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Abstract

Animated characters that move and gesticulate appropriately with spoken text are
useful in a wide range of applications. Unfortunately, they are very difficult to
generate, even more so when a unique, individual movement style is required.
We present a system that is capable of producing full-body gesture animation for
given input text in the style of a particular performer. Our process starts with
video of a performer whose gesturing style we wish to animate. A tool-assisted
annotation process is first performed on the video, from which a statistical model
of the person’s particular gesturing style is built. Using this model and tagged
input text, our generation algorithm creates a gesture script appropriate for the
given text. As opposed to isolated singleton gestures, our gesture script specifies
a stream of continuous gestures coordinated with speech. This script is passed
to an animation system, which enhances the gesture description with more detail
and prepares a refined description of the motion. An animation subengine can
then generate either kinematic or physically simulated motion based on this de-
scription. The system is capable of creating animation that replicates a particular
performance in the video corpus, generating new animation for the spoken text
that is consistent with the given performer’s style and creating performances of a
given text sample in the style of different performers.
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1 Introduction

People are engaged by characters with interesting personalities. However, creat-
ing quality animation for generic characters that correctly coordinates appropriate
gestures with spoken text is already a challenging task. Generating movement
that reflects a particular personality significantly increases the challenge of the
gesture animation task, yet it is a goal towards which we must strive. This work
describes one approach towards that goal. We present a system ! that allows the
gesturing pattern of specific individuals to be modelled and then generates anima-
tion for new text from this model, complete with appropriate gestures and body
movement that reflect the original subject.

The system operates in two phases: a pre-processing phase and a fully automatic
generation phase. The preprocessing stage is shown in Figure 1.1. Producing
animation of a particular individual begins by collecting a video corpus for that
person. In our case, we used two talk show hosts as subjects, employing less than
ten minutes of film of each. During an analysis step, the video is hand annotated
in the tool ANVIL [19], and both gesture and more general animation data are ex-
tracted. A statistical model called a Gesture Profile is built based on the annotated
data. In addition, an Animation Lexicon is constructed that contains data such as

I'This work is also published as technical report [34].

- | Gesture |
% : Profiles :
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Manua} . Annotated : 3 )}
Annotation ] Video ]
\\\\\, Manual »  Animation :

Description . Lexicon

Figure 1.1: Preprocessing phase of the system
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Figure 1.2: Automatic generation process.

the normal hand orientation for each gesture that we model. These two compo-
nents provide the input for the gesture generation and animation stage. This tool
supported analysis step allows us to generate a particularly wide range of gestures.

Once the initial analysis phase is complete, the generation process is fully auto-
matic, as summarized in Figure 1.2. There are two paths in this pipeline. The
bottom path shows re-creation. Here, the annotated data from the video corpus
is mapped directly to a gesture script, which is then animated. Recreation can
be used to produce animations of any annotated segment in the corpus. This is
useful for validating the annotation and creating animation of a specific perfor-
mance. The second path in the pipeline generates animation for any novel tagged
text, which need not be in the video corpus. The gesture script is generated from
the statistical model for the individual specified by the user. This gesture script
is passed to the Animation Engine, which further refines the description of the
motion, using data from the animation lexicon and a set of rules described be-
low. The animation engine produces final animated output either kinematically,
or using dynamic simulation, at the user’s option.

Traditionally, modeling gesture production and gesture animation are handled by
well separated systems. For instance, the gesture specification system might only
produce a gesture name, e.g. “beat”, that is then rendered by the animation sys-
tem by playing a pre-existing clip. In this work, we take a more tightly coupled
approach that raises interesting issues of data representation and flow: What data
gets generated where? Some of the detailed information needed to animate a ges-
ture is best stored as part of the gesture model, i.e. on the generation side. This
information can be related to the model of a particular performer, the correla-
tions within a stream of generated gestures, synchronization with speech, or be
definitional information for a particular gesture. Modeling this data as part of



Figure 1.3: Subjects JL. and MR with significant gesture style differences were
analyzed and imitated in kinematic and dynamic animations.

the generation process allows greater control for the gesture generation system
and reduces the burden of how much the animation system needs to “know” and
model. It frees the animation system from needing to access the gesture model.
At the same time, representing data on the generation side can be costly in terms
of modeling effort as it requires sufficient video footage, annotation work and
the construction of statistical or rule based models. In keeping with principles of
data encapsulation, we also wish to minimize what the gesture system needs to
know about the animation system. To negotiate this trade off, our gesture gen-
eration system produces sparse data that captures the key definitional aspects of
a gesture and provides good control. The details of the motion are filled out by
the animation system, which also has additional information about the figure be-
ing modeled, gesture types and the controls available. Specifically, the animation
system will complete timing information, deal with spatial conflicts and add in a
more rich description of gesture form as it augments the sparse data it receives
from the generation stage.

In comparing our system to a motion capture approach, as well as noting the
greater control afforded the generation engine in our approach, it is worth examin-
ing the range of gestures our system can produce. We currently model 28 different
gestures in our animation lexicon, each of which can be generated with either or
both hands in any of hundreds of spatial locations and with an arbitrary number of
after-strokes (Chapter 3). Thousands of different combinations are possible and
the animation lexicon can be easily extended. Developing an appropriate motion



database to cover this space would be a daunting, if not prohibitive, task. Another
strength of our technique is that it can be used on any subjects for whom there
is adequate film of them gesturing. This means that it can potentially be used on
subjects that are no longer alive or who cannot otherwise be motion captured due
to cost or availability.

Two talk shows hosts, JL (Jay Leno) and MR (Marcel Reich-Ranicki), are used
as subjects in this paper. They have different gesturing styles (see Figure 1.3) and
also speak different languages. This illustrates an important point: our technique
can be used to create gestural animation for text in languages different to that
spoken by the subject. In our animation system, we employ a skeleton model con-
taining 89 degrees of freedom, including six degrees for world space orientation
and location and 21 degrees of freedom for each hand.

In summary, this system offers the following contributions:

1. The production of high quality human gestural and facial animation, syn-
chronized with speech.

2. The recreation of specific gestural performances from input video.

3. The creation of new performances in a style consistent with a given subject,
but with novel text.

4. The use of physical simulation and tension control to improve the quality of
gestural animation.



2 Background

To generate and animate gestures from an input of tagged text is a fairly recent
endeavor, pursued in an interdisciplinary arena requiring competencies from com-
puter animation, artificial intelligence and psychology. Cassell et al. [4] developed
a rule-based system that generates audiovisual speech, intonation, facial expres-
sion, and gesture by working on the input text’s information structure which is
still common practice today. Another common practice is to synchronize the ges-
ture stroke to the accented syllable of the coexpressive word, although, as we
will show, it makes sense to sometimes synchronize the stroke with a different
part of the sentence. Using the same agent as Cassell et al., Noma et al. [36]
built the Virtual Presenter where gestures can be added to a text manually or with
keyword-triggered rules. Animated gestures are synchronized with the follow-
ing word. While the number of possible gestures is very small the focus was
on how to implement meaningful rules from the literature on good public speak-
ing. The system takes into account posture and eye contact with the audience. A
more complex generation system is the Behavior Expression Animation Toolkit
(BEAT) [5]. It takes plain text as input and first runs a linguistic analysis on it be-
fore generating intonation, facial animation, and gestures. Gestures are generated
using hand-made rules and are selected using priority values. While our system
shares the overall goal of BEAT, to create accompanying gestures for a given text,
the are a number of differences. In BEAT, a gesture is basically a “black box”
that is triggered by a hand-made rule. In contrast, our system triggers gestures
probabilistically and plans both the gestures’ internal structure (phases, timing,
shape) and macro-structure (by creating so-called gesture units [18]). Moreover,
we produce a wide range of 28 different gestures' while BEAT seems to focus
on very few samples. Most importantly, our approach produces not only natural-
looking animations but a character-specific gesture style that intends to capture
the individual differences of human beings.

I'This does not even take into account the large variation that we achieve with different positions
and varying phase structure, especially multiple strokes.
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Stone et al. [44] re-create a specific person’s gesturing style by re-arranging pre-
recorded chunks of audio and motion captured pieces of full-body movement.
Possible sentences are defined by a simple grammar. The corresponding utterance
is assembled from those speech phrases and gestures that match the communica-
tive function and minimize the required amount of time warping and blending.
Other relevant animation systems include EMOTE [6] which presents a kinematic
system for expressive variation of arm and torso movements that is based on the
analysis of Laban. Hartmann et al. [13] present a kinematic animation system
that realizes a gesture language that they have developed. Our gesture representa-
tion shares many features in common with theirs. We extend their representation
in several ways: an additional spatial dimension is modeled (swivel angle), both
world space and local hand orientation constraints are supported, additional move-
ment features like posture, trajectory and tension changes are modeled, and a more
complex representation for after-strokes is developed. Hartmann et al. [14] extend
their system to add expressivity to their gesture synthesis by varying activation,
spatial and temporal extent, fluidity and repetition. [37] is also concerned with
gesturing style. A style consists of a dictionary of meaning-to-gesture mappings,
motion characteristics, and modality preferences. Combining style dictionaries
yields mappings for new cultural groups or individuals. In contrast to our ap-
proach, their styles are hand crafted and model the behaviour of stereotypic groups
instead of real individuals. In addition, the placement and frequency of gestures
is fully determined by tags in the input text, and gestures are modeled at a com-
paratively coarse level since the paper’s focus is a style description language, and
it is not concerned with animation issues.

