
GPU Point List Generation
through HistogramPyramids

Gernot Ziegler, Art Tevs, Christian
Theobalt, Hans-Peter Seidel

MPI–I–2006–4–002 June 2006

Author’s Address

Gernot Ziegler, Art Tevs
Christian Theobalt, Hans-Peter Seidel
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany

Abstract

Image Pyramids are frequently used in porting non-local algorithms to graph-
ics hardware. A Histogram pyramid (short: HistoPyramid), a special version
of image pyramid, sums up the number of active entries in a 2D image hi-
erarchically. We show how a HistoPyramid can be utilized as an implicit
indexing data structure, allowing us to convert a sparse matrix into a co-
ordinate list of active cell entries (a point list) on graphics hardware. The
algorithm reduces a highly sparse matrix with N elements to a list of its
M active entries in O(N) + M (log N) steps, despite the restricted graphics
hardware architecture. Applications are numerous, including feature detec-
tion, pixel classification and binning, conversion of 3D volumes to particle
clouds and sparse matrix compression.

Keywords

image pyramid, mipmap, graphics hardware, GPU, point cloud, feature de-
tection, quadtree, voxelization

Introduction
As graphics hardware has become more programmable,

new applications like general matrix calculation, sorting ap-
plications or physics processing have become feasible (e.g.
[HAR04], [KW03], [FM05], [BFG*04]). But ever since the
first of these applications had been implemented, it had
been clear that the stream processing nature of graphics
hardware, which gives it tremendous processing power, also
requires considerable rethinking of data structures and algo-
rithms. Many non-local calculations, virtually trivial on sin-
gle-thread systems, like counting active cells in a 2D image,
become hard to solve on the GPU, since its inherently paral-
lel nature can only be utilized if the output of several paral-
lel units is combined.

The thought approach of data pyramids solved this prob-
lem: A so-called reduction operator ([BP04]) summarizes
the content of four cells at once, and writes out the result
into a 2D image of half the input size. This is repeated until
only one cell prevails. This way, all parallel units in the
GPU can contribute equally to the final calculation of the

result. We build on this concept and introduce the term His-
togram Pyramid (short: HistoPyramid) for a special form of
data pyramid that uses a reduction operator to sum up the
active cells in a 2D image. “Active cells” are determined by
applying a user-provided discrimination function to all cells
in the image.
 Therefore, we approach a related algorithmic problem, the
generation of a list of active cells in a 2D image (a point
list) on stream processing hardware. It is common knowl-
edge that on such architectures, it is not allowed to forward
data from one output element to the next one. Therefore, the
trivial CPU solution, which traverses a 2D image sequen-
tially in order to count all occupied pixels, and writes down
cell coordinates as they are encountered, is not applicable.

We therefore present a completely GPU-based algorithm
which uses the aforementioned histogram pyramid to gener-
ate a point list of a 2D image. For each point list entry to be
generated, it traverses the histogram pyramid from the top
level downwards until the corresponding point has been
found. The histogram pyramid thus serves as an implicit in-

2
23
1

8

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
ed

uc
e

Sum cell content
(reduction operation)

R
ed

uc
e

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

Abstract
Data Pyramids, as created during a reduction process of 2D image maps, are frequently used in porting
non-local algorithms to graphics hardware. A Histogram pyramid (short: HistoPyramid), one incarnation of
a data pyramid, collects the number of active entries in a 2D image. We show how a HistoPyramid can be
utilized as an implicit indexing data structure, allowing us to convert a sparse matrix into a coordinate list of
active cell entries (a point list) on graphics hardware . The algorithm reduces a highly sparse matrix with N
elements to a list of its M active entries in O(N) + M (log N) steps, despite the restricted graphics hardware
architecture. Applications are numerous, including feature detection, pixel classification and binning, con-
version of 3D volumes to particle clouds and sparse matrix compression.

Categories and Subject Descriptors (according to ACM CCS): I.3.1. [Computer Graphics]: Graphics processors,
I.3.5[Computer Graphics]: Point Representation, I.4.1. [Image Processing and Computer Vision]: Segmenta-
tion, I.4.10 [Image Processing and Computer Vision]: Hierarchical Image Representation

GPU Point List Generation through Histogram Pyramids
arbrücken, Germany

Gernot Ziegler, Art Tevs, Christian Theobalt, Hans-Peter Seidel

Figure 1: Dicer, our demo application, decomposing a teapot into a point cloud on the GPU, by rendering it repeatedly into
slices of a 256x256x256 volume (marked in red). The volume is filled with approximately 34000 surface points.
Left to right: 3D model of teapot; volume slices at z=70/130/190/201; resulting 2D point list; particle cloud based on point
list, the false colors stand for the 3D texture coordinates of the voxels.

dexing data structure. The GPU then needs
4log2 max sizex ,size y texture accesses to generate

one point in the list (and log2maxsizex ,size y for the
vec4-HistoPyramid variant, see section 6).

