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Abstract

The theory of finite trees is the full first-order theory of
equality in the Herbrand universe (the set of ground terms)
over a functional signature containing non-unary function
symbols and constants. Albeit decidable, this theory turns
out to be of non-elementary complezity [Vor96a].

To overcome the intractability of the theory of finite
trees, we introduce in this paper the bounded theory of finite
trees. This theory replaces the usual equality =, interpreted
as identity, with the infinite family of approzimate equalities
“down to a fixed given depth” {=%}4c,, with d written in
binary, and s =7 ¢+ meaning that the ground terms s and ¢
coincide if all their branches longer than d are cut off.

By using a refinement of Ferrante-Rackoff’s complexity-
tailored Ehrenfeucht-Fraissé games, we demonstrate that
the bounded theory of finite trees can be decided within lin-
ear double exponential space 22 (n is the length of input)
for some constant ¢ > 0.

Keywords

Decision complexity of logical theories, elementary and non-elementary deci-
sion problems, lower and upper bounds for decision complexity, Ehrenfeucht-
Fraissé games
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1 Introduction

Tree-like structures are fundamental for almost all domains of Computer
Science, and are especially relevant to logic programming, symbolic com-
putation, data types, constraint solving, automated theorem proving, data
bases, knowledge representation, etc. Whenever the reasoning about a class
of data structures is involved, it is interesting to know what is the inherent
computational complexity of this reasoning. This may be crucial in practical
implementations of theorem provers, constraint solvers, systems of logic and
functional programming.

The first-order theory of finite trees, also known as the theory of term
algebras, or Clark’s equational theory, although decidable [Mal71, Kun87b,
Mah88, Hod93], turns out to be non-elementary in the sense of Kalmar
[Vor96a]. Any nondeterministic decision procedure for the theory takes time
exceeding infinitely often any fixed finite-story iterated exponential function

on

22 where n is the length of input. Even worse, every such decision proce-
2

2 cn
dure requires nondeterministic time (or space) 2 (with the height of
the tower growing linearly with n) to decide formulas of length n, for some
constant ¢ > 0 and infitely many n € w.

Finite trees is one of the basic domains in the Constraint Logic Program-
ming [JM94]. One can hardly expect to use the full first-order theory of trees
to express constraints, because of its non-elementary complexity. Allowing
only existential quantification and conjunctions (as is usually done) seems to
be a serious restriction of expressiveness. In this respect the bounded the-
ory of finite trees, considered in this paper, allowing for the full first-order
quantification and being elementary, may be considered useful.

In this paper we suggest a practical substitute for the theory of finite trees,
which we call the bounded theory of finite trees. In this theory, instead of
the unique usual equality =, one has an infinite family of equalities {=}4c,,
with s =¢ t interpreted as true if and only if the trees s and ¢ coincide to
depth d, where d is written in k-ary notation (with & > 2). Thus instead of
stipulating the complete equality, one has to specify ezplicitly which precision
is needed in every comparison. We demonstrate that the bounded theory
is decidable within elementary space 2°° for some ¢ > 0, and thus can
be considered a useful practical alternative to the usual (unbounded) non-
elementary recursive theory of finite trees.



Our basic decision and complexity analysis techniques are model-theoretic
games. More specifically, we use Ferrante-Rackoff’s complexity-tailored games
[FR79], which refine Ehrenfeucht-Fraissé-games [Ehr61, Hod93] by additional
boundedness analysis in the back-and-forth conditions. Boundedness means
that whenever a formula of the form 3z ®(x) is true, one can always find
a small witness for ®(z) from a finite subset of a model. Contrapositively,
if there are no small witnesses for ®(x), one may safely consider Jz ®(z)
false. Thus, assuming boundedness, to decide 3z ®(x), one just needs to
check finitely many small candidates for witnesses. By analyzing the size of
these candidates for witnesses it is possible to obtain the upper space com-
plexity bounds. This forms the basis of our decision and complexity analysis
method. We carry over this machinery to the case of infinite signatures.

Although the analogy is not complete here, we would like to recall a
rather similar situation with the full first-order theory of binary concate-
nation', which is undecidable [Quid6, Smu61], and the theory of ¢-bounded
concatenation® [BM80, Ber80], which is decidable within elementary space
and time if the function ¢ is computable in elementary space.

Venkataraman in [Ven87] showed that the first-order theory of finite trees
with the subtree predicate (s < t meaning that s is a subtree of t) is undecid-
able. By using the machinery of this paper we can show that the bounded
theory of trees with the “to be a subtree at bounded depth” predicate (s <4 t)
is decidable in elementary space and time.

A short version of this paper appeared in [Vor96b].

Outline of the Paper. After briefly surveying the standard theory of
finite trees we introduce the approximate tree equality, define the bounded
theory of trees in functional and relational formalizations, and state our
Main Theorem in the end of Section 4. In Section 5 we explain Ferrante-
Rackoff’s complexity tailored refinement of the Ehrenfeucht-Fraissé games

lie., the first-order theory of the structure ({0, 1}*; conc(z, y, 2)), with the set of binary
words as a carrier and the predicate conc(x, y, z) interpreted as true iff the word z results
from concatenation of words z, y.

2Let A be a finite alphabet. Consider the first-order language L(A) with equality, con-
taining a constant for every a € A, and whose only atomic formulas are bcat,(z,y,z),
where n is a unary numeral. Then for any function ¢ : w — w define t-bounded concate-
nation theory as the set of of true sentences of L(A) under the following interpretation:
the underlying domain is A*, the set of finite words over A; for a,b,c € A* the formula
beat, (a, b, c) is true iff ¢ is concatenation of a and b, and the length of ¢ is at most ¢(n).



and in Section 6 give the necessary generalization of these games for infinite
signatures. Section 7 contains the application of games for the decidability
proof and establishing the upper space complexity bounds for the bounded
theory of trees.

