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Abstract

Image Pyramids are frequently used in porting non-local algorithms to graph-
ics hardware. A Histogram pyramid (short: HistoPyramid), a special version
of image pyramid, sums up the number of active entries in a 2D image hi-
erarchically. We show how a HistoPyramid can be utilized as an implicit
indexing data structure, allowing us to convert a sparse matrix into a co-
ordinate list of active cell entries (a point list) on graphics hardware. The
algorithm reduces a highly sparse matrix with N elements to a list of its
M active entries in O(N) + M (log N) steps, despite the restricted graphics
hardware architecture. Applications are numerous, including feature detec-
tion, pixel classification and binning, conversion of 3D volumes to particle
clouds and sparse matrix compression.
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Introduction
As graphics hardware has become more programmable, 

new applications like general matrix calculation, sorting ap-
plications or physics processing have become feasible (e.g. 
[HAR04], [KW03], [FM05], [BFG*04]). But ever since the 
first  of  these  applications  had  been  implemented,  it  had 
been  clear  that  the  stream processing  nature  of  graphics 
hardware, which gives it tremendous processing power, also 
requires considerable rethinking of data structures and algo-
rithms. Many non-local calculations, virtually trivial on sin-
gle-thread systems, like counting active cells in a 2D image, 
become hard to solve on the GPU, since its inherently paral-
lel nature can only be utilized if the output of several paral-
lel units is combined. 

The thought approach of data pyramids solved this prob-
lem: A so-called  reduction operator ([BP04])  summarizes 
the content of four cells at once, and writes out the result 
into a 2D image of half the input size. This is repeated until 
only one cell  prevails.  This  way,  all  parallel  units  in  the 
GPU can contribute equally to the final calculation of the 

result. We build on this concept and introduce the term His-
togram Pyramid (short: HistoPyramid) for a special form of 
data pyramid that uses a reduction operator to sum up the 
active cells in a 2D image. “Active cells” are determined by 
applying a user-provided discrimination function to all cells 
in the image. 
  Therefore, we approach a related algorithmic problem,  the 
generation of a  list of active cells in a 2D image (a  point  
list) on stream processing hardware. It is common knowl-
edge that on such architectures, it is not allowed to forward  
data from one output element to the next one. Therefore, the 
trivial CPU solution, which traverses a 2D image sequen-
tially in order to count all occupied pixels, and writes down 
cell coordinates as they are encountered, is not applicable. 

We therefore present a completely GPU-based algorithm 
which uses the aforementioned histogram pyramid to gener-
ate a point list of a 2D image. For each point list entry to be 
generated, it traverses the histogram pyramid from the top 
level  downwards  until  the  corresponding  point  has  been 
found. The histogram pyramid thus serves as an implicit in-
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Abstract
Data Pyramids, as created during a reduction process of 2D image maps, are frequently used in porting  
non-local algorithms to graphics hardware. A Histogram pyramid (short: HistoPyramid), one incarnation of  
a data pyramid, collects the number of active entries in a 2D image. We show how a HistoPyramid can be 
utilized as an implicit indexing data structure, allowing us to convert a sparse matrix into a coordinate list of  
active cell entries (a point list) on graphics hardware . The algorithm reduces a highly sparse matrix with N 
elements to a list of its M active entries in O(N) + M (log N) steps, despite the restricted graphics hardware  
architecture. Applications are numerous, including feature detection, pixel classification and binning, con-
version of 3D volumes to particle clouds and sparse matrix compression. 

Categories and Subject Descriptors (according to ACM CCS): I.3.1. [Computer Graphics]: Graphics processors, 
I.3.5[Computer Graphics]: Point Representation, I.4.1. [Image Processing and Computer Vision]: Segmenta-
tion, I.4.10 [Image Processing and Computer Vision]: Hierarchical Image Representation 
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Figure 1: Dicer, our demo application, decomposing a teapot into a point cloud on the GPU, by rendering it repeatedly into  
slices of a 256x256x256 volume (marked in red). The volume is filled with approximately 34000 surface points. 
Left to right: 3D model of teapot; volume slices at z=70/130/190/201; resulting 2D point list; particle cloud based on point 
list, the false colors stand for the 3D texture coordinates of the voxels. 



dexing  data  structure.  The  GPU  then  needs 
4log2 max sizex ,size y texture  accesses  to  generate 

one point in the list (and log2maxsizex ,size y for the 
vec4-HistoPyramid variant, see section 6). 