We show that this approach runs considerably faster on
the GPU than comparable hybrid CPU/GPU- or CPU-
based solutions, provided that the input 2D image already
resides in video memory or the point list is needed in fur-
ther GPU processing and must otherwise be uploaded from
the CPU. The algorithm scales with future GPU architec-
tures and performs in a very cache-friendly way. Finally,
we exemplify the algorithm's practical use in Dicer, a demo
application which converts arbitrary 3D models into parti-
cle clouds in real-time, running completely on the GPU.

1. Related Work

Data pyramids have been used in Binary Tree Predictive
Coding ([HAN85], [ROB97]). For example, a quad tree
leaf can signal if all of its descendants are identical, and
therefore skip the transmission of its descendants. Our al-
gorithm uses similar ideas to skip empty regions during the
HistoPyramid traversal which builds up the point list.

The data building process for the mentioned HistoPyra-
mid is adopting the well-known parallel "reduction opera-
tion". It is applied in custom mipmapping (see also
[BP04]), and processes n2 elements in log2(n) passes. Our
summing operator builds a Laplacian pyramid of partial
histograms. One variant of our algorithm uses bilinear tex-
ture interpolation to accelerate the summing operation, as
already described in [NVa04], see also section 6.4.

Occlusion queries, as proposed in [NVb04], are admit-
tedly faster for a total histogram count, as they only need
one rendering pass to sum all active cells. However, we
cannot take advantage of this method, as our traversal algo-
rithm requires the partial sums produced on the way to re-
construct cell coordinates.

Bitonic merge sort, as exemplified in [GHL*04], could
also be used for point isolation in sparse images by giving
seed points a different sorting key than invalid points.
However, since this sorting algorithm is optimized for a
plentiful of key values, it runs suboptimally (O(n (log n)2)
steps) for a 2D image where only a binary partitioning is
required.

Finally, [HOR05] introduces the concept of data com-
paction, i e filtering of unwanted data elements from a giv-
en data stream. It does this by successively producing a
running sum, describing where to skip unwanted elements
to obtain a packed result. The algorithm needs log(n) itera-
tions to produce this running sum, and keeps the number of
output elements constant. The implementation was based
on the stream processing language Brook.

Our algorithm takes a similar approach as [HOR05], but
utilizes a quad tree to represent its intermediate data, a con-
siderable reduction in intermediate data output ([HOR05]
has log2(n).n, while we produce at maximum 2n due to the
pyramid). However, we have to use all intermediate data
levels to generate the final, compacted output, not only the
last level - a feature where graphics hardware architectures
differ from the classical stream architecture. We further uti-
lize both the GPU's vector processing and bilinear texture
interpolation if they yield an advantage (see algorithmic
variants of the tree traversal in section 6).

2. Overview

Figure 3 illustrates the workflow between the different
computation steps. All data is being processed on the GPU
– the CPU is only handling data if the input data originates
there or if the point list shall be downloaded for further
processing in a non-GPU application.

The input is a 2D image or a stack of 2D images (up to
the GPU's number of texture units). The image cells may be
of arbitrary type (single/RGBA, byte/float), as long as the
Discriminator is able to handle cells of such type.

The Discriminator determines if a cell's content is re-
garded as active or not. It generates a binary representation
of the same size as the 2D image, and sets the base level for
the histogram pyramid. We will exemplify some useful dis-
crimination operators in section 3.

The HistoPyramid Builder creates the Laplacian pyra-
mid levels of histogram information. Its reduction operator
repeatedly processes four input cells into one throughout
the whole input image, starting at the resolution level of the
original input image. It finishes when only one output cell
remains. We describe its GPU implementation in section 4.

The PointList Builder takes the HistoPyramid, and cre-
ates an initial, empty 2D list in the form of a 2D image

Figure 3: Overview over the internal workflow.

HistoPyramid
Builder

PointList
BuilderDiscriminator

HistoPyramid

PointList
Active/inactiveInput image

0 1 1
0 1 0
2 0 2
0 2 2 0

1
0

0
2
4 4

2
12

(5,1)(2,1)
(0,4)
(2,2)

(1,5)(5,2)
(7,4)(2,6)

(4,6)
(3,6)

(5,6)(6,5)

(based on the number of found active cells), henceforth
called point list. Afterwards, it fills the list using a hierar-
chical traversal of the histogram pyramid for each list entry.
Section 5 describes details of the traversal in diagrams, and
presents a log of the traversal decisions. It also points out
which GPU restrictions hamper performance, and how
their removal might improve future implementations.

