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Abstract

We discuss FaceSketch, an interface for 2D facial human-like cartoon sketch-
ing. The basic paradigm in FaceSketch is to offer a 2D interaction style
and feel while employing 3D techniques to facilitate various tasks involved in
drawing and redrawing faces from different views. The system works by ac-
cepting freeform strokes denoting head, eyes, nose, and other facial features,
constructing an internal 3D model that conforms to the input silhouettes, and
redisplaying the result in simple sketchy style from any user-specified view-
ing direction. In a manner similar to conventional 2D drawing process, the
displayed shape may be changed by oversketching silhouettes, and hatches
and strokes may be added within its boundary. Implementation-wise, we
demonstrate the feasibility of using simple point primitive as a fundamen-
tal 3D modeling primitive in a sketch-based system. We discuss relatively
simple but robust and efficient point-based algorithms for shape inflation,
modification and display in 3D view. We discuss the feasibility of our ideas
using a number of example interactions and facial sketches.
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Sketch-based modeling, Non-phororealistic modeling and rendering



1 Introduction

There is something in cartoon faces that is amiss in synthetic 3D faces meant
to look ”real”. It is the combination of simplicity (to comprehend and to pro-
duce), aesthetic, expressive extravagation, and sometimes humor that makes
it a unique communication paradigm. While much easier to create and re-
quiring much less resources than 3D modeling, cartoon drawing, be it faces
or whole-body characters, for many applications including animation, re-
quires separate drawings for different viewing angles. Skills and care must
be exercised, or proportions may be lost and the result less than pleasing.
Similarly, colors and strokes assigned to the face or character must be prop-
erly aligned across different drawings. At the same time, at the artist’s own
discretion, for aesthetic purpose and to emphasize a point, the appearance of
a character may be tweaked for a particular drawing. Hence, drawings may
contain view-specific features or distortions that correspond to no consistent
3D representation.

We are concerned in this paper with the systematic production of facial
human-like cartoon. We concentrate on the face as that is a major problem in
itself and has many potential applications (web comic chat, digital assistant,
animated features to name a few). We choose sketching as the primary
interface medium, as in SKETCH|[21] and Teddy[11], as it naturally suits the
nature of the problem. We envision the notion of ”sketch coming to life”.
The artist put in a few strokes of a face, in her natural style, colors it, and 3D
is done algorithmically. As she turns over her drawing, there may be parts
done automatically which is not quite what she has in mind. All she has to
do is to pick up an eraser, erase those parts and sketch in what she wants.
The vision as also described in [20] is one of bridging the gap between 2D
drawing programs, which have fixed views, and 3D modeling programs that
allow arbitrary view.

Towards our vision, we implemented FaceSketch, a sketch-and-color face
drawing program that provide an interface well-suited for the task of produc-
ing facial cartoons. FaceSketch differs from SKETCH and Teddy in that it
is domain specific. A general purpose modeler tends towards a complicated
interface as the complexity of model creatable increases. Even if all required
from the user are gestures, in the end there would be too many gestures and
implicit rules to be learnt by the user [21]. FaceSketch also differs from both
systems in that its fundamental modeling primitives are not triangles and
polygons, but simple point primitives. With points, implementation issues
are simpler, and relatively simpler and robust algorithms for inflation and
shape modication can be designed. This has implications that are obvious
especially if we consider embarking on a suite of domain-specific shape-from-



Figure 1: Cartoon faces created using FaceSketch

silhouette applications. Finally, of course, FaceSketch is tuned towards the
2D problem of cartoon creation rather than actual 3D modeling itself. Hence,
our contribution in this paper is twofold: 1) we define an interface to tackle
the problem of cartoon face creation and, by showing how simple interac-
tions with it lend powerful drawing functionality, demonstrate the advantage
of taking a domain-specific approach to sketch-based modeling, 2) we define
a novel implementation of sketch-based modeling based on point primitive
data structure.

Our current prototypal implementation of FaceSketch supports shape in-
flation for the head, eyes, nose, mouth, ear and hair. For the head, eyes, nose
and mouth, the basic inflation algorithm, as in [11], is based upon a con-
strained Delaunay triangulation of the closed polygonal silhouettes sketched
in by the user. The details of the algorithm differ, as will be detailed out in
the sections to follow. Algorithms for the hair and ear are entirely different,
as will also be detailed out. A user knows her drawing is 3D’ only because
dragging her mouse rotates it. No special window or widget is needed for the
task. Our user can color her drawing as a child would with pictures in a col-
oring book. Arbitrary strokes and hatches can be added onto the displayed
drawing from any viewing angle. If extruded shapes from a particular angle is
unlikable, the user can change it with a simple oversketch. View-dependency,
a concept peculiar with cartoon objects, is supported with a feature that en-
ables the user to translate and/or rotate selected facial features and strokes
along the surface of the head.

