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Abstract

Unification in the presence of an equational theory is an important problem

in theorem-proving and in the integration of functional and logic programming

languages. This paper presents an improvement of the proposed lazy unifica-

tion methods by incorporating simplification with inductive axioms into the

unification process. Inductive simplification reduces the search space so that in

some case infinite search spaces are reduced to finite ones. Consequently, more

efficient unification algorithms can be achieved. We prove soundness and com-

pleteness of our method for equational theories represented by ground confluent

and terminating rewrite systems.



1 Introduction

Unification is not only an important operation in theorem provers but also the most important

operation in logic programming systems. Unification in the presence of an equational theory,

also known as E-unification, is necessary if the computational domain in a theorem prover enjoys

certain equational properties [Plo72] or if functions should be integrated into a logic language

[GR89]. Therefore the development of E-unification algorithms is an active research topic during

recent years (see, for instance, [Sie90]).

Since E-unification is a complex problem even for simple equational axioms, we are interested

in efficient E-unification methods in order to incorporate such methods into functional logic pro-

gramming languages. One general method to improve the efficiency of implementations is the use

of a lazy strategy. “Lazy” means that evaluations are performed only if it is necessary to compute

the required solutions. In the context of unification this corresponds to the idea that terms are ma-

nipulated at outermost positions. Hence lazy unification means that equational axioms are applied

to outermost positions of equations. For instance, consider the following equations for the addition

and multiplication on natural numbers which are represented by terms of the form s(· · · s(0) · · ·):

0 + y ≈ y

s(x) + y ≈ s(x+ y)

0 ∗ y ≈ 0

s(x) ∗ y ≈ y + x ∗ y

If we have to unify the terms 0 ∗ (s(0) + s(z)) and 0, we could apply equational axioms to inner

subterms starting with s(0) + s(z) (innermost strategy) or to outermost subterms (outermost or

lazy strategy). This will lead to the following two derivations (the subterms manipulated in the

next step are underlined):

0 ∗ (s(0) + s(z)) ≈ 0 ⇒ 0 ∗ (s(0 + s(z))) ≈ 0 ⇒ 0 ∗ (s(s(z))) ≈ 0 ⇒ 0 ≈ 0

0 ∗ (s(0) + s(z)) ≈ 0 ⇒ 0 ≈ 0

Obviously, the second lazy unification derivation should be preferred.

There are many proposals for such lazy unification strategies. For instance, Martelli et al.

[MRM89] have proposed a lazy unification algorithm for confluent and terminating equational

axioms. Due to the confluence requirement, equations are only applied in one direction. However,

their method is not pure lazy since equations are applied to inner subterms in equations of the form

x ≈ t where the variable x occurs in t. Gallier and Snyder [GS89] have proved the completeness

of a lazy unification method for arbitrary equational theories where equations can be applied in

both directions. Narrowing is a method to compute E-unifiers in the presence of confluent axioms.

It is a combination of the reduction principle of functional languages with syntactic unification in

order to instantiate variables. Lazy narrowing were proposed by Reddy [Red85] as the operational

principle of functional logic languages. You [You89] has shown completeness of outer narrowing for

confluent and terminating constructor-based axioms. Echahed [Ech92] has proved completeness of

any narrowing strategy but with strong requirements on the equational theory.

From a practical point of view the disadvantage of E-unification is its inherent nondeterminism.

In the area of narrowing there are many proposals for the inclusion of a deterministic simplification

process in order to reduce the nondeterminism [Fay79, Fri85, Rét87, Höl89, NRS89, Han92b]. In
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this paper we propose to include simplification into lazy unification, i.e., equations are simplified

to a normal form before the application of a unification step. Since it seems that lazy unification

avoids many unnecessary nondeterministic computations due its outermost behavior (especially,

if dynamic tests for variable instantiations are added [LW91]), we will allow simplification with

inductive axioms. An inductive axiom is an equation which is valid for all ground instances of it.

For instance, the equation x + 0 ≈ x is an inductive axiom of the above specification. Using this

inductive axiom, the equation z + 0 ≈ z is simplified to z ≈ z which means that the identity is a

solution to the initial equation. Note that without this simplification an E-unification procedure

would enumerate the solutions z 7→ 0, z 7→ s(0), z 7→ s(s(0)) and so on. Of course, this is also true

for any other narrowing strategy like Fribourg’s innermost narrowing with inductive simplification

[Fri85]. However, we will give in Section 5 an example which shows that our lazy unification

calculus with inductive simplification terminates where other eager narrowing strategies with the

identical inductive simplification axioms have an infinite search space. Hence the integration of

lazy unification with inductive simplification has practical advantages.

Simplification with inductive axioms has also been proposed by other researchers. Fribourg

[Fri85] has integrated it into an innermost narrowing strategy. This has the important effect that

the efficiency of programs can be dramatically improved (see also [Han92a]). Echahed [Ech92] has

shown the completeness of any narrowing strategy with inductive simplification but only under

strong requirements (uniformity of specifications). Dershowitz et al. [DMS90] have proposed to

combine lazy unification with simplification and demonstrated the usefulness of inductive axioms

for simplification. However, they have not proved completeness of their lazy unification calculus if

all terms are simplified to their normal form after each unification step. In fact, their completeness

proof for lazy narrowing does not hold if eager rewriting is included since rewriting in their sense

does not reduce the complexity measure used in their completeness proof and may lead to infinite

instead of successful derivations. Therefore we will formulate a calculus for lazy unification with

inductive simplification and give a rigorous completeness proof. The distinguishing features of our

framework are:

• We consider a confluent and terminating equational specification in order to apply equations

only in one direction and to ensure the existence of normal forms. This is reasonable if one

is interested in declarative programming rather than theorem proving.

• The unification calculus is lazy, i.e., functions are not evaluated if their value is not required

to decide the unifiability of terms. Consequently, we may compute reducible solutions as

answers according to the spirit of lazy evaluation. For instance, in contrast to other “lazy”

unification methods we do not allow any evaluation of t in the equation x ≈ t if x occurs only

once.

• We include a deterministic simplification process in our unification calculus. In order to

restrict nondeterministic computations as much as possible, we allow the use of inductive

consequences for simplification.

In the next section we recall basic notions from term rewriting. Section 3 presents our basic lazy

unification calculus. In Section 4 we show how to include a deterministic simplification process

into the lazy unification calculus. Finally, we show in Section 5 some important optimizations for

constructor-based specifications.
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2 Computing in equational theories

In this section we recall the notations for equations and term rewriting systems [DJ90] which are

necessary in our context.

A signature F is a set of function symbols. Every operation f ∈ F is associated with an arity.1

Let X be a countably infinite set of variables. In this paper we write x, y, z for elements of X .

