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Abstract

Two classes of geometric intersection searching problems are considered, i.e., problems in
which a set S of geometric objects is to be preprocessed into a data structure so that for any
query object g, the objects of S that are intersected by ¢ can be counted or reported efficiently.
In the first class, S is a set of curved objects, such as d-balls, d-spheres, circles, or circular arcs,
and ¢ is also a curved object. In the second class, the objects in S are curved or linear and each
is assigned a color. Given a query ¢, such as a disk or an annulus, the goal is to count or report
the distinct colors in the set of objects intersected by gq.

Efficient algorithms are presented for several problems from these classes. The solution
techniques are based on geometric transforms, on compositions of known solutions for simplex
range searching, on the locus approach, and on persistent data structures.

Keywords: Computational geometry, data structures, intersection searching.

1 Introduction

In a generic instance of an intersection searching problem a set, S, of n geometric objects must be
preprocessed, so that the k objects of S that are intersected by a query object ¢ can be reported (or
counted) efficiently. Examples of S and ¢ are points, lines, line segments, rays, hyperplanes, and
simplices. These problems arise in many applications and space- and query-time-efficient solutions
are known for many of them [Ede87, PS88|.

Most previous work on these problems assumes that the input objects and the query object are
linear or piecewise-linear (as above). To our knowledge, the case where the input and/or the query
are curved has been investigated systematically only in [YY85, AvK093, vKOA90, Sha91, AM94].
Yao and Yao [YY85], were one of the first to consider intersection searching involving curved objects.

They used geometric transforms to linearize nonlinear queries. Recently in [AvKO093], Agarwal et
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| Input objects | Query object | Space | Query time |

d-balls d-ball nloglogn | n'~1/(14/2]+D)(logn)°() + k
nld/2]+1te logn + k&
d-spheres d-sphere n pl=1/(@+2)+e | k

ndt2te logn + k&

Circular arcs Circle n n3/4te L k
ndte logn+k

Circles Circular arc n n3/4te L k
ndte logn+k

Table 1: Summary of results for intersection reporting on curved objects with a curved query
object.

al. have considered searching on curved objects (e.g., circles, disks, circular arcs, Jordan arcs) with
linear query objects (e.g., lines, line segments, halfspaces, rays). In [vKOA90] (resp. [Sha91]), the
problem of reporting the intersection of a query line or line segment (resp. a point) with a set of
disks is considered. In [AMO94], algorithms are given for range searching on point sets in IR? with

ranges defined by a constant number of bounded-degree polynomials.

1.1 Overview of results

In this paper, we make further contributions to intersection searching in the curved setting by
presenting efficient solutions to two broad classes of problems.!

In the first class of problems, we wish to preprocess a set S of n curved objects so that the
ones that are intersected by a curved query object can be reported efficiently. This problem was
left open in [AvK093]. Table 1 summarizes our results.? Our goal has been to obtain useful space
and query time trade-offs and, as can be seen from the table, we obtain polylogarithmic query
time at one extreme and linear or almost-linear space at the other extreme. We remark that other
intermediate trade-offs are also easily derived from our results. (Techniques for obtaining such
intermediate trade-offs can be found in [CSW92].)

Next, we consider a generalization of the standard intersection searching problems involving
curved objects: Here S consists of n linear or curved objects and the objects come aggregated in
disjoint groups. If we assign each object a color, according to the group it belongs to, then our goal

is to report the distinct colors of the objects intersected by a query object (rather than reporting

'In this paper, the term “curved” means circular or circle-like objects such as circles, disks, circular arcs, annuli,
d-balls, and d-spheres. (A d-sphere is the boundary of a closed d-ball.) Throughout it is assumed that the input
objects can have different radii. Moreover, the radius of the query object is not known beforehand; it is specified as

a part of the query.
2Throughout, € > 0 is an arbitrarily small constant. Whenever € appears in a query time (resp. space) bound,

the corresponding space (resp. query time) bound contains a multiplicative factor which goes to co as € — 0.



Input objects | Query object Space Query time
Point nlogn
Disks Line n?/log' *n
logn + ilog®n
Line Segments Disk n?logn
Lines
Points Annulus n®/logn

Table 2: Summary of results for generalized reporting problems involving curved objects.

all the intersected objects as in the case of the standard problem). Such generalized intersection
searching problems have been considered recently in [JL93, GJS93, AvK93, GJS94] in the context
of linear input and query objects. The challenge in these problems is to obtain solutions whose
query times are sensitive to the output size, namely the number, 7, of distinct colors intersected
(not the number, k, of intersected objects, which can be much larger). For the problems considered
in this paper, we obtain query times of the form O(f(n) + ¢- g(n)), where f(n) and g(n) are
polylogarithmic. We also consider the counting version, where we obtain polylogarithmic query

time. Tables 2 and 3 summarize our results.