We have also devised algorithmic variants, including a
more intricate, but faster implementation which uses the
GPU's native vector capabilities, and a version which uti-
lizes bilinear texture interpolation. A discussion of these
variants can be found in section 6.

The basic, or, for CPU programmers, fairly straightfor-
ward concepts underlying our algorithm can make it hard
to understand the full range of new applications that a GPU
implementation opens. Therefore, section 7 details several
real-time applications that become feasible with a GPU
implementation of this algorithm.

Section 8 summarizes the current performance results
that we obtained by running the algorithm's variants on
state-of-the-art graphics hardware. It describes the sur-
rounding test setup, and analyzes the runtime behaviour.

3. Discriminator

As discussed, the subsequent stages operate on binary
images, that is, each cell has to be either active (1) or not
(0). Therefore, we must first preprocess our input data into
binary images. Any operator that can map an image's cells
into such a binary decision can be utilized here.

The most trivial operation is the threshold operator (Fig-
ure 5). It determines if the cell data is equal to or above a
certain threshold.

Combined application of different thresholds, equal to a
range operator, can yield point lists of „watershed cliffs“

(items that are below a certain treshold ([-inf, rangemax])or
within a certain range ([rangenub, rangemax])). These are very
useful for dominant component detection in signal analysis
and data compression, as proposed in section 7. The same
range discriminator lends itself to "binning" operations
(and can thus be extended to a sorting algorithm, if the bins
become fine-grained enough).

Many edge detection operators use thresholds on the
spatial image gradients, which are approximated as differ-
ences between adjacent data points. One example can be
seen in Figure 6. Again, it is possible to apply several
thresholds to detect edges of varying intensity.

Most general is the folding and thresholding operator,
see Figure 4. It folds a data cell region with a user-provided

data template and applies thresholding to signal the match
between template and input data in this particular position.
This is useful for detecting a certain image template in a
larger image without knowing the number of occurances in
advance (otherwise a common restriction in GPU-based
image processing).

Our Dicer demo utilizes thresholding to detect 3D model
pixels that have been earmarked with alpha=1.0. Since
thresholding is a local and inexpensive operation, it was in-
tegrated into the first stage of the HistoPyramid Builder.
Note, though, that in order to detect valid pixels on the
lowest level, PointList Builder will have to redo the thresh-
olding operation in that case,. More complex discrimina-
tion operations should be kept separate from the next pro-
cessing step to avoid redundant calculations.

Figure 5: Example input data and two possible outputs
(top, left to right) for the thresholding function (bottom).

B i , ja ={1 : X i , j≥a
0 : X i , ja}

0.6
0.5

0.6

1
0.2

0.4

0.6

0.3
0

0

0
0

0
0 0

0
1

1

1

1
1

1

1

1
0

0

0
0

0
0 0

0

Data X Output, B(0)
1

1

1

1
1

1
0

0

0
0

0
0 0

0

Output, B(0.4)
0

0

B i , ja ={1:∣X i1, j−X i , j∣a
0:otherwise }

Figure 6: Example input data and two possible outputs
(top, left to right) for the edge detection function (bottom).

1
0.5

1

1

1 0
0

00
0

0

0 0
0 0 1

Data X Output, B(0.6)

0.5 0.5 0.5

0.5

0.5
111

11

0

0
0 0 0 0

0

0

1

1

1
11

0
0

00
0

0

0 0
0 0 1

Output, B(0)
00

B i , ja ={1 : ∑
s=−1

1

∑
t=−1

1

∣X is , jt−U is , jt∣≤a

0 : otherwise }
Figure 4: Example input data and two possible outputs
(top, left to right) for the folding function (bottom).

0

1

01
0

1

00

0

0
0 0

Output, B(1.5)

0

0
1

0

0
0

0.5

0

1
1

0.9

0.5
1

1
0 1

1
0.5
0

0
1

0
0.50

00
1

1
1 0

1

1
0

0
0
1
0

0 1 0

0
11

1
0.5

0

Data X

Template U

X

0

1

01
0

1

00
1

0

0
0 1 0

Output, B(3.0)

0
1

0
0

0

4. HistoPyramid Builder

The HistoPyramid, short for histogram pyramid, is a
Laplacian pyramid with the Discriminator's binary output
as its base. On this base level, each active cell is treated as
a 1, while inactive or empty cells are interpreted as 0. Our
reduction operator simply sums up four underlying cells
and writes the result into the prepared output level image
until the final level consists of only one cell. The algorithm
annotates the level of this cell (the top level) for the subse-
quent stages, and terminates. The output is a Laplacian
stack of output images with integer content (32bit floating
point in the GPU implementation), see Figure 2.