Then the set T (F ,X ) of terms built from F and X is the smallest set containing X such that

f(t1, . . . , tn) ∈ T (F ,X ) whenever f ∈ F has arity n and t1, . . . , tn ∈ T (F ,X ). We write f instead

of f() whenever f has arity 0. The set of variables occurring in a term t is denoted by Var(t)
(similarly for the other syntactic constructions defined below, like equation, rewriting rule etc.). A

ground term t is a term without variables, i.e., Var(t) = ∅. In the following we assume that F is a

signature with at least one constant.

The computation w.r.t. equational theories requires notions like substitution, unifier and sub-

term which will be defined next. A substitution σ is a mapping from X into T (F ,X ) such that

its domain Dom(σ) = {x ∈ X | σ(x) ̸= x} is finite. We frequently identify a substitution σ

with the set {x 7→ σ(x) | x ∈ Dom(σ)}. Substitutions are extended to morphisms on T (Σ,X ) by

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for every term f(t1, . . . , tn). A substitution σ is called ground

if σ(x) is a ground term for all x ∈ Dom(σ). The composition of two substitutions ϕ and σ is

defined by ϕ ◦ σ(x) = ϕ(σ(x)) for all x ∈ X . The union of two substitutions ϕ and σ is defined by

(ϕ ∪ σ)(x) =


ϕ(x) if x ∈ Dom(ϕ)

σ(x) if x ∈ Dom(σ)

x otherwise

only if Dom(ϕ) ∩ Dom(σ) = ∅.
A unifier of two terms s and t is a substitution σ with σ(s) = σ(t). A unifier σ is called most

general (mgu) if for every other unifier σ′ there is a substitution ϕ with σ′ = ϕ ◦ σ. A position p in

a term t is represented by a sequence of natural numbers, t|p denotes the subterm of t at position

p, and t[s]p denotes the result of replacing the subterm t|p by the term s (see [DJ90] for details).

Let → be a binary relation on a set S. Then →∗ denotes the transitive and reflexive closure of

the relation →, and ↔∗ denotes the transitive, reflexive and symmetric closure of →. → is called

terminating if there are no infinite chains e1 → e2 → e3 → · · ·. → is called confluent if for all

e, e1, e2 ∈ S with e →∗ e1 and e →∗ e2 there exists an element e3 ∈ S with e1 →∗ e3 and e2 →∗ e3.

An equation s ≈ t is a multiset containing two terms s and t. Thus equations to be unified are

symmetric. In order to compute with equational specifications, we will use the specified equations

only in one direction. Hence we define a rewrite rule l → r as a pair of terms l, r satisfying l ̸∈ X
and Var(r) ⊆ Var(l) where l and r are called left-hand side and right-hand side, respectively. A

rewrite rule is called a variant of another rule if it is obtained by a unique replacement of variables

by other variables. A term rewriting system R is a set of rewrite rules. In the following we assume

a given term rewriting system R.

A rewrite step is an application of a rewrite rule to a term, i.e., t →R s if there exist a position

p, a rewrite rule l → r and a substitution σ with t|p = σ(l) and s = t[σ(r)]p. A term t is called

reducible if we can apply a rewrite rule to it, and t is called irreducible or in normal form if there

1In this paper we consider only single-sorted programs. The extension to many-sorted signatures is straightforward

[Pad88]. Since sorts are not relevant to the subject of this paper, we omit them for the sake of simplicity.
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is no term s with t →R s. A substitution σ is called irreducible or normalized if σ(x) is in normal

form for all variables x ∈ X . A term rewriting system is ground confluent if the restriction of →R
to the set of all ground terms is confluent. If R is ground confluent and terminating, then each

ground term t has a unique normal form which is denoted by t↓R.
We are interested in proving the validity of equations. Hence we call an equation s ≈ t valid

(w.r.t. R) if s ↔∗
R t. By Birkhoff’s Completeness Theorem, this is equivalent to the validity of s ≈ t

in all models of R. In this case we also write s =R t. If R is ground confluent and terminating, we

can decide the validity of a ground equation s ≈ t by computing the normal form of both sides using

an arbitrary sequence of rewrite steps since s ↔∗
R t iff s↓R = t↓R. In order to compute solutions to

a non-ground equation s ≈ t, we have to find appropriate instantiations for the variables in s and t.

This can be done by narrowing. A term t is narrowable into a term t′ if there exist a non-variable

position p (i.e., t|p ̸∈ X ), a variant l → r of a rewrite rule and a substitution σ such that σ is a

mgu of t|p and l and t′ = σ(t[r]p). In this case we write t ;[p,l→r,σ] t
′ or simply t ;σ t′. If there is

a narrowing sequence t1 ;σ1 t2 ;σ2 · · · ;σn−1 tn, we write t1 ;
∗
σ tn with σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1.

Narrowing is able to solve equations w.r.t. R. For this purpose we introduce two new function

symbols =? and true and add the rewrite rule x =? x → true to R. Then narrowing is sound and

complete in the following sense.

Theorem 2.1 ([Hul80]) Let R be a term rewriting system so that →R is confluent and termi-

nating.

1. If s =? t ;∗
σ true, then σ(s) =R σ(t).

2. If σ′(s) =R σ′(t), then there exist a narrowing derivation s =? t ;∗
σ true and a substitution

ϕ with ϕ(σ(x)) =R σ′(x) for all x ∈ Var(s) ∪ Var(t).

Since this simple narrowing procedure (enumerating all narrowing derivations) is very inefficient,

several authors have proposed restrictions on the admissible narrowing derivations. For instance,

Hullot [Hul80] has introduced basic narrowing where narrowing steps in positions introduced by

substitutions are forbidden. Fribourg [Fri85] has proposed innermost narrowing where narrowing

is applied only at innermost positions, and Hölldobler [Höl89] has combined innermost and basic

narrowing. Krischer and Bockmayr [KB91] have proposed additional tests during narrowing deriva-

tions to eliminate redundant derivations. Narrowing at outermost positions is only complete if the

term rewrite system satisfies strong restrictions [Ech88]. Lazy narrowing [Red85, DG89, MKLR90]

is influenced by the idea of lazy evaluation in functional programming languages. Lazy narrowing

steps are only applied at outermost positions with the exception that arguments are evaluated

by narrowing to their head normal form if their values are required for an outermost narrowing

step. Since lazy strategies are important in the context of non-terminating rewrite rules, these

strategies have been proved to be complete w.r.t. domain-based interpretations of rewrite rules

[BGL+87, MR92]. Lazy unification is very similar to lazy narrowing but manipulates sets of equa-

tions rather than terms. It has been proved to be complete for canonical term rewriting systems

w.r.t. standard semantics [MRM89, DMS90].

From a practical point of view the most essential improvement of simple narrowing is normalizing

narrowing [Fay79] where the term is rewritten to its normal form before a narrowing step is applied.