1.2 Overview of techniques

Our results are based on three main approaches. The first approach transforms the curved problem
at hand to a simplex range searching problem and solves the latter by suitably composing together
known techniques such as partition trees, cutting trees and geometric transforms. This approach
is not new per se; for instance it has been used in [YY85, AM94] for other problems. However,
what makes this part of our work interesting is that the characterization of intersection and the

appropriate transform(s) to use are not always apparent; indeed, in some cases, we need to apply

‘ Input objects ‘ Query object Space ‘ Query time

Annulus

Disk

Points

Disk

n*log®n log®n

ntlogn logn

Table 3: Summary of results for generalized counting problems involving curved objects.



successively more than one transform (moreover, in the correct order). In addition to using known
transforms we also introduce some new ones.

Our second approach, which we apply to the generalized reporting problems, is as follows: We
start out by assuming that all colors in S are intersected and then progressively refine this estimate
by identifying those colors that cannot possibly be intersected. To do this efficiently, we store the
distinct colors of .S in a suitable data structure and perform standard intersection detection tests
on appropriately-defined subsets of S.

For the more difficult generalized counting problems, we use a different approach: We partition
the plane into suitable regions within which the answer to a query is invariant, order the regions
suitably, and apply the technique of persistence [DSST89]. However the querying strategy is quite
subtle because the answer to the query is not available explicitly but rather is embedded implicitly
in a region-specific total order on the input objects. We show how the search within this total
order can be reduced to a generalized 1-dimensional range counting problem, which can be solved
efficiently.

Thus the contribution of the paper is a uniform framework to solve efficiently a variety of
intersection searching problems involving curved objects.

The rest of the paper is organized as follows: In Section 2 we discuss the standard (i.e., un-
colored) query problems and in Section 3 we consider the generalized problems. We conclude in

Section 4.

2 Standard intersection searching with curved objects

2.1 Querying d-balls with a d-ball

Let B = {By,Bs,...,B,} be a collection of closed d-balls in IR%, d > 2, and let Q be a query
d-ball. Our goal is to report or count efficiently the d-balls in B that are intersected by Q. We use
the coordinates ¢y, 2s,...,2q in Re. Let C; = (bi1,---,biq) be the center of B; and r; its radius,
1<i<n. Let Cg = (g1,...,4q4) be the center of @ and rq its radius. It is easy to prove that Q
intersects B; iff the Euclidean distance between their centers is at most »; 4 rq, i.e.,
d
Q intersects B; iff Z(bij —¢;)? < (ri +7g)% (1)
=1

Let us define a transform, 7, which maps B; to a point in IR%T2, as follows:

T(Bl): (bzlvvbzdarwb121+—I_szd_rzZ) (2)

Also, let us define a transform, a, which maps Q to a hyperplane in IR%*2, as follows:

a(Q): zare = 2q121 + -+ 2qqzg + 2rQTap1 — G — - — 4G + 7. (3)



We claim that Q intersects B; iff 7(B;) € a(Q)~, where a(Q)~ is the closed halfspace lying
below a(Q). To see this, note that by Equations (1)—(3), it is sufficient to show that

d
Z(bij —q;)? < (ridr)? i b 4+ b2 — 22 < 2qubiy + -+ 2qabig + 2rQTi — @ — ... — qﬁ—l—ré.
=1

This can be verified by straightforward algebraic manipulation.

Thus, we have transformed our d-ball problem in IR? to halfspace searching in IR%*2. For the
reporting problem, we can use the halfspace range searching structure of Matousek [Mat92c] (resp.
Clarkson and Shor [CS89]), which, in IR?, uses O(nloglogn) (resp. O(nl?/21+€)) space and has a
query time of O(n!~1/1#/2l(1og n)%(1) + k) (resp. O(logn + k)), where k is the output size. For the
counting problem, we can use the structure in [Mat92a] (resp. [Mat92b]), which uses O(n) (resp.
O(nP/logP n)) space and has a query time of O(n'~/?(loglog n)°(!)) (resp. O(logn)). Substituting
p =d+ 2, we conclude:

Theorem 2.1 Let B = {By, Bs,...,B,} be a collection of closed d-balls in R?, d > 2. B can be
preprocessed into a data structure of size O(nloglogn) (resp. O(nl¥/241+€)) such that the k d-balls
that are intersected by a query d-ball, Q, can be reported in time O(nl_l/(Ld/2J+1)(log n)o(l) + k)
(resp. O(logn + k)). The counting problem can be solved in O(n) (resp. O(n?t?/log?t2n)) space
and a query time of O(n'~1/(#+2)(loglog n)°M) (resp. O(logn)). O

2.2 Review of a query composition technique

In Sections 2.3-2.5 below, we will express intersection conditions as the conjunction of A > 1
halfspace range queries, where h = O(1). (This is unlike Section 2.1, where we used just one
halfspace.) Towards this end, we review a useful query composition result due to van Kreveld
[vK92], which we will use often in Sections 2.3-2.5. (This result is based on multi-level range
searching structures [DE87, Mat92a, CSW92].)