Note that only square, power-of-two image dimensions
can provide the algorithm with a constant number of input
and output cells. The HistoPyramid algorithm itself could
easily be adapted to rectangular and non-power-of-two tex-
tures, but current GPU programmability restrictions (name-
ly, the inability to provide explicit texture sizes for each
pyramid level) would severely limit the performance of the
PointList Builder. In the meanwhile, we propose to pad the
input image's dimensions in order to be quadratic and a
power of two.

5. PointList Builder

Given the HistoPyramid as input, it is now possible to
determine the number of entries in the final list output.
PointList Builder accesses the top level of the pyramid to
retrieve this value, and allocates the point list, a 2D image
whose sidelength is equal to the square root of the number
of entries (see the 2D point list in Figure 8 for an example).
The reason for choosing a 2D layout is that the GPU cur-
rently can handle only 4096 entries at maximum in a 1D
image.

Now, actual point list reconstruction commences. In our
example in Figure 8, the PointList Builder shader will now
be called for all nine possible list entries in the 2D image.

The shader first determines its own index (the key index)
from its 2D coordinate in the point list. Since it also has
been given the total number of entries (the list count, here:
8), it immediately terminates if the key index exceeds the
list count (such an entry is empty, it is only an artifact from
the 2D image allocation - our example marks it with an X).

The algorithm descends one level if the key index lies
within the index range of a HistoPyramid cell. Intuitively,
the index range of a HistoPyramid cell describes the possi-
ble or covered range of key indices that active cells in this
covered part of the 2D input image can receive. The top
level's single cell poses a good example, its range covers all
active cells' indices. A different way to see it is that all ac-
tive cells in a given index range will be HistoPyramid or
quadtree descendants of this cell.

During traversal of the HistoPyramid, the current index
range [start, end] is updated as follows:
• start is initialized to zero.
• end is assigned the sum of the cell's content (looked up

from the HistoPyramid) and start.
• Before a new cell is examined on the same level, start

becomes the former index range end.
• If we descend one level, we retain the start value that

was active during the parent cell's range check.

Figure 8: PointList Builder's internal data traversal for an example key index. Left: graphical illustration. Right, top: naming
convention for lookup directions, as seen from a parent cell O. Right bottom: Algorithm's log on made decisions.

UR: upper rightUL: upper left

LL: lower left LR: lower right

P

Figure 7: Basic HistoPyramid building process. L0, L1
and L2 are the pyramid levels. While generating the next
pyramid level, the GPU sums four adjacent cells into one,
thereby halving resolution, until only one cell remains.

2
23
1

8

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
ed

uc
e

Sum cell content
(reduction operation)

R
ed

uc
e

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

1
1

1

1
1

1

1

1
0

0

0
0

0
0

0
2

23
1

8

L0

L1

(1,0)

(0,3)

(0,0)
(2,1)
(0,1)

(1,2)
(3,2)

(3,0)
X

: traversal direction

Output:2D Point List

L2

2

6

0
4
1

5
7

3
(8)

Input: Key indices

0

Example traversal,
key index 4

HistoPyramid,
traversal path:

(2D list size: (plw, pwh) = 3 x 3)

PointList Builder, run at (px, py)=(1,1):
• Key index: ki = py * plw + px = 4
• L2: Index Range [0,8[: fits key index !
• (descend to L1, retain start=0)
• L1, cell UL: Index Range [0,3[
• L1, cell UR: Index Range [3,5[:fits key index !
• (descend to L0, retain start=3)
• L0, cell UL: empty
• L0, cell UR: Index Range [3,4[
• L0, cell LL: Index Range [4,5[: fits key index !
• Result: (2,3)

Note that the traversal order is irrelevant as no sorting is
enforced; it only needs to be the same order for all point
list entries to avoid doublettes, but that is fulfilled as the
PointList Builder shader is the same for all pixels.

This repeats until the base level has been reached. There,
the final target cell can be chosen after the same index
range criterion, if we interpret an active cell as a value of 1.
The found target cell's coordinates are written into the
point list output image.