Kopp et al. [23, 24] present a gesture animation system that makes use of neuro-
physiological research and generates iconic gestures from object descriptions and
site plans when talking about spatial domains, e.g. giving directions. Iconic ges-
tures resemble some semantic feature of an object referred to in the co-occurring
speech. In contrast, in our approach the domains are mostly non-spatial. Many
iconics that occur in everyday conversation are either metaphoric and therefore
standardized [28] or verging on the emblematic (e.g. gestures for actions like
drinking or counting) and thus also standardized. Therefore, Kopp et al.’s ap-
proach and ours can be considered complementary. More in line with our ap-
proach is de Ruiter’s [8] Sketch Model where both gesture and speech originate
in the same module called a conceptualizer. Gestures are processed in data struc-
tures with unbound variables, so-called sketches, that can be filled according to
context and using a gestuary of concept-to-shape entries. A gesture planner fills
the remaining parameters like body part (which hand(s)) and spatial locations and
builds a final motor program for the articulators. The model is not implemented
but can predict certain phenomena in gesture-speech synchronization. Our ap-



proach shares the processing of underspecified gesture structures which we call
gesture frames.

Neff and Fiume [32] present a system for modelling gesture-like movements using
physical simulation, but do not model a complicated range of gestures or combine
them with speech. Physical simulation has been used for many years to generate
character motion with two main approaches emerging: optimization techniques
that use physical laws as constraints [47, 39] and simulation techniques that for-
ward simulate Newton’s laws to generate motion [15]. We take a simulation ap-
proach, and in particular, follow on work in hand-tuned control [15, 9] where a
proportional derivative (PD) controller is used at each character Degree of Free-
dom (DOF) to generate the required torques to make it move. As we have an
underlying kinematic motion representation, our approach is also similar to the
use of physical control to track motion capture data presented by [49], and our
hand model is similar to [38]. To our knowledge, this is the first use of forward
simulation on a character of this complexity that must synchronize its movements
with speech.



3 Understanding Gesture

A good way to approach a concept as diffuse and organic as gestures is to look at
their temporal structure which can be nicely described in terms of phases, phrases
and units [28, 22, 18]. A single gesture can be described as consisting of a number
of consecutive movement phases. This can be expressed by the following rule!:

GESTURE — | preparation | [ hold | STROKE | hold | (3.1)

Only the stroke phase must occur in every gesture, all other phases are optional.
The stroke is the “most energetic” and “meaning-carrying” phase of the gesture
while in the preparation phase the hands are moved to the stroke’s start position.
The stroke can consist of multiple repeated movements which would make it a
multi-stroke®. Since the first stroke in a multi-stroke is often the most pronounced
and the following strokes have similar form but look weaker than the first, we call
the first stroke the main stroke and all subsequent strokes after-strokes:

STROKE — main_stroke (after _stroke)” (3.2)

The hold phases in rule (3.1), before and after the stroke, are optional pauses, usu-
ally interpreted as a means to correctly synchronize the stroke with accompanying
speech. A complete GESTURE is also called a gesture phrase (g-phrase) in the
literature. Opposing McNeill’s claim that every gesture has a stroke, Kita et al.
[22] found that some gestures have a single meaningful still phase instead, called
an independent hold. We therefore distinguish two principal gesture types, stroke
gestures (S-GESTURE) and hold gestures (H-GESTURE), and expand rule (3.1) to
the following three rules:

'Nonterminals are set in smallcaps, terminals in boldface, and optional elements are put in
square brackets.
ZKita et al. calls them multiple strokes, Hartmann et al. [12] calls them repeats.
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GESTURE — { S-GESTURE | H-GESTURE } (3.3)
S-GESTURE — [ preparation | [ hold | STROKE | hold | (3.4)
H-GESTURE — [ preparation | hold (3.5)

We call a rest position a pose where the hands either hang down at the side or are
supported in some way: e.g., arms lie on an arm rest, arms are folded, hands are
in pockets or are locked behind one’s back. A gestural excursion always starts
from a rest position, can encompass one or more gestures and finally returns to
a rest position. Such an excursion is called a gesture unit (g-unit). For gesture
generation, the g-unit is an important organizational entity as it groups together
multiple gestures in one continuous flow of movement. A unit always ends with a
retraction movement to a rest position.

UNIT — (GESTURE) " retraction (3.6)

A unit can consist of a single gesture. McNeill [28] actually found that his sub-
jects frequently perform only one gesture per unit (only 44% of the time would his
subjects perform more than one gesture per unit). However, his subjects consisted
of people who were neither trained nor experienced in speaking in public or on
TV. In contrast, our data of professional TV performers shows a completely dif-
ferent picture. Table 3.1 shows how often the different g-unit sizes occured. Our
speakers frequently combine multiple gestures to units: MR uses units with more
than one gesture 66.7% of the time, JL. 64.3% of the time. We believe that this is
one reason why JL’s and MR’s gestures are enjoyable to watch: the speakers pro-
duce a fluent stream of continuous gestures instead of isolated singleton gestures.
One aim of our project was to transfer this quality to synthetic agents.

3.1 Gesture Lexicon and Lexemes

It follows from the encountered usage patterns that since we want to produce ges-
ture behaviour that looks characteristic for a certain person, we need to produce a
broad spectrum of gestures. Previous work focussed on a limited range of specific
gestures in order to work out details, e.g., about the semantics-form relationship
between speech and iconic gesture [23]. However, in our target domain, iconic
gestures that need a deep understanding of semantics and form rarely occur.

11
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In everyday conversations, but also in talk shows and formal presentations, human
speakers use mostly gestures where no strong semantic function is visible. Mc-
Neill calls these gestures metaphorics since the relationship between the gesture
and what is said is only etablished through an abstract metaphor. For instance,
in a progressive gesture the speaker’s hands revolve around each other in circles.
McNeill argues that the gesture refers to the abstract notion of a forward rotating
wheel which in turn refers to a co-occuring word in speech like, e.g., “going”,
“developing” or even “future”. These are the gestures we focus on. However, do
these gestures share a common form or is their shape totally arbitrary and invented
on the fly?

While it is common knowledge that emblematic gestures (e.g. the victory sign or
the thumbs-up gesture) are drawn from a shared, though culture-specific, lexicon,
it became clear only recently that this is also true for more abstract gestures. [46]
showed for a number of speakers that they use metaphoric gestures from a shared
lexicon of forms (see also [20]). Although each speaker applies slight variations
and only uses a subset of these gestures, there is basically one large reservoire
of gestures that all speakers draw from. In our approach to gesture generation
we exploit this insight to represent gestures as lexicon entries, so-called lexemes,
which can be considered equivalence classes with respect to form and function.

Figure 3.1: Two occurrences of the lexeme Wipe in our corpus (left: speaker MR,
right: speaker JL). In each example, the first frame shows the end of the prepatory
movement and the second frame shows the end of the stroke.

Kipp [20] collected a lexicon of gestures for two German TV show hosts. To this
work, we added a new speaker with a different language: the American talk show
host JL. We assembled a gesture lexicon of 39 lexemes® and annotated a video
corpus (Chapter 4). Of this gesture lexicon, MR uses a subset of 31 lexemes and
JL uses 35. The large overlap of 27 lexemes that both MR and JL use supports the
hypothesis of a shared lexicon of gestures that all people use. Figure 3.1 shows
the lexeme Wipe, performed by MR (left) and JL (right).

3Note that the animation engine currently only models a subset of 28 lexemes. This is partly
due to rare lexemes that occur in the video corpus but were never generated in our examples
because of their low probability and partly due to gestures whose shape must be determined by

13



JL MR

lexeme % lexeme Y%

Cup 24.4 | Cup 6.9
PointingAbstract 8.9 | RaisedIndexfinger 6.9
PointingPerson 6.7 | FlingDown 5.8
HandClap 6.7 | Wipe 5.8
Shrug 6.2 | Beat 5.3
Progressive 4.4 | Calm 5.3

Table 3.2: The table shows the six most frequently used lexemes for each speaker
and how often the particular lexemes are used (in %).

While the gesture lexicon represents what is shared between speakers, the specific
subset that each speaker uses and the frequency of each lexeme are significant as-
pects for modeling interpersonal differences. As Table 3.2 shows, the speakers
differ significantly in what lexemes they use and how often they perform a partic-
ular lexeme. As we will show in the following section, we furthermore model the
variations of gesture form between each speaker and generate particular lexemes
in correlation with a speaker’s tendency to use those lexemes for a given speech
segment.

semantic knowledge not modeled by our system.

14



4 Analysis

To automatically generate and animate gestures in a speaker-specific style, a hu-
man speaker has first to be studied and analyzed. Using a combination of manual
labour and automatic data extraction, the key factors of speaker gesture behaviour
are then stored in machine-readable form for automatic gesture generation and
animation.

Figure 4.1 gives a schematic overview of the analysis process. First, a video
corpus for each speaker is annotated by hand. Both speech! and gestures are
transcribed by human coders. This annotated corpus is used for three purposes.
First, all annotated gestures are stored in the GestureDB database, as blueprints for
automatic generation. Second, key properties for each gesture lexeme, especially
the relationship between gesture and speech, are modeled with statistical tables
and average values. Both the GestureDB and the statistical model are stored in
speaker-specific gesture profiles. Third, for animation, speaker-specific lexeme
properties are modeled in the animation lexicon (Section 4.1.3).