2 Preliminaries

We suppose familiarity with standard logical notation. By w we denote the
set of natural numbers. A signature ¥ is called functional iff it contains no
predicate symbols. Const(¥X) and Fun(X) denote the subsets of constant
and non-nullary function symbols of ¥ respectively. T(X) denotes the set of
all ground (variable-free) terms of signature X, usually called the Herbrand
universe over ¥; ar(f) is the arity of f € X.

First-order formulas, free and bound occurrences, substitutions are de-
fined as usual. A sentence or closed formula is a formula without free vari-
ables. The quantifier depth of a formula ¢ is a maximal number of nested
quantifiers in ¢.

First-order models and their carriers are denoted by A, B. The elements
of models are denoted by a, b, possibly with indices; @, by denote k-tuples
of elements a; ...ag, by ...bg. For example, Gy = ay ... ak, a1 = Tg, Qp11.
By T\, we denote a k-tuple of distinct variables. By (A, @) we denote a model
A with distinguished elements @. The satisfaction relation |= is defined as
usual.

By (A, @) = F(T)) we mean that the formula F'(Ty) is satisfied in A when
the free occurrences of variables Ty, in F () are replaced by the elements @y
of A. This is equivalent to A = F(ay).



3 Theory of Finite Trees

Global Proviso. Throughout the paper ¥ denotes a finite functional sig-
nature containing at least one constant symbol. Hence T'(X), the Herbrand
universe over I, is non-empty. O

Definition 1 (Theory of Finite Trees) The theory of finite trees is the
full first-order theory Th(T(X)) of the Herbrand universe T(X) in the lan-
guage of the first-order predicate calculus of signature > with equality. O

The good well-known news, due to Mal’cev and Kunen, is that the theory
is decidable.

Theorem 2 ([Mal71, Kun87b, Mah88, Hod93]) Both for finite and in-
finite signatures the theory of finite trees possesses complete axiomatizations;
therefore is decidable. O

The quantifier elimination procedures for the theory of finite trees are
described in [Mal71, Kun87b, Mah88, Hod93]. The bad news is that the
decision problem for the theory is computationally intractable.

Definition 3 (Iterated Exponentials) For m,n € w let exp,(n) = n and
eXpyypq(n) = 2%Pn(™ Define exp(n) as exp,(0), i.e, a tower of 2’s of
height n. A decision problem is elementary recursive in the sense of Kalmar
iff it can be decided within space (or time) bounded by a function exp,,(n)
for some fixed m € w, where n s the length of input. Otherwise, a problem
15 called non-elementary. a

It turns out that the theory of finite trees is not elementary recursive.
This disproves K. Kunen’s claim [Kun87a] that the theory of finite trees is
PSPACE-complete:

Theorem 4 ([Vor96a]) The first-order theory of finite trees is non-elemen-
tary if the signature ¥ (finite or infinite) contains non-unary function sym-
bols. Moreover, any decision algorithm for the theory takes time exceeding
expoo(|cn]) for some ¢ > 0 and infinitely many n € w, where n is the length
of input. O

The same applies to different variations of the theory, like the theories
of rational, feature, and rational feature trees (for the definitions of these
theories see, e.g., [Mah88, AKPS94, Smo092]).



4 Approximate Equality and Bounded Theo-
ries of Trees

As a partial remedy to overcome the intractability of the theory of finite
trees, we introduce the approrimate tree equality and the bounded theory of
finite trees.

One of the reasons of the high complexity of the theory of finite trees
is as follows: given two pointers to two random constant terms of signature
Y, there is no upper bound on the complexity of their comparison. The
approximate equality =¢ defined below has such a bound (exponential in d).

Definition 5 (Approximate Equality) For d € w define the approxi-
mate equality relations =¢ on T'(X) x T'(X) inductively as follows:

o s=t iff s= f(s1,--,8m), t = f(t1,... ,tm) for some f € T;

o s =Tt iff s = f(s1,...,8m), t = f(tr,...,tm), and s; =% t; for
j=1,....,m. O

Thus, in contrast to the usual equality, comparing two random terms for
the approximate =? equality takes time at most ezponential in d.

Now we are ready to define the main subject of discourse in this paper.
We give two definitionally equivalent [Hod93] formalizations of the bounded
theory of finite trees: first, in a signature with function symbols and, second,
in a purely relational signature.

Definition 6 (Functional Bounded Theories of Finite Trees)

Denote by S the signature ¥ U {=%},4c, without usual equality =. Let
}",fnd(E) be the set of all first-order formulas of signature ¥— without equality
—. The functional bounded theory of finite trees Thi ,(T(X)) is the set of
all sentences of FJ () true in the Herbrand universe T(X). 0

We use the epithet “functional” and the superscripts / to stress the pres-
ence of function symbols and to distinguish the above formulation of the
theory from the “relational” one we consider in the sequel.

The bounded theory is different from the usual one: in the usual theory
one has VYz—(x = t(z)) for any term ¢(z) containing x properly. In the
bounded theory one may have —Va—(z =2 t(z)), e.g., s'997(0) ='9% 52000((),
In this respect the bounded theory is closer to the theory of rational trees.



By a simple reduction to the theory of finite trees we get the following

Proposition 7 For any finite functional signature ¥ the functional bounded
theory of trees Thi (T (X)) is decidable. O

A typical reduction step is x =1y ~» Vies 3215, Y15 - o5 Tar(f) Yar(f)

ar(f)
(90 = f(flfh---,ﬁﬁar(f)) Ny = f(yla---;yar(f)) A /\ T =1 Z/z’)-
i=1

By iteratively applying such reductions to all occurrences of the approxi-
mate equality predicates =% one can transform any F}, ,(¥)-sentence into an
equivalent sentence of the usual theory of finite trees, and then use a decision
procedure for that theory to settle the validity of the initial sentence.

We would like to stress, however, that this reduction to the theory of finite
trees suggests only a very ineffective way to decide Th{:nd(T(E)), because the
target theory of finite trees is of non-elementary complexity. In this paper we
describe a much more efficient procedure to decide the theory Thi ,(T()),
which operates in elementary space (hence time).

