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Abstra
tGeometri
 algorithms are based on geometri
 obje
ts su
h as points, lines and
ir
les. The term kernel refers to a 
olle
tion of representations for 
onstant-size geometri
 obje
ts and operations on these representations. This paperdes
ribes how su
h a geometry kernel 
an be designed and implemented inC++, having spe
ial emphasis on adaptability, extensibility and eÆ
ien
y.We a
hieve these goals following the generi
 programming paradigm and us-ing templates as our tools. These ideas are realized and tested in Cgal [10℄,the Computational Geometry Algorithms Library.

KeywordsComputational geometry, library design, generi
 programming.



1 Introdu
tionGeometri
 algorithms that manipulate 
onstant-size obje
ts su
h as 
ir
les, lines, andpoints are usually des
ribed independent of any parti
ular representation of the obje
ts.It is assumed that these obje
ts have 
ertain operations de�ned on them and that simplepredi
ates exist that 
an be used, for example, to 
ompare two obje
ts or to determinetheir relative position. Algorithms are des
ribed in this way be
ause all representationsare equally valid as far as the 
orre
tness of an algorithm is 
on
erned. Also, algorithms
an be more 
on
isely des
ribed and are more easily seen as being appli
able in manysettings when they are des
ribed in this more generi
 way.We illustrate here that one 
an a
hieve the same advantages when implementing algo-rithms by en
apsulating the representation of obje
ts and the operations and predi
atesfor the obje
ts into a geometry kernel. Algorithms intera
t with geometri
 obje
ts onlythrough the operations de�ned in the kernel. This means that the same implementation ofan algorithm 
an be used with many di�erent representations for the geometri
 obje
ts.Thus, the representation 
an be 
hosen to be the one most appli
able (e.g., the mostrobust or most eÆ
ient) for a parti
ular setting.Regardless of the representation 
hosen by a parti
ular kernel, it 
annot hope to satisfythe needs of every appli
ation. For example, for some appli
ations one may wish tomaintain additional information with ea
h point during the exe
ution of an algorithm orone may wish to apply a two-dimensional algorithm to a set of 
oplanar points in threedimensions. Both of these things are easily a

omplished if the algorithm in question isimplemented in a generi
 way to intera
t with obje
ts through a kernel and the kernel isimplemented to allow types and operations to be rede�ned, that is, if the kernel is easilyadaptable. It is equally important that a kernel be extensible sin
e some appli
ationsmay require not simply modi�
ations of existing obje
ts and operations but addition ofnew ones.Although adaptability and extensibility are important and worthwhile goals to strivefor, one has to keep in mind that the elements of the kernel form the very basi
 andfundamental building blo
ks of a geometri
 algorithm built on top. Hen
e, we are notwilling to a

ept any loss in eÆ
ien
y on the kernel level. Indeed, using template pro-gramming te
hniques one 
an a
hieve generi
ity without sa
rifying runtime-performan
eby resolving the arising overhead during 
ompile-time.After dis
ussing previous work on the design of geometry kernels (Se
tion 2), we givea general des
ription of our new kernel 
on
ept (Se
tion 3). We then des
ribe how this
on
ept 
an be realized in an adaptable and extensible way under the generi
 programmingparadigm [24, 25℄ (Se
tions 4 through 7). Se
tion 8 illustrates the use of su
h a kerneland shows how the bene�ts des
ribed above are realized. Finally, we des
ribe the modelsof this type of kernel that are provided in Cgal (Se
tion 9).As our implementation is in C++ [9℄, we assume the reader is somewhat familiar withthis language. Stroustrup [30℄ provides a general introdu
tion to C++ template program-ming, whi
h is used extensively in our design. Parts of the design of the library wereinspired by the STL. Austern [2℄ provides a good referen
e for generi
 programming andthe STL, and a good referen
e for the C++ Standard Library is the book of Josuttis [19℄.1



2 Motivation and Previous WorkOver the past 10 years, a number of geometry libraries have been developed, ea
h with itsown notion of a geometry kernel. The C++ libraries Plageo and SpaGeo [17℄ providekernels for 2- and 3-dimensional obje
ts using 
oating point arithmeti
, a 
lass hierar
hy,and a 
ommon base 
lass. The C++ library Leda [23℄ provides in its geometry part twokernels, one using exa
t rational arithmeti
 and the other 
oating point arithmeti
. TheJava library GeomLib [3℄ provides a kernel built in a hierar
hi
al manner and designedaround Java interfa
es. None has addressed the questions of easily ex
hangeable andadaptable kernels.Flexibility is one of the 
ornerstones of Cgal [10℄, the Computational Geometry Al-gorithms Library , whi
h is being developed in a 
ommon proje
t of several universitiesand resear
h institutes in Europe and Israel. The re
ent overview [15℄ gives an extensivea

