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Zusammenfassung

We study strategies for converting randomized algorithms of the Las Vegas
type into randomized algorithms with small tail probabilities.

1 Introduction

Let A be a randomized algorithm of the Las Vegas type, i.e., A’s output is always
correct and A’s running time T4 is a random variable. Let E; = E[T,]. Then
prob(Ty > t) < E,/t for all ¢t according to Markov’s inequality. If no further
information about the distribution of T4 is available, Markov’s inequality is the
best bound available for the tail probability. Consider now the following modified
algorithm. It runs A for ¢;, = 2E, time units. If A stops before the threshhold
t; then the modified algorithm stops. If A does not stop before time ¢;, then the
modified algorithm restarts A and runs it again for £, = 2E; time units but with
new random choices. In this way prob(Tim.q > k2E,) < 27% for all k € IN or
prob(Thmoea 2> t) < 2-lt/2B0] for all t € IR, where T,q is the running time of the
modified algorithm. The bound for the tail probability of the modified algorithm
depends on the sequence ?;,1%,, ... of threshholds chosen by the modified algorithm.
What is an optimal sequence?

Let us first state the problem in more abstract terms. Let X, X;, X,,... be in-
dependent nonnegative random variables with common distribution function f(z).
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Let Y3,Y,... be a sequence of nonnegative random variables (not necessarily inde-
pendent) and let 7y be the least ¢ such that X; < Y;. Define random variable T by
T=Y1+Y2+...4Y,.1+ Xi,. A strategy S is a distribution function for the ¥’’s.
A strategy S together with a distribution f for the X;’s induces a distribution for
the random variable T'. Let bs ¢(t) = prob(T > t) and let

bs(t, Eo) = sup{bs #(t); f is a distribution with [° zf(z)dz = E,},

ie., prob(T > t) < bs(t,Eo) for all distributions f for X with E[X] = E, and
bs(t, Eo) is the smallest such value. A strategy S is called deterministic if each Y;
can assume only a single value and probabilistic otherwise. Set bs(t) = bs(t,1).

For example, the strategy mentioned in the first paragraph is deterministic. We
have prob(Y; = 2E,) = 1 for all 7 and bs(t, E,) < 2~1#/2E0] < 2(21/2)*/Be. We show

Theorem 1 For all strategies S: bs(t) > e* for allt > 0.
Theorem 2 There is a probabilistic strategy S with bs(t) < e~(*~1) for all t > 0.

Theorem 3 There is a deterministic strategy S with bg(t) < e t+O(VElost) for gl
t> 0.

Theorem 4 There are positive constants ¢; and c; and a deterministic strategy S
such that bs(t, E) < e~1t/(BUnEY)Hnleat) for gllt > 0 and E > 1.

Theorems 1, 2 and 3 imply that there are near-optimal probabilistic and determi-
nistic strategies for the case of a known value of E; = E[X], i.e., for the case where
the strategy may depend on the value E,. Note that, although these theorems are
stated for the case Fy = 1, simple scaling extends them to all values of E;,. Theorem
4 deals with the case of an unknown expectation E[X]. Of course, a lower bound has
to be assumed for E[X] to make the question meaningful. We prove an exponential
bound for the tail probability but were not able to determine the optimal base of
the exponential function.
All proofs are given in Section 2.

2 Proofs

2.1 The Proof of Theorem 1

We prove Theorem 1. Let f(z) = e7=. Then E[X] = [;° zf(z)dz = 1 and prob(X >
z) = [ f(z)dz = e™=. A strategy S is defined by a probability measure p on
2 = (IRyo)™, i.e., by a probability measure on the set of infinite sequences of
nonnegative reals. :
Let ¢ € IR and let jo be the random variable defined by

Yi+...+Y,a<t<Yi+...4Y;.
Then

prob(T >t) = prob(T > t | jo = j)prob(jo = j).
ixl



Let ;= {(¥1,92,---); Y1+ ... +Yj-1 <t <y1+...+y;}. Then prob(jo = j) = uf;.
Also, an element (y;,¥2,...) € §; contributes to the event T' > ¢ if and only if
X 2v1,X2292,...,X;-1 2 Yj—1,and X; 2t —(y1+...+y;j-1), 1.e., it contributes
to the event T > ¢ with probability e~*. Thus prob(T >t | jo = j) = e~* and hence
prob(T > t) = e~t. This proves Theorem 1. '

2.2 The proof of Theorem 2

We prove Theorem 2. We first define a strategy S. The random variables V3,75, ...
are independent with common density function g(y) = e™¥. Let f be any distribution
with [;° zf(z)dz = 1 and let b(t) = bs 4(t) for all t. We will show b(t) <1fort <1
and b(t) < e-e* for t > 1. Consider some fixed t. Let ¢ = prob(X > t) be
the probability that X exceeds the threshhold ¢, and for all z with 0 < z <t let
h(z) = prob(X > z | X < t) be the conditional probability that X > z given that
X <t. Then

t 1-—
m=E[X|X_<_t]=/° h(z)dazg-l—_%t-
since
1= E[X]= (1- QE[X | X <+ ¢EIX X >8> (1-gm+at.
Also,

b(t) = g(et + /: e "b(t — z)dz) + (1 — q) /: e "b(t — z)h(z)dz.