Since playing Ehrenfeucht-Fraissé-games is much easier without function
symbols, it is convenient to get rid of all constant and function symbols, by
replacing them with predicate symbols. We first define a relational signature
corresponding to a functional one, then introduce a canonical model of this
relational signature, and finally define the bounded theory of trees as the
first-order theory of this model.

Definition 8 (Companion Relational Signature) For a signature ¥_ =
Y U {=%} 4ew, where X is a finite functional signature, let the companion re-
lational signature X_ contain:

1. a unary predicate symbol Is. for every constant symbol ¢ € X;
2. binary predicate symbols fzﬁl foralldew, feX, and 1 <p<ar(f);
3. binary predicate symbols =% for every d € w.

The upper indices ¢ in the predicate symbols fg and =2 are written in binary
and called ranks. O

The intended semantics of the relational language is captured by the
following standard model.



Definition 9 (Canonical Relational Model of Trees) For a finite func-
tional signature 3 define the canonical relational model of the bounded the-
ory of trees M = (T'(X); Y=) with the Herbrand universe T(X) as a carrier,

of signature Y, the relational companion to X—, as follows:
e for d € w the meaning of =% is given by Definition 5;
e for s € T(X) one has M = Is.(s) if and only if T(X) E s =" ¢;
o fors,t € T(X) and 1 < p < ar(f) one has M = fi(s,t) iff

T(X) E 3wt ... Tp1Tpt1 - - - Tar(f) (3 = fzy... Ty 1t Tpy - -ffar(f)))-

Hence, instead of y =¢ f(z;...x;) we may write AX_, f4(y, x;).

Definition 10 (Relational Bounded Theory of Trees) Given a finite

functional signature X with constants, denote by ffm(z) the set of all first-
order formulas of the companion relational signature ¥_ without usual equal-
ity. The relational bounded theory of trees Thy (T (X)) is the full first-order
theory of the canonical relational model M = (T(X); S_) in the first-order
language of signature S_ without equality. O

Remark 11 By definition, both Th ,(T(X)) and Th? ,(T(X)) are complete
theories, i.e., for every sentence ¢ either ¢ or or =¢ belongs to a theory.

4.1 Relational vs. Functional Formalization

There is no essential difference between functional and relational theories.

Proposition 12 The functional and the relational bounded theories of trees
are definitionally equivalent, see [Hod93]. O

Informally this means that both theories may be interpreted in each other.
It follows that the relational bounded theory of trees is also decidable. We
describe in Section 7 a decision procedure for the relational bounded theory
of trees. This does not lead to the loss of generality, since any formula in
Fl () can be effectively transformed into an equivalent, formula of F7, ,(3)
(see Proposition 13). As is shown in Section 7 the main parameter influencing

the decision complexity of the relational bounded theory of trees Thy ,(T(X))

8



is the number of quantifiers in the prenex form of a formula. The following
proposition shows that the transformation of an arbitrary formula of F/ ,(3)
into a prenex formula of F},,(X) gives at most a linear increase of the number
of quantifiers.

The decision complexity of the bounded theory of trees is determined by
the number of quantifiers in the prenex form of a formula (see Section 7). It
differs only by a constant factor for both theories:

Proposition 13 An arbitrary formula of length n of Thi ,(T(Z)) can be
transformed into an equivalent prenex formula of Thy, ,(T(X)) with O(n)
quantifiers.

Proof. First convert a formula into a flat form containing at most one func-
tion symbol per atom. A typical conversion is z =%t f(... g(...),...) ~
‘v’u(u =lg(...) = o= f(...,u,.. )) This gives at most linear increase
of the number of quantifiers. Second, transform the resulting formula into
prenex form by using a standard procedure. This does not increase the num-
ber of quantifiers. Finally replace atoms y =2 ¢ and y =% f(z;...2;) with
Is.(y) and AL, fi(y, ;) respectively. O

Main Theorem.

1. For any finite functional signature X, the bounded theory of finite trees
over X (both functional or relational) can be decided within space 2%
for some constant ¢ > 0, where n is the length of input.

2. If the signature contains function symbols of arity at most 1, then the
bounded theory of trees can be decided within space 2" for some con-
stant ¢ > 0.

3. If the signature has only constant symbols then the bounded theory of
trees can be decided within polynomial space, and is PSPACE-complete
if ¥ contains > 2 constants. O

By Propositions 12 and 13, it suffices to prove the claim for the bounded
theory of trees in the companion relational signature >_. We present the
elementary decision procedure in Section 7.



5 Ferrante-Rackoff Games for Decidability

In this section we briefly survey a complexity-tailored refinement of the Eh-
renfeucht-Fraissé games due to Ferrante and Rackoff, following Chapter 2 of
[FR79]. We discuss only a small fragment of their general techniques, which
is needed to decide a theory of a single structure.

The classical Ehrenfeucht-Fraissé method, see [Ehr61, Hod93], gives cri-
teria, in terms of partial isomorphisms or back-and-forth games, of indistin-
guishability of two structures by first-order formulas. Consequently, if any
couple of structures of a theory are indistinguishable, the theory is complete,
and hence decidable. The drawback is that to prove decidability of a the-
ory one has to have its explicit aziomatization. An explicit axiomatization
may be problematic, as in the case of semantically defined theories, e.g., a
first-order theory of a single structure. This is exactly the case we deal with.

The advantage of the Ferrante-Rackoff game techniques is that it works
without explicit axiomatizations for the theories of classes of models, in par-
ticular, for a theory of a single structure. The whole game decision method
due to Ferrante-Rackoff consists in proving, by means of an FEhrenfeucht-
Fraissé-like game, that quantifiers can be replaced by bounded quantifiers,
running over finite subsets of a structure. Therefore, testing the validity
of a quantified formula amounts to checking its matrix on a finite set of el-
ements of the domain. Moreover, by analyzing the sizes of the finite sets in
consideration, one gets upper complexity bounds on the decision problem.