"Word and phoneme boundaries and timings are marked. At the minimum, phoneme informa-
tion could be extracted automatically using current tools e.g. CMU Sphinx.

ey An:l.mat:l.on
—
Lexicon
" WLEEEEEEEN :

Gesture Frame Sequences @ | cocture

. | ¢ ANVIL
—| Annotation
Tool

| Gesture
Profiles

Annotated Corpora

Mappings E Statisti.cal
Word-Semantic / Analysis >
Context : :

Figure 4.1: Analysis pipeline.
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4.1 Subject Annotation

The video annotation serves to translate essential concepts in the source video ma-
terial into a machine-readable form. A human coder annotates linguistic entities
(e.g. words) and gestural entities, including temporal boundaries, on tracks on an
annotation board (Figure 4.2). In order to check how well the annotation cap-
tures what happened in the original video we can feed it directly to the animation
system, doing what we call a re-creation of the original behaviour (Figure 1.2).
This is similar to what Frey [11] called re-animation. The manual annotation is
a work-intensive process: 1 minute of video takes about 90 minutes of coding by
a human coder. However, coding can be done by anyone after a brief period of
training; no special knowledge of animation or linguistics is required. To support
manual annotation, we use the video annotation tool ANVIL [19] and the phonetic
analysis tool PRAAT [2].

o - [ox|

Track: gesture phrase
Referenced track gesture phase
Time: 001872 - 00:19:24 (13 frames)

& |- [B][%X] £ video: leno2a-cine.avi
File Edit View Tools Bookmarks ? E

=N

‘Welcome to Anwil 4.6.12
Loading video

cadec: Ginepak

streen size: F204576

frame rate: 26.0fs
Onen file lenoZa.anvil
Closed (as) video leno2c-cine.avi
Loading video

cadec: Cinepak

streen size: 720476

frame rate: 25,005
wrote file leno2a.anvil

Attributes
lexeme; Erruptive
handedness: 2H
path eurved
hand-height-1: belly

{point 263x365 D0:18:84) (point 383x358 00:18:62)
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ElResearchi_enoispeciienaspet smi
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= [5]]|
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-
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=] [eoite Jpo:te [eoz0 Jpoz1 Jooz2 [pazs [poze [pozs 6026 o027 Jooze ‘
b o 1] o[l [T o] [ofo Tucsed] L] O e P I A A =
st | |

it
M Dl bl ]

Figure 4.2: The ANVIL video annotation tool allows human coders to efficiently
encode time-aligned information for digital video. In analysis, for each speaker a
video corpus is transcribed for statistical modeling of gesture behaviour. The bot-
tom window contains the multi-track annotation board where coding takes place.
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4.1.1 Speech Annotation

The linguistic part of the annotation consists of coding words, discourse segments
and information structure. We use the PRAAT tool to perform a word-by-word or-
thographic transcription of the utterance, including the words’ boundaries, which
is imported to ANVIL. Words must be grouped into senctence-like units. We use
clauses as defined by Rhetorical Structure Theory (RST) [26]. However, any kind
of discourse segmentation works with our approach. Finally, information struc-
ture is annotated using the concepts of theme, rheme and focus [43]. The theme
is the part of the utterance that links the utterance to the previous discourse and
specifies what the utterance is about, whereas the rheme relates to the theme and
specifies something novel or interesting about it. Following Steedman [43] we
also annotate the focus, which is the part of the rheme or theme that distinguishes
the rheme/theme from other alternatives the context makes available. We make the
simplifying assumption that the emphasized word or phrase is the rheme’s focus.
For example:

During the battle [ rebel spies managed to steal secret plans to the Empire’s ultimate
weapon the Death Star |, neme

In the example the first three words refer to a battle that is introduced in the pre-
ceding sentence which makes it the theme of the utterance. The bracketed part, the
rheme, introduces the new information. And since “the Death Star” is emphasized
it is the focus of the rheme.

4.1.2 Gesture Annotation

tirmg ——

gahases prep stroke hold stroke prep stroke | retract

G- Unit

Figure 4.3: Gesture annotation entities on three tracks.

The gestural part of the annotation follows the hierarchical organization of ges-
tures in phases, phrases and units, as described by rules (3.3)-(3.6) in Chapter 3.
The human coder transcribes gestures in the video by adding annotation elements
to three gesture annotation tracks in ANVIL (Figure 4.3). For each annotation ele-
ment, the coder specifies begin and end times and then fills a number of attributes.
In the top track, gesture phases are transcribed according to Kita et al. [22]. The
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Height Distance | Radial Orientation | Elbow Inclination
above head | far far out orthogonal

head normal out out

shoulder close side normal

chest touch front touch

abdomen inward

belt

below belt

Table 4.1: Our three dimensions for hand position and one dimension for elbow
inclination are divided into discrete intervals for annotation.

annotation elements contain one attribute for the phase type: preparation, stroke,
hold etc. The coder has a second attribute to specify the number of strokes if the
phase is a multi-stroke.

On the second track, several consecutive phases are combined into a gesture (e.g.
Frame, Cup and Wipe in Figure 4.3). Following Kipp [20] we annotate the fol-
lowing attributes for each gesture: lexeme, handedness, lexcial affiliate and co-
occurrence (Table 4.2). The lexeme denotes the lexicon entry that the gesture com-
plies with (e.g., Frame, Cup, Wipe). Handedness denotes the executing hand(s).
The lexical affiliate is the word or phrase that corresponds to the meaning or func-
tion of the gesture. For instance, “he” or “this” for a pointing gesture or “destroy”
for a metaphoric progressive gesture. Since the lexical affiliate and the gesture do
not always co-occur, the coder also specifies the word that the gesture co-occurs
with.

We extended this scheme by adding information about the shape of the gesture.
Since this data is expensive to annotate we devised a minimal coding scheme
that is expressive enough to re-create the original gesture to a reasonable degree
[21]. For each gesture, the coder specifies the trajectory (curved or straight) and
hand/arm positions at the beginning and end of the stroke (s-gesture) or at the
beginning of the independent hold (h-gesture).

Each hand/arm position is specified by a 4-vector p = (h,d, r,s) for height, hand-
body distance, radial zone and arm swivel angle. Each dimension of p has 5-7 dis-
crete values above_head, head, . ..,below _belt} (Table 4.1 and 4.2). For bihanded
gestures, we additionally specify the hand separation (see Figure 4.2). For this, we
extended ANVIL to allow graphical annotation where coders can edit 2D points
on the video screen and store these points in an annotation element. Hand separa-
tion is annotated with two points, located at the middle of each palm, in the gesture
phrase annotation element (middle layer in Figure 4.3). The shoulder width is also
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encoded and used to normalize hand separation. While there have been more pre-
cise approaches to transcribing positional features (e.g. [11] or [27]) our scheme
was designed to be quick and economic to use while still incorporating sufficient
information to re-create the original gestures.

On the third annotation track, the coder groups together contiguous gestures that
are not interrupted by a full retraction to a single unit. Every unit thus ends
with a full retraction unless the video ends in mid-gesture. The unit element also
stores the retraction position of the unit’s last gesture (e.g., hands at side or hands
clasped).

speaker duration #phases #gestures #units

JL 9:04 574 229 70
MR 8:31 496 192 54

Table 4.3: The size of the annotated corpus for speakers JL. and MR.

In Table 4.3 we show the size and contents of the annotated corpus for the two
speakers JL and MR. Both corpora are of similar size. It is also interesting that
both speakers seem to have a similar gesture frequency, since speakers can differ
noticeably in that respect [20].

4.1.3 Producing an Animation Lexicon

The animation lexicon is created as part of the annotation process and contains ad-
ditional data for each gesture lexeme. The ANVIL annotation tool automatically
generates images of each lexeme that can be used as reference when defining the
lexicon (Figure 4.1). For straight trajectory poses, these images show the start and
end pose of the stroke. For curved trajectory poses, two internal frames are also
generated. In our experience it takes on the order of a minute to a few minutes to
annotate one gesture.

The animation lexicon contains three main types of data: hand orientation, torso
posture and data for after-strokes. Hand orientation is specified by rotation around
the forearm and two rotational degrees of freedom in the wrist. Either local values
can be specified or constraints can be given in world space or chest space. Torso
posture includes spine and collar bone movements that are either definitional for
the gesture or characteristic of the particular character. We use a reduced DOF
posture parameterization based on [33]. For many gestures, no torso information
was defined, but it can be very important for certain gestures.
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Recall that after-strokes are the small strokes following the main one in a multi-
stroke. They generally carry similar meaning, but may differ in form and extent
from the main stroke. They are generally smaller in amplitude and confined more
to wrist and forearm movement. The prep and stroke data for these movements
consists of forearm rotation, hand rotation, vertical or horizontal positional offsets,
and elbow bend offsets. One prep and stroke are optionally specified for each
after-stroke and they are then repeated for each repetition.

The lexicon also includes additional data that can be definitional for certain ges-
tures such as warps to transition curves to change the timing profile and amplitude
values for progressives.

Animation lexicons are character specific, but we found for our two characters
that most of the data from one lexicon can be used directly in the second. Posture
changes were the main data that was changed across subjects.

4.2 Building a Gesture Profile

The annotated corpus is used to build a profile for the speaker’s gesture behaviour.
The profile consists of the sample database, GestureDB, a statistical model and
average values. For the GestureDB, the annotated information for each gesture
in the corpus is stored as a reproducible “gesture sample” of the specific speaker.
These samples can be seen as high-level movement patterns that can be easily
modified in a meaningful way.