This optimization is important since it prefers deterministic computations: rewriting a term to

normal form can be done in a deterministic way since every rewriting sequence gives the same
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result (if R is confluent and terminating) whereas different narrowing steps may lead to different

solutions and therefore all admissible narrowing steps must be considered. Hence in a sequential

implementation rewriting can be efficiently implemented like reductions in functional languages

whereas narrowing steps need costly backtracking management like in Prolog. For instance, if

s =R t, normalizing narrowing will prove the validity by a pure deterministic computation (reducing

s and t to the same normal form) whereas simple narrowing would compute the normal form of

s and t by costly narrowing steps. As shown in [Fri85, Han92a], normalizing narrowing has the

important effect that equational logic programs (which can be seen as an integration of functional

and logic programming languages) are more efficiently executable than pure logic programs.

The idea of normalizing narrowing can also be combined with other narrowing restrictions. Rety

[Rét87] has proved completeness of normalizing basic narrowing, Fribourg [Fri85] has proposed nor-

malizing innermost narrowing and Hölldobler [Höl89] has combined innermost basic narrowing with

normalization. Because of these important advantages, normalizing narrowing is the foundation

of several programming languages which combines functional and logic programming like SLOG

[Fri85] or ALF [Han90]. However, normalization has not been included in narrowing strategies with

a lazy behavior, i.e., which compute functions only if their values are needed.2 Therefore we will

present a lazy unification calculus which includes a normalization process where the term rewrite

rules as well as additional inductive axioms are used for normalization.

3 A calculus for lazy unification

In the rest of this paper we assume that R is a ground confluent and terminating term rewriting

system. This section presents our basic lazy unification calculus to solve a system of equations.

The inclusion of a normalization process will be shown in Section 4. The “laziness” of our calculus

is in the spirit of lazy evaluation in functional programming languages, i.e., terms are evaluated

only if their values are needed.

Our lazy unification calculus manipulates sets of equations in the style of Martelli and Montanari

[MM82] rather than terms as in narrowing calculi. Hence we define an equation system E to be a

multiset of equations (in the following we write such sets without curly brackets if it is clear from

the context). A solution of an equation system E is a ground substitution σ such that σ(s) =R σ(t)

for all equations s ≈ t ∈ E.3 An equation system E is solvable if it has at least one solution. A set

S of substitutions is a complete set of solutions for E iff

1. for all σ ∈ S, σ is a solution of E;

2. for every solution θ of E, there exists some σ ∈ S with θ(x) =R σ(x) for all x ∈ Var(E).

In order to compute solutions of an equation system, we transform it by the rules in Figure 1

until no more rules can be applied. The lazy narrowing transformation applies a rewrite rule to a

function occurring outermost in an equation. Actually, this is not a narrowing step as defined in

Section 2 since the argument terms may not be unifiable. Narrowing steps can be simulated by a

2Except for [DMS90, Ech92], but see the remarks in Section 1.
3We are interested in ground solutions since later we will include inductive axioms which are valid in the ground

models of R. As pointed out in [NRS89], this ground approach subsumes the conventional narrowing approaches

where also non-ground solutions are taken into account (as in Theorem 2.1).

5



Lazy narrowing

f(t1, . . . , tn) ≈ t, E
lu
=⇒ t1 ≈ l1, . . . , tn ≈ ln, r ≈ t, E

if t ̸∈ X or t ∈ Var(f(t1, . . . , tn)) ∪ Var(E) and f(l1, . . . , ln) → r new variant of a rewrite rule

Decomposition of equations

f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n), E

lu
=⇒ t1 ≈ t′1, . . . , tn ≈ t′n, E

Partial binding of variables

x ≈ f(t1, . . . , tn), E
lu
=⇒ x ≈ f(x1, . . . , xn), x1 ≈ ϕ(t1), . . . , xn ≈ ϕ(tn), ϕ(E)

if x ∈ Var(f(t1, . . . , tn)) ∪ Var(E) and ϕ = {x 7→ f(x1, . . . , xn)} (where xi new variable)

Figure 1: The lazy unification calculus

sequence of transformations in the lazy unification calculus but not vice versa since our calculus also

allows the application of rewrite rules to the arguments of the left-hand sides. The decomposition

transformation generates equations between the argument terms of an equation if both sides have

the same outermost symbol. The partial binding of variables can be applied if the variable x occurs

at different positions in the equation system. In this case we instantiate the variable only with

the outermost function symbol. A full instantiation by the substitution ϕ = {x 7→ f(t1, . . . , tn)}
may increase the computational work if x occurs several times and the evaluation of f(t1, . . . , tn) is

costly. In order to avoid this problem of eager variable elimination (see [GS89]), we perform only

a partial binding which is also called “root imitation” in [GS89].

It is possible to add further rules to simplify equation systems like the elimination of trivial

equations:

t ≈ t, E
lu
=⇒ E

However, these rules are not really necessary and therefore we omit them in our first approach.

Later we will see how to add deterministic (failure) rules to reduce the search space of the calculus.

At first sight our lazy unification calculus has many similarities with the lazy unification rules

presented in [Pad88, GS89, MRM89, DMS90]. This is not accidental since these systems have

inspired us. However, there are also essential differences. Since we are interested in reducing the

computational costs in the E-unification procedure, our rules behave “more lazily”. In our rules it

is allowed to evaluate a term only if its value is needed (in several positions). Otherwise, the term

is left unevaluated.

Example 3.1 Consider the rewrite rule 0 ∗ x → 0. Then the only transformation sequence of the

equation 0 ∗ t ≈ 0 (where t is a costly function) is

0 ∗ t ≈ 0
lu
=⇒ 0 ≈ 0, t ≈ x, 0 ≈ 0 (lazy narrowing)
lu
=⇒ t ≈ x, 0 ≈ 0 (decomposition)
lu
=⇒ t ≈ x (decomposition)

Thus the term t is not evaluated since its concrete value is not needed. Consequently, we may
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compute solutions which are not normalized. That is a desirable property in the presence of a lazy

evaluation mechanism. 2

The conventional transformation rules for unification w.r.t. an empty equational theory [MM82]

bind a variable x to a term t only if x does not occur in t. This occur check must be omitted in

the presence of evaluable function symbols. Moreover, we must also instantiate occurrences of x in

the term t which is done in our partial binding rule. The following example shows the necessity of

these extensions.

Example 3.2 Consider the rewrite rule f(c(a)) → a. Then we can solve the equation x ≈ c(f(x))

by the following transformation sequence:

x ≈ c(f(x))
lu
=⇒ x ≈ c(x1), x1 ≈ f(c(x1)) (partial binding)
lu
=⇒ x ≈ c(x1), c(x1) ≈ c(a), x1 ≈ a (lazy narrowing)
lu
=⇒ x ≈ c(x1), x1 ≈ a, x1 ≈ a (decomposition)
lu
=⇒ x ≈ c(a), x1 ≈ a, a ≈ a (partial binding)
lu
=⇒ x ≈ c(a), x1 ≈ a (decomposition)

In fact, the initial equation is solvable and {x 7→ c(a)} is a solution of this equation. This solution

is also an obvious solution of the final equation system if we disregard the auxiliary variable x1. 2

In the rest of this section we will prove soundness and completeness of our lazy unification

calculus. Soundness simply means that each solution of the transformed equation system is also a

solution of the initial equation system. Completeness is more difficult since we have to take into

account all possible transformations. Therefore we will show that a solvable equation system can

be transformed into another very simple equation system which has “an obvious solution”. Such a

final equation system is called in “solved form”. According to [MM82, GS89] we call an equation

x ≈ t of an equation system E solved (in E) if x is a variable which occurs neither in t nor anywhere

else in E. In this case variable x is also called solved (in E). An equation system is solved or in

solved form if all its equations are solved. A variable or equation is unsolved in E if it occurs in E

but is not solved.