Further we consider first-order languages with relation symbols only. The
modification of the Ehrenfeucht-Fraissé games for languages with unlimited
use of function symbols is not difficult, but more elaborate, and could be
found in [Hod93]. This was our aim in trading function symbols for predicates
in Section 4.

10



5.1 Boundedness and Reduction to Bounded Quantifi-
cation

Boundedness means that whenever a formula of the form 3z ®(x) is true, one
can always find a small witness for ®(z) from a finite subset of a model. Con-
trapositively, if there are no small witnesses for ®(x), one may safely consider
Jdz ®(x) false. Thus, assuming boundedness, to settle whether 3z ®(x) is true
or false, one just needs to check finitely many small candidates for witnesses.
This forms the basis of the decision method. In this section we formally
define boundedness and show how it leads to decidability. In Section 5.3 we
explain how games are used to establish boundedness.

For decidability and complexity considerations, we associate with the
elements of a structure a norm, i.e., a function from the domain of a structure
to w. This is particularly simple for structures built of syntactical material,
like terms, trees, as in the case we deal with.

Definition 14 Given a constant term t of a finite functional signature X
with constants, the norm of t denoted by |t| is defined as the mazimal nesting
of function symbols in t. In other words, |c| = 0 for ¢ € Const(X), and
|f(t1...tn)| =1+ maxl (|t;|) for f € Fun(X). O

Notation For an element a of a structure we write |a| < m or simply a < m
to mean that the norm of a does not exceed m. By writing @ < m we mean
that for every element a; of the k-tuple @; one has a; < m. O

Proviso. Throughout this section we suppose that all models we consider
are the models of finite purely relational signatures. O

Remark 15 We discuss the needed modifications for infinite signatures in
Section 7. This is necessary because even though ¥ is finite, the companion
relational signature ¥_ is always infinite.

We are ready to introduce the main technical definition of boundedness
underlying the decision method.

11



Definition 16 (Boundedness, [FR79]) Suppose A is a model and
H :w? — w is a function.

Let for every n,k,m € w, every Gy € AF such that @, < m, and every
Jformula ®(Tky1) of quantifier depth < n the following be true:

if A= w1 (g, Thsa),
then A | ®(ay, agr1) for some apy < H(n,k,m).

In this case we write A = (Jzgy < H(n,k,m)) ®(ax, vx+1) and say that A
is H-bounded. a

If a model is known to be H-bounded, then the following simple theorem
suggests a straightforward decision procedure for its full first-order theory.

Theorem 17 (p. 30 [FR79]) Let a model A be H-bounded and
Q171Q2xs . .. Qrry P(Ty) be a sentence with Q; € {V,3} and a quantifier-free
matrix ®(Ty). Suppose that mg < m; < my < ... < my is a sequence of
natural numbers such that H(k —i,i—1,m;_;) <m,; for 1 <i <k.

Then A ): Q1$1Q2$2 . le'k (b(fk)
ifand only if AE (Qiz1 <my) ... (Qrzr < my) O(Ty).

Proof. By induction [FR79]. We generalize and prove it for infinite signa-
tures in Section 6. O

We have the following simple

Corollary 18 Suppose all the premises of Theorem 17 are true and for every

m € w there exist only finitely many elements in A with norm < m then
Th(A), the first-order theory of A, is decidable. 0

This is immediate, since deciding a theory reduces to the routine verifi-
cation of unquantified formulas over finite domains.

Remark 19 (Very Important) This explains why the finiteness restric-
tion on the functional signature ¥ is crucial. For if ¥ is infinite, for every

12



m € w there are infinitely many ground terms of signature ¥ of norm < m.
Thus, the replacement of unbounded quantification by the bounded one in
Theorem 17 does not yield decidability. Notice that even though we assume
the functional signature X finite, the companion relational signature S_ in-
troduced in Definition 8 is always infinite. So we must be extremely careful in
applying Theorem 17 to the relational bounded theory of finite trees, which
is formalized in the infinite signature S, In Section 7 we spend additional
effort to reduce everything to the case of finite signatures. a

5.2 Calculating Upper Space Complexity Bounds

As a by-product, Theorem 17 gives us the following simple way to ob-
tain upper complexity bounds. Suppose, in conditions of Theorem 17 one
needs space at most S(m;) to write down a representation of an arbitrary
element z with norm |z|] < m; for 1 < ¢ < k. Then to check A
Q121Q2xs . . . Qrry P(Ty), it suffices, by Theorem 17, to generate all k-tuples
of elements T such that z; < mq,...,z; < my and to check the validity
of the quantifier-free matrix ®(Zy) for each such k-tuple. The latter check
does not usually use much additional space. Thus, the space Y% S(m;)
to cycle through the representations of all k-tuples of elements T satisfying
1 < my,...,xr < my is enough. This gives the upper space complexity
bound for the decision complexity of a theory in question. We use these
considerations in Section 7.5.

5.3 Proving Boundedness by Games

Thus the essence of the above method consists in demonstrating that a struc-
ture is H-bounded for an appropriate function H. In the rest of this section
we present, following [FR79], Ch. 2, the Ehrenfeucht-Fraissé game technique
for proving H-boundedness.

First we need to define the indistinguishability equivalence relations =,

Definition 20 Suppose A, B are two structures of the same signature.
Let n,k € w, and @, € A*, b, € B¥. Write (A, @) =k (B, by) if and
only if for every formula ®(Ty) of quantifier depth < n one has

A= ®(ay) if and only if B = ®(by). O

13



So, (A, @) =, (B,b) means that (A, @) and (B, by,) are indistinguish-
able by formulas of quantifier depth < n. In particular, (4,@) =ox (B,b)
means that (A, @) and (B,b;) satisfy the same quantifier-free formulas or,
equivalently, the same atomic formulas. The usefulness of the =, ; relations
is as follows. Let (A,@;) =, (B,b) and we have to verify the validity of
formulas with quantifier depth at most n in (A4,ay). Suppose that for some
reason we prefer (B, by), as smaller, more convenient, intuitive. In this case
we may safely switch to (B,b;) and use it in verification instead of (A, @y).