The final result is thus a 2D image containing point list
entries of all active cells in the image, the point list.
PointList Builder assigns a unique active cell to each in-
dex, but the indexing order is somewhat unintuitive (based
on a fractal traversal pattern). Optionally, the algorithm can
provide line-wise indexing if a line-wise CPU traversal is
desired. In that case, the reduction operator takes four hor-
izontal cells instead of a square of 2x2. However, this
would probably hamper texture caching performance dur-
ing the HistoPyramid construction.

6. Algorithmic variants

6.1. Merged Discriminator and HistoPyramid Builder

For simple thresholding, the Discrimination Operator
and the HistogramPyramid Builder are usually simple and
can thus be fusioned. In that case, we use a shader that be-
haves differently on the base level of HistoPyramid, and
apply the discrimination operator to detect active cells dur-
ing the build process. This saves storage space and calcula-
tion time, since the discrimination results never have to be
written to video memory. It should be noted, though, that
PointList Builder has to redo these operations on the base
level to determine if it has found the correct target cell.
Therefore, it is only advisable to use this variant if the dis-
crimination operator's calculation costs are negligible in
comparison to writing and re-reading the binary image.

6.2. Point list entry cloning

If more output data shall be added in the point list (e.g.to
create multiple vertices from one point), we propose
„stretching“ the key index (applying a modulo in the key
index calculation) so that the same key indexing result will
be written to several point list entries. This way, a point list
can e.g. serve as vertex list for quads centered around each
discovered cell coordinate, by cloning each list entry four
times while the point list is generated. We thus generate a
certain number of vertices for each active cell in the input.

6.3. Faster traversal with partial sums in vec4

This variant makes use of the GPU's vector capabilities.
As it is capable of manipulating four float values in each
target cell, we store the partial sums of the leaf cells in the
parent cell, instead of only the overall sum (see Figure 9).

This way, it is not necessary to do four texture lookups
(in the leaf cells) to decide in which quadtree branch to de-
scend. Instead, this decision can already be made based on
the partial sums in the level above. The algorithm can thus-
save up to three texture lookups for every traversed
HistoPyramid level. We call this the vec4-HistoPyramid.

6.4. Bilinear interpolation for faster summation

A third variant uses the GPU's bilinear texture interpola-
tion. Our interpolation-based HistoPyramid Builder places
a texture lookup exactly in the middle between the four in-
put cells of the level below, which makes texture interpola-
tion return the average of the four input cell values. A mul-
tiply with four yields the sum. This is faster than calculat-
ing the sum from four explicit texture lookups in the shad-
er, since graphics hardware contains special data paths for
such interpolated lookups. Unfortunately, current hardware
restricts such interpolation to 16 bit float values. As 16 bit
floats are not enough to represent more than 32768 points,
we have devised a way to split a 20 bit integer into two 16
bit floats. But such a splitting requires constant rebalancing
of the interpolated values in the HistoPyramid Builder, and
an extra dot product to reconstruct cell values in PointList
Builder. Also note that interpolation cannot easily be com-
bined with the vec4-HistoPyramid from section 6.3.

7. Applications

7.1. Image analysis

The most promising application for this algorithm is
GPU-accelerated image processing. We are confident that
this algorithm paves the trail for efficiently solving com-
puter vision problems solely on graphics hardware. As an
example, GPUs can now analyze the folding result after
conducting the actual folding, and thus augment the algo-
rithms proposed in [FM05]. The expensive download of
half-processed image data can thus be avoided, and only
the discovered feature point set needs to be transferred.

7.2. Volume analysis

We have currently only described how to analyze 2D im-
ages, but the algorithm can straightforwardly be extended
to the 3D case if the HistoPyramid became a hierarchy of
3D volumes. Unfortunately, current render-to-texture func-
tionality can only write to one 2D slice at a time (if at all:
NVidia drivers currently do not support that), which slows
down performance due to framebuffer setup times. In the
meanwhile, we suggest to lay out 3D volumes in a 2D tex-
ture, in the same way as Dicer demonstrates, and to recon-

Figure 9: dicer_vec4's extended RGBA storage and the
accordingly modified reduction operator.