ount of fun
tionality, design, and implementation te
hniques in the library. Generi
programming is one of the tools used to a
hieve this 
exibility [7, 24, 25℄.In the original design of the geometry kernel of Cgal [14℄, the geometri
 obje
tswere ea
h parameterized by a representation 
lass, whi
h was in turn parameterized bya number type. This design provided easy ex
hange of representation 
lasses, was exten-sible, and provided limited adaptability of an existing representation 
lass. However, thedesign did not allow the representation 
lasses to be extended to also in
lude geometri
operations.This extension was seen as desirable after the introdu
tion of geometri
 traits 
lassesinto the library, whi
h separate the 
ombinatorial part of an algorithm or data stru
turefrom the underlying geometry. The term traits 
lass was originally introdu
ed by My-ers [26℄; we use it here to refer to a 
lass that aggregates (geometri
) types and operations.By supplying di�erent traits 
lasses, the same algorithm 
an be applied to di�erent kindsof obje
ts. Thus the use of traits 
lasses brought about even more 
exibility at a higherlevel in the library and, for example, allowed an easy means of 
omparison of di�erentkernels in Cgal and Leda using appropriate traits 
lasses from Cgal [27℄.As a kernel is generally 
onsidered to represent a basi
 set of building blo
ks forgeometri
 
omputations, it is quite natural to assume that the kernel itself 
an be used asa traits 
lass for many algorithms. This means that the 
on
ept of a kernel must in
ludenot only the representations for obje
ts but also the operations on these obje
ts, and formaximum 
exibility both should be easily adaptable. Indeed, the fa
t that the existingCgal kernel did not present its fun
tionality in a way that was immediately a

essiblefor the use in traits 
lasses was one motivation for this work. Fa
toring out 
ommonrequirements from the traits 
lasses of di�erent algorithms into the kernel is very helpfulin maintaining uniform interfa
es a
ross a library and maximizing 
ode reuse.While the new design des
ribed here is even more 
exible and more powerful than theold design, it maintains ba
kwards 
ompatibility. The kernel 
on
ept now in
ludes easilyex
hangeable fun
tors in addition to the geometri
 types; the ideas of traits 
lasses andkernel representations have been uni�ed. The implementation is a

omplished by usinga template programming idiom similar to the Barton-Na
kman tri
k [5, 11℄ that uses aderived 
lass as a template argument for a base 
lass template. A similar idiom has beenused in Cgal to solve 
y
li
 template dependen
ies in the halfedge data stru
ture and2



polyhedral surfa
e design [21℄.3 The Kernel Con
ept and Ar
hite
tureA geometry kernel 
onsists of types used to represent geometri
 obje
ts and operationson these types. Although from a C++ point of view both will be 
lasses, we refer only tothe former as (geometri
) types whereas we 
all the latter (geometri
) operations. Sin
edi�erent kernels will have di�erent notions of what basi
 types and operations are required,we do not 
on
ern ourselves here with listing the parti
ular obje
ts and operations to bein
luded in the kernel. Rather, we des
ribe the kernel 
on
ept in terms of the interfa
e itprovides for ea
h obje
t and operation.Depending on one's perspe
tive, the expe
ted interfa
e to these types and operationswill look somewhat di�erent. From the point of view of an imperative-style programmer,it is natural that the types appear as stand-alone 
lasses and the operations as globalfun
tions or member fun
tions of these 
lasses.K::Point_2 p(0,1), q(1,-4);K::Line_2 line(p, q);if (less_xy_2(p, q)) f ... gHowever, from the point of view of someone implementing algorithms in a generi
 way,it is most natural, indeed most useful, if types and operations are both provided by thekernel. This en
apsulation allows both types and operations to be adapted and ex
hangedin the same manner.K k;K::Constru
t_line_2 
_line = k.
onstru
t_line_2_obje
t();K::Less_xy_2 less_xy = k.less_xy_2_obje
t();K::Point_2 p(0,1);K::Point_2 q(1,-4);K::Line_2 line = 
_line(p, q);if (less_xy(p, q)) f ... gThe 
on
ept of a kernel we introdu
e here in
ludes both of these perspe
tives. That is,ea
h operation is represented both as a type, an instan
e of whi
h 
an be used like afun
tion, and as a global fun
tion or a member fun
tion of one of the obje
t 
lasses.The te
hniques des
ribed in the following three se
tions allow both interfa
es to 
oexistpea
efully under one roof with a minimal maintenan
e overhead, and thus lead to a kernelthat presents a good fa
e to everyone.Our kernel is 
onstru
ted from three layers, illustrated in Figure 1. The bottom layer
onsists of basi
 numeri
 primitives su
h as the 
omputation of matrix determinants andthe 
onstru
tion of line equations from point 
oordinates. These numeri
 primitives areused in the geometri
 primitives that 
onstitute the se
ond layer of our stru
ture. Thetop layer then assimilates the geometri
 primitives. The s
ope of our kernel 
on
ept isrepresentation-independent aÆne geometry. Thus the 
on
ept in
ludes, for example, the3



stru
t Kernel;
stru
t Leftturn 2;FT determinant2x2(FT, FT, FT, FT);void line from pointsC2(FT px, FT py, FT qx, FT qy,
stru
t Constru
t line 2;