The statistical model is automatically computed from the annotations. It mod-
els estimated probabilities and is used in generation to trigger gestures, to predict
where they are placed relative to speech, and to determine parameters like handed-
ness and frequency. To build the model, the speech transcription needs a two-step
preprocessing. In a first step, morphological analysis maps words to their lemma
(e.g. striking—strike, won—win). In a second step, phrases, consisting of lemmas
and/or words, are mapped to semantic tags, based on the assumption that similar
gestural forms can express the meaning of the subsumed words. For example,
the semantic tag INDETERMINATE replaces words like “somewhat” and “some”.
In our approach we employ look-up tables both for morphological analysis and
semantic tagging. However, both tasks could be automatized using off-the-shelf
software? or semi-automatic approaches®. Following Kipp [20] we use the seman-
tic tags and the lexical affiliate annotations to estimate the conditional probability

2For instance, MORPHIX for lemmatization [10].
3For instance, using WordNet [29] for semantic modeling as used in BEAT [5].
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of gesture lexeme [/ occurring with semantic tag s over our corpus C=(G, S) con-
sisting of all occurring gestures G and semantic tags S by

. #{g € G : lexeme(g) = [ Nlexaffil(g) = s}
Plils) = =

The probablities implicitly define a probabilistic concept-to-gesture mapping. Since
the semantic tags are language-independent the resulting gesture profiles can be
used for any target language; we use them for German and English. To model a
speaker’s preferred handedness and handedness shift patterns we utilize the uni-
gram probability estimation P(h), the bigram estimation P(h;|h;_1) and lexeme-
relative handedness P(h|l), where h € {LH,RH,2H}.

Observation showed that the way multiple strokes (i.e. repeated strokes) are used
or not used can be very characteristic for a speaker. We therefore store the av-
erage number of strokes [ ores per lexeme. To model the timing offset between
gesture and speech we also record the average time difference AT,,; between end
of word and end of stroke (for hold gestures we record the start time difference
ATgqr). Finally, on a higher level we record gesture rate which is the number of
gestures per minute because the amount of gesture activity also seems to be quite
characteristic for a given speaker.

22



5 Gesture Generation

Once a speaker profile is created, our system can process any text input! and pro-
duce an animation with accompanying gestures. This “runtime” system consists
of two components: the NOVA? gesture generator, decribed in this section, and
the animation engine, described in Chapter 6. NOVA processes the input text and
produces a gesture script for the animation engine (Figure 5.1).

: é Gesture 5
- — NOVA | »| Script |:
Discourse : : :
Info 5 . output

| Theme/Rheme :
: Focus :

Input

: Mappings :
: PGesft _ulre Word-Semantic TGestgr :: :
.| Profiles Context ype Data |-

Figure 5.1: The NOVA gesture script generator.

The input text must be segmented into utterances and contain information about
the theme, rheme and focus of each utterance (Section 4.1.1). For gesture genera-
tion, the input is transformed to a graph structure which is then processed in four
stages:

! Although the input can be arbitrary, it must contain additional information as described later.
2NOnVerbal Action Generator
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1. Gesture creation
2. Gesture selection
3. Unit creation
4. Unit planning

The output is written to a gesture script which contains character-specific gestures,
organized in units, with locational and timing parameters for animation.

5.1 Gesture Frames and Generation Graph

To generate, select and plan the gestures we use a graph structure to represent both
speech and gestures (Figure 5.2). Generated gestures are inserted as arcs in the
graph and represented as feature structures, so-called gesture frames. The under-
specified frames become gradually enriched during generation using the speaker’s
profile and contextual constraints.

The input text is used to construct the initial graph. For each word, a node repre-
senting the begin time is created. While nodes represent time points, arcs represent
concepts with a temporal duration: words, utterances, theme/rheme/focus. Words
are mapped to lemmas that are added as arcs. Likewise, lemmas are mapped to
semantic tags and added to the graph.

5.2 Gesture Generation Algorithm

5.2.1 Gesture Creation

In the first step we produce many candidate gestures for the given text by adding
gesture arcs to the graph. For this, we use the concept-to-gesture mapping from
the speaker’s gesture profile (Section 4.2). For each rheme p, for each semantic
tag s in p, we produce an underspecified gesture frame of lexeme [ iff P(I|s) >
0.1. Additionally, we place of copy of this frame on the nearest focus within p.
This simulates the phenomenon that gestures sometimes do not synchronize with
their lexical affiliate like in “destroy an [entire planet]” where a Wipe gesture is
performed on the bracketed part, although “destroy” is the lexical affiliate. The
added gesture frame is represented by an arc that stretches across s, indicating the
gesture’s temporal position.
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5.2.2 Gesture Selection

In the next step, a path of non-overlapping gestures is selected using the maxi-
mum likelihood approach [17]. We select the gesture sequence that maximizes
the probabiliy that this sequence (go,...,gn) is observed, where the g; repre-
sent the lexemes of the gestures. Using the Markov assumption, we approximate
[1P(gilgo,---,gi—1) by [1P(gilgi—1) and use an interpolation of the estimated
probabilities P from the gesture profile (Section 4.2) to smooth the estimation
P of P(gilgi-1):

P(gilgi—1) =0.6P(gi|s) +0.4P(gilgi—1)

The next step determines the handedness of the gestures using a linear combina-
tion of estimated probabilities

P(hi|hi—1) = 0.5P(hi|g;) +0.2P(h;) 4+ 0.3P(h;|hi_1)

where the weights were empirically determined and the handedness is found by
maximizing the probability of the handedness sequence (A;, ..., hy).

Handshape is determined by consulting a lexicon where legal handshapes for each
gesture are specified (e.g. pointing can be done with the index finger or the open
hand). Handshape selection now follows the rule of economy: if the handshape
of the previous gesture is a legal handshape for the current one, then keep it.
Otherwise change handshape to a suitable one.

After this stage of generation we have an optimal gesture sequence of gesture
frames where only lexeme, handedness and handshape are specified.

5.2.3 Creating Gesture Units

Combining multiple gestures to units is essential to achieve a fluent and continu-
ous style of motion. We produce g-units by gradually merging gestures according
to certain criteria. First, we take the first and the last gesture within a discourse
segment and merge them with all in-between gestures to form a unit, i.e. adding
a g-unit edge to the graph. Then, we cluster neighboring g-units by merging all
units whose distance in seconds is below a threshold 6,,;;. We found 6,,;; = 1.5
seconds to be a good value. The threshold could be made speaker-dependent: a
high value produces large units with many gestures, a low value produces more
isolated gestures.
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5.2.4 Planning a Gesture Unit

For determining phase structure, positions and timing, we string together suitable
samples from the GestureDB and let emerging constraints guide the determination
of phases.

The phase structure (prep, stroke, hold etc.) of a gesture G; depends on the tempo-
ral constraints of neighbouring gestures G;_| and G; . If there is enough space up
front to perform a preparatory motion (> .5 s) the gesture is assigned a preparation
phase (which is always the case for the first gesture in a unit). If a gesture has a
preparation, the positions of the gesture are unconstrained, so we select a random
sample of the respective lexeme from GestureDB. If a gesture has no prepara-
tion, we find a sample whose start location best matches the end location of G;_.
The chosen sample is used to specify positions, trajectory and type (s-gesture or
h-gesture). To create multi-strokes for an s-gesture we consult the average num-
ber of multi-strokes, g ores, fOr gesture Gy. If Ug,ores €Xxceeds a threshold we
generate a random number of multi-strokes using the mean value and standard
deviation. If there is not enough space between the gestures and Ly res €Xceeds
a yet higher threshold, then gesture G;, | is either moved back in time, where the
speech-gesture offset’s standard deviation is an upper bound on how far it can be
moved, or eliminated in favor of G;’s multi-strokes. For all other cases where
there is space between G; and G;;1 we generate a hold between them.

Now the main stroke of G; can be precisely timed with speech by aligning the
end time of the stroke with the end time of the gesture’s arc in the graph, which
corresponds to the end time of the word(s) that triggered this gesture. From this
time point we subtract the speaker’s average offset AT,,,; for this lexeme. We
hypothesized that it is more important that gesture and speech end synchronously
than that they start synchronously. To compute the timing of after-strokes we align
all after-stroke end times with word end times enforcing a minimum duration for
each after-stroke. This proved to be an efficient way of achieving after-stroke
synchronization. For hold gestures we use a similar method but align start times
of word and hold. Looking at the resulting animations with a virtual character
we found that although the timing was similar to the original speakers’ timing the
gestures always seemed a little too late. Human speakers can supposedly vary
the timing of their gestures with great flexibility because movements of the whole
body, and especially the face, all contribute to gesture-speech synchronization.
Since our virtual character has a comparatively limited expressiveness we make
our gesture timing more conservative by subtracting a general offset of 0.3 seconds
for main strokes and 0.12 seconds for after-strokes.

Using this algorithm we generate the following types of gestures: stroke, prep-
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stroke, prep-hold, prep-stroke-hold and stroke-hold, where all the strokes can be
multiple strokes. As the g-unit’s last gesture must by definition have a retract
phase we have to determine to which rest position the hands return to. Observing
the video material we determined three different rest positions: hands “at side”,
“in pockets”, and “clasped”. While the retraction after a unit could be modeled
probabilistically we resorted to simple rules that work on the distance to the fol-
lowing g-unit: if small, retract to “clasped”; if medium distance retract to ‘“at
side”; if far retract to “in pockets”.

5.3 Body Movement and Gesture Script

For creating body and head rotations we use simple rules taken from our observa-
tions of the subjects JL and MR, based on their discourse structure. JL seems to
follow a clear pattern. His monologue routine consists of a series of jokes, each
taking about 10 seconds. Before a joke he turns right (JL's viewpoint), probably
to read the teleprompter, and before and after the punchline he often turns left to
address the band-leader. Since MR is participating in a discussion, he rather turns
to the person he addresses and stays there for a while. Both subjects anticipate
their body rotations by turning their head a little earlier. JL also follows a gaze
pattern in trying to distribute his gaze uniformly across the audience. We included
these behaviours in our system in order to make the agent look more alive. The
body rotation rules conform to empirical findings that changes in body postures
occur most often at boundaries of discourse units ([3] and [41]).