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
ed

uc
e

Other levels:
Sum up vec4's

R
ed

uc
e

1
1

1

1
1

1

1

1
0

0

000
0 0

0 23
2 1

Base: create
vec4's

GR
B A

G=dot(UR,1)R=dot(UL,1)
B=dot(LL, 1) A=dot(LR,1)

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

Layout, vec4 Reduction operator, vec4

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
ed

uc
e

Other levels:
Sum up vec4's

R
ed

uc
e

1
1

1

1
1

1

1

1
0

0

000
0 0

0 23
2 1

Base: create
vec4's

GR
B A

G=dot(UR,1)R=dot(UL,1)
B=dot(LL, 1) A=dot(LR,1)

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

Layout, vec4 Reduction operator, vec4

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
ed

uc
e

Other levels:
Sum up vec4's

R
ed

uc
e

1
1

1

1
1

1

1

1
0

0

000
0 0

0 23
2 1

Base: create
vec4's

GR
B A

G=dot(UR,1)R=dot(UL,1)
B=dot(LL, 1) A=dot(LR,1)

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

Layout, vec4 Reduction operator, vec4

struct 3D texture coordinates from the found 2D image co-
ordinates. As a proof of concept, we have recently used this
algorithm for detecting seed points in 3D flow data on the
GPU. We are very confident that other applications, such as
level-set identification, are possible. Even a GPU based
marching cubes algorithm is within reach, provided that the
algorithm can generate geometry after the relevant
voxel/mesh mappings have been identified.

7.3. Sparse matrix creation

[KW03] has demonstrated how to process large sparse ma-
trices by packing them into a special representation. Up to
now, it was not possible to create such sparse matrix repre-
sentation on the graphics hardware,. Our algorithm could
be used to convert matrices into such sparse matrix repre-
sentations, and thus save memory and computation time.

7.4. Quadtree Builder

Many simulation problems deal with processing data of
varying sample density (e.g. fluid simulations, [HAR04], or
[KW03]). Also, compression and encoding often require
the clustering of similar regions. If HistoPyramid Builder is
modified to count the largest-size regions of common cell
values, and to mark at which level they are found in the hi-
erarchy, then PointList Builder can output a quadtree
whose leafs terminate at the level where only identical val-
ues remain. This way, computation and storage could adapt
to sample density, in much the same spirit as sparse matrix
computations do not waste resources on empty regions.

8. Results

In order to test the real-time behaviour of our algorithm
we implemented Dicer, a small Linux application able to
convert 3D models to point clouds. The 3D model, a teapot
generated with glutTeapot(0.6), is stored in a display
list to maximize geometry throughput. The software slices
the mesh by rendering it into 256 2D slices of 256x256
each, spanning a volume of [-1,-1,-1] to [1,1,1] in world
space (see also Figure 1). The output is put into 16 x 16
tiles of an 8-bit RGBA texture at 4096x4096 resolution.
Valid pixels belonging to the 3D model are marked with
alpha=1.0. Additionally, we experiment with smaller
texture sizes to measure the performance scaling, effective-
ly producing volumes of 256x128x128 (2048x2048) and
256x64x64 (1024x1024).

After slicing, the algorithm analyzes the resulting 2D
texture and retrieves the list of actually occupied voxels.
Typically, it finds around 33000 points, and renders them
as a particle cloud.

The tests were conducted on a Dell Precision M70 lap-
top with Nvidia Quadro FX Go 1400 and 256 MB video
memory, connected over PCI Express. It contained an Intel
Pentium M (2.13 Ghz) and 2 GB of main memory. The
AGP download timings came from an Athlon XP2400 sys-
tem with an Nvidia GForce 6600, AGP 8x. We compare
four variants of the algorithm:

dicer_single is the most classic implementation, and fol-
lows the basic algorithm as described in Figure 8. It uses
the OpenGL texture format GL_TEXTURE_2D, which
provides real mipmap levels and render-to-texture, but cur-
rent restrictions force it to build the HistoPyramid in a 32

bit-float RGBA texture, even though only one data channel
is used.

dicer_vec4 is similar, but makes better use of the four
32-bit components by storing partial sums in the RGBA
vec4, effectively delaying the cell sum-up by one level (see
Figure 9 and section 6.3). This accelerates PointList
Builder, as the tree traversal has do to less texture lookups
to make its branching decisions.

dicer_rect utilizes GL_TEXTURE_RECTANGLE, a tex-
ture format with no mipmap levels - but render-to-texture
allows 32-bit single float textures here, which saves consid-
erable amounts of memory. Since PointList Builder needs
to access all levels in one pass, we were forced to create a
pseudo-mipmap layout in a single texture (see Figure 10).

dicer_bil is similar to dicer_single, but uses bilinear tex-
ture interpolation to accelerate the HistoPyramid construc-
tion, as proposed in section 6.4. Unfortunately, the algo-
rithm proved to be numerically unstable. It could not faith-
fully reproduce a complete list of active cells in a test im-
age, and was thus skipped in evaluation. Instead, we wait
for the introduction of ShaderModel 4.0 based graphics
cards to verify this algorithmic variant with the forthcom-
ing bilinear texture interpolation for 32-bit float values.