We show that this approach runs considerably faster on 
the  GPU  than  comparable  hybrid  CPU/GPU-  or  CPU-
based solutions, provided that the input 2D image already 
resides in video memory or the point list is needed in fur-
ther GPU processing and must otherwise be uploaded from 
the CPU. The algorithm scales with future GPU architec-
tures and performs in a very cache-friendly way. Finally, 
we exemplify the algorithm's practical use in Dicer, a demo 
application which converts arbitrary 3D models into parti-
cle clouds in real-time, running completely on the GPU.    

1. Related Work

Data pyramids have been used in Binary Tree Predictive 
Coding  ([HAN85],  [ROB97]).  For  example,  a  quad  tree 
leaf can signal if all of its descendants are identical,  and 
therefore skip the transmission of its descendants.  Our al-
gorithm uses similar ideas to skip empty regions during the 
HistoPyramid traversal which builds up the point list.

The data building process for the mentioned HistoPyra-
mid is adopting the well-known parallel "reduction opera-
tion".  It  is  applied  in  custom  mipmapping  (see  also 
[BP04]), and processes n2 elements in log2(n) passes. Our 
summing operator  builds  a  Laplacian  pyramid  of  partial 
histograms. One variant of our algorithm uses bilinear tex-
ture interpolation to accelerate the summing operation, as 
already described in [NVa04], see also section 6.4. 

Occlusion queries, as proposed in [NVb04], are admit-
tedly faster for a total histogram count, as they only need 
one rendering pass  to  sum all  active cells.  However,  we 
cannot take advantage of this method, as our traversal algo-
rithm requires the partial sums produced on the way to re-
construct cell coordinates.

Bitonic merge sort, as exemplified in [GHL*04], could 
also be used for point isolation in sparse images by giving 
seed  points  a  different  sorting  key  than  invalid  points. 
However,  since this  sorting algorithm is  optimized  for  a 
plentiful of key values, it runs suboptimally ( O(n (log n)2) 
steps) for a 2D image where only a binary partitioning is 
required.

Finally,  [HOR05] introduces the concept  of data  com-
paction, i e filtering of unwanted data elements from a giv-
en data  stream. It  does this  by successively producing a 
running sum, describing where to skip unwanted elements 
to obtain a packed result. The algorithm needs log(n) itera-
tions to produce this running sum, and keeps the number of 
output  elements constant.  The implementation was based 
on the stream processing language Brook. 

Our algorithm takes a similar approach as [HOR05], but 
utilizes a quad tree to represent its intermediate data, a con-
siderable reduction in intermediate data output ([HOR05] 
has log2(n).n, while we produce at maximum 2n due to the 
pyramid). However, we have to use  all intermediate data 
levels to generate the final, compacted output, not only the 
last level - a feature where graphics hardware architectures 
differ from the classical stream architecture. We further uti-
lize both the GPU's vector processing and bilinear texture 
interpolation  if  they yield  an  advantage  (see  algorithmic 
variants of the tree traversal in section 6). 

2. Overview

Figure 3 illustrates the workflow between the different 
computation steps. All data is being processed on the GPU 
– the CPU is only handling data if the input data originates 
there or if  the point list  shall  be  downloaded for further 
processing in a non-GPU application. 

The input is a 2D image or a stack of 2D images (up to 
the GPU's number of texture units). The image cells may be 
of arbitrary type (single/RGBA, byte/float), as long as the 
Discriminator is able to handle cells of such type.  

The  Discriminator determines if a cell's  content is  re-
garded as active or not. It generates a binary representation 
of the same size as the 2D image, and sets the base level for 
the histogram pyramid. We will exemplify some useful dis-
crimination operators in section 3. 

The  HistoPyramid Builder creates the Laplacian pyra-
mid levels of histogram information. Its reduction operator 
repeatedly processes four input cells  into one throughout 
the whole input image, starting at the resolution level of the 
original input image. It finishes when only one output cell 
remains. We describe its GPU implementation in section 4. 