Convention. When structures A and B are clear from the context, we will
write Qg =n.k bk instead of (A,Ek) =nk (B, bk) O

The following theorem allows us to establish the H-boundedness of a
structure by means of a “back-and-forth” game. Ferrante and Rackoff [FR79]
prove its variant for a class of models. For our purposes we need to formulate
it for just one model.

For the ease of application, the theorem is stated for the relations F, j
refinining the =, ; relations defined above.

Theorem 21 (pp. 34-35, [FR79]) Let A be a structure, H : w® — w be
a function, and binary relations E, j satisfy the following properties for all
n,k,m € w, G, by, € AF:

o G, Eor b = ar =ox b; (1)

o ifa, Epiyy by and b, < m, then for every ay,, € A there exists

bri1 € A such that by, < H(n,k,m) and @y Ep g1 brii- (2)
THEN: ® Gy By by = G =, by foralln, k € w. (3)
e The structure A is H-bounded. (4)

Proof. See [FR79], pp. 35-36. We generalize and prove it for infinite
signatures in Section 6. O

Condition (2) (without boundedness) of Theorem 21 is well known in
model theory as the “back-and-forth condition” [CK73, Hod93] (by symmetry
we need only the “forth” part), and has a natural interpretation in terms of
games and winning strategies [Ehr61, Hod93]: whenever @, and b, are in
a “good” relation, whichever element ay,; the “spoiler” (usually Vbelard)

14



chooses, the “duplicator” (usually Jloise) can always respond by choosing a
correct byy; to maintain the resulting @, and by, in a “good” relation.

We say that the element by, 1 in (2) is small, because its size depends
only on n,k and the maximum of sizes of by, and does not depend on
the sizes of @ and ay, ;. Therefore, the condition (2) stipulates that when-
ever Gy Epiqp bi, then for any aj,; there exists a small by, satisfying
U1 By bit1. This boundedness condition is absent from the classical
formulation of games [Ehr61, Hod93], but is very useful to establish decid-
ability, guaranteed by the condition (4) and Theorem 17. The condition (3)
guarantees that the relations FE, ; refine the relations =, . Thus the
k-tuples equivalent modulo Fj, ; are =, -equivalent.

Remark 22 . Theorem 21 allows, in particular, to use directly the relations
=, instead of F,, for establishing H-boundedness of structures (in
which case there is no need to stipulate (1) and demonstrate (3)). However,
working with refinements FE, , of =, is easier in practice, because =, ;
are formulated in terms of quantified formulas and are usually difficult to
deal with, whereas E,; may be formulated in a different language, tailored
to the problem domain, and even in a richer and more expressive language.
We will see an example in Section 7. O
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6 Ferrante-Rackoff’s Games in Infinite Sig-
natures

In the next section we prove our Main Theorem by applying Ferrante-Rackoft’s
game techniques described in Section 5 by Theorems 17 and 21. We have to
spend additional effort to make these games applicable to infinite signatures.
This is necessary because companion relational signatures (Definition 8) are
always infinite, whereas original Ferrante-Rackoff’s games apply to finite sig-
natures only, see Remark 19. We attain the needed generalization by rel-
ativizing Ferrante-Rackoff’s boundedness conditions to finite subsignatures
and by proving that the games carry over with this modification.

6.1 Local Boundedness

Definition 23 For D € w denote by 22 the finite subsignature

{Is. | Ise€S} U {="f | =% f!e€S_andd< D} C S_.

Obviously, if ¥ is finite, then for every D € w the signature SD s finite.
Every formula of Y_ is, of course, a formula of signature X2 for some D € w.

We need to modify correspondingly the notion of boundedness, cf., Def-
inition 16. Recall that M is the canonical relational model of the bounded
theory of trees (see Definition 9).

Definition 24 (Local Boundedness) Let H : w* — w be a function.

We say that M, the canonical relational model of the bounded theory of
trees, is H-locally bounded if and only if for every n,k,m,D € w, every
ay € T(X)* with @, < m, and every formula ®(Ty, vx11) of quantifier depth
< n with k+ 1 free variables of signature 22 the following is true:

if M E Fzp 11 @@k, Tr11)
then M | ®(ag, agyq) for some agyy < H(n,k,m, D).

Remark 25 Notice that the upper bound on the size of a witness aj,; in
the above definition may depend on the maximal rank D of a predicate in
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a formula. This is not taken into account in the original Ferrante-Rackoff
games, which apply only to finite signatures; recall that >_ is always infinite.
(I

Notation We write M | (Qxr < H(n,k,m,D))®(ay, rry1) for Q €
{3,V} to mean that M |= ®(ay, ax11) for some (respectively, for all) apyq <
H(n,k,m,D). O

6.2 Local Boundedness Implies Decidability

Local boundedness yields decidability and provides means to settle upper
complexity bounds, quite similar to Theorem 17.

Theorem 26 Suppose that M is H-locally bounded.

Let Q121Q2xs . .. Qray, ®(Ty) be a sentence with Q; € {V, 3} and a quantifier-
free matrix ®(Ty,) of signature X2 for some D € w. Suppose that

mo <mp <mg < ... < My
is a sequence of natural numbers such that
H(k—i,i—1,mj_1,D) <my; for1 <i<k.
Then

M ): QllL‘lQQZL‘Q C Qkxk q)(fk) if and OH]y if

Proof. We prove by induction in i € {1,...,k + 1} that

ME (Quzi <my) ... (Qimimimy < mi—1)Qim; - .. Qray, P(Ty).

The base case, ¢ = 1, is obviously true, since it is just
M ): Qizy ... Qrxy (I)(fk) &S M ): Qiry ... Qrxy, (I)(fk)
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Assume the induction hypothesis is true for some i € {1,..., k}; we must
prove it for ¢ + 1. Consider any @;_; € T(X)""! such that a; < m; for
1 <j <i—1. Then, since M is H-locally bounded,

ME Qui|Qi1 iy . Qeur® (@1, 14, ..., 1)] &
ME (Qizi < H(k—i,i—1,m; 1,D)[Qis1%it1 - Qrar®(@i 1, wi - . ., k)]
(Note: This follows directly from the definition of local boundedness only if

Q; is 3, but it is easy to see (since V = —3-) that it should also hold for Q;
equal V).

