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Zusammenfassung 

We study strategies for converting randomized algorithms ofthe Las Vegas 
type into randomized algorithms with small taU probabilities. 

1 Introduction 

Let A be a randomized algorithm of the Las Vegas type, i.e., A's output is always 
correct and A's running time TA is a random variable. Let Eo = E[TA]. Then 
prob(TA > t) :5 Eo/t for all t according to Markov's inequality. H no further 
information about the distribution of TA is available, Markov's inequality is the 
best bound available for the tail prob ability. Consider now the following modified 
algorithm. It runs A for t 1 = 2Eo time units. H A stops before the threshhold 
t 1 then the modified algorithm stops. If A does not stop before time t 1 , then the 
modified algorithm restarts A and runs it again for t2 = 2Eo time units but with 
new random choices. In this way prob(Tmoet ~ k2Eo) :5 2-1e for all k E 1N or 
prob(Tmod ~ t) :5 2-Lt/2EoJ for all t E 1R., where Tmod is the running time of the 
modified algorithm. The bound for the tail prob ability of the modified algorithm 
depends on the sequence t 1 , t2 , ••• of threshholds chosen by the modified algorithm. 
What is an optimal sequence? 

Let us first state the problem in more abstract terms. Let X,X1 ,X2 , ••• be in­
dependent nonnegative random variables with common distribution function f( z). 
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Let Yl., Y2, ... be a sequence of nonnegative random variables (not necessarily inde­
pendent) and let i o be the least i such that Xi < Yi. Define random variable T by 
T = Yl. + Y2 + ... + Yio - l + X io • A strategy S is a distribution function for the Y's. 
A strategy S together with a distribution 1 for the Xi'S induces a distribution for 
the random variable T. Let bS.J(t) = prob(T > t) and let 

bs(t, Eo) = sup{bs.,(t); 1 is a distribution with /000 z/(z)dz = Eo}, 

i.e., prob(T ~ t) < bs(t, Eo) for all distributions 1 for X with E[X] = Eo and 
bs ( t, Eo) is the smallest such value. A strategy S is called deterministic if each Yi 
can assume only a single value and probabilistic otherwise. Set bs(t) = bs(t, 1). 

For example, the strategy mentioned in the first paragraph is deterministic. We 
have prob(Yi = 2Eo) = 1 for an i and bs(t,Eo) < 2-Lt/2EoJ ::; 2(2l /2y/Eo• We show 

Theorem 1 For all strategies S: bs(t) > e-t lor allt > o. 

Theorem 2 There is a probabilistic strategy S with bs(t) ::; e-(t-l) lor all t > o. 

Theorem 3 There is a deterministic strategy S with bs(t) :::; e-t+O(Vtlogt) lor all 
t ~ o. 

Theorem 4 There are positive constants Cl and C2 and a deterministic strategy S 
such that bs ( t, E) < e-c1t/(E(lnE)2)+ln(qt) lor allt > 0 and E > 1. 

Theorems 1, 2 and 3 imply that there are near-optimal probabilistic and determi­
nistic strategies for the case of a known value of Eo = E[X], i.e., for the case where 
the strategy may depend on the value Eo. Note that, although these theorems are 
stated for the case Eo = 1, simple scaling extends them to all values of Eo. Theorem 
4 deals with the case of an unknown expectation E[X]. Of course, a lower bound has 
to be assumed for E[X] to make the question meaningful. We prove an exponential 
bound for the taU prob ability but were not able to determine the optimal base of 
the exponential function. 

All proofs are given in Section 2. 

2 Proofs 

2.1 The Proof of Theorem 1 

We prove Theorem 1. Let I(z) = e-2O. Then E[X] = /000 z/(z)dz = 1 and prob(X ~ 
z) = /2000 I(z)dz = e-2O. A strategy S is defined by a prob ability measure J.L on 
n = (m.~0)00, i.e., by a probability measure on the set of infinite sequences of 
nonnegative reals. 
Let t E m.~o and let jo be the random variable defined by 

Then 

~ + ... + Yio - l < t < ~ + ... + Y;o. 

prob(T ~ t) = L prob(T ~ t I jo = j)prob(jo = j). 
">I '-
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Let 0,; = {(YI, Y2, .. . ); YI + ... +Y,;-l < t =:; YI + ... + y,;}· Then prob(jo = j) = p.O,;. 
Also, an element (Yll Y2, . .. ) E 0,; contributes to the event T 2:: t if and only if 
Xl 2:: Yl, X 2 2:: Y2,·· . , X';-l 2:: Y,;-l, and X,; 2:: t - (YI + ... + Yi-l), i.e., it contributes 
to the event T > t with prob ability e-t . Thus prob(T > t I jo = j) = e-t and hence 
prob(T 2:: t) = e-t . This proves Theorem 1. 

2.2 The proof of Theorem 2 

We prove Theorem 2. We first define a strategy S. The random variables Yi, 1'2, ... 
are independent with common density function g(y) = e-Y• Let f be any distribution 
with fo

oo 2;f(2;)dz = 1 and let b(t) = bs.At) for all t. We will show b(t) =:; 1 for t < 1 
and b(t) =:; e· e-t for t 2:: 1. Consider some fixed t. Let q = prob(X > t) be 
the prob ability that X exceeds the threshhold t, and for all 2; with 0 < 2; ~ t let 
h(2;) = prob(X > 2; I X < t) be the conditional prob ability that X 2:: 2; given that 
X <t. Then 

m = E[X I X ::; t] = ft h(2;)dz < _1 -~qt 
o 1- q 

sm ce 

1 = E[X] = (1 - q)E[X I X < t] + qE[X I X > t] > (1 - q)m + qt. 