For the rest of this paper, we organize our presentation as follows: In
section 2, we discuss work closely related to ours. In section 3, we present our
user interface philosophy and design. In section 4, we discuss the algorithmic
nuts and bolts of our system, following which in section 5, we discuss our



Figure 2: An example interaction with FaceSketch. From left to right, top
to bottom: a head silhouette, more facial details, hair added, face rotated,
more sketches added, side view, back view, colored face, rotated

actual implementation and initial user evaluation. Finally, in section 6, we
plot future work and conclude our paper.

2 Related Work

The most accessible computing tools one could use nowadays for the task of
cartoon drawing are general purpose paint utilities such as Microsoft paint
(www.microsoft.com) or GNU gimp (www.gimp.org), coupled with perhaps
ULead Gif Animator (www.ulead.com). An easier but much less flexible
way would be to use tools such as Comic Creator (www.nfx.com) that pro-
vides prebuilt components for building up characters and faces. More ex-
pensive commercial software typically used in professional animation or car-
toon magazine production studio include TicTacToon[5], SoftImage Toonz
(www.softimage.com) and CreaToon

(www.creatoon.com). Sophisticated functionalities built into these tools gen-
erally center around features such as layered sprite processing, interpola-
tion and warping. The authors know of no commercial tools based on user
sketches.

In the Computer Graphics research community, the problem of cartoon
production and animation has received attention since the early days. Levoy
in 1977 [13] presented a 2D animation system, while Hackathorn in the same
year [8] presented a system for 3D animation. In 1993, Siu Chi Hsu et al [10]



presented the idea of skeletal stroke: a stroke formed by using an arbitrary
picture as 'ink’. This picture can undergo deformation to give the impression
of being rotated. But its lack of true 3D rotation limits its flexibility and use
for general cartoon applications. Rademacher [17] approached the problem
of cartoon creation from a different viewpoint. He described a technique
for view-dependent model that rely on the definition of key deformations at
specific viewpoints. At arbitrary viewpoint, the appearance of the object
is interpolated from the closest key viewpoints. More recently, Frank and
Van Reeth [6] discussed the problem of 2D cartoon as specifically one of
getting the perspective right and the volume retained, and suggest a solution
based on adapting the approach in [11] for cartoon animation. The solution
dictates that 3D models be approximated from input 2D silhouettes, and the
approximate 3D models be used to guide the display of cartoon drawing. We
adopt a similar philosophy. We differ and innovate, however, in the details
of our interface and algorithmic design.

Other works, not directly related to the cartoon problem, include physi-
cally realistic facial modeling. The goal and intention in this field, starting
from the earliest work in [15] is different. Despite an array of techniques
built throughout the years (see [14] for a survey), the subtleties of real face
remain difficult to digitally reproduce with a convincing realism.

The work most influential on our system is Teddy [11], a freeform 3D
modeling tool, for which the output is meant to be 3D, and user is to op-
erate in a 3D setting. Operations supported in Teddy includes extrusion,
3D painting, cutting and smoothing. The underlying mesh representation
may render certain operations unstable at times. Very recently, Karpenko
[12] discusses an alternative implementation based on variational implicit
surfaces. The disadvantage of implicit surface is its computational expense.
Polygonization or ray tracing is needed for display.

Teddy builds upon the idea in SKETCH[21], an earlier work on sketch-
based interface, that also has a major impact in the computer graphics com-
munity. SKETCH uses a system of intuitive guesses to create a geometric
object guided by user’s strokes and gestures. Once the user has mastered a
set of implicit rules, it is easy to create complex models consisting of many
primitives. Its primary problem is scalability. Real world usage requires
more functionality, and more functionality would lead to to more complex
gesture-based interface thus defeating its own purpose of simplifying user’s
life.

While both Teddy and SKETCH infer 3D geometry from 2D drawing,
Cohen’s Harold [4] and Tolba’s projective stroke [20] takes a different strategy
to make 2D drawings appear 3D. In both work, no 3D geometric model
is employed. Tolba’s projective stroke represent each stroke points in an
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Figure 3: The visual front end for FaceSketch.

oriented projective set. Projective points are obtained by backprojecting
drawn image points to lie on the surface of a unit sphere centered about the
viewpoint, with the drawing window assumed to subtend some solid angle
viewing port. In Harold, the primary primitive used is an image billboard,
into which user’s strokes are saved. Each billboard is oriented in a view-
dependent way as the user moves through the world.