Let S be a set of n geometric objects. Let D be a data structure for some query problem on S,
with space and query time bounds O((f(n)) and O(g(n)), respectively. Suppose that we now wish
to answer queries not on the entire set S but on a subset &’ of S, where &' is specified by putting
S in 1-1 correspondence with a set P of points in IR? and letting S’ correspond to the subset P’
of P lying in a query simplex. (In [vK92], this technique is called simplez composition on P to D)

The following theorem states how fast the query problem on S’ can be solved.

Theorem 2.2 [vK92] Let S, D, and P be as above. For an arbitrarily small constant ¢ > 0,
simplez composition on P to D yields a data structure (i) of size O(nf(n? + f(n))) and query time
O(logn + g(n)), or (ii) of size O(n + f(n)) and query time O(n¢(n'=Y/% + g(n))), or (i) of size
O(m(m+ £(n))) and query time O(n(g(n) + n/m'/%)), for any n < m < n?, assuming f(n)/n is



nondecreasing and g(n)/n is nonincreasing. For the reporting problem, the output size, k, must be

mncluded in the query time as an additive term. O

In our application, the simplex will always be a halfspace. Given the A = O(1) halfspaces, we
proceed as follows: We design an initial data structure D. Then we apply Theorem 2.2, with one
of the h halfspaces. This gives a new structure D’ to which we apply Theorem 2.2 using a second
halfspace and so on. Since h = O(1), the space and query time bounds of the resulting structure
are asymptotically the same as the ones given in Theorem 2.2.

We illustrate the above idea with the following simple example: Let S be a set of n vertical
line segments in IRZ. We wish to construct a data structure for the following query problem on S:
“Given a query line £, count or report the segments of S that are intersected by £.” We take D to
be a linked list of the objects of S and store its size at its head. Clearly, D solves the trivial “query”
problem, “count or report the segments of $”, in f(n) = O(n) space and g(n) = O(1) query time.
Since a segment s € S intersects £ iff its upper endpoint is in £T and its lower endpoint is in £,
we can cast the intersection condition as two halfplane compositions: In the first, we associate S
with the set P of upper endpoints and use £T; in the second, we associate S with the set P of lower
endpoints and use £~. We then apply these two compositions successively using Theorem 2.2. This
gives O(n?*¢) space and O(logn) query time at one extreme and O(n) space and O(n!/?%€) query
time at the other extreme for the counting problem. For the reporting problem, the query times
are O(logn + k) and O(n'/?t€ 1 k), respectively.

2.3 Querying d-spheres with a d-sphere

Let § = {51,S52,...,5,} be a collection of d-spheres, where S; has radius r; and center C; =
(bi1, bizy ..., big), 1 < i < n. Let Cg = (¢1,92,--.,494) be the center of a query d-sphere Q and rg
its radius. @ intersects S; iff the Euclidean distance between C; and Cg is at most r; + rg and at

least |r; — rq|, i.e.,

d
Q intersects S; iff (r; — rg)? < Z(bij —¢;)? < (ri +7g)%
7=1

Consider the following transform, 8, which maps Q to a hyperplane in IR42:

B(Q): zare = 2q121 + -+ + 2qq2a — 2rQTap1 — G —  — 44 + TH- (4)

In addition, consider the transforms 7 and a of Section 2.1, which can be extended in the
obvious way to d-spheres. It is easily verified that Q intersects S; iff 7(S;) € a(Q)™ NB(Q)™, where
B(Q)* is the closed halfspace above 8(Q). The points 7(S;) satisfying the above condition (which is
the conjunction of two halfspace queries) can be found via two halfspace compositions in R2. We
now apply Theorem 2.2, taking the structure D to be a linked list of the points {7(.5;) : 1 <7 < n}.



Theorem 2.3 Let § = {51,S52,...,5,} be a collection of d-spheres in R%, d > 2. S can be
preprocessed into a data structure of size O(n) (resp. O(n®t2%<)) such that the k d-spheres that are
intersected by a query d-sphere, Q, can be reported in time O(nl_l/(d"'Z)"'E +k) (resp. O(logn +k)).
For the counting problem, the query times are O(n'~1/(442)+€) and O(logn) respectively. O

Remark 2.1 We note that for d = 2, the O(n*/log*n) bound of Theorem 2.1 and the O(n**¢)
space bound of Theorem 2.3 can be improved to O(n®"¢), without affecting the respective query

times, by extending a result of Agarwal and Sharir [AS91].