The PointList Builder takes the HistoPyramid, and cre-
ates an initial,  empty  2D list  in the form of a 2D image 

Figure 3: Overview over the internal workflow. 
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(based  on  the  number  of  found  active  cells),  henceforth 
called point list. Afterwards, it fills the list using a hierar-
chical traversal of the histogram pyramid for each list entry. 
Section 5 describes details of the traversal in diagrams, and 
presents a log of the traversal decisions. It also points out 
which  GPU  restrictions  hamper  performance,  and  how 
their removal might improve future implementations. 

We have also devised algorithmic variants, including a 
more intricate,  but  faster  implementation  which  uses  the 
GPU's native vector capabilities, and a version which uti-
lizes  bilinear  texture  interpolation.  A discussion  of  these 
variants can be found in section 6.

The basic, or, for CPU programmers, fairly straightfor-
ward concepts underlying our algorithm can make it hard 
to understand the full range of new applications that a GPU 
implementation opens. Therefore, section  7 details several 
real-time  applications  that  become feasible  with  a  GPU 
implementation of this algorithm.

Section  8 summarizes  the  current  performance  results 
that  we obtained  by running  the  algorithm's  variants  on 
state-of-the-art  graphics  hardware.  It  describes  the  sur-
rounding test setup, and analyzes the runtime behaviour. 

3. Discriminator

As discussed,  the  subsequent  stages operate on  binary 
images, that is, each cell has to be either active (1) or not 
(0). Therefore, we must first preprocess our input data into 
binary images. Any operator that can map an image's cells 
into such a binary decision can be utilized here. 

The most trivial operation is the threshold operator (Fig-
ure 5). It determines if the cell data is equal to or above a 
certain threshold.

Combined application of different thresholds, equal to a 
range operator,  can yield point lists of  „watershed cliffs“ 

(items that are below a certain treshold ([-inf, rangemax])or 
within a certain range ([rangenub, rangemax])). These are very 
useful for dominant component detection in signal analysis 
and data compression, as proposed in section 7. The same 
range  discriminator  lends  itself  to  "binning"  operations 
(and can thus be extended to a sorting algorithm, if the bins 
become fine-grained enough).

Many  edge  detection  operators use  thresholds  on  the 
spatial image gradients, which are approximated as differ-
ences between adjacent data points. One example can be 
seen  in  Figure  6.  Again,  it  is  possible  to  apply  several 
thresholds to detect edges of varying intensity.

Most general  is  the  folding and thresholding operator, 
see Figure 4. It folds a data cell region with a user-provided 

data template and applies thresholding to signal the match 
between template and input data in this particular position. 
This is useful for detecting a certain image template in a 
larger image without knowing the number of occurances in 
advance  (otherwise  a  common  restriction  in  GPU-based 
image processing).

Our Dicer demo utilizes thresholding to detect 3D model 
pixels that have been earmarked with  alpha=1.0. Since 
thresholding is a local and inexpensive operation, it was in-
tegrated into the first  stage of the HistoPyramid Builder. 
Note,  though,  that  in  order to  detect  valid  pixels on  the 
lowest level, PointList Builder will have to redo the thresh-
olding operation in that case,. More complex discrimina-
tion operations should be kept separate from the next pro-
cessing step to avoid redundant calculations. 

Figure  5:  Example  input  data  and  two  possible  outputs 
(top, left to right) for the thresholding function (bottom).
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Figure 6: Example input data and two possible outputs 
(top, left to right) for the edge detection function (bottom). 
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4. HistoPyramid Builder

The  HistoPyramid,  short  for  histogram  pyramid,  is  a 
Laplacian pyramid with the Discriminator's binary output 
as its base. On this base level, each active cell is treated as 
a 1, while inactive or empty cells are interpreted as 0. Our 
reduction  operator  simply sums up four  underlying cells 
and writes the result into the prepared output level image 
until the final level consists of only one cell. The algorithm 
annotates the level of this cell (the top level) for the subse-
quent  stages,  and  terminates.  The  output  is  a  Laplacian 
stack of output images with integer content (32bit floating 
point in the GPU implementation), see Figure 2. 