Since H(k —1i,i—1,m; 1, D) < m; by assumption, for all @; ; € T(X)"!
such that a; < m; for 1 < j < —1, we have:

ME QiziQiv1Tiy1 ... Qurp® (@1, i, Tigr, - .., 23)] &
ME (Qizi <my)[QitiTiv ... Qrar®(@i_1, 2, Tita, ..., xx)]. (5)

Therefore, by inductive hypothesis and (5) respectively,

ME (Qizi <my) ... (Qiizimy < myi—y)

QiriQit1Tiy1 - .. Qrrp®(Ti1, Ti, Vi1, ..., Tk) &
ME (Qurr <my) .. (Qi—iwi—y < my_1)
(Qizi < mi)Qiv1Tiy1 .. QrwpP(Tim1, Tis Tig1, . - ., Th)-
Thus, the inductive hypothesis is true for i + 1 and we are done. O

Thus local boundedness reduces the validity of a quantified formula to
the validity of a boundedly quantified formula. Since ¥ is a finite functional
signature, the number of terms of bounded height is finite. Therefore, the
validity check for the last formula amounts to verification of its matrix over
finite number of tuples of terms, as described in Section 5.2. We return back
to these calculations in Sections 7.3-7.5.

6.3 Proving Local Boundedness by Games

To prove local boundedness, necessary to apply Theorem 26, we need an aux-
iliary notion of indistinguishability of tuples by formulas of bounded quanti-
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fier depth and bounded rank of predicate symbols. We first define the local
analog of the =, relations, cf., Definition 20.

Definition 27 ( =), Relations) For n,k,D € w define the binary rela-
tion ED’k on the set of k-tuples of constant terms of signature ¥ as follows:

ar =P by iff (M, @) and (M, b;) satisfy the same formulas of

signature 22 with k free variables of quantifier depth at most n. O

Now we state and prove the following local variant of Ferrante-Rackoft’s
Theorem 21 for the game-style proof of local boundedness by means of re-
finements Egk of the Eﬁk relations.

The theorem simplifies the proof of local boundedness, by reducing it
to the proof of two conditions (6) and (7), familiar as the back-and-forth
conditions in Ehrenfeucht-Fraissé games [Ehr61, Hod93], but with additional
boundedness constraints. It also takes into consideration the modified notion
of boundedness, adapted for infinite signatures.

Theorem 28 Let M be the canonical relational model of the bounded the-
ory of trees. Suppose H : w' — w is a function and there exist binary
re]a_tions ET?’,C satisfying properties (6), (7) for all n,k,m,D € w, and
ax, b, € T(E)k

® G Et?,k Ek = ay E@k Bk. (6)

o Ifay E7]~Z7+1,k by and by, < m, then for every a1 € T(X) there exists
besr € T(S) such that by, < H(n, k,m, D) and Gy EPyyy Beyr. (7)

THEN: ° T Egk by, = Ty, E,lzk by, for alln,k,D € w. (8)
e The model M is H-locally bounded. 9)

Proof. We first prove (8) by induction on n. It follows from (6) that (8) is
true for n = 0 and all k£, D € w. So the base case is true.

Assume that (8) is true for some n and all k, D € w. We must prove it for
n+ 1. Suppose that (M, @) EP,,, (M,b) and ®(Ty) is a formula of quan-
tifier depth n+ 1 of signature ©2. We must demonstrate that M = ®(a;,) <
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M E ®(b;). Since every formula of a given quantifier depth is equivalent
to a boolean combination of formulas beginning with existential quantifiers
of the same signature and the same (or less) quantifier depth, it suffices to
demonstrate that M = 32,1V (T, Try1) < M = Tz 1V (by, Tpy1), Where
U is of quantifier depth n. By symmetry it suffices to show only =-.
Assume that M |{= Jz41 U (G, 2441) and let a1 € T(X) be such that
M = W(ag,axs1). Since (M,a) EP,,, (M,b), we have, by (7), that
for some bryy € T(X), (M,axs1) By (M, bry1). Hence, by induction
hypothesis, (M, @41) =k (M, by11), and, since M = U (T, ap11), we
also have M |= W (by, bgy1). Thus, M | Jxp 1 ¥ (bg, 241), and (8) is proved.

We now prove (9). Let n, k, D € w be arbitrary, and ®(Zy) be of quantifier
depth < n and of signature ©2. Suppose that M = Az 1 P(ag, vk41). Then
for some ag,1 € T(X) one has M = ®(ay, agi1)-

Since, obviously, (M, @) E2,, ; (M,ay), for some aj,, < H(n,k,m, D)
one has (M, @k, ar11) EPy ., (M,ay,a},,), by assumption (7). By the
already proved property (8), (M, @, ars1) =hpi1 (M, @, ap,,). Since
M = ®(ay, ag41), it should also be M = ®(ay, aj,_ ). Thus M is H-locally
bounded. O
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7 Upper Bounds for the Bounded Theories
of Trees

In this section we apply Theorem 28 to prove the local boundedness of the
bounded theory of finite trees, and then use Theorem 26 to conclude its
decidability and to settle the upper complexity bounds.

7.1 Eﬁk Relations

The crucial point in application of Theorem 28 is the invention of appropriate
refinement relations ET?, w - We first need a simple auxiliary definition.