The lazy unification calculus in the present form cannot transform each solvable equation system

into a solved form since equations between variables are not simplified. For instance, the equation

system

x ≈ f(y), y ≈ z1, y ≈ z2, z1 ≈ z2

is irreducible w.r.t.
lu
=⇒ but not in solved form since the variables y, z1, z2 have multiple occurrences.

Fortunately, this is no problem since a solution can be extracted by merging the variables occurring

in unsolved equations. Therefore we call this system quasi-solved. An equation system is quasi-

solved if each equation s ≈ t is solved or has the property s, t ∈ X . In the following we will show

that a quasi-solved equation system has solutions which can be easily computed by applying the

rules in Figure 2 to it. The separation between the lazy unification rules in Figure 1 and the variable

elimination rules in Figure 2 has technical reasons that will become apparent later (e.g., applying

variable elimination to the equation y ≈ z1 may not reduce the complexity measure used in our

completeness proofs). However, it is obvious to obtain the solutions of a quasi-solved equation

system E. For this purpose we transform E by the rules in Figure 2 into a solved equation system

which has a direct solution. This is justified by the following propositions.
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Coalesce

x ≈ y,E
var
=⇒ x ≈ y, ϕ(E)

if x, y ∈ Var(E) and ϕ = {x 7→ y}

Trivial

x ≈ x,E
var
=⇒ E

Figure 2: The variable elimination rules

Proposition 3.3 Let E and E′ be equation systems with E
var
=⇒E′. Then E and E′ have the same

solutions.

Proof: It is obvious that E and E′ have the same solutions if the transformation rule “Trivial” is

applied. In case of the rule “Coalesce” E has the form x ≈ y,E0 and E′ has the form x ≈ y, ϕ(E0)

with ϕ = {x 7→ y}. Let σ be a solution of E. Then σ(x) ↔∗
R σ(y) = σ(ϕ(x)). By definition of

ϕ and the congruence property of ↔∗
R, σ(t) ↔∗

R σ(ϕ(t)) for all terms t. Let s ≈ t ∈ E0. Since σ

is a solution of E, σ(s) ↔∗
R σ(t). Moreover, σ(s) ↔∗

R σ(ϕ(s)) and σ(t) ↔∗
R σ(ϕ(t)) which implies

σ(ϕ(s)) ↔∗
R σ(ϕ(t)). Therefore σ is also a solution of ϕ(E0).

If σ is a solution of E′, it can be shown in a similar way that σ is also a solution of E0.

Due to this proposition, the transformation
var
=⇒ preserves solutions. Moreover, it is a terminating

relation:

Proposition 3.4 The relation
var
=⇒ on equation systems is terminating.

Proof: Define the complexity of an equation system as the total number of occurrences of unsolved

variables in this system. Obviously, both transformation rules of
var
=⇒ reduce this number.

If an equation system is quasi-solved, we can always transform it into a solved system:

Proposition 3.5 Let E be a quasi-solved equation system. Then there exists a solved equation

system E′ with E
var
=⇒∗E′.

Proof: Let E be a quasi-solved equation system which is not solved. Then there exists an equation

x ≈ y ∈ E which is unsolved. Hence x = y or x, y ∈ Var(E − {x ≈ y}). In the first case we apply

the rule “Trivial” and in the second case we apply the rule “Coalesce”. The result of both cases

is a new equation system in quasi-solved form. Since there are no infinite derivations w.r.t.
var
=⇒

(Proposition 3.4), successive transformation steps w.r.t.
var
=⇒ will end in a solved equation system.

The solutions of an equation system in solved form can be obtained as follows:

Proposition 3.6 Let E be an equation system in solved form, i.e.,

E = {x1 ≈ t1, . . . , xn ≈ tn}
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where x1, . . . , xn are different variables with xi ̸∈ Var(tj) for i, j ∈ {1, . . . , n}. Then the substitution

set

{γ ◦ {x1 7→ t1, . . . , xn 7→ tn} | γ is a ground substitution}

is a complete set of solutions for E.

Proof: First we show that θ : = γ ◦ {x1 7→ t1, . . . , xn 7→ tn} is a solution of E for an arbitrary

ground substitution γ. Consider the equation xi ≈ ti ∈ E. Since x1, . . . , xn do not occur in any ti,

θ(xi) = γ(ti) = θ(ti), i.e., θ is a solution of xi ≈ ti. Hence θ is a solution of E.

Next we show that every solution of E is covered by some substitution from the substitution

set defined above. Let ξ be a solution of E. Then ξ(xi) =R ξ(ti) for i = 1, . . . , n. Since ξ is a

ground substitution, the substitution

θ : = ξ ◦ {x1 7→ t1, . . . , xn 7→ tn}

is contained in the above substitution set. We have to show ξ(x) =R θ(x) for all x ∈ Var(E):

• By definition of θ and ξ, θ(xi) = ξ(ti) =R ξ(xi) for i = 1, . . . , n.

• If x ∈ Var(tj) for some j ∈ {1, . . . , n}, then θ(x) = ξ(x) by definition of θ (note that x is

different from any xi since no xi occurs in tj).

Altogether, θ(x) =R ξ(x) for all x ∈ Var(E).

Due to Propositions 3.3, 3.5 and 3.6 it is sufficient to transform an equation system into a quasi-

solved form in order to compute its solutions. Hence we can state soundness and completeness

results by concentrating on quasi-solved forms. The next lemma shows the soundness if a transfor-

mation rule of the lazy unification calculus is applied.

Lemma 3.7 Let E and E′ be equation systems with E
lu
=⇒E′. Then each solution σ of E′ is also

a solution of E.

Proof: Assume that σ is a solution of E′. There are three cases corresponding to the applied

transformation rule:

1. The lazy narrowing rule has been applied. Then E = f(t1, . . . , tn) ≈ t, E0, f(l1, . . . , ln) →
r is a variant of a rewrite rule and E′ = t1 ≈ l1, . . . , tn ≈ ln, r ≈ t, E0. Since σ is a

solution of E′, σ(ti) ↔∗
R σ(li) (for i = 1, . . . , n) and σ(r) ↔∗

R σ(t). These equivalences imply

σ(f(t1, . . . , tn)) ↔∗
R σ(f(l1, . . . , ln)) by the congruence property of ↔∗

R. Since f(l1, . . . , ln) →
r is a variant of a rewrite rule, σ(f(l1, . . . , ln)) →R σ(r) ↔∗

R σ(t). Hence σ(f(t1, . . . , tn)) ↔∗
R

σ(t), i.e., σ is a solution of E.