The primary novelty of our own approach to sketch-based modeling is in
our use of point samples as the underlying data structure. In the modeling
community, using point samples without additional topology is becoming in-
creasingly popular, especially for the purpose of representing dense surfaces.
Most research has been concerned with utilizing points to represent scanned
models (see for example [18] and [16]), where the mesh tends to be highly
densed. Points have also been shown to be practical for procedural model[19]
and as a mean for efficient level-of-control[2]. We, on the other hand, use
points to design simpler and more robust algorithms to inflate a 3D object
from a 2D closed shape and to make subsequent modifications to it.

3 User Interface

As shown in Figure 3, the front-end of FaceSketch is dominated by a single
orthographic canvas into which the frontal view of a cartoon face is drawn.
As made evident in the figure, our primary design principle is simplicity. We
seek a minimal visual interface, and focus more on stroke-based interaction.
A stroke is defined when user pressed the left button on the mouse, dragged
it and then released the button.

FaceSketch is based on a finite state machine model in which each state
denotes a specific mode. Strokes are categorized according to the mode in
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Figure 4: The three lines (each colored differently) making up the mouth.
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Figure 5: Mouth styles

which the interface is functioning. Modes supported in the current version
of FaceSketch are namely 'Head’, ’Eyes’, 'Nose’, '"Mouth’, "Ear’, "Hair’, and
"Free’. By defining modes in which the interface can operate, we avoid the
need for sophisticated stroke recognition algorithms, avoid recognition er-
rors, raise user’s confidence in the system, and generally avoid the pitfall
encountered by pen-based technologyl[1].

3.1 Modes for Inflation

In the 'Head” mode, the first stroke is taken to define the silhouette of the
head. All other strokes are interpretated to be sketches layered on the surface
of the head. A similar treatment applies in the "Eyes’, 'Nose’, ’Ear’ and "Hair’
mode.

The "Mouth’ mode is a little more involved. We categorize the lines
defining a mouth as illustrated in Figure 4. The first stroke defines the upper
line, the second stroke the middle line, and the third stroke the lower line.
Our current implementation does not support inflation of an open mouth.
The mouth is thus currently assumed to be closed if it is to be inflated.
Should an open mouth be required, user needs to select the 'Free’ mode, and
draw an open mouth as a free sketch on the surface of the head. Figure 5
shows various examples of mouth creatable using FaceSketch.

A constraint that applies to an inflatable stroke is that it cannot self-
intersect. A similar constraint was reported in [11].

3.2 ’Free’ Mode and Colors

Strokes in the "Free’ mode can fall into one of five categories: 1) a silhouette
oversketch, 2) a hair segment, 3) a surface sketch, 4) a feature translation,
5) a feature inversion.
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Figure 6: Modifying inflated shape. From left to right, top to bottom: front
view, side view, silhouette oversketch, part of front deleted, another silhou-
ette oversketch, part of back deleted

Figure 7: Hairytoon

A silhouette oversketch changes the overall shape of an inflated feature
and is defined when at a viewpoint about perpendicular to the front view,
the user enters a stroke the start and end of which falls onto the silhouette
of the same object. Segments of a silhouette oversketch may fall within or
outside the boundary of the projected face shape. An example interaction
involving both silhouette oversketch and surface sketch is shown in Figure 6.

A hair segment is a line segment or curve protruding from the surface
of a facial component, and is defined when user enters a stroke the start of
which falls on the facial component, and the end of which falls outside the
projection of any part of the face. A hair segment can be defined at any
viewpoint, and repeated definition can lead to rather hairy faces, an example
of which is in Figure 7.

A surface sketch is simply a line segment or curve formed on the surface
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a) original b) mouth translated

Figure 8: Face with translated mouth
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a) original b) mouth inverted

Figure 9: Face with inverted mouth

of an inflated feature, and is defined with a stroke the start and end of which
falls on the projection of the face but not on any silhouette. A surface sketch
can be used for arbitrary purpose. It can, for example, be used to create
a drawing of a ’flat’ pair of eyes on the surface of the head, should eyes be
required that is not to be inflated but merely overlaid on the head.

A feature translation, an example of which is shown in Figure 8, is a
functionality that permits translating of nose, eyes and mouth along the
surface of the head. The stroke that defines a feature translation starts on
a surface sketch or on the silhouette of a facial component other than the
head itself, and ends anywhere else on the canvas. Another functionality that
changes or tweak the appearance of the drawn face is what we call feature
inversion. A feature inversion inverts a stroke horizontally and is defined
when the user double-clicks the silhouette of the eyes, nose or mouth. Figure
9 illustrates.