Definition 29 (Truncation) Let t be a ground term of signature ¥ and
h € w. The h-truncation of t results from t by replacing all the subterms of
t at depth h + 1 with an arbitrary but fixed constant symbol from ¥. Define
the h-truncation of a k-tuple of ground terms componentwise. O

We have the following simple

Proposition 30 Let for some D € w the D-truncations of @, and by, coincide
(k € w). Then for any d € {0,...,D} and any i,j € {1,...,k} one has:

1. a; =1 a; < b; =1 b],
2. fg(aiaaj) < f];i(blabj)7

3. Isc(a;) < Is.(b;). O

The proof is immediate from definitions. Here comes the principal

Definition 31 (Eﬂf,c Relations) For D,n,k € w define the binary rela-
tion Eﬁk on the set of k-tuples of constant terms of signature ¥ as follows:

ay, Er?,k by iff the 2" + D-truncations of Gy and by, coincide. O

We now prove that FEP, satisfy conditions (6) and (7) of Theorem 28.
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7.2 Basis: Condition (6) of Theorem 28

We must prove

By Definition 31, @, Ef), by means that 1 4+ D-truncations of @ and by
coincide. By Definition 27, @, =§), by means that (M,a;) and (M, b;)
satisfy the same atomic formulas of signature SP. Such an atomic formula
is either =% y or f¥(x,y), or Is.(x) for some d < D, f € Fun(Z), p €
{1,...,ar(f)}, and ¢ € Const(X). Therefore, (10) follows by Proposition 30.

7.3 Inductive Step: Condition (7) of Theorem 28

Suppose @ E,?H’k be, by < m, and a4y is an arbitrary ground term of

signature X. We must prove that for an appropriate bounding function H one
can always choose b1 < H(n,k, m, D) in such a way that @y, E£k+1 [
is satisfied. It suffices to select by, to be equal the 2" + D-truncation of
ap.1. Indeed, with this choice of by, we obviously have @4 E,?,,Hl bpt1,
because:

e @, EP, |, by, implies @, EP, by (cf., Definition 31),
e the 2" + D-truncation of ayy; and by coincide (by choice of by 1).

It follows that the appropriate bounding function we need is

H(n,k,m,D) = 2"+ D, (11)

because the 2" 4+ D-truncation of ax; is of the norm 2" + D. Notice that the
value of H does not depend neither on the number k of elements in a k-tuple,
nor on their size m.

Therefore, the canonical model M of the bounded theory of trees is H-
locally bounded for H defined by (11). This finishes the proof of the Theo-
rem 28. O

7.4 Decidability

We now apply Theorem 26 to derive decidability of the bounded theory of
finite trees from the H-local boundedness of its canonical model. We have
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to find a sequence of natural numbers my < m; < my < ... < my such
that H(k — 4,1 —1,m;_1, D) < m; for 1 <i < k, where H is the bounding
function defined by (11). As our function does not depend on its third
argument, we simply let my = 0, and m; = H(k —i,i — 1,%,D) =2+ D
for i € {1,...,k}. Therefore, to decide Q121Q2x2 ... Qkxr P(Ty) (Wwith P
quantifier-free) or, equivalently, (Q1z1 < my) ... (Qrzr < my) D(Ty) (by
Theorem 26), we never need to consider trees higher than 2%+ D. Since for a
finite signature 3 the number of such trees is finite (finiteness of the signature

is crucial here!), the bounded theory of finite trees over finite signature is
decidable.

7.5 Complexity

We now turn to the upper complexity bound of the bounded theory of finite

trees. It follows from Theorem 26 that the principal measure of complexity

is the number of quantifiers in the prenex form of a formula. From our

considerations in Sections 7.3 and 7.4 it follows that this complexity also

depends on the maximal rank D of predicate symbols occurring in a formula.
For an arbitrary formula ¢ of length [ of signature S_:

e the number of quantifiers k in ¢ is O(l), and

e the maximal rank D of a predicate symbol in ¢ is 2°0) i.e., is exponen-
tial in its length; recall that we write the ranks of predicate symbols
=, fl‘f in binary.

Since the transformation of an arbitrary formula of the bounded theory of
trees in the functional signature to an equivalent formula of the companion
relational signature in prenex form results in a formula with O(l) quantifiers
(see Proposition 13) and of the same rank, to decide a formula of length I,
we never need to consider trees higher than 200 (recall 2F + D).

An arbitrary tree of height 2°() (we need to cycle through the k-tuples
of such trees) may have up to 22" vertices and can be represented by an
incidence matrix in space 927, Therefore, an arbitrary formula of length [
in the bounded theory of trees can be decided within space at most 220(”;
hence, within deterministic time 2220(1)

We thus established that the decision problem for the bounded theory

of finite trees in a finite functional signature (or its relational companion)

belongs to the complexity classes SPAC’E(2QO(”) C DT[ME(QQQOU))‘
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This estimate is true in general, when a signature ¥ contains function
symbols of arbitrary arities. In the particular case, when ¥ has no function
symbols of arity greater than 1, the above upper bound can be decreased.
In fact, with monadic function symbols only, an arbitrary tree of height 20
may have only up to 2°®) vertices and can be represented in space 290,
Thus the whole decision procedure runs within space 2°® in this case.

Finally, consider a functional signature ¥ containing > 2 constant sym-
bols only, and no function symbols at all. In this case the bounded theory
of finite trees is equivalent to the first-order theory of pure equality in a
> 2-element structure, known to be PSPACE-complete [SM73, Sto77].

8 Conclusions and Further Research

We introduced the bounded theory of finite trees and proved that it can be
decided within elementary space (hence time), as contrasted to the usual the-
ory of finite trees, which is of non-elementary decision complexity [Vor96a].
We thus demonstrated that the bounded theory of finite trees with its ap-
proximate equality may be used as a good practical substitute for the theory
of finite trees.

In a subsequent publication we will demonstrate that the lower bound for
the bounded theory of trees is as follows. For some constant ¢ > 0 the theory
does not belong to the complexity class SPACE(2°"); consequently, requires
nondeterministic exponential time to decide.

Venkataraman in [Ven87] demonstrated that the first-order theory of fi-
nite trees with the subtree predicate is undecidable. By using the same ma-
chinery as we used in the paper it is possible to show that the bounded theory
of trees with the “to be a subtree at bounded depth” predicate is decidable
within elementary space and time. We will do it elsewhere.

As we see, the bounded theories may be useful when their unbounded
counterparts are undecidable or intractable. It would be interesting to inves-
tigate practical applications of the bounded theories in, say, constraint logic
programming schemes. This is, however, the topic of the future research.