Table 1 lists the timings common to all implementations.
Volume slicing (the conversion of the 3D model to the 2D
volume texture) dominates all timings, presumably due to
the repeated geometry processing.

Instead of taking the time consumed by the OpenGL call
delays on the CPU side, we measured actual GPU timings
with the GL_EXT_timer_query extension ([NVc04]).

For Table 2, we implemented a classic CPU loop to com-
pare our GPU algorithm with a standard single-thread im-
plementation. Here, the CPU downloads the 2D volume
texture as RGBA8 (over AGP or PCI express, depending
on the system), generates an output list after line-wise
traversal of the texture, and uploads it to the GPU again.
Aggressive compiler optimization accelerates the CPU
based analysis, but we did not employ SIMD techniques.
CPU timings were taken as virtual process time measure-
ment by the getitimer() function of Linux systems. It
is clear that for large textures, the texture download greatly
outweighs the actual analysis.

Table 3 shows the time spent on the GPU for creating the
HistoPyramid. Both dicer_single and dicer_vec4 suffer
heavily from the restriction to RGBA, 32-bit float textures:
The texture data is obviously being swapped to main mem-
ory, causing large performance penalties for 4096x4096.
dicer_rect can use single-component 32-bit float textures,
and therefore scales as expected. But even without memory

Figure 10: dicer_rect's pseudo-mipmap layout for a single,
rectangular texture without mipmap capability.

2
23
1

8

L0 L1 L2

X
X

X
X

X
X

X
X

X
X

X

(unused)

1

1

1
1

1

10
0

0
0

0
0 1
1

0

0

restrictions, it shows that single-component render-to-tex-
ture is considerably faster than RGBA render-to-texture.

Constants 4096x4096 2048x2048 1024x1024

of active cells 33989 8595 2130

Volume slicing 470 ms 470 ms 470 ms

Table 1: Common timings for all implementations.

Constants 4096x4096 2048x2048 1024x1024

AGP download 560 ms 142 ms 36 ms

PCIe download 172 ms 40 ms 12 ms

CPU traversal 25 ms 25 ms 24 ms

Table 2: CPU algorithm timings.

HistoPyramid 4096x4096 2048x2048 1024x1024

dicer_single ~2000 ms 20 ms 6 ms

dicer_vec4 ~2000 ms 20 ms 6 ms

dicer_rect 30 ms 10 ms 2 ms

Table 3: HistoPyramid creation timings.

PointList 4096x4096 2048x2048 1024x1024

dicer_single 16 ms 12 ms ~6 ms

dicer_vec4 14 ms 7 ms ~6 ms

dicer_rect 9 ms 6 ms ~2 ms

Table 4: Point list creation timings.

Finally, Table 4 documents the timings of point list cre-
ation. Here, results are more comparable, and dicer_vec4
can outperform dicer_single due to its improved traversal
algorithm. dicer_rect outperforms both, however, and as
soon as dicer_single is able to render to single-component
textures, it will probably also be in the same speed ranking.
Therefore, additional tests are required to verify the gain of
dicer_vec4's ncreased storage and bandwidth consumption
for volume analysis. The situation can be different for bin-
ning and sorting operations, where the whole volume of
data needs to be rearranged and no data will be thrown
away - but we lacked such a test situation.

After summing up the timings from Table 3 and Table 4
and comparing it with Table 2, we are now confident that
GPU-based image/volume analysis has become competitive
with the help of HistoPyramids. The speed advantages are
only small for medium-sized textures, but for large tex-
tures, the impact for CPU texture download is so profound
that it pays off to keep the data on the GPU. Further, it
saves both memory and CPU time to let the GPU process
data that already resides there (like volume slicing results).

Our second demo HeartBreaker uses a similar approach,
but downloads the final particle cloud to the CPU. The pre-
sented animations, shown in Figure 11, demonstrate how
our method can deliver new and unusual visual effects,
such as particle explosions of arbitrary geometry models.

9. Conclusions and Outlook

We have presented a novel, fast and easy-to-use GPU al-
gorithm for rapidly generating point lists. The possible ap-
plications for this technology are numerous, ranging from
GPU-based computer vision applications, such as 2D im-
age analysis or feature detection, to 3D volume processing,
such as occupancy testing or seed point selection. Also, im-
pressive visual effects for the development of computer
games, such as the rapid conversion of arbitrary geometry
into particle clouds have now become feasible.

Through experiments we have shown that our purely
GPU-based implementation is significantly faster than a
hybrid GPU/CPU implementation.