Both feature translation and inversion are features that enable one to
tweak a drawing for a particular viewing angle. Such view-dependent dis-
tortion is popularly done by cartoonists such as Lat (www.lathouse.com.my)
and the late Uncle Fred (www.unclefred.com). As shown as an example in
Figure 10, a common inclination among face and character cartoonists is to
draw the face such that features such as the nose, eyes, or mouth always face
the user when viewed from the front or from the sides.

For added attractiveness, drawing of silhouettes, hair segments and sur-
face sketches can be done with colors. The surface of a facial component can
also be filled with color. An object for which the user input silhouette has
a designated color will be displayed with a silhouette of the same color from
any other angle. User specifies a color by simply picking on any of the color
icon below the drawing canvas.



Figure 10: An original character from Lat
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Figure 11: Sample snapshots from an example interactive session: head sil-
houette, head silhouette oversketching, modified head, head with nose, nose
silhouette oversketching, modified nose, more face details, colored face

3.3 Example Interaction

We round up our discussion of FaceSketch’s interface by describing in this
section an example interactive session involving a hypothetical user, Sally.
Figure 11 shows snapshots from the session. The full session is captured
in the accompanying video file. Note that our presentation of the example
includes a hint of how animation of user’s sketching in FaceSketch could be
done. While sketch-based animation in FaceSketch is beyond the scope of
this paper and is still in an early experimental phase, we include it in our
example to lend it a sense of completeness.

For the sake of narration,lets imagine Sally is a fan of the late Uncle Fred
and she thought that it would be cool to use FaceSketch to draw Uncle Fred’s
Snuffy Smith character herself. So she started off the application and having
noted that she was in the 'Head” mode, began by drawing the silhouette of a
head on the canvas. As soon as she finished, the stroke was inflated to form
the corresponding 3D shape. Sally would not see this unless she dragged the
mouse a bit with the right button down, which she did. She was not satisfied
with the result as it did not quite look as what she thinks Snuffy Smith’s head
should look like from the side, so she modified the shape from the side by
oversketching the silhouette. She played around with the resulting head a bit,



and was satisfied. She thought of going on to the 'Eye’ mode, then decided
otherwise as she felt that the character’s eyes should not be inflated. She
proceeded on to the 'Nose’ mode, and drew a round nose from the front view.
She rotated it sideways and again she felt that Snuffy Smith’s nose had that
unique shape seen from the side that could not be captured algorithmically.
So she changed the shape by oversketching to that which she wanted, and
she was happy it could be done rather easily. She thought about the mouth,
ear and hair and felt that, like the eyes, those are best left to the ’Free’
mode. So she proceeded to the 'Free’ mode, and drew sketches on the head
surface to denote the eyes, the mouth and the ear. She then drew curved
strokes indicating Snuffy Smith’s scanty hair and beard, while rotating the
head around to get more accurate views. Then, as a final touch she colored
her sketch. Now, she needed to do something with her cartoon. She would
like to save frames from it to be later composed into an animated sequence
for the web. So, she chose the initial desired viewing angle, rotated the head
to that angle, then press the keyboard’s ’S’ key to save the corresponding
image to a file. And she continued, and for selected frames, to make her
animation more interesting, she modified her mouth stroke by oversketching
it, to give it a different state of action at different time. Also, to make the
moving mouth more visible from the side, Sally simply dragged the mouth a
bit to where she wanted it to be. Finally, Sally was finished with her task -
she had produced more than a dozen frames of Uncle Fred’s Snuffy Smith in
less than five minutes.

4 Algorithms

We describe in this section the algorithmic details of FaceSketch. The collec-
tion of algorithms that makes up FaceSketch include those for 1) processing
user’s input stroke, 2) inflating the input stroke, 3) sketching on the surface of
an inflated facial component, 4) adding colors to the face, 5) changing shapes
by oversketching silhouette, 6) translating and inverting a surface stroke or
a facial feature, and finally 7) displaying the silhouettes forming a face.

The first algorithm is commonly required in a sketch-based application,
and performed to output a smoother polyline from the input stroke. The way
in which this is done in FaceSketch is similar to that in [11]. For each stroke,
a sequence of screen-space points is collected. The stroke is filtered to remove
all points whose screen space distance from the previous point is less than
some threshold. A Catmull-Rom spline is then fitted to the remaining points,
and then sampled every few pixels to generate a smooth-looking sequence of
points.
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All other algorithms are novel, and will be described in the subsections
to follow. A brief preliminary on the structure of our point data and our
application will make the subsections easier to follow.