2.4 Querying circular arcs with a circle

We show how to preprocess a set S of n circular arcs so that the arcs that are intersected by any
query circle C' can be reported quickly.

Let 4 be a circular arc. Let circ(y) denote the circle that v is a part of, and let, center(y)
and radius(y) denote, respectively, the center and the radius of circ(y). Wlog assume that the
arcs in S are z-monotone since any circular arc can be decomposed into at most three z-monotone
pieces. Let I(y) and () be 7’s left and right endpoints, respectively. Let disk(C) be the closed
disk bounded by C. Let £ (resp. £2“*) be the halfplane bounded by the line joining center(y) and
I(y) and containing (resp. not containing) 7. Define £* and £2* similarly. The following lemma

follows from [Pel92] and is illustrated in Figure 1.

Lemma 2.1 [Pel92] A circle C and an z-monotone arc v intersect iff one of the following is
true: (i) C separates the endpoints of v or (i) C intersects circ(y) and either (a) l(y) ¢ disk(C)
and r(y) ¢ disk(C), and center(C) € £i" N £ or (b) I(y) € disk(C) and r(7) € disk(C), and
center(C) € £ N2, O

An arc v satisfies condition (i) if and only if chord(y) has one endpoint in the interior of
disk(C) and the other endpoint outside disk(C). To report such arcs, we apply the well-known
“lifting transform”: Recall that this transform maps a point p in IR? to a point ¥(p) in IR® and a
circle C in IR? to a plane ¢(C) in IR® such that 1(p) lies below (resp. on, above) ¢(C) iff p lies
inside (resp. on, outside) C. (See [Ede87, p. 304] or [AvKO93] for details.) Thus by applying
1 to the endpoints of v and ¢ to C we convert the problem at hand to one of reporting those
line segments 1 (1(v))¥(r(7)) in IR® whose endpoints are in opposite halfspaces of ¢(C). This can
be done via two halfspace compositions in O(n) (resp. O(n3t€)) space and O(n?/3t€ 1 k) (resp.
O(logn + k)) query time (Theorem 2.2).

Let us now consider how to report arcs that satisfy condition (ii). First consider the first part of
condition (ii)(a), namely “I(y) ¢ disk(C) and r(vy) ¢ disk(C)”. Using the transforms v and ¢, this
becomes “4)(1(7))¥(r(7)) lies above ¢(C) in IR®”. This in turn can be expressed as two halfspace

compositions in IR3.
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Figure 1: Ilustrating Lemma 2.1

To handle the second part of condition (ii)(a), namely “center(C) € £i" N £i*”, we use the well-
known duality transform F: Recall that F maps a point p in IR? (resp. IR®) to a non-vertical line
(resp. plane) F(p) and vice-versa. (See [Ede87, p. 13] for details.) Note that the wedge £i™ N £"
can be written as ti" N t;’ ort; Nt, or ti" N t, for some lines ¢; and t,. Thus, by applying the
transform F to center(C), t1, and t5, the condition “center(C) € £;*NL*”, becomes “F(center(C))
is below or above or intersects F(t;)F(t7)”. Each of these three cases can in turn be expressed as
two halfplane compositions in IRZ.

Similarly, condition (ii)(b) can be expressed as two halfspace and two halfplane compositions.

We are now ready to apply Theorem 2.2 to handle condition (ii). As the structure D of that
theorem, we take the O(n)-space structure of Theorem 2.3, for d = 2, to handle the condition “C
intersects circ(y)”. This structure has a query time of 0(713/4"'E + k). Alternatively, we can take
the O(n3T¢)-space structure with query time O(logn + k) mentioned in Remark 2.1. We then build
a 4-level tree structure, where the nodes at the innermost level are augmented with instances of
D. The two outermost levels apply halfspace compositions and the next two levels apply halfplane
compositions. To answer a query, we first apply the halfspace compositions corresponding to the
first part of condition (ii)(a), then, in turn, each of the three halfplane compositions corresponding
to the second part, and finally query the structure D at the nodes of the innermost tree that are

visited. We then repeat this for condition (ii)(b). The correctness and bounds follow from the



above discussion and from Theorem 2.2.

Theorem 2.4 A set S of n circular arcs in the plane can be preprocessed into a data structure
of size O(n) (resp. O(n®t€)) such that the k arcs that are intersected by a query circle C' can be
reported in time O(n3/4t€ + k) (resp. O(logn + k)). O

Remark 2.2 We note that the O(n3"¢)-space and O(logn + k)-query time result of Theorem 2.4
can also be obtained by a different approach using a result in [AS91].