Our algorithm and its variants are currently restricted by
limitations of the graphics hardware and its driver. We are
therefore looking forward to single-component render-to-
texture for OpenGL GL_TEXTURE_2D and await eagerly
the advent of Shader Model 4.0-capable graphics hardware
in order to test how 32-bit float interpolation and integer
handling can improve performance. This way, we hope to
make dicer_rect obsolete, as its pseudo-mipmap handling is
rather complicated and would hamper wide-spread use of
this algorithm on the whole. We would also like to test ren-
der-to-texture for 3D textures in the future, as 3D HistoPy-
ramid traversal would cache more efficiently, and trilinear
texture lookups accelerate the HistoPyramid building pro-
cess. Finally, we are curious on how geometry shaders un-
der Shader Model 4.0 compare to the presented algorithm.

Despite current limitations, we have presented a versatile
algorithm with a multitude of applications. It will be highly

Figure 11: Screenshots from our FX demo HeartBreaker. From left to right: Solid model (5000 triangles); Point cloud
representation (1872 points, in a 256x64x64 grid, first iteration: 90 ms, subsequently: 25 ms); Particle explosion effect.

interesting to see how it maps into image analysis, data
compression and general purpose computation. In general,
there should now only be few computational tasks left that
can not be done on GPUs.

References

[BP04]: BUCK, I., AND T. PURCELL: A Toolkit for
Computation on GPUs. GPU Gems, pp.621-636,2004.

[BFG*04]: BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER,
P.: Sparse matrix solvers on the GPU: Conjugate
Gradients and Multigrid. ACM Transactions on
Graphics 22, pp. 917-924, 2003.

[GHL*04] GOVINDARAJU N., HENSON M., LIN M. AND
MANOCHA D.: Computations among Geometric Primitives
in Complex Environments. Proc. ACM Symposium on
Interactive 3D Graphics and Games, 2005.

[HAN97]: HANAN, S.: Data structures for quadtree
approximation and compression. Communications of the
ACM, Volume 28, Issue 9, pp. 973-993, 1985.

[HAR04]: HARRIS, M.: Fast Fluid Dynamics Simulation on
the GPU. GPU Gems, pp.637-665,2004.

[HOR05] HORN, D.: Stream Reduction Operations for
GPGPU applications. GPU Gems 2, pp. 621-636,
Addison-Wesley.

[KW03] KRÜGER, J. AND WESTERMANN, R.: Linear algebra
operators for GPU implementation of numerical
algorithms. Proc. ACM SIGGRAPH 2003, pp. 908-916,
2003.

[NVa04]: SIMON GREEN, NVIDIA CORP.: OpenGL Image
Processing Tricks. GDC 2005 Presentations, 2005.
http://tinyurl.com/f59r4

[NVb04]: NVIDIA CORP.: Image Histogram. SDK Code
Samples - Video and Image Processing, 2004.
http://tinyurl.com/kmlr2

[NVc04]: SIMON GREEN, NVIDIA CORP.: NVidia OpenGL
Update. GDC 2005 Presentations, 2005, pp. 40-42.
http://tinyurl.com/pngld

[ROB97]: J A ROBINSON, Efficient General-Purpose Image
Compression with Binary Tree Predictive Coding. IEEE
Transactions on Image Processing, Vol 6, No 4, April
1997, pp 601-607.

[FM05]: FUNG J., AND MANN S.: OpenVIDIA: parallel GPU
computer vision. Proc. 13th annual ACM international
conference on Multimedia, 2005, pp. 849 - 852.
http://openvidia.sf.net

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-RG1-001 C. Weidenbach, T. Hirth, C. Karl Automatic Infrastructure for Analysis

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-I-2006-4-005 S. Yoshizawa ?

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Construction of Spatial Hierarchies for Ray
Tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized
Models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram
Pyramids

MPI-I-2006-4-001 R. Mantiuk ?

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 I. Weber ?

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-I-2006-1-005 I. Albrecht ?

MPI-I-2006-1-004 E. de Aguiar ?

MPI-I-2006-1-001 M. Dimitrios ?

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-008 D. Michail ?

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

	mpii_techreport_20064002.pdf
	1. Related Work
	2. Overview
	3. Discriminator
	4. HistoPyramid Builder
	5. PointList Builder
	6. Algorithmic variants
	6.1. Merged Discriminator and HistoPyramid Builder
	6.2. Point list entry cloning
	6.3. Faster traversal with partial sums in vec4
	6.4. Bilinear interpolation for faster summation

	7. Applications
	7.1. Image analysis
	7.2. Volume analysis
	7.3. Sparse matrix creation
	7.4. Quadtree Builder

	8. Results
	9. Conclusions and Outlook