This can be seen as follows. Define random variable 7" by Y, + ... + ¥;,_; + X, if
10>2and by TV =01if 2 = 1. If X; > ¢t the event T > ¢t occurs iff either Y; > ¢
or Y; assumes a value z between 0 and £ and 7' > t — z. If X; < ¢ then the event
T > t occurs iff Y; assumes a value z between O and ¢, X; > Y; and TV > ¢t — z.
Next observe that prob(T' >t —z | X; > Y;) = b(t — z) since the random variables
X1,X,,...,11,Y, ... are independent. Make the substitution Q(t) = €*b(t). Then

Q) = o1+ [ @t - 2)de) + (1~ ) [ Q¢ ~ 2)h()de.

We will show that Q(¢) < efort > 1and Q(t) < e fort < 1. Thecaset <1is
immediate. For £ > 1 it suffices to plug this inequality into the right-hand-side and
show that it holds for the left-hand-side. The right-hand-side is bounded above by

g(l1+et—1)+(1—qg)em < gte+e(1 —gt) <e.
This completes the proof.

2.3 The Proof of Theorem 3

We prove Theorem 3. For any integers » and 7z with 1 < ¢ < n define

1 1

n-—1+'”+n—i+1'

Note that },<;cn,ti(n) = n. Let s(n) be the sequence t1(n),t2(n),...,ta(n) and
let the strategy S be obtained by concatenating together s(1),s(2),s(3),.... For
1 <1< nlet pi(n) = prob(X > ti(n)). The following Lemma is crucial for the
analysis of strategy S.

i
t,-(n) = ; +



Lemma 1 For all integers n, [l;cic, pi(n) < %

_n'b

Proof: Let to(n) = 0 and pp41(n) = 0. Then
1=E[X] > Y (p:(n) — pisa(n))ts(n)

= -23 pi(n)(t:i(n) — tima(n))
= KZ_; pi(n)/(n —i+1).

Let = (P1,Pz,- .- »Pn) € IR™ be the n-tuple which maximizes the product function
P(p1,p2,--,Pa) = [licicn Pi subject to the constraint )i, pi/(n —3+1) < 1.
Clea“ﬂys 2151‘511 ;T,/(n—-z+1)—1 = 0. Let g(plsph cee 1pﬂ) = ZISiSnPi/(n—i-*_l)—l’
The Lagrange multiplier rule [Erw64, Theorem 66] implies the existence of a constant
A such that

for all ¢, i.e., P(P)/P: = A/(n —i+1) or p; = C(n — i+ 1) for some constant C. The
constraint g(§) = 0 implies C = 1/n. Thus [];<;<n pi(n) < P(P) = n!/n™. (]

We now bound bs(t). Consider a ¢ that lies between the binomial coefficients
(""'1) and (”"’2) andlet ¢, = (""'1) Since 31 i<k ti(k) = k, we have 3y ;< ti(k) =
to < t and therefore bs(t) < Ilicickcn Pi(k) < Tlickcn k!/k*. By Stirling’s ap-
proximation [Kn73, page 111], k!/k* < +2xke*(k 4+ 1)/k and hence bs(t) <
(2rn)™2e~t(n + 1) < e~t+O(VilogY) completing the proof.

2.4 The Proof of Theorem 4

We prove Theorem 4. We first define the strategy S. For integers ¢ and j let
m;; = |e7*/i%|. Let S; be the sequence consisting of m;; copies of e!, followed by
my; copies of e?, followed by mg; copies of €3,... Let S be obtained by catenating
S1,8z,... We now bound prob(T > t) for ¢t € IR. Let 35 € IN be such that e*~2 <

= E[X] < e}, set M; = 21 my;e*, and let jo be such that Ticio Mi <t <
Z.‘iS.‘io+1 M;.
Lemma 2 (a) jo > In(6t(e — 1)/n%€?),
(b) prob(T > t) < &~ visia ™07,
(¢) Ticio Minj 2 mrpngey — In(cat).
Proof:
(a) Note first that M; = ¥, mye* < T;e7/i* = n¢’/6 and hence LicpM; <

Yici 7€’ /6 < 1rze’°+2/(6(e —1)). Thus ¢t < w2e®*?/(6(e — 1)) and therefore
jo 2 In(6t(e — 1)/(x%€?)).

(b) It follows from the definition of S and jo that the event T' > ¢ implies the
occurrence of 30, m,; events of the form X > €. But prob(X = e®)<1/e
a.ccordmg to Markov’s inequality and the fact that E[X] < e%~1.

4



(c)

> mi = % |5

1<5<50 1<i<io L %0

1 L

% 15%5:7'0 ¢ ”
e —1 )

o=y

6t(e —1)/(n%e*) -1 In 6t(e — 1)
13etotl(e — 1) n2e?

Clt
.Eo(].n EO)Z - ln(Czt)

v

v

2>
=

for some constants ¢, and c,. Here, the first inequality follows from the defini-
tion of m;;, the fourth inequality follows from part (a), and the last inequality
follows from the fact that Eg > e®o—2.

Theorem 4 is now a direct consequence of parts (b) and (c) of the preceding Lemma.
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