Each point that we work with stores a 3D position, an RGB color, and
a boolean flag, selected. The boolean flag is used in surface sketching and
coloring. Note the absence of normal vectors. We implement no lighting
functionality, and backface culling, as will be detailed out in section 4.10, is
done with a trick cheaper than a normal vector-based technique [7]. Also
noteworthy, the z dimension in the positional variable will be referred to
interchangeably as depth or height. A point is said to be raised if its depth
or height is nonzero.

When raising point samples, we seek to form a continuous surface. We
require a continuous surface as this would make it easier to extract correct
or better looking silhouettes. A discontinous surface or a surface with gaps
may lead to a badly form silhouettes for certain viewing angles. The detail
of our silhouette extraction and display routine is also given in section 4.10.

Another point to note is that our application is structured such that the
zy extent of the screen space coordinate is the same as that of the world-view
coordinate. This simplifies many tasks, especially in selecting facial feature
or silhouette or a single point sample via picking.

4.1 Inflating an Input Stroke

We assume in this section a closed input stroke meant to be inflated into
a internal 3D shape. After smoothing the input stroke, we perform a con-
strained Delaunay triangulation (CDT) [3] on the resulting polyline. As in
[11], the resulting triangles are divided into 3 categories: triangle with two
external edges (terminal triangle), triangle with one external edge (sleeve
triangle), and triangle with no external edge (junction triangle). Figure 12
illustrates. The task now is to generate points within each of the triangles
according to its classification. The generic idea is to sample 2D points within
a triangle and then to raise each point such that the result is a triangle with
an elliptical curvature. The triangulated surface is raised such that for each
internal edge in each triangle, the midpoint is at a height which is half the
length of the edge. There is actually no hard rule on the height value. We
base it entirely on visual observation and preference.

4.1.1 Generic Concept

To inflate a triangle with points, we first identify the vertex in the triangle for
which the height is to remain at zero. We denote this vertex as vy. Generally,
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a) 2D polygon b) result of CDT

Figure 12: Example polygon and its CDT: unfilled triangles are sleeves, green
triangles are terminals and blue are junctions

it is the vertex which lies on the boundary of the input stroke. For purpose of
discussion in the subsections to follow, we will also refer to it as the zeropoint.
We next identify the edge for which its two vertices have nonzero height. We
denote this edge e;. In general, this edge is an internal edge. Also, for the
purpose of discussion in the subsections to follow, we will refer to it as the
heightedge. Let the vertices at the endpoints of e; be v; and vy. For each
sampled point, p, lying within the boundary of the triangle, we compute the
line, L, from the zeropoint to p. L is subtended infinitely and intersected
with e;. Let the point of intersection be z. We now need to find the height
value at z. Let us assume that v, is at least as high as v;. Let the height of
vy be z,,. We compute the difference in height between v; and vy, dz. The
height, h,, at z is then computed according to the following equation:

; 2
n :J“ dist(, v

 dist(vy, v2)?

where dist(a,b) is a function returning the distance between a and b.
Finally, we compute the height, h,, at p according to another elliptical
equation:

hy = \lu KL IL) A YFR.

 dist(vg, z)?

4.1.2 Inflating a Terminal Triangle

The basic idea in inflating a terminal triangle is to subdivide it such that the
algorithm in section 4.1.1 can be applied to each resulting subtriangle. Let
the vertices in a terminal be denoted vy, v, and ve. Let us assume that v,
and v, forms an internal edge. Let the midpoint between v; and vy be m, and
its height be half the distance between v; and vy. Let L be a line segment

12
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Figure 13: Subdividing a terminal triangle.

Figure 14: Subdividing a sleeve triangle.

from vy to m. L partitions the triangle into two pieces, as shown in Figure
13. We denote one piece Ty, and the other 7. We now generate points for
Ty and T} according to the algorithm in 4.1.1. For T}, the zeropoint is vy,
while heightedge is the line segment from v; to m. For T}, the zeropoint is
also vy. The heightedge is, however, the line segment from m to vs.

4.1.3 Inflating a Sleeve Triangle

Our approach to dealing with sleeve triangle is to first partition it as illus-
trated in Figure 14. We let the vertices in a sleeve triangle be denoted vy,
vy, and vy. Let us assume that v; and v, form an external edge. We let my
be the midpoint between vy and v, and m; be the midpoint between vy and
vy. Let Iy be a line segment from my to mq, and [; be a line segment from
my to v;. Together, [y and [; divides the sleeve triangle into 3 pieces, Ty,
T, and T,. We generate points for each of the subtriangles according to the
algorithm in section 4.1.1. For Tj, the zeropoint is vy, while heightedge is /.
For T}, the zeropoint is vy, and the heightedge is . For 75, the zeropoint is
vg, and the heightedge is [;.