Note that only square, power-of-two image dimensions 
can provide the algorithm with a constant number of input 
and output cells. The HistoPyramid algorithm itself could 
easily be adapted to rectangular and non-power-of-two tex-
tures, but current GPU programmability restrictions (name-
ly,  the inability to  provide explicit  texture  sizes for each 
pyramid level) would severely limit the performance of the 
PointList Builder. In the meanwhile, we propose to pad the 
input  image's dimensions in  order to  be quadratic and a 
power of two. 

5. PointList Builder

Given the HistoPyramid as input, it  is now possible to 
determine  the  number  of  entries in  the  final  list  output. 
PointList Builder accesses the top level of the pyramid to 
retrieve this value, and allocates the point list, a 2D image 
whose sidelength is equal to the square root of the number 
of entries (see the 2D point list in Figure 8 for an example). 
The reason for choosing a 2D layout is that the GPU cur-
rently can handle only 4096 entries at maximum in a 1D 
image.

Now, actual point list reconstruction commences. In our 
example in Figure 8, the PointList Builder shader will now 
be called for all nine possible list entries in the 2D image.

The shader first determines its own index (the key index) 
from its 2D coordinate in the point list. Since it also has 
been given the total number of entries (the list count, here: 
8), it immediately terminates if the key index exceeds the 
list count (such an entry is empty, it is only an artifact from 
the 2D image allocation - our example marks it with an X). 

The algorithm descends one level if the key index lies 
within the index range of a HistoPyramid cell. Intuitively, 
the index range of a HistoPyramid cell describes the possi-
ble or covered range of key indices that active cells in this 
covered part of the 2D input image can receive. The top 
level's single cell poses a good example, its range covers all 
active cells' indices. A different way to see it is that all ac-
tive cells in a given index range will be HistoPyramid or 
quadtree descendants of this cell. 

During traversal of the HistoPyramid, the current index 
range [start, end] is updated as follows: 
• start is initialized to zero. 
• end is assigned the sum of the cell's content (looked up 

from the HistoPyramid) and start. 
• Before a new cell is examined on the same level,  start 

becomes the former index range end.
• If we descend one level, we retain the  start value that 

was active during the parent cell's range check.

Figure 8: PointList Builder's internal data traversal for an example key index. Left: graphical illustration. Right, top: naming 
convention for lookup directions, as seen from a parent cell O. Right bottom: Algorithm's log on made decisions.

UR: upper rightUL: upper left

LL: lower left LR: lower right

P

Figure  7: Basic  HistoPyramid  building  process.  L0,  L1 
and L2 are the pyramid levels. While generating the next 
pyramid level, the GPU sums four adjacent cells into one, 
thereby halving resolution, until only one cell remains. 
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Note that the traversal order is irrelevant as no sorting is 
enforced; it only needs to be the  same order for all point 
list entries to avoid doublettes, but that is fulfilled as the 
PointList Builder shader is the same for all pixels. 

This repeats until the base level has been reached. There, 
the  final  target  cell  can  be  chosen  after  the  same index 
range criterion, if we interpret an active cell as a value of 1. 
The  found  target  cell's  coordinates  are  written  into  the 
point list output image.

The final result is thus a 2D image containing point list 
entries  of  all  active  cells  in  the  image,  the  point  list. 
PointList Builder assigns a  unique active cell to each in-
dex, but the indexing order is somewhat unintuitive (based 
on a fractal traversal pattern). Optionally, the algorithm can 
provide line-wise indexing if a line-wise CPU traversal is 
desired. In that case,  the reduction operator takes four hor-
izontal  cells  instead  of  a  square  of  2x2.  However,  this 
would probably hamper texture caching performance dur-
ing the HistoPyramid construction.

6. Algorithmic variants

6.1. Merged Discriminator and HistoPyramid Builder

For  simple  thresholding,  the  Discrimination  Operator 
and the HistogramPyramid Builder are usually simple and 
can thus be fusioned. In that case, we use a shader that be-
haves differently on the base level  of HistoPyramid,  and 
apply the discrimination operator to detect active cells dur-
ing the build process. This saves storage space and calcula-
tion time, since the discrimination results never have to be 
written to video memory. It should be noted, though, that 
PointList Builder has to redo these operations on the base 
level to  determine if  it  has found the correct  target cell. 
Therefore, it is only advisable to use this variant if the dis-
crimination  operator's  calculation  costs  are  negligible  in 
comparison to writing and re-reading the binary image. 