2.5 Querying circles with a circular arc

Here we consider the inverse problem where S consists of n circles and the query is a circular arc
7. Again, we may assume that v is z-monotone. Lemma 2.1 still applies; however, the approach is
somewhat different since the roles of arcs and circles is now reversed.

To report the circles that separate the endpoints of vy (condition (i) of Lemma 2.1), we map
each circle C to the point F(¢(C)) in IR® and the endpoints I(7) and r(y) of 7 to the planes
H; = F(¢(l())) and H, = F(¢(r(7))), respectively. It is then clear that condition (i) has been
transformed to one of reporting among a set of points in IR® those that lie in a query doublewedge
formed by H; and H,. This problem can be solved by two applications of two halfspace compositions
in R®.

Let us now consider condition (ii)(a) of Lemma 2.1. By using F, ¢, and 1 as above, the condition
“I(y) ¢ disk(C) and r(y) ¢ disk(C)” transforms to “F(¢(C)) lies in H;" N H}”. This in turn can
be expressed as two halfspace compositions in IR®. Moreover, the condition “center(C) € f?" ngn”
can be expressed immediately as two halfplane compositions in IR?. A similar discussion applies
for condition (ii)(b).

We can now apply Theorem 2.2 to report the segments that satisfy condition (ii). We choose
the structure D as in Section 2.4 and build a 4-level tree structure as before. To query, we first
apply the halfspace compositions, then the halfplane compositions, and then finally query D at the

nodes of the innermost tree that are visited.

Theorem 2.5 A set S of n circles in the plane can be preprocessed into a data structure of size
O(n) (resp. O(n®t)) such that the k circles that are intersected by a query circular arc ¥ can be
reported in time O(n®/*¢ + k) (resp. O(logn + k)). O

3 Generalized intersection searching with curved objects

We now turn to the second class of problems considered in this paper: Each object in the input set
S is assigned a color. (The number of colors used can range from 1 to n; thus several objects can

receive the same color. Wlog we assume that the colors are integers in the range [1,n].) The goal



is to preprocess S so that the ¢ distinct colors of the objects that are intersected by a query object

can be counted or reported efficiently.

3.1 A general technique for reporting problems

Let S be a set of n colored geometric objects and let ¢ be any query object. In preprocessing, we
store the distinct colors in S at the leaves of a balanced binary tree C'T (in no particular order).
For any node v of CT, let C(v) be the colors stored in the leaves of v’s subtree and let S(v) be
the objects of S colored with the colors in C'(v). At v, we store a data structure DET(v) to solve
the following standard detection problem on S(v): “Decide whether or not ¢ intersects any object
of S(v).” DET(v) returns “true” iff there is an intersection.

To answer a generalized reporting query on S, we do a depth-first search of CT and query
DET(v) with ¢ at each node v visited. If v is a non-leaf node then we continue searching below v
iff the query returns “true”; if v is a leaf, then we output the color stored there iff the query returns

“true”.

Theorem 3.1 Assume that a set of n geometric objects can be stored in a data structure of size
O(M(n)) such that it can be detected in O(f(n)) time whether or not a query object intersects
any of the n objects. Then a set S of n colored geometric objects can be preprocessed into a data
structure of size O(M(n)logn) such that the ¢ distinct colors of the objects in S that are intersected
by a query object ¢ can be reported in time O(f(n)+ i - f(n)logn).

Proof We argue that a color ¢ is reported iff there is a c-colored object in S intersecting gq.
Suppose that ¢ is reported. This implies that a leaf v is reached in the search such that v stores c
and the query on DET(v) returns “true”. Thus, some object in S(v) intersects ¢g. Since v is a leaf,
all objects in S(v) have the same color ¢ and the claim follows.

For the converse, suppose that ¢ intersects a c-colored object p. Let v be the leaf storing c.
Thus, p € S(v') for every node v’ on the root-to-v path in CT. Thus, for each v’, the query on
DET(v') will return “true”, which implies that v will be visited and ¢ will be output.

CT uses O(M(n)) space per level and there are O(logn) levels. Thus, the overall space is
O(M(n)logn). The query time can be upper-bounded as follows: If ¢ = 0, then the query on
DET(root) returns “false” and we abandon the search at the root itself; in this case, the query
time is just O(f(n)). Suppose that ¢ # 0. Call a visited node v fruitful if the query on DET(v)
returns “true” and fruitless otherwise. Each fruitful node can be charged to some color in its subtree
that gets reported. Since the number of times any reported color can be charged is O(logn) (the
height of CT) and since ¢ colors are reported, the number of fruitful nodes is O(ilogn). Since each
fruitless node has a fruitful parent and CT is a binary tree, it follows that there are only O(¢logn)
fruitless nodes. Hence the number of nodes visited by the search is O(ilogn), which implies that

the total time spent at these nodes is O(z - f(n)logn). The claimed query time follows. O

10



Theorem 3.1 generalizes a method used in [GJS94] for the generalized halfspace range searching

problem in d > 4 dimensions.