4.1.4 Inflating a Junction Triangle

Inflation algorithm for a junction triangle is not as straightforward as that
for a terminal or a sleeve triangle. We have tried without success to devise
a scheme for generating points in a junction similar to that for sleeves and
terminals. Our experimental effort generally results in point sets that are

13



Figure 16: Merge followed by triangulation into sleeves not possible for high-
lighted junction

visibly rough, especially when each edge in the triangle has very different
length and thus has midpoint raised to very dissimilar height. We therefore
settled for a scheme whereby a junction triangle is merged with neighboring
triangles lying to the side of its shortest edge, e, to form a single big polygon,
which is then triangulated into sleeves. This is illustrated in Figure 15.

Our junction inflation algorithm as described works well for many shapes,
but aesthetic problem does arise when the merged polygon has a point the
distance of which from the vertex in the junction opposite e;, vy, is greater
than the distance between vy and the midpoint of e; by a large enough
amount. The merged region will appear too bloated from the side. More
serious problem also do arise for certain shapes. Consider the case of head
shape as shown in Figure 16. Following our scheme, it can be seen that
merging results in a polygon that simply cannot be subdivided into sleeves.

Our solution is to merge a junction with its neighbors only where possible
or appropriate. Let vy, v; and vy be vertices of the junction, and let v; and
vy form the shorter edge, e;. We first measure the maximal distance between
vp and points on the polygon formed by merging the junction with neighbors
lying to the side of e;. If the distance is greater than the distance between
vo and the midpoint of e; by some threshold, the merging is considered to

14



be unsuccessful. Also, if the merged polygons cannot be triangulated into
sleeves, the merging is considered to have failed. In both cases, the merging
is undone and the junction is treated as a sleeve and neighboring triangles
involved in the merging each treated according to its respective category.
Furthermore, to prevent gap from forming, the point set generated from
the neighboring triangles are extended into the point set generated from the
junction.

4.2 Inflating the Head, Eyes, Nose and Mouth

To inflate the head stroke, we first take its constrained Delaunay triangula-
tion, and process each of the resultant triangles in a way as has been described
in the previous subsection. This results in a point set for the frontal part of
the head. To form the back part, the point set is simply mirrored about the
z=0 plane.

A similar process applies for the eyes, nose and mouth, with the difference
being that 1) no back part is extruded, and 2) each point of these features
needs to be pushed to the front of the head.

To push a point, p, in a feature, f, to the front of the head, we need
to compute the depth of a point, z, in the head having an z-y coordinate
coinciding with that of p. A brute force algorithm would require iterating
through each point p in f, and for each p, iterate through the points in the
head until the desired point is found. We initially tried kd-tree to organize
the search, but modification of point set generally requires rebuilding of the
kd tree and we find that since this can be done rather frequently, at the user’s
discretion, it is too expensive for our interactive application. We opt instead
to partition the head frontal point set into a 2D uniform grid structure along
the zy plane. Search can then be done by iterating through head points in a
single grid cell.

4.3 Inflating the Ear

The ear is treated differently from any other facial feature. We assume the ear
to lie within a cylinder. For each point on the silhouette of the ear, we cast a
ray into the screen and compute intersection with the cylinder surface. The
silhouette point is projected onto that intersection. This is as illustrated
in Figure 17. This simple scheme, an approximation of Tolba’s projective
stroke [20], seems to work well for cartoon ears. As a rule of thumb, radius
of cylinder is taken to be a third the diameter of the head.
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Figure 17: Drawing ear in 3D.

4.4 Inflating the Hair

To inflate a hair silhouette, we first iterate through each point on the sil-
houette and check if it lies within the polygonal silhouette of the head. If it
does, we raise it according to the depth of the head at that point. Next, for
each sample point, p, we cast a upward ray, s, and a downward ray, r. There
are 2 possible cases for r: 1) r hits a border line for which either vertices
have nonzero height., 2) r hits a border line for which both vertices have zero
height. We let the point of intersection of r with the border line be z and
that of s with another border line be y. If case 1) above is true, we linearly
interpolate the depth, d, at z using the depth at both vertices of the line.
Next we compute the depth at p, h, using the following formula:

- J“ dist(p, 22, ,

 dist(y, z)?

In the second case, we assume that the midpoint, m, of the line connecting
z and y has the highest depth for any point on the line. We let the depth,
d,,, of the midpoint be half the distance between z and y. If the distance
between p and z is less than the distance between y and p, we use the

following formula,
dist(p, m)?
hy=|(1———"25)d?
P \J( dist(m, x)Q) m

else we use the following formula:
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4.5 Filling Up Holes in Point Sample Set

Filling up holes in point sample set proceeds by looking for and filling gaps
noticeable from projecting points in each axis aligned direction into a binary
buffer. The buffer is first initialized to 0s. In projecting points to the buffer,
a pixel in the buffer is set to 1 if it receives a projected point.