2. The decomposition rule has been applied. Then E = f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n), E0 and

E′ = t1 ≈ t′1, . . . , tn ≈ t′n, E0. Since σ is a solution of E′, σ(ti) ↔∗
R σ(t′i) (for i = 1, . . . , n).

Hence σ(f(t1, . . . , tn)) ↔∗
R σ(f(t′1, . . . , t

′
n)) by the congruence property of ↔∗

R.

3. The partial binding rule has been applied. Then E = x ≈ f(t1, . . . , tn), E0 and E′ = x ≈
f(x1, . . . , xn), x1 ≈ ϕ(t1), . . . , xn ≈ ϕ(tn), ϕ(E0) where ϕ = {x 7→ f(x1, . . . , xn)}. Since σ is a

solution of E′, we have
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(a) σ(x) ↔∗
R σ(f(x1, . . . , xn))

(b) σ(xi) ↔∗
R σ(ϕ(ti)) (for i = 1, . . . , n)

(c) σ solution of ϕ(E0)

By definition of ϕ, (a) and the congruence property of ↔∗
R,

σ(ϕ(t)) ↔∗
R σ(t) for all terms t (∗)

Hence σ is also a solution of E0. Moreover,

σ(x) ↔∗
R σ(f(x1, . . . , xn)) (by (a))

↔∗
R σ(f(ϕ(t1), . . . , ϕ(tn))) (by (b))

↔∗
R σ(f(t1, . . . , tn)) (by (∗))

Hence σ is a solution of x ≈ f(t1, . . . , tn).

The following soundness theorem can be proved by a simple induction on the transformation steps

using the previous lemma.

Theorem 3.8 Let E and E′ be equation systems with E
lu
=⇒∗E′. Then each solution σ of E′ is a

solution of E.

The completeness proof is more difficult since we have to consider all possible transformation

sequences. Therefore we show that for each solution of an equation system there is a derivation

into a quasi-solved form that has the same solution. Note that the solution of the quasi-solved form

cannot be identical to the required solution since additional new variables are generated during the

derivation (by lazy narrowing and partial binding transformations). But this is no problem since

we are interested in solutions w.r.t. the variables of the initial equation system.

Theorem 3.9 Let E be a solvable equation system with solution σ. Then there exists a derivation

E
lu
=⇒∗E′ with E′ in quasi-solved form such that E′ has a solution σ′ with σ′(x) =R σ(x) for all

x ∈ Var(E).

Proof: We show the existence of a derivation from E into a quasi-solved equation system by the

following steps:

1. We define a reduction relation ⇒ on pairs of the form (σ,E) (where E is an equation system

and σ is a solution of E) with the property that (σ,E) ⇒ (σ′, E′) implies E
lu
=⇒E′ and

σ′(x) = σ(x) for all x ∈ Var(E).

2. We define a terminating ordering ≻ on these pairs.

3. We show: If E has a solution σ but E is not in quasi-solved form, then there exists a pair

(σ′, E′) with (σ,E) ⇒ (σ′, E′) and (σ,E) ≻ (σ′, E′).
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2 and 3 implies that each solvable equation system can be transformed into a quasi-solved form.

By 1, the solution of this quasi-solved form is the required solution of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we define the terminating ordering ≻.

For this purpose we use the strict subterm ordering ≻sst on terms defined by t ≻sst s iff there is a

position p in t with t|p = s ̸= t. Since R is a terminating term rewriting system, the relation →R
on terms is also terminating. Let ≻≻ be the transitive closure of the relation →R ∪ ≻sst. Then ≻≻
is also terminating [JK86].4 Now we define the following ordering on pairs (σ,E): (σ,E) ≻ (σ′, E′)

iff

{σ(s), σ(t) | s ≈ t ∈ E is unsolved in E} ≻≻mul {σ′(s′), σ′(t′) | s′ ≈ t′ ∈ E′ is unsolved in E′} (∗)

where ≻≻mul is the multiset extension5 of the ordering ≻≻ (all sets in this definition are multisets).

≻≻mul is terminating (note that all multisets considered here are finite) since ≻≻ is terminating

[Der87].

Now we will show that we can apply a transformation step to a solvable but unsolved equation

system such that its complexity is reduced. Let E be an equation system not in quasi-solved form

and σ be a solution of E. Since E is not quasi-solved, there must be an equation which has one of

the following forms:

1. There is an equation E = s ≈ t, E0 with s, t ̸∈ X : Let s = f(s1, . . . , sn) with n ≥ 0 (the other

case is symmetric). Consider the derivation of the normal forms of σ(s) and σ(t):

(a) No rewrite step is performed at the root of σ(s) and σ(t): Then t has the form t =

f(t1, . . . , tn) and σ(s)↓R = σ(t)↓R = f(u1, . . . , un). Since σ(s) and σ(t) are not reducible

at the root, σ(si)↓R = ui = σ(ti)↓R for i = 1, . . . , n. Now we apply the decomposition

transformation and obtain the equation system

E′ = s1 ≈ t1, . . . , sn ≈ tn, E0

Obviously, σ is a solution of E′. Moreover, the complexity of the new equation system

is reduced because the equation s ≈ t is unsolved in E and each σ(si) and σ(ti) is

smaller than σ(s) and σ(t), respectively, since ≻≻ contains the strict subterm ordering

≻sst. Hence (σ,E) ≻ (σ,E′).

(b) A rewrite step is performed at the root of σ(s), i.e., the innermost rewriting sequence of

σ(s) has the form

σ(s) →∗
R f(s′1, . . . , s

′
1) →R θ(r) →∗

R σ(s)↓R

where f(l1, . . . , ln) → r is a new variant of a rewrite rule, θ(li) = s′i and σ(si) →∗
R s′i for

i = 1, . . . , n. An application of the lazy narrowing transformation yields the equation

system

E′ = s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, E0

4Note that the use of the relation →R instead of ≻≻ (as done in [DMS90]) is not sufficient for the completeness

proof since →R has not the subterm property [Der87] in general.
5The multiset ordering ≻≻mul is the transitive closure of the replacement of an element by a finite number of

elements that are smaller w.r.t. ≻≻ [Der87].