3.2 Some applications of the general technique

First we consider the problem where the input is a set of colored disks and the query is a point.
We need to solve the following (standard) problem: “Preprocess a set of n disks such that it can be
detected if a query point lies in the union of the disks”. Using the transforms ¢ and 1 defined in
Section 2.4, we map each disk D to the halfspace ¢(D)~ and the query g to the point %(q) in IR>.
The complement of the union of the disks maps to an upper convex polytope. It is then sufficient
to check if ¢(g) lies in this polytope. This problem can be reduced to planar point location via
stereographic projection of the polytope (see [LP77, page 605]) and hence can be solved in O(n)
space and O(logn) query time [Kir83]. We now apply Theorem 3.1 to get:

Theorem 3.2 A set S of n colored disks in IR? can be stored in a data structure of size O(nlogn)
so that the i distinct colors of the disks stabbed by any query point can be reported in time O(logn +
ilog’n). O

Next we consider the problem where the input is a set of colored disks and the query is a line.
Here our standard problem is “Preprocess a set of n disks such that it can be detected if a query line
intersects any disk”. In [AM94], this is reduced to a halfspace emptiness query in IR®. Using the
data structure of [MS93], this is solvable in O(n?/(logn)?~¢) space and a query time of O(logn).
We now apply Theorem 3.1 and conclude:

Theorem 3.3 A set S of n colored disks in IR? can be stored in a data structure occupying
O(n?/(logn)' =) space so that the i distinct colors of the disks intersected by any query line can be
reported in time O(logn + ilog?n). O

Suppose that the input set S is a set of colored lines (resp. line segments), and the query is
a disk. The detection problem is: “Preprocess n lines (resp. line segments) such that it can be
decided if a query disk intersects any line (resp. line segment)”. To build the detection structure,
we first compute the arrangement A of the input lines (resp. line segments). For any face f,
we compute the Voronoi diagram of the line segments on the boundary of f, using the sweepline
algorithm of Fortune [For87]. We also preprocess A for fast planar point location [Ede87]. Given a
query disk @ with center Cg and radius rg, we locate the face f of the arrangement that contains
Cg. Next, we use f’s Voronoi diagram to find the edge of f that is closest to Cg. In this way, we
know the minimal distance of Cg to any line (resp. line segment) of S. The query disk intersects
any line (resp. line segment) of S iff this distance is at most rg. This solution uses O(n?) space
and has O(logn) query time. We now apply Theorem 3.1 to get a data structure of size O(n?logn)
and query time O(logn + ilog? n). If S is a set of colored disks, we follow the same approach. The
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edges on the boundary of a face are circular arcs. We use the algorithm of Yap [Yap87], to compute

the Voronoi diagram in this case.

Theorem 3.4 A set S of n colored lines (resp. line segments, disks) in IR? can be stored in a data
structure of size O(n?logn), so that the i distinct colors of the lines (resp. line segments, disks)

intersected by any query disk can be reported in time O(logn + ilog?n). O

When S is a set of colored points and the query is an annulus, using transforms ¢ and % in
Section 2.4, we get the following detection problem: “Given n points, is there a point in between
two parallel query planes in IR®*?” By duality, this becomes “Does a vertical line segment in IR3
intersect any of a set of n planes?”

In [Mat93] it is shown that a set of n hyperplanes in IR? can be stored in O(n?/ log?~! n) space
so that a vertical ray shooting query can be answered in O(logn) time. We can use this to solve

our detection problem in M(n) = O(n®/log® n) space and O(logn) time. We conclude:

Theorem 3.5 A set S of n colored points in IR? can be stored in a data structure of size O(n®/logn),
so that the i distinct colors of the points intersected by any query annulus can be reported in time
O(logn 4 ilog’?n). O

3.3 Generalized intersection counting problems

We briefly review the technique of persistence which we will use in this section.

3.3.1 Persistent data structures

Ordinary data structures are ephemeral in the sense that once an update is performed the previous
version is no longer available. In contrast, a persistent data structure supports operations on the
most recent version as well as on previous versions. A persistent data structure is partially persistent
if any version can be accessed but only the most recent one can be updated; it is fully persistent if
any version can be both accessed and updated.