6.2. Point list entry cloning

If more output data shall be added in the point list (e.g.to 
create  multiple  vertices  from  one  point),  we  propose 
„stretching“ the key index (applying a modulo in the key 
index calculation) so that the same key indexing result will 
be written to several point list entries. This way, a point list 
can e.g. serve as vertex list for quads centered around each 
discovered cell coordinate, by cloning each list entry four 
times while the point list is generated. We thus generate a 
certain number of vertices for each active cell in the input. 

6.3. Faster traversal with partial sums in vec4

This variant makes use of the GPU's vector capabilities. 
As it is capable of manipulating four float values in each 
target cell, we store  the partial sums of the leaf cells in the 
parent cell, instead of only the overall sum (see Figure 9). 

This way, it is not necessary to do four texture lookups 
(in the leaf cells) to decide in which quadtree branch to de-
scend. Instead, this decision can already be made based on 
the partial sums in the level above. The algorithm can thus-
save  up  to  three  texture  lookups  for  every  traversed 
HistoPyramid level. We call this the vec4-HistoPyramid.   

6.4. Bilinear interpolation for faster summation

A third variant uses the GPU's bilinear texture interpola-
tion. Our interpolation-based HistoPyramid Builder places 
a texture lookup exactly in the middle between the four in-
put cells of the level below, which makes texture interpola-
tion return the average of the four input cell values. A mul-
tiply with four yields the sum. This is faster than calculat-
ing the sum from four explicit texture lookups in the shad-
er, since graphics hardware contains special data paths for 
such interpolated lookups. Unfortunately, current  hardware 
restricts such interpolation to 16 bit float values. As 16 bit 
floats are not enough to represent more than 32768 points, 
we have devised a way to split a 20 bit integer into two 16 
bit floats. But such a splitting requires constant rebalancing 
of the interpolated values in the HistoPyramid Builder, and 
an extra dot product to reconstruct cell values in PointList 
Builder. Also note that interpolation cannot easily be com-
bined with the vec4-HistoPyramid from section 6.3. 

7. Applications

7.1. Image analysis

The  most  promising  application  for  this  algorithm  is 
GPU-accelerated image processing. We are confident that 
this algorithm paves the trail  for efficiently solving com-
puter vision problems solely on graphics hardware. As an 
example,  GPUs can now  analyze  the  folding  result after 
conducting the actual folding, and thus augment the algo-
rithms proposed in  [FM05].  The expensive download of 
half-processed image data  can thus be avoided, and only 
the discovered feature point set needs to be transferred.

7.2. Volume analysis

We have currently only described how to analyze 2D im-
ages, but the algorithm can straightforwardly be extended 
to the 3D case if the HistoPyramid became a hierarchy of  
3D volumes. Unfortunately, current render-to-texture func-
tionality can only write to one 2D slice at a time (if at all: 
NVidia drivers currently do not support that), which slows 
down performance due to framebuffer setup times. In the 
meanwhile, we suggest to lay out 3D volumes in a 2D tex-
ture, in the same way as Dicer demonstrates, and to recon-

Figure 9: dicer_vec4's extended RGBA storage and the 
accordingly modified reduction operator. 
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struct 3D texture coordinates from the found 2D image co-
ordinates. As a proof of concept, we have recently used this 
algorithm for detecting seed points in 3D flow data on the 
GPU. We are very confident that other applications, such as 
level-set  identification,  are  possible.  Even  a  GPU based 
marching cubes algorithm is within reach, provided that the 
algorithm  can  generate  geometry  after  the  relevant 
voxel/mesh mappings have been identified.

7.3. Sparse matrix creation

[KW03] has demonstrated how to process large sparse ma-
trices by packing them into a special representation. Up to 
now, it was not possible to create such sparse matrix repre-
sentation  on the graphics hardware,. Our algorithm could 
be used to convert matrices into such sparse matrix repre-
sentations, and thus save memory and computation time. 

7.4. Quadtree Builder

Many simulation problems deal with processing data of 
varying sample density (e.g. fluid simulations, [HAR04], or 
[KW03]).  Also,  compression  and  encoding  often  require 
the clustering of similar regions. If HistoPyramid Builder is 
modified to count the largest-size regions of common cell 
values, and to mark at which level they are found in the hi-
erarchy,  then  PointList  Builder  can  output  a  quadtree 
whose leafs terminate at the level where only identical val-
ues remain. This way, computation and storage could adapt 
to sample density, in much the same spirit as sparse matrix 
computations do not waste resources on empty regions.