11



We combine σ and θ to a new substitution σ′ = σ ∪ θ (this is always possible since θ

does only work on the variables of the new variant of the rewrite rule). σ′ is a solution

of E′ since

σ′(si) = σ(si) →∗
R s′i = θ(li) = σ′(li)

and

σ′(r) = θ(r) →∗
R σ(s)↓R ↔∗

R σ(t) = σ′(t)

Since the transitive closure of →R is contained in ≻≻, σ(si) ≻≻ σ′(li) (if σ(si) ̸= σ′(li))

and σ(s) ≻≻ σ′(r). Since s ≈ t is unsolved in E, the term σ(s) is contained in the

left multiset of the ordering definition (∗), and it is replaced by the smaller terms

σ(s1), . . . , σ(sn), σ
′(l1), . . . , σ

′(ln), σ
′(r) (σ(s) ≻≻ σ(si) since ≻≻ contains the strict sub-

term ordering). Therefore the new equation system is smaller w.r.t. ≻, i.e., (σ,E) ≻
(σ′, E′).

2. There is an equation E = x ≈ t, E0 with t = f(t1, . . . , tn) and x unsolved in E: Hence

x ∈ Var(t) ∪ Var(E0). Again, we consider the derivation of the normal form of σ(t):

(a) A rewrite step is performed at the root of σ(t). Then we apply a lazy narrowing step

and proceed as in the previous case.

(b) No rewrite step is performed at the root of σ(t), i.e., σ(t)↓R = f(t′1, . . . , t
′
n) and σ(ti)↓R =

t′i for i = 1, . . . , n. We apply the partial binding transformation and obtain the equation

system

E′ = x ≈ f(x1, . . . , xn), x1 ≈ ϕ(t1), . . . , xn ≈ ϕ(tn), ϕ(E0)

where ϕ = {x 7→ f(x1, . . . , xn)} and xi are new variables. We extend σ to a substitution

σ′ by adding the bindings σ′(xi) = t′i for i = 1, . . . , n. Then

σ′(f(x1, . . . , xn)) = f(t′1, . . . , t
′
n) = σ(t)↓R ↔∗

R σ(t) ↔∗
R σ(x) = σ′(x)

Moreover, σ′(ϕ(x)) = σ′(x)↓R which implies σ′(s) ↔∗
R σ′(ϕ(s)) for all terms s. Hence

σ′(ϕ(ti)) ↔∗
R σ′(ti) ↔∗

R t′i = σ′(xi). Altogether, σ
′ is a solution of E′.

It remains to show that this transformation reduces the complexity of the equation

system. Since σ′(ϕ(x)) = σ(x)↓R, we have σ(x) →∗
R σ′(ϕ(x)). Hence σ(E0) is equal to

σ′(ϕ(E0)) (if σ(x) = σ′(ϕ(x))) or σ′(ϕ(E0)) is smaller w.r.t. ≻≻mul. Therefore it remains

to check that σ(t) is greater than each σ′(x1), . . . , σ
′(xn), σ

′(ϕ(t1)), . . . , σ
′(ϕ(tn)) w.r.t.

≻≻ (note that the equation x ≈ t is unsolved in E, but the equation x ≈ f(x1, . . . , xn)

is solved in E′). First of all, σ(t) ≻≻ σ(ti) since ≻≻ includes the strict subterm ordering.

Moreover, σ(ti) →∗
R σ′(xi), i.e., σ

′(xi) is equal or smaller than σ(ti) w.r.t. ≻≻ for i =

1, . . . , n. This implies σ(t) ≻≻ σ′(xi). Similarly, σ′(ϕ(ti)) is equal or smaller than σ(ti)

w.r.t. ≻≻ since σ′(ϕ(x)) = σ(x)↓R. Thus σ(t) ≻≻ σ′(ϕ(ti)). Altogether, (σ,E) ≻ (σ′, E′).

We want to point out that there exist also other orderings on substitution/equation system pairs to

prove the completeness of our calculus. However, the ordering chosen in the above proof is tailored

to a simple proof for the completeness of lazy unification with inductive simplification as we will

see in the next section.
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Propositions 3.3, 3.5, 3.6 and Theorems 3.8 and 3.9 imply that a complete set of solutions for

a given equation system E can be computed by enumerating all derivations in the lazy unification

calculus from E into a quasi-solved equation system. Due to the nondeterminism in the lazy

unification calculus, there are many unsuccessful and often infinite derivations. Therefore we show

in the next section how to reduce this nondeterminism by integrating a deterministic simplification

process into the lazy unification calculus. More determinism can be achieved by dividing the set of

function symbols into constructors and defined functions. This will be the subject of Section 5.

4 Lazy unification with inductive simplification

The lazy unification calculus admits a high degree of nondeterminism even if there is only one

reasonable derivation. This is due to the fact that functional expressions are processed “too lazy”.

Example 4.1 Consider the rewrite rules

f(a) → c

f(b) → d

g(a) → a

g(b) → b

and the equation f(g(b)) ≈ d. Then there are the following four different derivations in our lazy

narrowing calculus:

f(g(b)) ≈ d
lu
=⇒ g(b) ≈ a, c ≈ d

lu
=⇒ b ≈ a, a ≈ a, c ≈ d

lu
=⇒ b ≈ a, c ≈ d

f(g(b)) ≈ d
lu
=⇒ g(b) ≈ a, c ≈ d

lu
=⇒ b ≈ b, b ≈ a, c ≈ d

lu
=⇒ b ≈ a, c ≈ d

f(g(b)) ≈ d
lu
=⇒ g(b) ≈ b, d ≈ d

lu
=⇒ b ≈ a, a ≈ b, d ≈ d

lu
=⇒ b ≈ a, a ≈ b

f(g(b)) ≈ d
lu
=⇒ g(b) ≈ b, d ≈ d

lu
=⇒ b ≈ b, b ≈ b, d ≈ d

lu
=⇒∗ ∅

The first three derivations do not end in a quasi-solved form, only the last derivation is successful.

If we would first compute the normal form of f(g(b)), which is d, then there is only one possible

derivation: d ≈ d
lu
=⇒ ∅. Hence we will show that the lazy unification calculus remains to be sound

and complete if the (deterministic!) normalization of terms is included. 2

It is well-known [Fri85, Han92a] that the inclusion of inductive axioms for normalization may have

an essential effect on the search space reduction in normalizing narrowing strategies. Therefore we

will also allow inductive axioms for normalization. A rewrite rule l → r is called inductive axiom

or inductive consequence (of R) if σ(l) =R σ(r) for all ground substitutions σ. For instance, the

rule x+ 0 → x is an inductive consequence of the term rewriting system

0 + y → y

s(x) + y → s(x+ y)

If we want to solve the equation s(x)+0 ≈ s(x), our basic lazy unification calculus would enumerate

the solutions x 7→ 0, x 7→ s(0), x 7→ s(s(0)) and so on, i.e., this equation has an infinite search

space. Using the inductive axiom x + 0 → x for normalization, the equation s(x) + 0 ≈ s(x) is
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reduced to s(x) ≈ s(x) and then transformed into the quasi-solved form x ≈ x representing the

solution set where x is replaced by any ground term.6

In the following we assume that I is a set of inductive consequences of R so that the rewrite

relation →I is terminating. We will use rules from R for lazy narrowing and rules from I for

normalization. We do not require that all rules from R must be used for normalization. This

is reasonable if there are duplicating rules where one variable of the left-hand side occurs several

times on the right-hand side, like f(x) → g(x, x). If we normalize the equation f(s) ≈ t with this

rule, then the term s is duplicated which may increase the computational costs if the evaluation of

s is necessary and costly. In such a case it would be better to use this rule only for narrowing.