In [DSST89], Driscoll et al. describe a general technique to make persistent any ephemeral
linked data structure. A linked data structure consists of a finite collection of nodes, each with a
fixed number of fields. Each field can hold either a piece of data such as, say, an integer or a real,
or a pointer to another node. The in-degree of a node is the number of other nodes pointing to
it. Access to the structure is accomplished via one or more access pointers. Examples of linked
structures include linked lists and balanced binary search trees.

An update operation typically modifies one or more fields in the structure. We will call each
modification a memory modification. Driscoll et al. showed that any linked structure whose nodes
have constant in-degree can be made partially or fully persistent such that each memory modifi-

cation in the ephemeral structure adds just O(1) amortized space to the persistent structure and,
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moreover, the query time of the persistent structure is only a constant factor larger than that of
the ephemeral structure.

For our purposes, partial persistence suffices. Our general approach is to begin with some
ephemeral dynamic linked structure (e.g., a linked list or a binary search tree), which has one
access pointer. Starting with an empty structure, we then perform a suitable sequence of O(n)
updates using the technique of Driscoll et al and obtain a partially persistent structure, which
contains all versions of the ephemeral structure. Each version has an associated “timestamp”. We
store the access pointers of the different versions in an array, sorted by timestamp; thus any desired
version can be accessed for querying by doing a binary search in the array. If m(n) is the total
number of memory modifications made by the update sequence, then the persistent structure uses

O(m(n)) space.

3.3.2 Generalized annulus range counting

Let S be a set of n colored sites (points) in the plane. Let Ann(g,r1,72) be the query annulus, with
radius 71 and 7y (r; < 73) and center ¢. We wish to count the distinct colors of the sites contained
in Ann(q,r1,72). We begin by partitioning the plane into regions that satisfy a certain distance

invariance property, as specified in the following lemma:

Lemma 3.1 Let S be a set of n sites in the plane. Let A be the arrangement of the perpendicular
bisectors of the line segments joining pairs of points in S. Let f be any face of A and let p; and
ps be any two points in f. Then the ordering of the sites by non-decreasing distance from py s the

same as the ordering of the sites by non-decreasing distance from p,.

Proof Let a and b be any two sites in S. Let P(a,b) be the perpendicular bisector of the line
segment ab and let P,(a,b) (resp. Py(a,b))be the closed halfplane of P(a,b) which contains a (resp.
b). For any point p in the plane, d(p,a) < d(p,b) (resp. d(p,a) > d(p,b)) iff p € P,(a,b) (resp.
Py(a,b)), where d(-, ) is the Euclidean distance function.

Face f € A is the intersection of halfplanes P,(a,b) for all pairs (a,b) of sites in S, where
z is either a or b. Suppose that we sort the sites of S by non-decreasing distance from p; and,
independently, sort them by non-decreasing distance from p,. It is clear from the above discussion
that the outcome of any distance comparison in the second sort is identical to that in the first sort
(i.e. d(p2,a) < d(ps,bd) iff d(p1,a) < d(p1,b) for any sites a and b). The claim follows. O

We preprocess A for fast planar point location [Ede87]. Given Ann(q,71,72) we locate ¢ in a
face f of A. Let £(f) = 51, S2,. .., 8, be the ordering of the sites w.r.t. f, as given by Lemma 3.1.
By definition of £(f), the sites at distance at least r; and at most r, from ¢ (i.e., the ones in
Ann(q,r1,72)) are contiguous in £(f), say s;, ..., S, for some j > 1 and k < n. Thus, our problem
becomes: “Given a sequence of colored integers 1,2,...,n on the real line (namely, the indices of

the sites in £(f)), count the ¢ distinct colors of the points lying in the interval [j, k].” This is just
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an instance of the generalized 1-dimensional range counting problem considered in [GJS93]. There
a dynamic solution was given for this problem, which uses O(nlogn) space, has a query time of
O(log® n), and undergoes O(log? n) memory modifications per update. Let D; be the structure for
face f. Thus, given j and k, we can answer our problem in O(log®n) time using D £

But how do we find j and k efficiently? We find j (and symmetrically k) in O(logn) time
using binary search as follows: Note that s; is the site in £(f) with the smallest index j such that
d(g,s;) > r1. Let Ty be a red-black tree storing the sites according to the order given by £(f). Let
s be the site at T'4’s root. If d(q,s) > ry (resp. d(g,s) < r1) then we visit the left (resp. right)
subtree of the root recursively. Let [ be the leaf where the search runs off T' and let s’ be the site
stored at [. If the search at [ branched left then j is simply the index of s’ in £(f); otherwise, j is
the index of the site stored in the inorder successor of [.

Clearly, the total space is O(n® logn). We can reduce this to O(n*log® n) by applying persistence
to the faces of A. Lemma 3.2 below provides a suitable ordering of the faces for this purpose, based
on an Eulerian walk of an appropriately defined dual graph of .A. (Such an ordering of faces in an

arrangement has been used in the past, for instance in [AS91].)