8. Results

In order to test the real-time behaviour of our algorithm 
we implemented  Dicer,  a small Linux application able to 
convert 3D models to point clouds. The 3D model, a teapot 
generated with glutTeapot(0.6), is stored in a display 
list to maximize geometry throughput. The software slices 
the mesh by rendering it  into  256 2D slices of 256x256 
each, spanning a volume of [-1,-1,-1] to [1,1,1] in world 
space (see also  Figure 1). The output is put into 16 x 16 
tiles of an 8-bit  RGBA texture  at  4096x4096 resolution. 
Valid pixels belonging to the 3D model are marked with 
alpha=1.0.  Additionally,  we  experiment  with  smaller 
texture sizes to measure the performance scaling, effective-
ly producing volumes of  256x128x128 (2048x2048)  and 
256x64x64 (1024x1024).  

After  slicing,  the  algorithm analyzes  the  resulting  2D 
texture and retrieves the list  of actually occupied voxels. 
Typically, it finds around 33000 points, and renders them 
as a particle cloud. 

The tests were conducted on a Dell Precision M70 lap-
top with Nvidia Quadro FX Go 1400 and 256 MB video 
memory, connected over PCI Express. It contained an Intel 
Pentium M (2.13 Ghz)  and 2 GB of main memory.  The 
AGP download timings came from an Athlon XP2400 sys-
tem with an Nvidia GForce 6600,  AGP 8x. We compare 
four variants of the algorithm:

dicer_single is the most classic implementation, and fol-
lows the basic algorithm as described in  Figure 8. It uses 
the  OpenGL  texture  format  GL_TEXTURE_2D,  which 
provides real mipmap levels and render-to-texture, but cur-
rent restrictions force it to build the HistoPyramid in a 32 

bit-float RGBA texture, even though only one data channel 
is used. 

dicer_vec4 is similar, but makes better use of the four 
32-bit  components by storing partial  sums in  the  RGBA 
vec4, effectively delaying the cell sum-up by one level (see 
Figure  9 and  section  6.3).  This  accelerates  PointList 
Builder, as the tree traversal has do to less texture lookups 
to make its branching decisions.

dicer_rect utilizes GL_TEXTURE_RECTANGLE, a tex-
ture format with no mipmap levels - but render-to-texture 
allows 32-bit single float textures here, which saves consid-
erable amounts of memory. Since PointList Builder needs 
to access all levels in one pass, we were forced to create a 
pseudo-mipmap layout in a single texture (see Figure 10).

dicer_bil is similar to dicer_single, but uses bilinear tex-
ture interpolation to accelerate the HistoPyramid construc-
tion,  as proposed in section  6.4.  Unfortunately, the algo-
rithm proved to be numerically unstable. It could not faith-
fully reproduce a complete list of active cells in a test im-
age, and was thus skipped in evaluation. Instead, we wait 
for the introduction of ShaderModel  4.0  based graphics 
cards to verify this algorithmic variant with the forthcom-
ing bilinear texture interpolation for 32-bit float values.

Table 1 lists the timings common to all implementations. 
Volume slicing (the conversion of the 3D model to the 2D 
volume texture) dominates all timings, presumably due to 
the repeated geometry processing. 

Instead of taking the time consumed by the OpenGL call 
delays on the CPU side, we measured actual GPU timings 
with the GL_EXT_timer_query extension ([NVc04]).  

For Table 2, we implemented a classic CPU loop to com-
pare our GPU algorithm with a standard single-thread im-
plementation.  Here,  the  CPU downloads the  2D volume 
texture as RGBA8 (over AGP or PCI express, depending 
on  the  system),  generates  an  output  list  after  line-wise 
traversal of the texture, and uploads it to the GPU again. 
Aggressive  compiler  optimization  accelerates  the  CPU 
based analysis, but we did not employ SIMD techniques. 
CPU timings were taken as virtual process time measure-
ment by the getitimer() function of Linux systems. It 
is clear that for large textures, the texture download greatly 
outweighs the actual analysis.

