netherlands, 1989.

J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to
control the synthesis of tail-recursive programs. In D. Kapur, editor,
11th Conferenee on Automated Deduction, pages 310-324, Saratoga
Springs, NY, USA, June 1992. Published as Springer Lecture Notes
in Artificiallntelligence, No 607.

W.A. Howard. The formulae-as-types notion of construction. In J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry; Essays on Combina­
tory Logie, Lambda Caleulus and Formalism, pages 479-490. Academic
Press, 1980.

Per Martin-Löf. Constructive mathematics and computer program­
ming. In 6th International Congress for Logie, Methodology and Phi­
losophy of Seience, pages 153-175, Hanover, August 1979. Published
by North Holland, Amsterdam. 1982.

A. Pettorossi. A powerfull strategy for deriving programs by transfor­
mation. In ACM Lisp and Functional Programming Conference, pages
405-426, 1984.

15

[RP82] S. Koenig R. Paige. Finite Differencing of Computable Expressions.
ACM Transformation on Functional Programming Languages and Sys­
tems, 4:pp. 405-454, 1982.

[TT84] H. Tamaki and T.Sato. Transformationallogic program synthesis. In
Proceedings of the International Conference on Fifth Generation Com­
puter Systems. ICOT, 1984.

[Wad88] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
In Proceedings of European Symposium on Programming, pages 344-
358. Nancy, France, 1988.

[Wai89] S.S. Wainer. Computability - logical and recursive complexity, July
1989.

[WNB92] T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series.
In D. Kapur, editor, 11th Conference on Automated Deduction, pages
325-339. Springer Verlag, 1992. Lecture Notes in Computer Science
No. 607. Also available from Edinburgh as DAI Research Paper 563.

o

mPD
____________ I N F 0 R M A T I K ___________ _

Below you find a list of the most recent technical reports of the research group Logic 0/ Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. If you have any questions concerning ftp
access, please contact reportsCmpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

MPI-I-94-241

MPI-I-94-235

MPI-I-94-234

MPI-I-94-233

MPI-I-94-232

MPI-I-94-230

MPI-I-94-228

MPI-I-94-226

MPI-I-94-225

MPI-I-94-224

MPI-I-94-223

MPI-I-94-218

MPI-I-94-216

MPI-I-94-209

MPI-I-94-208

MPI-I-94-207

MPI-I-94-201

Max-Planck-Institut für Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: kraemerCmpi-sb.mpg.de

J. Hopf

D. A. Plaisted

S. Matthews, A. K. Simpson

D. A. Plaisted

D. A. Plaisted

H. J. Ohlbach

H. J. Ohlbach

H. J. Ohlbach, D. Gabbay, D. Plaisted

H. J. Ohlbach

H. Alt-Kaci, M. Hanus, J. J. M. Navarro

D. M. Gabbay

D. A. Basin

P.Barth

D. A. Basin, T. Walsh

M. J{ä

A. Bockmayr

M. Hanus

MPI-I-93-267 1. Bachmair, H. Ganzinger

MPI-I-93-265 W. Charatonik, L. Pacholski

Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the
KI-94 Workshop

Ordered Semantic Hyper-Linking

Reßection using the derivability conditions

The Search Efliciency of Theorem Proving
Strategies: An Analytical Comparison

An Abstract Program Generation Logic

Temporal Logic: Proceedings of the ICTL Workshop

Computer Support for the Development and
Investigation of Logics

Killer Transformations

Synthesizing Semantics for Extensions of
Propositional Logic

. Integration of Declarative Paradigms: Proceedings
of the ICLP'94 Post-Conference Workshop Santa
Margherita Ligure, Italy

LDS - LabelIed Deductive Systems: Volume 1 -
Foundations

Logic Frameworks for Logic Programs

Linear 0-1 Inequalities and Extended Clauses

Termination Orderings for Rippling

ger A probabilistic extension of terminological logics

Cutting planes in constraint logic programming

The Integration of Functions into Logic
Programming: A Survey

Associative-Commutative Superposition

Negativ set constraints: an easy proof of decidability

	94-2390001
	94-2390002
	94-2390003
	94-2390004
	94-2390005
	94-2390006
	94-2390007
	94-2390008
	94-2390009
	94-2390010
	94-2390011
	94-2390012
	94-2390013
	94-2390014
	94-2390015
	94-2390016
	94-2390017
	94-2390018
	94-2390019
	cover-hinten_2099-2897-300dpi