Also, 

b(t) = q(e-t + jt e-Zb(t _ 2;)dz) + (1- q) jt e-Zb(t - 2;)h(z)dz. 
o 0 

This can be seen as follows. Define random variable T' by 1'2 + ... + i'io-l + X io if 
i o 2:: 2 and by T' = 0 if i o = 1. H Xl > t the event T > t occurs iff either Yi > t 
or Yi assumes a value 2; between 0 and t and T' > t - z. If Xl < t then the event 
T > t occurs iff Yi assumes a value z between 0 and t, Xl > Yi and T' 2:: t - 2;. 

Next observe that prob(T' > t - z I Xl 2:: Yi) = b(t - z) since the random variables 
Xl,X2 , ••• , Yi, 1'2, ... are independent. Make the substitution Q(t) = etb(t). Then 

Q(t) = q(1 + jt Q(t - z)dz) + (1- q) jt Q(t - z)h(z)dz. 
o 0 

We will show that Q(t) ~ e for t 2: 1 and Q(t) :5 et for t < 1. The case t < 1 is 
immediate. For t > 1 it su:f6.ces to plug this inequality into the right-hand-side and 
show that it holds for the left-hand-side. The right-hand-side is bounded above by 

q(1 + et - 1) + (1 - q)em ::; qte + e(1 - qt) < e. 

This completes the proof. 

2.3 The Proof of Theorem 3 

We prove Theorem 3. For any integers n and i with 1 ~ i :5 n define 

111 
t i ( n) = - + -- + ... + . . 

n n-1 n-z+1 

Note that EI<i<n ti(n) = n. Let s(n) be the sequence tl(n), t 2(n), ... , tn(n) and 
let the strategy -S be obtained by concatenating together s(1), s(2), s(3), . ... For 
1 :5 i ~ nIet pi(n) = prob(X 2: ti(n». The following Lemma is crucial for the 
analysis of strategy S. 
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Lemma 1 For all integers n, IIl<i<nPi(n) ~ nl. __ n 

Proof: Let to(n) = 0 and Pn+l(n) = o. Then 

1 = E[X] > L (pi(n) - Pi+l(n))ti(n) 

L Pi(n)/(n - i + 1). 
l$i$n 

Let P = (Pl,PZ, ... ,Pn) E m.n be the n-tuple which ma.ximizes the product function 
P(Pl,Pz, ... ,Pn) = IIl<i<nPi subject to the constraint El<i<nPi/(n - i + 1) < l. 
Clearly, El<i<nPi/(n-"i.tl)-1 = o. Letg(Pl,pz, .. ',Pn) = El<i<nPi/(n-i+l)-l. 
The Lagrange-multiplier rule [Erw64, Theorem 66] implies the eXirlence of a constant 
A such that 

8P (p) _ A 8g (p) = 0 
8Pi 8Pi 

for all i, i.e., P(p)/pi = A/(n - i + 1) or Pi = C(n - i + 1) for some constant C. 'rhe 
constraint g(P) = 0 implies C = l/n. Thus II1$i$n pi(n) ~ P(p) = n!/nn. I 

We now bound bs(t). Consider at that lies between the binomial coefficients 
(n~l) and (n~z) andletto = (n~l). SinceEl$i$lcti(k) = k, wehaveEl$i$lc$n ti(k) = 
to < t and therefore bs(t) ~ IIl<i<lc<nPi(k) ::; II1<Ic<n k!/klc . By Stirling's ap­
proximation [Kn73, page lU], kl/klc - ~ v'2?rke-lc(k =+- 1)/k and hence bs(t) < 
(2?rn)n/z e- to (n + 1) ::; e-t+O(vt1og t), completing the proof. . 

2.4 The Proof of Theorem 4 

We prove Theorem 4. We first define the strategy S. For integers i and j let 
mii = L ei-i /iZ J. Let Si be the sequence consisting of mli copies of e1 , followed by 
m2j copies of eZ, followed by m3i copies of e3 , ••. Let S be obtained by catenating 
SbSZ, ... We now bound prob(T ~ t) for t E m.. Let i o E IN be such that eio - z < 
Eo = E[X] < eio- 1

, set Mi = Ei~l miiei , and let jo be such that Ei$io Mi < t < 
Ej$io+l Mi· 

Lemma 2 (a) jo ~ ln(6t(e - 1)/?rzeZ), 

(b) prob(T > t) < e - E;s;o 7rl.io;, 

(c) Ei$io mioi > Eo(~~rl -ln(czt). 

Proof: 

(a) Note first that Mi = Ei miiei ::; Ei ej /iz = 1r
zei /6 and hence Ei<io Mi ::; 

Ej<io ?rz ei / 6 ::; ?rz eio+2 / (6( e - 1)). Thus t < ?rz eio +2 / (6 (e - 1)) and therefore 
jo ~ ln(6t(e -1)/(?rzeZ)). 

(b) It follows from the definition of S and jo that the event T ~ t implies the 
occurrence of Ei<io mioi events of the form X 2: eio . But prob(X > eio ) ::; l/e 
according to Markov's inequality and the fact that E[X] ::; eio - 1 . 

4 



(c) 

L~ l ;-io J 
1<"<' to _1_10 

for some constants Cl and ~. Here, the first inequality follows !rom the defini­
tion of Tni;, the fourth inequality follows !rom part (a), and the last inequality 
follows from the fact that Eo > eio- 2 • 

I 

Theorem 4 is now a dired consequence of parts (b) and (c) of the preceding Lemma. 
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