24



References

[AKPS94] H. Ait-Kaci, A. Podelski, and G. Smolka. A feature constraint

[Ber80]

[BMS0]

[CK73]

[Ehr61]

[FR79]

[Hod93]

[TM94]

[Kun87a]

[Kun87h]

[Mah88]

system for logic programming with entailment. Theor. Comput.
Sci., 122:263-283, 1994. Preliminary version: 5th Intern. Conf.
Fifth Generation Computer Systems, June 1992.

L. Berman. The complexity of logical theories. Theor. Comput.
Sci., 11:71-77, 1980.

A. R. Bruss and A. R. Meyer. On time-space classes and their
relation to the theory of real addition. Theor. Comput. Sci., 11:59—
69, 1980.

C. C. Chang and H.J. Keisler. Model theory, volume 73 of Studies
in Logic and the Foundations of Mathematics. Elsevier, 1973. (3rd
edition, 1990).

A. Ehrenfeucht. An application of games to the completeness
problem for formalized theories. Fund. Mathematice, 49:129-141,
1961.

J. Ferrante and C. W. Rackoff. The computational complexity of
logical theories, volume 718 of Lect. Notes Math. Springer-Verlag,
1979.

W. Hodges. Model Theory, volume 42 of Encyclopedia of Mathe-
matics and its Applications. Cambridge Univ. Press, 1993.

J. Jaffar and M. J. Maher. Constraint logic programming: A
survey. J. Logic Programming, 19 & 20:503-581, 1994.

K. Kunen. Answer sets and negation as failure. In /th Interna-
tional Conference on Logic Programming, volume 1, pages 219—
228. MIT Press, 1987.

K. Kunen. Negation in logic programming. J. Logic Programminyg,
4:289-308, 1987.

M. J. Maher. Complete axiomatizations of the algebras of finite,
rational, and infinite trees. In 3rd Annual IEEE Symp. on Logic
in Computer Science LICS’88, pages 348-357, 1988.

25



[Mal71]

[Qui46]

[SM73]

[Smo92]

[Smu61]

[Sto77]

[Ven87]

[Vor96a]

[Vor96h)]

A. 1. Mal’cev. Axiomatizable classes of locally free algebras. In
B. F. Wells, editor, The Metamathematics of Algebraic Systems
(Collected Papers: 1936-1967), volume 66 of Studies in Logic
and the Foundations of Mathematics, chapter 23, pages 262-281.
North-Holland Pub. Co., 1971.

W. V. Quine. Concatenation as a basis for arithmetic. J. Symb.
Logic, 11(4):105-114, 1946.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring
exponential time: preliminary report. In 5th Symp. on Theory of
Computing, pages 1-9, 1973.

G. Smolka. Feature constraint logics for unification grammars.
J. Logic Programming, 12:51-87, 1992.

R. M. Smullyan. Theory of Formal Systems. Princeton University
Press, revised edition, 1961.

L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput.
Sci., 3:1-22, 1977.

K. N. Venkataraman. Decidability of the purely existential frag-
ment of the theory of term algebras. J. ACM, 34(2):492-510,
1987.

S. Vorobyov. An improved lower bound for the elementary theories
of trees. In Automated Deduction — CADE-13, volume 1104 of
Lect. Notes Artificial Intelligence, pages 275—-287. Springer-Verlag,
1996.

S. Vorobyov. On the bounded theories of finite trees. In Asian’96
Computing Science Conference, volume (to appear) of Lect. Notes
Comput. Sci. Springer-Verlag, December 1996.

26



20pt
20pt



o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Regina Kraemer

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: kraemer@mpi-sb.mpg.de

MPI-I-96-2-009

MPI-I-96-2-007
MPI-I-96-2-006
MPI-I-96-2-005

MPI-I-96-2-004
MPI-1-96-2-003

MPI-1-96-2-002

MPI-I-96-2-001
MPI-I1-95-011
MPI-I-95-010

MPI-1-95-009

MPI-1-95-008

MPI-1-95-007

MPI-1-95-006

MPI-1-95-005

MPI-1-95-003
MPI-I-95-002
MPI-I-95-001

D. Basin, N. Klarlund

o

. Herzig

w)

. Basin, S. Matthews, L. Vigano
A. Nonnengart

G. Struth

H. Baumeister

D. Basin, S. Matthews, L. Vigano

H. Ganzinger, U. Waldmann
P. Mutzel
C. Riib

-

. Kénemann, C. Schmitz, C. Schwarz

H. J. Ohlbach, R. A.Schmidt,
U. Hustadt

J. Radhakrishnan, S. Saluja

95, P. G. Bradford, R. Fleischer,
M. Smid

J.-H. Hoepmann, M. Papatriantafilou,
P. Tsigas

P. G. Bradford, R. Fleischer
S. Naher, C. Uhrig

M. Smid, C. Thiel, F. Follert,
E. Schomer, J. Sellen

Beyond the Finite in Automatic Hardware
Verification

SCAN and Systems of Conditional Logic
Natural Deduction for Non—Classical Logics

Auxiliary Modal Operators and the
Characterization of Modal Frames

Non-Symmetric Rewriting

Using Algebraic Specification Languages for
Model-Oriented Specifications

Labelled Propositional Modal Logics: Theory and
Practice

Theorem Proving in Cancellative Abelian Monoids
Automatisiertes Zeichnen von Diagrammen

On the Average Running Time of Odd-Even Merge
Sort

Radix heaps, an efficient implementation for
priority queues

Translating Graded Modalities into Predicate Logic

Lecture Notes Interactive Proof Systems

95 A Polylog-Time and O(n+/Ig n)-Work Parallel
Algorithm for finding the Row Minima in Totally
Monotone Matrices

Towards Self-Stabilizing Wait-Free Shared Memory
Objects

Matching nuts and bolts faster
LEDA user manual (Version R 3.2)

Computing a largest empty anchored cylinder, and
related problems