The final graph is written to a linearized gesture script containing the following
data: head rotations, body rotations and gesture units which contain one or more
gestures and have a retract position specified. For each gesture the script speci-
fies: lexeme, handedness, handshape, type (e.g. prep+stroke+hold or prep+hold),
stroke/hold start time, multi-stroke start times, overall duration, number of strokes,
gesture start location, gesture end location (only for s-type). An excerpt from a
gesture script is given in Appendix A.
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6 Animation

The role of the animation system is to take the gesture script as input and produce
a final character animation sequence. It does this by augmenting the data pro-
vided by the gesture script, mapping this complete set of data to a form that can
be animated, and then producing an either kinematic or dynamically simulated
animation.

The animation system used is an extended version of the one described in Neff
and Fiume [32], which is built on top of the DANCE framework [42]. Significant
additions to the system include the use of offset layers and a set of augmentation
processes that produce detailed animation specifications from the gesture script.
The focus of this section will be on the new aspects of the system and how they
are applied to the gesture animation task. The reader is referred to [32] and [30]
for other details on the system.

The system also generates facial animation for lip sync [7] and additional facial
movement such as eyebrow raises on stressed phonemes [1].

6.1 Underlying Representation

The prep-stroke-hold structure of gestures maps easily to animation keyframes.
Our underlying movement representation, therefore, is analogous to a keyframe
system. Every DOF in the character’s body has its own track, partial body poses
are stored at particular points in time and transition functions (cubic Hermite
curves embedded in space and time) control interpolation between these poses.

Our representation extends a traditional keyframe system in two ways. First, we
support offset layers and second, we support non-DOF tracks that can be used
to adjust real time processes. Offset tracks are separate tracks that are added to
the main track to determine the final value of a DOF. While offset layers are a
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familiar tool for making low-frequency edits to motion capture data that preserve
the high frequencies of the motion [48], we employ them differently. We use
them to layer different motion specifications together and to add detail to our mo-
tion. In addition, some parts of the body are controlled by real-time processes for
gaze-tracking and balance control. The desired constraints for these process are
specified on separate tracks in the underlying representation using the same key
and interpolation function primitives, allowing them to be continuously varied.

6.2 Data Augmentation

The gesture model needs sufficient control to correctly align gestures with speech
and to reflect the key idiosyncrasies of a speaker’s gesturing style. Gesture data
is divided between the gesture model and animation engine in an effort to strike
a balance between (A) the need for the gesture model to control the motion, (B)
the desire to minimize the work required to annotate video for building the ges-
ture model, and (C) the desire to allow the animation engine, which contains the
relevant domain knowledge, to control the low-level aspects of motion produc-
tion. The gesture script presents a minimal description of the required movements
that captures these key definitional aspects. As summarized in Section 5.3, this
includes the gesture lexeme, the end time and duration of the stroke, which hands
are used for the gesture and discrete spatial locations of the hands. The animation
system must augment this sparse representation, filling in more detailed data and
adding important nuance. The process is one of refinement, continually adding
more detail to improve the gesture rendering. Such an approach also allows for
workload management as the animation can be generated after minimal augmen-
tation, but adding more data to the animation lexicon will improve the quality of
the animation.

The animation system performs a range of operations during data augmentation.
It will:

complete timing information

deal with spatial conflicts due to the sparcity of spatial sampling

add necessary definitional information for different gesture types

add character specific variation.

These items will be detailed below. Character specific data includes global char-
acter properties [32], such as a default posture or tendency to start movements
quickly, as well as variations on how a particular gesture is performed. Significant
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use of two techniques is made to augment the initial motion framework: keyframe
infilling and the addition of micro-keys. Micro-keys are parameters that define
partial body poses and can be layered on top of existing keyframes. Keyframe in-
filling is a process by which new keyframes are generated at locations in between
the existing key-frames. These can be micro-keys (partial specifications) as well.

6.2.1 Completion of Timing Data

The gesture script specifies end times and durations for strokes as well as hold
durations and start times for body rotations. The rest of the required timing data
is determined by the animation planner. The start time for prep movements is
defined as:

prepStart = max(strokeStartTime — de faultPrepTime, lastStrokeEndTime)
(6.1)

where defaultPrepTime is currently 0.4 s for preps within a gesture unit and 0.8
s for preps following a rest pose as these will have a longer distance to travel.
A similar rule is used to determine the duration of the transition to rest poses
where the time between the end of the last hold phase and the next stroke must
accommodate both the transition to the rest pose and the subsequent prep phase.
If there is enough time, 0.8 s is allowed for each. Otherwise, the time is split
between the two movements. Head movements are given a duration uniformly
distributed between 0.2 and 0.3 s or until the start time of the next movement if it
is sooner. Body rotations are given a duration between 0.5 and 0.6 s.

6.2.2 Spatial Augmentation

To ease the annotation task, a relatively coarse spatial discretization is used to
record gesture locations(Table 4.1). When generating animation, the system will
place the hands at the middle of the spatial buckets corresponding to their discrete
location tags from the annotation. While generally sufficient, this can occasionally
lead to problems during animation where either the two hands may overlap, or the
hand is not moved for a subsequent gesture when it should be. A small number of
gestures, such as a wipe, feature the hands crossing over each other. When both
hands cross, they may be annotated with the same discrete tags and a small two
handed separation distance that will cause them to be placed in the same location
when the data is used for animation. This is a rare occurence, but must be dealt
with. A slightly more common occurrence is for subsequent gestures to be given
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the same spatial location when there should actually be a small movement between
them (even though both might still be in the same spatial bucket). This follows
directly from the lack of resolution in the discretization. Both of these cases are
automatically detected and offsets are applied to the hands to correct them. A
vertical offset is used to separate overlapping hands and a downbeat is applied to
sequential gestures with identical locations.

6.2.3 Additional Gesture Data

Handedness, spatial location and timing information are not sufficient to define
most gestures. Additional information must be added to the gesture description
from the animation lexicon, which contains data for each gesture the system can
produce. Forearm rotation and the two wrist DOFs act to orient the hand. This
is definitional for most gestures. For instance, a cup or a shrug will always have
the palm facing up; a dismiss will have the palm facing down and end with a bent
wrist. The system allows this data to be specified either in terms of joint angles or
by giving orientation constraints defined in world-space or character chest space.
Such data is an example of a micro-key — defining a limited number of DOFs and
combining these with the previously defined key data.

Some gestures require a particular warp to the motion envelope. For example, a
wipe gesture in which the hands are moved from the centre out to the side will gen-
erally feature an acceleration throughout the movement and will not look correct
with an ease-in ease-out transition. Such changes to the transition can be achieved
by specifying in the animation lexicon either a warping of the interpolation curve
or a change in joint tension.

For some gestures, posture deformations are important. For instance, the chest
will normally be opened (backward movement of the collar bones) during a wipe.
The micro-key approach is used again, where only the specific parts of the posture
that need to be varied are defined, and the rest will assume default values. We use
the reduced parameter representation presented in [33] for defining these posture
changes. Posture variations appear to be more related to the specific individuals
than the other additions made to the gesture specification above, and are hence
more likely to be customized.

The system automatically varies collar bone angles based on the gesture height.
The form of after-strokes, which follow the main stroke, is also defined in the
animation lexicon and added as part of the augmentation process. Both of these
issues will be discussed below, in Sections 6.4 and 6.5.3 respectively.
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’ Channel Description

Body Defines main body pose with reach targets.

Hands Varies hand poses.

Rotation Defines full body rotation.

Offset Offsets are used to curve motions in space and
vary elbow angles in after-strokes.

Gaze Direction Moves a “look-at” target.

Table 6.1: Animation script channels and what they control.
6.3 Specification of Data

Animation data is specified through a set of independent channels that are then
layered together to create the final motion. This allows different components of
motion that all contribute to body pose, such as on-going body rotations and ges-
ture specific posture changes, to be modeled separately, but then combined in the
final animation. The channels are recorded in the animation script, which is an
intermediate representation used to map the gesture script data to the underlying
keyframe representation. The data contained in the channels is summarized in
Table 6.1. The main framework of the motion is specified on the “Body” channel,
which defines wrist constraints and gesture specific body poses. Characters will
often turn to look at different people or locations while talking. This is modeled
on the “Rotation” channel. “Offsets” are used to add curvature to motion, to add
posture deformation and also during after-stroke specification. Hand shape is con-
trolled on the “Hands” channel. “Gaze Direction” is used to model the character’s
continuous head movement. Global character data, such as a default posture, is
blended with the properties contained on the other channels.

Body rotation is discretized into three directions (left, right, front) and gaze di-
rection is discretized into five locations (left, left-front, front, right-front, right).
The exact values of these locations are specified for each character based on the
video corpus, with JL having larger rotations. Body rotations are accomplished by
a combination of a pelvic rotation with opposing knee bend and a rotation of the
abdomen and chest spine joints. These rotations are offset in time by ten % of the
rotation’s duration to give a more natural flow to the motion. They are specified
on offset layers and blend with other posture deformations.