We then iterate through the pixels lying within the bounding rectangle
of the projected points. For each pixel in the buffer, we compute its screen
space coordinate and check to see if it lies within the polygonal silhouette of
the projected object. If it does and its pixel value is 0 (it is unset), a gap is
assumed to have been found, and a new point sample is linearly interpolated
from neighboring points.

4.6 Surface Sketches and Hair Strains

We define a surface sketch as a set of 3D points layered on a surface. Each
point is obtained by projecting a screen space point onto a point in the face
model point set with a matching screen space coordinate. Model modification
requires recomputation of surface sketch. Recomputation relies on a data
structure that stores a list of 2D screen-space hatch strokes and the viewing
parameters.

We define a hair strain as a sequence of 3D points, for which only the first
of which rest on a surface. The position of all other points depend on the
viewing angle at which the hair stroke is sketched. The eye-space coordinate
z value of the first point is propagated to all other points. The z and y eye-
space coordinates are made to be equivalent to the screen space coordinate.
The object-space coordinate value of each point on the hair stroke is then
obtained by multiplying the eye-space coordinate of each point by the inverse
of the modelview matrix.

4.7 Filling with Coloring

Our color fill algorithm first determine the selected facial feature whose pro-
jected points are to be colored. This is also done by determining the projected
point in the face point set with screen space coordinate that matches screen-
space coordinate of the user’s mouse click. Each unculled point in the point
set of the selected feature is then set with a user selected color, and has its
selected variable set to true.
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4.8 Translating and Inverting

Both surface sketch and 3d inflated features (namely the eyes, nose and
mouth) can be shifted along the surface of the head. Translating a surface
sketch involves recomputing projection on the head surface using the data
structure described in 4.6. Translating a 3D inflated feature simply involves
computing new depth value for each point on the feature (see section 4.2).

Inverting simply involves mirroring a selected inflated point set or a sur-
face stroke about the center of its horizontal axis, and has a similar require-
ment for recomputation as do feature translation.

4.9 Silhouette Oversketching

Silhouette oversketching changes the point set associated with a selected fa-
cial component. Points may be deleted and new points added. The algorithm
first partitions the oversketching stroke into a sequence of internal and ex-
ternal segments. An internal segment lies within the projected shape of the
selected component, while an external segment lies outside it. Partitioning
can be done either by projecting the shape into a binary grid and testing
each point in the oversketch to see if it lies within a marked (internal) pixel,
or by forming a polygon from the silhouette and applying a point-in-polygon
algorithm [9]. For efficiency and robustness, we chose the first approach.

For each internal segment, we delete points lying within the polygon
formed from it and the silhouette segment it bounds. For this, we compute
a sequence of points on the silhouette whose start coincides with the end
of internal segment and whose end coincides with start of internal segment.
We then delete points lying within the polygon formed from the sequence of
points. This deletion operation alone leaves a gap in the surface of the face,
which may affect the appearance of silhouettes when viewed from certain
directions. We proceed then to fill up the gap with a surface. The basic idea
involved, as shown in Figure 18, is to shift the segment incrementally and
build up the surface with points from the shifted segment. We do this by
first projecting deleted points in a viewing direction, v, perpendicular to the
viewing direction of the oversketching, to a binary grid, g. The minimum
z value, 2, and maximum 2z value, z,q;, in world space of deleted points
are computed. We next shift the oversketch from z,,;, t0 2,4, incrementally.
At each step, each point from the shifted oversketch is added to a list of
to-be-added points if it falls onto a marked pixel in ¢ when projected in the
direction v.

For each external segment, we proceed by first finding the convex hull of
the segment. All points that is within the convex hull are deleted. Should the
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Figure 18: Filling up gap due to points deletion

external segment be defined on a flat segment of a silhouette, we stretch the
hull a little into the selected shape before computing points to be deleted.
Then, again, as for internal segment, the zmin and zmaz of the deleted
points are computed. We next compute the screen space distance between
start of segment and end of the segment, assuming that it lies on the z=0
plane. We then shift the segment from z,,;, t0 2z, incrementally. For each
shifted segment, we find the distance between the topmost point and the
bottommost point in a subset of the deleted points having the z values in
the range z — e > 2z < z 4+ e where e is a small value, and scale the segment
appropriately. Resulting sequence of points are then added to a list of to-be-
added points.