Lemma 3.2 Let P be any planar subdivision with m vertices. There exists an ordering, Tp, of the
faces of P such that Tp has length O(m), consecutive faces in Tp share an edge, and Tp includes

each face of P at least once. O

For faces f and f' of A, let A(f, f') denote the number of positions in which £(f) and E(f)

differ. Using Lemma 3.2, we can prove:

Lemma 3.3 Let S be a set of n sites in the plane. Let A be the arrangement of the perpendicular

bisectors of the line segments joining pairs of sites in S. There is an ordering, f|, f5, fi,..., fi, of

the t faces of A such that Y0_1 A(f], fl11) = O(n?).

Proof Let T4 = fi,fs,...,fi be the ordering of A’s faces, as given by Lemma 3.2, where
I = O(n*). Consider any two consecutive faces f; and f;1;, 1 < 7 < I — 1. Let the supporting
line of the edge that f; and f;1; share be the perpendicular bisector of the sites a and b of S.
Then &(f;) and £(fi+1) are the same except that the positions of a and b are swapped. Thus
A(fi, fir1) = 2 and so I2A(F, fiz1) = O(n?). The desired sequence f1, fs, ..., f! is obtained
by scanning fi, f,..., fi and taking the first occurrence of each face. The lemma follows since

YA fl) < SETA(S, firr): D

We can now use the ordering fi,..., f{ provided by Lemma 3.3 to store all the Ty’s and Dy’s
persistently. We build Tfll and D f! and then scan f;,..., f;{. For ¢ > 2, we determine the elements
in £(f{_;) whose ranks change in £(f/), delete them from T, and Dy and reinsert them with
their new ranks. These updates are done in a persistent way and yield Tfil and Dfi" By Lemma 3.3,
there are O(n*) updates. Moreover each update causes O(log” n) memory modifications (O(1) for
T; and O(log? n) for Dy).
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Theorem 3.6 A set S of n colored points in the plane can be preprocessed into a data structure of
size O(n* log? n) such that the distinct colors of the points lying inside any query annulus can be

counted in O(log? n) time. O

3.3.3 Generalized intersection counting on disks

Here S = {D1, Ds,...,D,} is a collection of closed disks in the plane. The query Q is a closed disk.
Let C; be the center of D; and r; its radius, 1 < i < n. Let Cg and rq denote the corresponding
quantities for Q.

Recall the intersection condition for two disks @ and D;, namely: Q intersects D, iff d(Cq, C;) <
rg + r;. It is advantageous to interpret the above-mentioned intersection condition for ¢ and D;
as: Q intersects D; iff d(Cq, C;) — 7; < rq.

For any D; and D; (¢ # j), let L;; be the locus of the points p such that d(p,C;) — r; =
d(p,C;) — r;. It is well-known [Sha85] that L;; is a ray or a hyperbolic arc. We construct the
arrangement A of the L;;, 1 < 4 < j < n. Since the L;;’s are of constant degree, any two can
intersect only O(1) times. Thus, A consists of O(n?) vertices, faces, and edges (rays, line segments,
or subarcs of hyperbolic arcs).

Using a proof similar to Lemma 3.1 it is easy to show that within each face f of A, for different
points p € f, the ordering of the C;’s by nondecreasing d(p,C;) — r; is invariant. Wlog, let
E(f) = C1,C4,...,C, denote this ordering for f. Assume that Co € f. Then, the centers C; of
the disks D; that are intersected by Q satisfy 0 < d(Cq,C;) — r; < rg. These C; form a prefix
C1,Cs,...,Crof E(f). Asin the previous section, k can be found in O(logn) time by doing a binary
search on £(f) using rg. Thus our generalized counting problem reduces to doing a generalized
1-dimensional range counting query on 1,2,...,n, with the query interval (—oo, k]. In [GJS93],
this problem is solved in O(n) space, O(logn) query time, and O(logn) memory modifications per
update. Together with the persistence-based approach for space reduction, this immediately gives

us the following:

Theorem 3.7 A set S of n disks in the plane can be preprocessed into a data structure of size
O(n*logn) such that the distinct colors of the disks that are intersected by a query disk can be
counted in O(logn) time. O

4 Conclusion

We have investigated the problem of intersection searching involving curved (specifically, circular
and circle-like objects) and have presented efficient solutions for two broad classes of problems,
namely (i) for curved input objects and curved query objects, and (ii) for a generalized version

where the input objects are colored.
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We close by mentioning an interesting direction for further research: Can our solutions be made

dynamic, so that in addition to answering queries we can also accommodate efficiently insertions

and deletions of objects in the input set?
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