The IK constraints on the hands are body relative both in the annotation process
and in the animation process. This allows the hands to move naturally with the
body as it rotates and bends, supporting the superposition of different movement
aspects related to posture change and gesture location.
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6.4 Pose Calculation

The system uses a combination of keyframe and continuous motion generation
approaches: discrete pose calculation with interpolation is used for gesture gen-
eration, and continuous IK for balance control and gaze tracking. Rather than a
monolithic IK system that solves for an entire posture, we use a set of simple, an-
alytic IK routines that are each responsible for a portion of the body. Lower body
movement, including knee bends, pelvic rotation and balance control, is based on
an analytic lower body IK routine and feedback based balance adjuster. To avoid
stability problems in dynamic simulation, springs are used to hold the character’s
feet in position and prevent him from falling. Analytic routines are used for arm
positioning, and aesthetic trunk constraints are blended together. The pose solver
is similar to that described in [33], except that we disable the optimization routine
described there as we are not using spatial constraints to deform the character’s
posture in this work. We also augment that system with automatic collar bone
adjustments and add local IK routines to achieve hand and wrist orientation con-
straints.

The discrete poses used to generate the gestures are calculated in a preprocessing
phase. The DOF values for each pose are determined in four steps. The first step
calculates the posture of the spine and collar bones. To do this, the posture con-
straints for the character’s default posture and any posture adjustments specified
for the gesture in the animation lexicon are blended together. In addition, we in-
troduce an automatic collar bone adjustment algorithm that offsets the shoulders
up or down based on the location of the reach constraint. The base offset for each
of the constraint heights is shown in Table 6.2. These base offsets are multiplied
by a character specific gain value, which is 1 by default. Collar bone adjustment is
important for increasing the naturalness of the arm movement. In step 2, the arms
are positioned to meet the wrist constraints specified in the gesture description.
The constraint locations are body relative as described below. The arm swivel an-
gle is rotated to meet the inclination constraint in step 3. Finally, if world or chest
space orientation constraints have been placed on the forearm and hands, these are
solved for using standard trigonometry.

The gesture targets are defined to be relative to the current orientation of the body
(cf. Table 4.1), so a shoulder height target will remain at shoulder height as the
character hunches over. Although body relative, the constraint values that are
actually used are computed in world space. Each height target, such as ‘“shoul-
der”, “chest” or “abdomen”, has a defined height within a particular limb in the
skeleton. The world location of that point is computed for the current skeleton

deformation, defining the world height value. The radial distance from the char-
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Constraint Height \ Base Offset (deg) ‘

above-head -5
head -3
shoulder -1
chest 2
abdomen 3
belt 5
below-belt 7

Table 6.2: Base offset angles applied to the collar bones. These are multiplied by
a character specific scale factor.

acter’s centre and the distance in front of the character’s body both lie on the world
space horizontal plane with the given height value. The distance from the charac-
ter’s body (“touch”, “close” etc.) are defined relative to the body part the gesture
is in front of. The radial inclination, however, is defined relative to the chest. This
means that a “front” radial inclination will be in front of the chest even if it is
at belt height and the torso is rotated. These definitions perform well with the
annotator’s expectations of the mark up scheme.

Continuous motion generation involves two IK routines which operate during the
animation process. The lower body chain from foot to foot is solved at each time
step using the routine mentioned previously, combined with balance adjustment.
Gaze tracking uses analytic routines to solve for the axial and tilt orientation re-
quired to have the character look at a given point. Axial rotation is distributed
between the head and neck joints and tilt is applied solely to the head. A gain
factor controls how far the head moves between staring straight ahead and staring
at the look-at target. A gain of 50 % appears to provide natural head movement.

6.5 Keyframe Refinement

In addition to the layering of micro-keys on top of existing keys, as described in
Section 6.2.3, some gesture attributes require the creation of additional keys, as
detailed here.
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6.5.1 Path-in-Space

Whether a movement follows a straight or curved path in space is an important
expressive property. In our previous work, we did not model this property [32].
Chi et al. [6] in the EMOTE model represent it by varying the trajectory of the
arm end-effector and also provide three different interpolation spaces: interpo-
lating joint angles, end effector position or elbow position. Similarly, Kopp and
Wachsmuth [25] use guiding strokes in space that allow the curvature of a motion
to be controlled. Unlike the previous approaches, we achieve satisfying curved
motions by working in joint space, using offset curves, rather than working in
world space. This approach is simple and avoids the need to generate world space
trajectories which may not be oriented with the most natural path for the motion.

There are two main types of curvature we need for our gesture lexicon: point-to-
point curvature, where a single stroke follows a curved path, and continuous cir-
cular movements for gestures like progressives. The latter case will be discussed
below. By default, movements between two points in our system will produce a
basically straight path!. A curve can be added to the motion by introducing an
offset perpendicular to the path of the movement that starts at zero, peaks near the
middle of the movement, and returns to zero. For example, a “cup” movement
that has the hand up and a largely horizontal trajectory, can be curved by adding
an offset to the elbow bend as shown in Figure 6.1. We normally apply these off-
set keys to the elbow. Larger amplitude offsets will produce a higher curvature
motion.

6.5.2 Progressives

A progressive is a cyclical movement in which the forearm and hand are moved in
a circular loop in front of the chest, first coming towards the body and up, then out
from the body and down. Regressives consist of the same motion rotated in the op-
posite direction. The specification of a progressive in the gesture script indicates
which hand(s) are involved, the starting and ending location of the wrists and the
number of repetitions. The cyclic movement definitional for the gesture must be
fitted into this framework. This is done using keyframe infilling, extending the
method for basic motion curvature above. To our knowledge, previous embodied
conversational agent systems have not modeled progressives.

Considering a 2-DOF pendulum, if the x and y angles of the pendulum are both

'Within the limits of basic quaternion interpolation of the shoulder, which can introduce some
warping to the path.
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(a) Straight Trajectory (b) Curved Trajectory

Figure 6.1: Comparison of a straight and curved trajectory for the same cup ges-
ture.

varied according to sine waves that are ninety degrees out of phase, then the end
of the pendulum will move along a circular path. This is the basic idea used to
generate progressives in the system. x and y rotations of the forearm are achieved
by flexing the elbow (y) and rotating around the axis of the upper arm (x). Doing
this out of phase creates a circular movement. The hand is also cycled by applying
a similar process to the two wrist angles. We decompose the movement of the x
and y DOFs of the forearm into two components, one that represents the cyclical
movement of the progressive and one that provides the translational movement
needed to meet the wrist position constraints. These are then superposed to gen-
erate the final motion.

The following process is used to create a progressive:

(1) Determine the amplitude of the circular movement
(2) Determine the time that each infilled keyframe must occur at
For each infilled keyframe

3 Determine the x rotation and corresponding hand rotation
- OR -

(4 Determine the y rotation and corresponding hand rotation

(5) Add the keyframe to the system

(6) Add an offset curve to account for elbow translation

Consider the circle in Figure 6.2 as representing the path of the wrist in space due to the
rotational component of the progressive. The size of this circle will be determined by the
amplitude of the x and y rotations. We define a toral amplitude of the rotation, a, which
measures the total angular distance of the motion and is calculated by finding the mean
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Figure 6.2: The path traced by the wrist during a progressive, ignoring translatory
motion. Keyframes are located at the coloured crosses. The movement travels
between the two small circles, along the arc of the large circle.

pose between the start and end positional constraints and determining the maximum of
the total x and the total y rotation needed to reach the start and end positions from this
pose. This is used to determine the progressive’s amplitude ¢ as follows (step 1):

a = max(MIN_AMPLITUDE, mzi) 6.2)
n

where 7 is the number of repetitions of the movement, m is a character specific multiplier
which by default is 1 and MIN_AMPLITUDE is a minimum rotation that is provided
to still create a progressive if the end constraints are the same. This relation gives the
rotation an appropriate scale for the amount of spatial distance that will be covered during
the movement.

The keyframes for the x DOF and corresponding hand movement will be placed at the
green extrema in Figure 6.2 and the y keyframes at the red extrema. These are con-
nected with simple ease-in/ease-out curves which provide an acceptable approximation to
a sinusoid. By default, progressives start at the position marked “start”, 5/67 for counter-
clockwise rotation, and end at the location marked “stop”, —1/2x for counter-clockwise
rotation. Each additional repetition adds a loop of the circle. The time of the keyframes is
determined by tracing the movement around the circle in either the clockwise or counter-
clockwise direction, as appropriate, and at each axis crossing (keyframe location) deter-
mining the amount of angular distance that has already been covered as a fraction of the
total amount that must be covered (step 2).

Steps 3 and 4 determine the angles used at each keyframe (note that each keyframe has
data for either x or y, but not both). Different angle representations will require different
approaches here. We employ Euler angles at the elbow, so the values used for the y
keyframes are simply +« as appropriate. The shoulders are more complicated as they are
represented with quaternions and hence do not have a separate component corresponding
to the x rotation. In determining these keys, we combine the rotational component of
the progressive and the overall translatory aspect of the movement. We first update the
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Figure 6.3: The path of a hand during a large progressive with a diagonal trans-
latory component. The colour gradation is used to show the progress of time.

location of the upper arm:
qi = slerp(qo,q1,p) (6.3)

where g is the quaternion satisfying the initial constraint, ¢, for the final constraint, g; is
the infill quaternion we are calculating and p € [0, 1] is a progress variable indicating how
far we are between the beginning and end of the progressive. This calculation corresponds
to the translatory portion of the progressive. The rotational component is achieved by
rotating ¢; around a vector aligned with the axis of the upper arm by £« as appropriate.

In step 5, these keyframes are added to the underlying representation. The translatory
component of the elbow movement has not been accounted for yet. This is done by
adding an offset curve for this DOF that spans the translation (step 6).