In order to include normalization into the lazy unification calculus, we define a relation ⇒I
on systems of equations. s ≈ t ⇒I s′ ≈ t′ iff s′ and t′ are normal forms of s and t w.r.t. →I ,

respectively. E ⇒I E′ iff E = e1, . . . , en and E′ = e′1, . . . , e
′
n where ei ⇒I e′i for i = 1, . . . , n. Note

that ⇒I describes a deterministic computation process.7 E
lui
=⇒E′ is a derivation step in the lazy

unification calculus with inductive normalization if E ⇒I E
lu
=⇒E′ for some E.

The following lemma shows the soundness of one rewrite step with an inductive axiom:

Lemma 4.2 Let s ≈ t be an equation and s →I s′ be a rewrite step. Then each solution of s′ ≈ t

is also a solution of s ≈ t.

Proof: Let s →I s′ and σ be a solution of s′ ≈ t, i.e., σ(s′) =R σ(t). Obviously, σ(s) →I σ(s′) using

the same rewrite rule from I. Hence σ(s) =R σ(s′) since I consists of inductive consequences of R
and σ is a ground substitution. By σ(s′) =R σ(t), this implies σ(s) =R σ(t), i.e., σ is a solution of

s ≈ t.

Now we can state the soundness of the calculus
lui
=⇒:

Theorem 4.3 Let E and E′ be equation systems with E
lui
=⇒∗E′ where E′ is in quasi-solved form.

Then each solution σ of E′ is a solution of E.

Proof: By Lemma 4.2, we can show the soundness of ⇒I with a simple induction on the sequence

of rewrite steps. Combining this result with Lemma 3.7 shows the soundness of one
lui
=⇒ step. Then

the theorem follows by another simple induction on the number of
lui
=⇒ steps.

For the completeness proof we have to show that solutions are not lost by the application of

inductive axioms:

Lemma 4.4 Let E be an equation system and σ be a solution of E. If E ⇒I E′, then σ is a

solution of E′.

Proof: Let s ≈ t ∈ E, σ(s) =R σ(t) and s ≈ t ⇒I s′ ≈ t′. Hence s →∗
I s′ and t →∗

I t′ which implies

σ(s) →∗
I σ(s′) and σ(t) →∗

I σ(t′). Since σ is a ground substitution and I are inductive axioms,

6In larger single-sorted term rewriting systems it would be difficult to find inductive axioms. E.g., x + 0 → x is

not an inductive consequence if there is a constant a since a+0 =R a is not valid. However, in practice specifications

are many-sorted and then inductive axioms must be valid only for all well-sorted ground substitutions. Therefore

we want to point out that all results in this paper can also be extended to many-sorted term rewriting systems in a

straightforward way.
7If there exist more than one normal form w.r.t. →I , it is sufficient to select don’t care one of these normal forms.
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σ(s) =R σ(s′) and σ(t) =R σ(t′). Hence σ(s′) =R σ(t′), i.e., σ is a solution of all equations in E′.

The last lemma would imply the completeness of the calculus
lui
=⇒ if a derivation step with ⇒I

does not increase the ordering used in the proof of Theorem 3.9. Unfortunately, this is not the

case in general since the termination of →R and →I may be based on different orderings (e.g.,

R = {a → b} and I = {b → a}). In order to avoid such problems, we require that the relation

→R∪I is terminating which is not a real restriction in practice.

Theorem 4.5 Let I be a set of inductive consequences of the ground confluent and terminating

term rewriting system R such that →R∪I is terminating. Let E be a solvable equation system with

solution σ. Then there exists a derivation E
lui
=⇒∗ E′ such that E′ is in quasi-solved form and has

a solution σ′ with σ′(x) =R σ(x) for all x ∈ Var(E).

Proof: In the proof of Theorem 3.9 we have shown how to apply a transformation step to an

equation system not in quasi-solved form such that the solution is preserved. We can use the

same proof for the transformation
lui
=⇒ since Lemma 4.4 shows that normalization steps preserve

solutions. The only difference concerns the ordering where we use →R∪I instead of →R, i.e., ≻≻ is

now defined to be the transitive closure of the relation →R∪I ∪ ≻sst. Clearly, this does not change

anything in the proof of Theorem 3.9. Moreover, the relation ⇒I does not increase the complexity

w.r.t. this ordering but reduce it if inductive axioms are applied since →I is contained in ≻≻.

Theorems 4.3 and 4.5 show that we can integrate the deterministic normalization into the lazy

unification calculus without loosing soundness and completeness. Note that the rules from I can

only be applied if their left-hand sides can be matched with a subterm of the current equation

system. If these subterms are not sufficiently instantiated, the rewrite rules are not applicable and

hence we loose potential determinism in the unification process.

Example 4.6 Consider the rules

zero(s(x)) → zero(x)

zero(0) → 0

(these rules are contained in R as well as in I) and the equation system zero(x) ≈ 0, x ≈ 0. Then

there exists the following derivation in our calculus (this derivation is also possible in the unification

calculi in [GS89, MRM89]):

zero(x) ≈ 0, x ≈ 0
lui
=⇒ x ≈ s(x1), zero(x1) ≈ 0, x ≈ 0 (lazy narrowing with first rule)
lui
=⇒ x ≈ s(x1), x1 ≈ s(x2), zero(x2) ≈ 0, x ≈ 0 (lazy narrowing with first rule)
lui
=⇒ x ≈ s(x1), x1 ≈ s(x2), x2 ≈ s(x3), zero(x3) ≈ 0, x ≈ 0 (lazy narrowing with first rule)
lui
=⇒ · · ·

This infinite derivation could be avoided if we would apply the partial binding rule in the first step:

zero(x) ≈ 0, x ≈ 0
lui
=⇒ zero(0) ≈ 0, x ≈ 0 (partial binding)

⇒I 0 ≈ 0, x ≈ 0 (rewriting with second rule)
lui
=⇒ x ≈ 0 (decomposition)
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Decomposition of constructor equations

c(t1, . . . , tn) ≈ c(t′1, . . . , t
′
n), E

luc
=⇒ t1 ≈ t′1, . . . , tn ≈ t′n, E

if c ∈ C

Full binding of variables to ground constructor terms

x ≈ t, E
luc
=⇒ x ≈ t, ϕ(E)

if x ∈ Var(E), t ∈ T (C, ∅) and ϕ = {x 7→ t}

Partial binding of variables to constructor terms

x ≈ c(t1, . . . , tn), E
luc
=⇒ x ≈ c(x1, . . . , xn), x1 ≈ ϕ(t1), . . . , xn ≈ ϕ(tn), ϕ(E)

if x ∈ Var(c(t1, . . . , tn)) ∪ Var(E), x ̸∈ cvar(c(t1, . . . , tn)) and ϕ = {x 7→ c(x1, . . . , xn)} (xi new

variable)