4.10 Silhouette Rendering

Current literature in silhouette extraction are focused mainly on extraction
from polygonal meshes. That which we implement in FaceSketch is an image-
precision algorithm suited for our point data set. The algorithm works only
for external silhouette. Extracting internal silhouette would require normal
vector information, and is beyond the scope of this paper. But we find that
just the external silhouette alone is sufficient for a cartoonish display of the
facial structure.

Our silhouette extraction algorithm proceeds as follows: For each point,
pi, we multiply it by the current modelview matrix to obtain g;. As a quick
(not entirely accurate but visually unnoticable) application-specific approxi-
mation to backface removal, noting that our head model is always centered
about the plane z=0, we discard a point g; if it has negative z value. Let the
new set of point samples be denoted by Q.

The problem is now to find the shape of 2D point set formed by an
orthogonal projection of each point in (). We project each point in () onto
an screen-space precision binary grid, initialized to zeros. We now define,
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the notion of extremum in the context of the resulting set of 2d points. We
define an extremum to be the leftmost set pixel (a pixel with value set to
1) or the rightmost set pixel of a horizontal scanline, or the bottommost
set pixel, or the topmost set pixel of a vertical scanline. The procedure for
finding extremums follows directly from this definition. We simply iterate
through each horizontal and vertical scanline and collect extremums in each.
The set of extremums form the shape of our projected point set. Note that
this definition of extremum can be extended to shapes in which there exist
scanline horizontal or vertical with more than two extremums. To find the
extreme points in such a shape, for a particular vertical scanline for example,
we not only need to collect the topmost and bottommost set pixels, but we
also need to look for gaps in the scanline and collect points in pixels lying
before the beginning and after the end of each gap.

The actual rendering algorithm proceeds, under the assumption of z-
buffering being available and enabled. We first render all points, in back-
ground color if select = false, or in user-defined color if select = true. We
then render each silhouette points with its user-defined color. Finally, we
render all surface strokes and hair segment, each with its defined color.

5 Implementation and Evaluation

Our implementation of FaceSketch is in the Java language, and incorporates
Jausoft OpenGL (www.jausoft.com) for the 3D graphics functionality. Our
implementation, though still open to restructuring and finetuning, runs with
a performance comparable to Teddy. Key to this real-time capability is an
optimal use of OpenGL’s display list, and graphics hardware where available.

FaceSketch is our first step towards a vision of seamlessly integrated 2D
and 3D drawing environment. In its current iteration, it has major shortcom-
ings. User comments confirm this. Though conducted in a rather informal
and very limited manner, our user testing indicates that more would be bet-
ter in our system. The few persons who had seen and laid their hands on
our system were non-computer expert/nerd cartoon enthuasists (we inten-
tionally chose test users in this category). They were excited upon seeing
what can be done with FaceSketch. But they were quite disappointed at
first when they learnt that though the software had been designed to pro-
vide an interface as natural (2D) as possible, the state of knowledge has not
progressed to the point where drawing strokes of arbitrary style and manner
can be processed and recognized with interactive techniques. They were not
happy with the need to indicate current drawing mode, and they would like
to be able to draw with freer styles and strokes (rather than with just simple
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curved strokes). It took some convincing before they would continue with the
software beyond the first 10 minutes. The same video, as had been submit-
ted along with this paper, was presented to them. Slowly, disappointment
turned into fun, and with guidance and supervision, they began to produce
some nice outputs within less than half an hour. The cartoons in Figure 1
was created mostly by users.

6 Conclusions and Further Work

We have discussed in detail the design and philosophy of FaceSketch, and
we have discussed the mechanism of user interaction with FaceSketch and
the user interface issues involved. We have shown that implementation-wise,
the hallmark of FaceSketch is simplicity. No 3D mesh processing needs to be
done, and no 3D mesh topology needs to be maintained. Also, no expensive
implicit function needs to be solved or raytraced. We have shown how these
are made possible by deploying simple point primitive as the fundamental
building block of 3D entities modeled within the system.

FaceSketch, as it is, is still an open research. We are currently branch-
ing or seeking to branch our research into a number of different but related
areas. We are studying ways of optimizing specific properties of point set in
order to obtain better quality silhouette and nonphotorealistic display. We
are also looking at smarter sketch processing and recognition, and attempt-
ing to apply results from computer vision and artificial intelligence. Also, we
are looking into a deeper study of facial cartoon animation, building upon
the interaction design as described in section 3.3. Finally, we would like a
more systematic study of the human factors involved in using FaceSketch.
Specifically, we wish to actually study how people sketch, and see how the in-
teraction workflow and presentation in FaceSketch maps onto people’s actual
behavior and characteristics when sketching.
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