Table 3 shows the time spent on the GPU for creating the 
HistoPyramid.  Both  dicer_single  and  dicer_vec4  suffer 
heavily from the restriction to RGBA, 32-bit float textures: 
The texture data is obviously being swapped to main mem-
ory,  causing  large performance  penalties  for  4096x4096. 
dicer_rect can use single-component 32-bit float textures, 
and therefore scales as expected. But even without memory 

Figure 10: dicer_rect's pseudo-mipmap layout for a single, 
rectangular texture without mipmap capability. 
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restrictions, it shows that single-component render-to-tex-
ture is considerably faster than RGBA render-to-texture.

Constants 4096x4096 2048x2048 1024x1024

# of active cells 33989 8595 2130

Volume slicing 470 ms 470 ms 470 ms

Table 1: Common timings for all implementations.

Constants 4096x4096 2048x2048 1024x1024

AGP download 560 ms 142 ms 36 ms

PCIe download 172 ms 40 ms 12 ms

CPU traversal 25 ms 25 ms 24 ms

Table 2: CPU algorithm timings.

HistoPyramid 4096x4096 2048x2048 1024x1024

dicer_single ~2000 ms 20 ms 6 ms

dicer_vec4 ~2000 ms 20 ms 6 ms

dicer_rect 30 ms 10 ms 2 ms

Table 3: HistoPyramid creation timings.

PointList 4096x4096 2048x2048 1024x1024

dicer_single 16 ms 12 ms ~6 ms

dicer_vec4 14 ms 7 ms ~6 ms

dicer_rect 9 ms 6 ms ~2 ms

Table 4: Point list creation timings.

Finally, Table 4 documents the timings of point list cre-
ation. Here, results are more comparable, and dicer_vec4 
can outperform dicer_single due to its improved traversal 
algorithm.  dicer_rect  outperforms  both,  however,  and  as 
soon as dicer_single is able to render to single-component 
textures, it will probably also be in the same speed ranking. 
Therefore, additional tests are required to verify the gain of 
dicer_vec4's ncreased storage and bandwidth consumption 
for volume analysis. The situation can be different for bin-
ning and sorting operations,  where  the  whole volume of 
data  needs  to  be rearranged and  no  data  will  be  thrown 
away - but we lacked such a test situation. 

After summing up the timings from Table 3 and Table 4 
and comparing it with  Table 2, we are now confident that 
GPU-based image/volume analysis has become competitive 
with the help of HistoPyramids. The speed advantages are 
only small  for  medium-sized  textures,  but  for  large tex-
tures, the impact for CPU texture download is so profound 
that it  pays off to keep the data on the GPU. Further, it 
saves both memory and CPU time to let the GPU process 
data that already resides there (like volume slicing results).

Our second demo HeartBreaker uses a similar approach, 
but downloads the final particle cloud to the CPU. The pre-
sented animations, shown in  Figure 11, demonstrate how 
our  method  can  deliver  new and  unusual  visual  effects, 
such as particle explosions of arbitrary geometry models. 

9. Conclusions and Outlook

We have presented a novel, fast and easy-to-use GPU al-
gorithm for rapidly generating point lists. The possible ap-
plications for this technology are numerous, ranging from 
GPU-based computer vision applications, such as 2D im-
age analysis or feature detection, to 3D volume processing, 
such as occupancy testing or seed point selection. Also, im-
pressive  visual  effects  for  the  development  of  computer 
games, such as the rapid conversion of arbitrary geometry 
into particle clouds have now become feasible. 

Through  experiments  we  have  shown  that  our  purely 
GPU-based  implementation  is  significantly  faster  than  a 
hybrid GPU/CPU implementation.

Our algorithm and its variants are currently restricted by 
limitations of the graphics hardware and its driver. We are 
therefore looking forward to  single-component  render-to-
texture for OpenGL GL_TEXTURE_2D and await eagerly 
the advent of Shader Model 4.0-capable graphics hardware 
in order to test how 32-bit float interpolation and integer 
handling can improve performance. This way, we hope to 
make dicer_rect obsolete, as its pseudo-mipmap handling is 
rather complicated and would hamper wide-spread use of 
this algorithm on the whole. We would also like to test ren-
der-to-texture for 3D textures in the future, as 3D HistoPy-
ramid traversal would cache more efficiently, and trilinear 
texture lookups accelerate the HistoPyramid building pro-
cess. Finally, we are curious on how geometry shaders un-
der Shader Model 4.0 compare to the presented algorithm.