An example of a fairly large progressive is shown in Figure 6.3. Notice that there is a
diagonal translatory component to the motion of the gesture as well as the core circular
motion of the progressive. A trace of the hand’s path shows a circle stretched in time.

6.5.3 After-Strokes

A multi-stroke consists of the main stroke phase followed by a number of smaller repeti-
tions known as after-strokes. There are at least two categories of after-strokes. The first
consists of essentially continuous, rhythmic hand waving at the end of the stroke. MR
frequently uses such gestures. The second has the same prep-stroke-hold structure as the
main gesture. The hold period in these after-strokes is particularly important. Consider
the after-stroke associated with a “dismiss” (a downward movement of the forearm and
hands, palm facing down). It consists of a prep phase involving a slight upward movement
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Pi Si hj Pit+1

Figure 6.4: The end times e;_; and e; are constraints specified by the gesture
generation module. The remaining timing of the after-strokes must be calculated
to fit into these intervals. Here % indicates a hold, p a prep and s a stroke.

of the wrist and bend of the hand, followed by a downward stroke. When such a move-
ment is repeated without a hold phase after the stroke, it disintegrates (disappears) into
hand waving. The hand appears to bounce up from the end of the motion and the defini-
tional downward aspect of the movement is lost without the necessary pause at the stroke
end. The resulting after-stroke provides a completely different impression, conveying a
different meaning.

Most data associated with after-strokes is local as they are normally rapid movements
that are confined to the wrists and forearms. The animation lexicon accepts any subset
of the following data to define an after-stroke pose: offset to vertical or horizontal wrist
positions, forearm rotation, wrist rotation (2 possible DOFs) and an offset to the elbow
bend. This data is defined separately for each of the two movements making up an after-
stroke (nominally, prep and stroke). It is only defined for one arm and mirrored to the
other. The system uses this data to create micro-keys that are then added to the copies of
the main stroke keys as discussed above.

After-strokes are created by keyframe infilling. Copies of the stroke keyframe from the
end of the main stroke are made and used as the basis for both the prep and stroke poses
of each after-stroke. This is done as we wish to add small, local variation to the end
position of the main stroke, rather than copying the often larger spatial movement of the
main stroke. The timing of these keyframes is illustrated in Figure 6.4 and calculated as
follows. The end time of the previous stroke (main or after-stroke) is e;_; and the end time
of the after-stroke being added is e;. These are the key alignment markers with the spoken
text and must be maintained. Note that in this window, we must fit a hold associated
with the preceeding stroke, as well as prep and stroke phases associated with the current
stroke. The hold phase will have zero duration in the case of continuous waving motions.
The animation lexicon defines the percentage of time that should be spent on each of the
prep, stroke and hold phases. These are used to determine the duration of p; and s; as
a portion of e; — e;_1. In addition, 4; is calculated as a percentage of e¢; —e;,_;. Finally,
h;_ is calculated using the same percentages, but based on the duration of e¢;_; — ¢;_».
If h;_1, p; and s; can all fit within the duration e; — e¢;_, p; and s; are used as calculated
and h;_; is extended to occupy all remaining time. If, however, there is not enough time
to accommodate A;_j, the duration of A;_; is taken to be (h;—; + h;)/2 and p; and s; are
refactored to fill the remaining time.
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After-stroke durations may vary widely and we wish to reuse a single definition for each
after-stroke of a given lexeme. To avoid unnatural movements when after-strokes are very
short, limits are placed on the average spatial and angular velocity of after-strokes for
kinematic animation (these limits are unnecessary in the dynamic case). If these limits
will be exceeded, the spatial or angular range is reduced so that the average velocity is not
exceeded.

6.6 Physical Simulation

Physical simulation can improve the realism of the resulting gestural animation in several
ways. First, it will smooth the motion. Second, there is very little basis in the collected
data for providing small torso deformations that people normally make while gesturing.
Simulation allows the transfer of force from rapid arm movements into the torso which
can cause small deformations and improve the realism of the motion. Third, due to the
damping in the model, simulation serves a regulating function and will limit the speed
of movements with unreasonably high velocities. Finally, simulation can add small end-
effects to the motion, such as pendular arm sway when a character brings his arms to his
side or passive movements of the fingers.

When computing physically simulated animation, we use a controller based approach
whereby an actuator is placed at each DOF which calculates the torque required to move
the character towards the desired configuration. We use an antagonistic formulation of
proportional-derivative control, following [31]. The control law is written as

T:kL(GL—9)+kH(9H—9)—kdé, (6.4)

where 7 is the torque generated, 6 is the current angle of the DOF and 8 is its current
velocity. 6y and Oy are the low (L) and high (H) spring set points which serve as joint
limits, k; and kg are the corresponding spring gains, and k; is the gain on the damping
term. The tension T or stiffness of the joint is taken as the sum of the two spring gains:
T =ki+kg.

When a given transition for a specific DOF begins, gain values for the current angle and
the desired angle are computed and the transition is affected by interpolating between
these values. The torques generated by gravity are calculated using the current state of the
character and an estimate of the end state, and the gain values are computed to compensate
for these torques. This allows joint tension to be varied during a movement while still
ensuring joint positioning that is accurate, at least at steady state.

In our system, offset tracks are summed with the main track to produce final control val-
ues. In kinematic simulation, each track contains angle data that can be directly added. In
physical simulation, we add the gains. Given a function C(0) = (kg ,k;) which computes
gravity compensated gains for a given DOF value 6, the rules summarized in Table 6.3
can be used to compute gains on each track.
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Main Track Offset Track

Initial Gains (kH,kL) = C(G — eoffset) (kH,kL) = C(@) — C(9 — eoffset)
End Gains | (ki kr) = C(Bpain) (ki k) = C(Oopfser2 + Omain) —
C(emain)

Table 6.3: Equations for calculating the initial and end gains for each transition
for the main and offset tracks.

These rules follow from Equation 6.4 and the gains are calculated at the start of the motion.
0 is the current angle for the DOF at this time and 6,77 is the current desired offset
angle. For the end point gains, 6, is the desired value on the main track at the end of
the transition and 6,772 is the desired offset value at the end of the transition. These
values are estimated based on the transition curves associated with the DOF and offset
tracks. The tension is kept the same for each component during a transition, but the start
and end times of the main and offset curves do not need to be the same.

Aside from the balance problem which we mitigate by using springs to hold the feet in
position, one of the main difficulties encountered with controller based simulation is set-
ting the gain values appropriately to generate the desired visual appearance. The inertia
weighting technique presented by [49] provides a good initial estimate for joint gains.
We augmented this by an automatic sampling procedure that takes repetitions of a pro-
totypical movement and computes gain and damping values that would yield a specified
overshoot for a given DOF (e.g. a two degree overshoot in elbow angle at the end of the
transition). This yields tables of tension and damping values that are useful for fine tuning
the parameters when required. This tuning process is done once per character and then
used to generate all animations. During retraction phases, we relax the character’s hands.
The gains used for this are calculated based on the approach described in [35].

The rapid, time synchronized movements in gestural animation are a challenge to model
using a proportional derivative control approach due to the damping in the system. The
actuators include damping, which is important for producing realistic motion. However,
as we wish to operate at relatively low-tension levels that will enable the movement to be
enhanced by many of the benefits of physical simulation listed above, the damping in the
system will introduce lag. This is particularly significant when you have short duration,
high velocity movements with precise timing. The lag causes two problems: first, it
means that the movements will be slightly slower and so will be behind their desired time
constraints. Second, if the kinematic trajectories are used as the basis of the PD-control,
the extent of the movement will be reduced in many cases as the movement will not have
time to reach the desired end-point before the control trajectory changes direction. We
must compensate for both of these effects.

To ensure that simulated movements satisfy the script timing, we moved the start time of
all poses earlier in dynamic simulation. Empirical tests showed -0.12 s to be an appropri-
ate offset. There are two potential ways to maintain the extent of the specified motion: the
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trajectory curves could have their extent increased or the duration of the movements could
be shortened and pauses inserted, allowing the actual movement to “catch-up” with the
desired trajectory. For most cases, we use the latter approach. The pauses allow time for
the motion to complete before a direction change begins. The update rule for the duration
of strokes, dj, is:

dy = min(ds % .8, max(.15, d; — .3)) (6.5)

and the update rule for the duration of preps, d,,, is:

d, = min(d,* .8, max(.1, dy— .15)) . (6.6)

In the case of progressives, the continuous timing of the motion is particularly important,
so we increase the extent of the transition curves rather than shortening the duration of the
movement components. This is achieved by multiplying the angular span of the movement
a by a factor of 1.6.

A variable time step Rosenbrock integrator [40] is used to compute the motion using
simulation code from SD/Fast [16]. A 58 s MR sequence computed in 14 minutes and a
JL generated sequence of the same length took 10.5 minutes on a 3 GHz Pentium 4.
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7 Results

The accompanying video includes three pairs of example animations produced by our
system for the two subjects. In the first example, we show for each subject a re-creation
of a particular sequence of their video corpus. The gesture scripts for these sequences
are created directly from the video annotation (Figure 1.2), and kinematic animation is
used. These sequences validate both the fidelity of the annotation process and the ability
of the animation system to generate the specified movement in the gesture script. A com-
parison for several gestures of a recreation of MR data to the original corpus is shown in
Figure 7.1.