Figure 3: Deterministic transformations for constructor-based rewrite systems

In the next section we will present an optimization which prefers the latter derivation and avoids

the first infinite derivation. 2

5 Constructor-based systems

In practical applications of equational logic programming a distinction is made between operation

symbols to construct data terms, called constructors, and operation symbols to operate on data

terms, called defined functions (see, for instance, the functional logic languages SLOG [Fri85],

K-LEAF [BGL+87], BABEL [MR92], ALF [Han90]). Such a distinction allows to optimize our

unification calculus. Therefore we assume in this section that the signature F is divided into two

sets F = C ∪D, called constructors and defined functions, with C ∩D = ∅. A constructor term t is

built from constructors and variables, i.e., t ∈ T (C,X ). The distinction between constructors and

defined functions comes with the restriction that for all rewrite rules l → r the outermost symbol

of l is always a defined function.

The important property of such constructor-based term rewriting systems is the irreducibility of

constructor terms. Due to this fact we can specialize the rules of our basic lazy unification calculus.

Therefore we define the deterministic transformations in Figure 3. Deterministic transformations

means that these transformations are applied as long as possible before any transformation
lu
=⇒ is

used. Hence they can be integrated into the deterministic normalization process ⇒I . It is obvious

that this modification preserves soundness and completeness. The decomposition transformation

for constructor equations must be applied in any case in order to obtain a quasi-solved equation

system since a lazy narrowing step R cannot be applied to constructor equations. The full binding

of variables to ground constructor terms is an optimization which combines subsequent applications

of partial binding transformations. This transformation decreases the complexity used in the proof

of Theorem 4.5 since a constructor term is always in normal form. The partial binding transfor-

mation for constructor terms performs an eager (partial) binding of variables to constructor terms
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Clash of constructor equations

c(t1, . . . , tn) ≈ d(t′1, . . . , t
′
m), E

luc
=⇒ fail

if c, d ∈ C and c ̸= d or m ̸= n

Occur check

x ≈ c(t1, . . . , tn), E
luc
=⇒ fail

if x ∈ cvar(c(t1, . . . , tn))

Figure 4: Failure rules for constructor-based rewrite systems

since a lazy narrowing step cannot be applied to the constructor term. Moreover, this binding

transformation is combined with an occur check since it cannot be applied if x ∈ cvar(c(t1, . . . , tn))

where cvar denotes the set of all variables occurring outside terms headed by defined function

symbols:
cvar(x) = {x}

cvar(c(t1, . . . , tn)) =
∪n

i=1 cvar(ti) if c ∈ C
cvar(f(t1, . . . , tn)) = ∅ if f ∈ D

This restriction avoids infinite derivations of the following kind:

x ≈ c(x)
lu
=⇒ x ≈ c(x1), x1 ≈ c(x1) (partial binding)
lu
=⇒ x ≈ c(x1), x1 ≈ c(x2), x2 ≈ c(x2) (partial binding)
lu
=⇒ · · ·

It is obvious that an equation of the form x ≈ c(t1, . . . , tn) with x ∈ cvar(c(t1, . . . , tn)) is unsolvable.

A further optimization can be introduced if all functions are reducible on ground constructor

terms, i.e., there exists a term t with f(t1, . . . , tn) →R t for all f ∈ D and t1, . . . , tn ∈ T (C, ∅).
In this case all ground terms have a ground constructor normal form and therefore the partial

binding transformation of
lu
=⇒ can be completely omitted which increases the determinism in the

lazy unification calculus.

If we invert the deterministic transformation rules, we obtain a set of failure rules shown in

Figure 4. Failure rules means that these transformations are tried during the deterministic trans-

formations. If a failure rule is applicable, the derivation can be safely terminated since the equation

system cannot be transformed into a quasi-solved system.

The next example shows the improved computational power of our lazy unification calculus

with rewriting.

Example 5.1 Consider the following rewrite rules for the addition and multiplication on natural

numbers where C = {0, s} and D = {+, ∗}:

0 + y → y

s(x) + y → s(x+ y)

0 ∗ y → 0

s(x) ∗ y → y + x ∗ y

17



If we use this confluent and terminating set of rewrite rules for lazy narrowing (R) as well as for

normalization (I) and add the inductive consequence x ∗ 0 → 0 to I, then our lazy unification

calculus with rewriting has a finite search space for the equation x ∗ y = s(0). This is due to the

fact that the following derivation can be terminated using the inductive axiom and the clash rule:

x ∗ y = s(0)
lu
=⇒ x ≈ s(x1), y ≈ y1, y1 + x1 ∗ y1 ≈ s(0) (lazy narrowing, rule 4)
lu
=⇒ x ≈ s(x1), y ≈ y1, y1 ≈ 0, x1 ∗ y1 ≈ y2, y2 ≈ s(0) (lazy narrowing, rule 1)
luc
=⇒ x ≈ s(x1), y ≈ 0, y1 ≈ 0, x1 ∗ 0 ≈ y2, y2 ≈ s(0) (bind variable y1)
luc
=⇒ x ≈ s(x1), y ≈ 0, y1 ≈ 0, x1 ∗ 0 ≈ s(0), y2 ≈ s(0) (bind variable y2)

⇒I x ≈ s(x1), y ≈ 0, y1 ≈ 0, 0 ≈ s(0), y2 ≈ s(0) (reduce x1 ∗ 0)
luc
=⇒ fail (clash between 0 and s)

The equation x1 ∗ 0 ≈ s(0) could not be transformed into the equation 0 ≈ s(0) without the

inductive axiom. Consequently, an infinite derivation would occur in our basic unification calculus

of Section 3.

Note that other lazy unification calculi [GS89, MRM89] or lazy narrowing calculi [Red85,

MKLR90] have an infinite search space for this equation. It is also interesting to note that a

normalizing innermost narrowing strategy as in [Fri85, Han91] has also an infinite search space

even if the same inductive axioms are available. This shows the advantage of combining a lazy

strategy with a normalization process including inductive axioms. 2

6 Conclusions

In this paper we have presented a calculus for unification in the presence of an equational theory.

In order to obtain a small search space, the calculus is designed in the spirit of lazy evaluation,

i.e., functions are not evaluated if their result is not required to solve the unification problem. The

most important property of our calculus is the inclusion of a deterministic simplification process

where inductive consequences can be used. This has the positive effect that our calculus is more

efficient (in terms of the search space size) than other lazy unification calculi or eager narrowing

calculi (like basic narrowing, innermost narrowing) with simplification. Therefore our calculus is

qualified as the operational principle of efficient functional logic languages.

Acknowledgements. The author is grateful to Harald Ganzinger for his pointer to a suitable

termination ordering.
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