Despite current limitations, we have presented a versatile 
algorithm with a multitude of applications. It will be highly 

Figure  11:  Screenshots from our FX demo  HeartBreaker. From left to right: Solid model  (5000 triangles); Point cloud 
representation (1872 points, in a 256x64x64 grid, first iteration: 90 ms, subsequently: 25 ms); Particle explosion effect. 



interesting  to  see  how it  maps into  image analysis,  data 
compression and general purpose computation. In general, 
there should now only be few computational tasks left that 
can not be done on GPUs. 

References

[BP04]: BUCK, I., AND T. PURCELL: A Toolkit for 
Computation on GPUs. GPU Gems, pp.621-636,2004.

[BFG*04]: BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, 
P.: Sparse matrix solvers on the GPU: Conjugate 
Gradients and Multigrid. ACM Transactions on 
Graphics 22, pp. 917-924, 2003. 

[GHL*04] GOVINDARAJU N., HENSON M., LIN M. AND 
MANOCHA D.: Computations among Geometric Primitives 
in Complex Environments. Proc. ACM Symposium on 
Interactive 3D Graphics and Games, 2005. 

[HAN97]: HANAN, S.: Data structures for quadtree 
approximation and compression. Communications of the  
ACM, Volume 28, Issue 9, pp. 973-993, 1985.

[HAR04]: HARRIS, M.: Fast Fluid Dynamics Simulation on 
the GPU. GPU Gems, pp.637-665,2004.

[HOR05] HORN, D.: Stream Reduction Operations for 
GPGPU applications. GPU Gems 2, pp. 621-636, 
Addison-Wesley.

[KW03] KRÜGER, J. AND WESTERMANN, R.: Linear algebra 
operators for GPU implementation of numerical 
algorithms. Proc. ACM SIGGRAPH 2003, pp. 908-916, 
2003.

[NVa04]: SIMON GREEN, NVIDIA CORP.: OpenGL Image 
Processing Tricks. GDC 2005 Presentations, 2005. 
http://tinyurl.com/f59r4 

[NVb04]: NVIDIA CORP.: Image Histogram. SDK Code 
Samples - Video and Image Processing, 2004. 
http://tinyurl.com/kmlr2 

[NVc04]: SIMON GREEN, NVIDIA CORP.: NVidia OpenGL 
Update. GDC 2005 Presentations, 2005, pp. 40-42. 
http://tinyurl.com/pngld 

[ROB97]: J A ROBINSON, Efficient General-Purpose Image 
Compression with Binary Tree Predictive Coding. IEEE 
Transactions on Image Processing, Vol 6, No 4, April 
1997, pp 601-607. 

[FM05]: FUNG J., AND MANN S.: OpenVIDIA: parallel GPU 
computer vision. Proc.  13th annual ACM international  
conference on Multimedia, 2005, pp. 849 - 852. 
http://openvidia.sf.net



Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-RG1-001 C. Weidenbach, T. Hirth, C. Karl Automatic Infrastructure for ..... Analysis

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-I-2006-4-005 S. Yoshizawa ?

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Construction of Spatial Hierarchies for Ray
Tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized
Models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram
Pyramids

MPI-I-2006-4-001 R. Mantiuk ?

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 I. Weber ?

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-I-2006-1-005 I. Albrecht ?

MPI-I-2006-1-004 E. de Aguiar ?

MPI-I-2006-1-001 M. Dimitrios ?

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data



MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-008 D. Michail ?

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth


	mpii_techreport_20064002.pdf
	1. Related Work
	2. Overview
	3. Discriminator
	4. HistoPyramid Builder
	5. PointList Builder
	6. Algorithmic variants
	6.1. Merged Discriminator and HistoPyramid Builder
	6.2. Point list entry cloning
	6.3. Faster traversal with partial sums in vec4
	6.4. Bilinear interpolation for faster summation

	7. Applications
	7.1. Image analysis
	7.2. Volume analysis
	7.3. Sparse matrix creation
	7.4. Quadtree Builder

	8. Results
	9. Conclusions and Outlook