The second examples use the same audio tracks as the first, but generate new gestures
based on each speaker’s respective gesture profile. Since this input was also part of the
training data we subtracted the statistical data for these particular sample from the profiles
before generating the new gesture scripts. These sequences were dynamically simulated.
Although the generated gestures are not necessarily the same as in the original (or the
recreation) the animations distinctly reflect the gesticulation patterns of the modeled in-
dividuals. The resulting animations present effective gesture timing, synchronized with
the original audio, and gesture forms that are consistent with the modelled subjects. This
offers validation for the generation model.

The final pair of examples show gesture sequences generated by each of the subject mod-
els and dynamically animated for a new passage of synthesized English text that is not
contained in either video corpus. This demonstrates that our system can operate on novel
text and is language-independent, since MR’s gesture profile was built on German training
data. The video also illustrates the role movement plays in creating the overall impression
of an utterance. Even though the timing of the speech is unlike that of either subject, the
resulting animations are characteristic of each speaker.

An accompanying video has been included that shows a side by side comparison of kine-
matic and dynamic animations. Small differences in timing are noticeable, but the overall
synchronization remains intact. The differences between the kinematic and dynamic ver-
sions of the animation are subtle: the force of arm movements cause some secondary
movement in the torso, there is slight pendular movement as arms move to a character’s

44



*JSA1 JB ST WLIR 3JI[ SIY pue 2In)sas HY © Sunyew st YN Ired yanoy ay3 uy 930N ‘sndiod oY) wody
POIBAIOAI SUONBWIUER WOIJ JUSWIAOW dWeS AY) JO sowelj pue sndiod 0dpIa ) woJ SuLmisasd YN JO sower] :[ '/ In3L]

45



side, at times the trajectory is warped and there is small variation in the spatial path of
the movements. Although subtle, we feel these effects help give the character a sense of
“aliveness” that is less strong in the kinematic animation. This further validates the use
of physical models and shows their relevance to synchronized gestural animation, where
they have not previously been used. At the same time, there is much that can still be done
to more fully take advantage of the power of physical models.

Finally, we include a side by side video comparison of the two models used on the “Star
Wars” sequence. Frames from this are shown in Figure 7.2. This comparison nicely shows
the style differences between the two models (JL vs. MR). Worth noting, not only does
the system produce different gestures for each speaker, it also generates very different, yet
still effective, timing patterns. For instance, the last pair of frames in the figure show a
case where a gesture is generated for the JL model but not the MR model.

Overall, the animations show a high variation in gesture shape, good synchronization with
speech and a nice overall flow of movement. High variation stems from using positional
data from the GestureDB and from creating multiple strokes. The good synchronization
validates our algorithms for aligning main stroke and after-strokes, using Steedman’s con-
cept of focus as an important gesture placement indicator. Finally, the overall flow is due
to our introduction of the gesture unit as an organizational higher-level entity.

7.1 Validation

An evaluation study of our system was conducted that shows that the gestures produced
by the system are recognizable as having style of the specific performer modeled'. For
this study, 26 independent reviewers were recruited, aged 24 to 46; 6 female and 20
male, all non-expert in the field of gesture modeling and/or animation. In a learning
phase they were shown video clips of the original performers, JL and MR. Two clips
of each performer were used, about 5 minutes in total, and these clips were outside the
training corpus used for our statistical models. The order of the clips was varied across
subjects to avoid order effects. In the first test (Test 1) we showed them one video clip of
generated gestures and asked them which original performer the gestures were modeled
on. The JL model was used for half of the subjects and the MR model for the other
half. The animations for the novel “Star Wars” text were used in the experiment (these
are the last two clips discussed above) which are obviously outside our training corpus.
Afterwards, in the second test (Test 2) we showed a side-by-side clip of both variants of the
“Star Wars” clips (modeled on JL + modeled on MR) and asked subjects to decide which
character was modeled after which performer (JL and MR). The result of Test 1 was that
subjects selected the correct original performer 69 % of the time, which is significantly
above chance (7(25) = 2.083; p < .05). The result of Test 2 was that subjects correctly

I'This experiment was done using a slightly earlier version of the system. The quality of the
animations has subsequently been improved.
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assigned the original performer to the side-by-side characters in 88 % of the cases which
is also significantly above chance (¢(25) = 6.019;p < .001). In Test 1, there was no
significant difference in recognizing JL. compared to recognizing MR (¢(24) = .5708;p =
.57). The evaluation clearly shows that the produced animation reflects the style of a
specific performer. This worked equally well for both performers. When putting the
animations side by side, the discrimination task is even easier, as reflected by the higher
scores. It should be noted that the selected clips were generated on synthetic text for
which we did not model the timing and speaking pattern of either speaker. This makes
the recognition task harder as these important aspects of personal style were absent in the
stimuli, providing less information than would be present in a clip of either speaker.

48



8 Conclusion and Discussion

This work presents a system for generating believable gesture animations for novel text
that reflect the gesturing style of particular individuals. It moves beyond previous ap-
proaches by creating a statistical model of particular individuals; modeling gestures at a
high level of detail; modeling complex gestures, including highly variable after-strokes
and progressives; building effective gesture units that flow well and synchronize effec-
tively with speech; and using physical simulation to enhance the final animation. Gesture
units are a particularly effective construct. We generate stretches of gestures and infer
timing parameters from the interdependence of the gestures contained in one unit. This
makes gesture flow much more natural as the gestures are connected by holds or directly
succeed each other while positional parameters are fitted depending on the preceding ges-
ture. We found the alignment of end times between gesture strokes and speech correlates
performed well. Finally, we exploit Steedman’s concept of “focus” to synchronize ges-
tures not with the directly related part of the utterance (lexical affiliate) but with the focus.
The successful timing this produces breaks the myth common in the literature of a gesture
having to occur slightly before its semantic correlate.

It is worth highlighting the effective division of data between the gesture generation pro-
cess and the animation process. The gesture generation system contains the data necessary
to both synchronize gestures with speech and to capture the spatial gesturing pattern of
particular individuals. The animation system supports the reuse of labour through the
animation lexicon, hides many details of animation production from the gesture genera-
tion process and effectively augments the generation data to produce convincing gestural
animation.

Automatically creating animations of talking characters that reflect a specific subject’s
style and will satisfy a human observer is a very challenging task, and much work remains
to be done. First, although the annotation scheme is simple, elegant and effective, the
process is currently labour intensive. We see significant opportunity for automation in the
process. Research has already been published on tracking JL’s face and hands [45], which
can likely be extended for use in our workflow. Second, certain movements were avoided.
For instance, handrub motions require a high quality collision model; iconic gestures
need a deeper model of semantics. As well, the system should be extended to model
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non-hand based gestures such as head points and shoulder shrugs without accompanying
hand movement. Better models for torso engagement while gesturing are also worthwhile.
Finally, we conjecture that better use of physical models can further improve the quality of
the animations. People continuously modulate the tension in their bodies while moving,
in a much more complex way than modeled here. Despite this, it is worth noting that
this work demonstrates the usefulness of physics based animation to gesturing characters.
Using physical simulation for motion generation offers the potential to unify character
animation and secondary effects like cloth modeling within the physical simulation realm.
This will help ensure that character motions exert reasonable forces on these secondary
models and offers the potential to create a continuous representation from limb movement,
to muscle and skin deformation, to cloth and hair.
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Appendix A
Gesture Script Example

2h_distance.min=0.3130435160733115

BEGIN_BODY_ROTATIONS
ROTATE_BODY right 10.073230361

END_BODY_ROTATIONS

BEGIN_HEAD_ROTATIONS
ROTATE_HEAD right 9.673230361
ROTATE_HEAD front 17.305170822

END_HEAD_ROTATIONS

BEGIN_G_UNIT
BEGIN_GESTURE

# start time = 8,704
# Triggered by: "civil war" AGGRESSION 10,473 - 11,188
lexeme=Fist # from sample 32 (random)
handedness=2H
handshape=fist
type=prep+stroke+hold
# total stroke duration = 1,685
stroke.trajectory=straight # from sample 32
hold.time.duration=0.4880431763966211
stroke.time.duration=0.6936347179353073 # ran. offset 0,289
stroke.time.end=9.897439842000004 # offset -1,291
stroke.number=3
mstroke.0.time.end=10.485929679
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mstroke.l.time.end=10.
stroke.
stroke.

stroke

stroke.
stroke.

stroke
stroke

position.
position.

.position.
stroke.
stroke.

position.
position.
position.
position.

.position.
.position.
stroke.

position.

# end time = 11,
END_GESTURE

BEGIN_GESTURE
# start time = 11,377
# Triggered by: "galactic empire" TITLE 16,944 - 18,005 [init]
# sync’d with Init words "rebel space"

# from sample 77 (random)

lexeme=

Umbrella

handedness=LH
handshape=open-rlx

type=prep+stroke
stroke.
stroke.
stroke.
stroke.
stroke.
stroke.
stroke.
stroke.

stroke
stroke

start.
.height=shoulder
start.
start.
start.

start

88846035
2h_distance=0.6537408296950502

distance=close
radial=front
inclination=normal

end.2h_distance=0.8116517219742472
end.height=chest
end.distance=close
end.radial=front
end.inclination=normal

377

trajectory=straight # from sample 77
time.duration=0.2074158836033774 # ran. offset -0,013
time.end=12.08391941 # offset -0,535

number=1

position.
position.
position.
position.

.position.
.position.
stroke.
stroke.

position.
position.

# end time = 12,
END_GESTURE

start.
start.
start.
start.

height=belly
distance=normal
radial=out
inclination=normal

end.height=belly
end.distance=normal

end.radial=out

end.inclination=normal

084

. # more gestures

RETRACT_GESTURE pose=at-side

END_G_UNIT

. # more gesture units
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