Point 2;Line 2;Constru
t line 2;Leftturn 2;stru
t Point 2;stru
t Line 2;
FT& a, FT& b, FT& 
);

Kernel

alls Numeri
Primitives

Geometri
Primitives

onsistsof

Figure 1: The kernel ar
hite
ture.
onstru
tion of a point as the interse
tion of two lines but not its 
onstru
tion from x andy 
oordinates.4 An Adaptable KernelWe present our te
hniques using a simpli�ed example kernel. Consider the types Point 2and Line 2 representing two-dimensional points and lines, respe
tively, an operationConstru
t line 2 that 
onstru
ts a Line 2 from two Point 2 arguments, and an op-eration Less xy 2 that 
ompares two Point 2 obje
ts lexi
ographi
ally. The kernel forthese types and operations might then look as follows; the 
lasses MyPoint, MyLine,MyConstru
t, and MyLess are arbitrary and de�ned elsewhere.stru
t Kernel ftypedef MyPoint Point_2;typedef MyLine Line_2;typedef MyConstru
t Constru
t_line_2;typedef MyLess Less_xy_2;g;In general, one probably needs more operations and possibly more types in order to beable to do something useful, but for the sake of simpli
ity we will stay with these fouritems for the time being.A �rst question might be: Constru
t line 2 has to 
onstru
t a Line 2 from twoPoint 2s; hen
e it has to know something about both types. How does it get to knowthem? Sin
e we are talking about adaptability, just hard-wiring the names MyPoint andMyLine into MyConstru
t is not what we would like to do.A natural solution is to parameterize MyConstru
t with the other 
lasses, that is,with our kernel. As soon as a 
lass knows the kernel it resides in, it also knows all related4




lasses and operations. A straightforward way to implement this parameterization is tosupply the kernel as a template argument to the geometri
 
lasses.template < 
lass K > stru
t MyPoint f ... g;template < 
lass K > stru
t MyLine f ... g;template < 
lass K > stru
t MyConstru
t f ... g;template < 
lass K > stru
t MyLess f ... g;Our kernel 
lass from above has to be 
hanged a

ordingly.stru
t Kernel ftypedef MyPoint< Kernel > Point_2;typedef MyLine< Kernel > Line_2;typedef MyConstru
t< Kernel > Constru
t_line_2;typedef MyLess< Kernel > Less_xy_2;g;At �rst, it might look a bit awkward; inserting a 
lass into its own 
omponents seems to
reate 
y
li
 referen
es. Indeed, one has to be 
areful, as the following example demon-strates.template < 
lass T >stru
t P ftypedef typename T::A B;g;stru
t K ftypedef P< K >::B B; // *typedef int A;g;A referen
e to K::B will lead to P<K>::B and further to K::A, but this type is not yetde
lared in line *. A reasonable C++ 
ompiler will thus give up at that point. But thereis no su
h problem with the Kernel 
lass above; the 
lass is 
onsidered to be de
laredas soon as the 
lass name has been read (
f. [9℄ 9/2), hen
e it is �ne to provide it asa template argument to other 
lasses. The problem in 
lass K 
ame from the fa
t thatP<K>::B refers ba
k to K inside its own de�nition, to the still unde�ned type K::A.Leaving these subtleties, let us 
ome ba
k to the main theme: adaptability. It shouldbe easy to extend or adapt this kernel and indeed, all that needs to be done is to derive anew 
lass from Kernel where new types 
an be added and existing ones 
an be ex
hanged.stru
t New_kernel : publi
 Kernel ftypedef NewPoint< New_kernel > Point_2;typedef MyLeftTurn< New_kernel > Left_turn_2;g;Here Point 2 is overwritten with a di�erent type and the new operation Left turn 2 isde�ned. So let us start programming with the newly 
onstru
ted kernel.5



New_kernel::Point_2 p, q;New_kernel::Constru
t_line_2 
onstru
t_line_2;// initialize p, q and 
onstru
t_line_2New_kernel::Line_2 l = 
onstru
t_line_2(p, q);To our surprise and anger, the last line refuses to 
ompile.No instan
e of fun
tion "MyConstru
t<Kernel>::operator()"mat
hes the argument list.The argument types are: (New_kernel::Point_2, New_kernel::Point_2).What has gone wrong? Apart from the fa
t that we did not show the implementationof MyConstru
t yet and hen
e the referen
e to operator() is not 
lear, there is onething that should 
at
h our eyes: the 
ompiler 
omplains about MyConstru
t<Kernel>whereas we would like to see MyConstru
t<New kernel>. On the other hand, this is notreally surprising, sin
e we did not 
hange the type Constru
t line 2 in New kernel,hen
e, it is the same as in Kernel, that is MyConstru
t<Kernel>. MyConstru
t<> usesthe type Kernel::Point 2 (= MyPoint<>) and 
annot handle New kernel::Point 2 (=NewPoint<>) arguments properly; hen
e, the error message.Kernel New kernel
Left turn 2Constru
t line 2Line 2Point 2Line 2Point 2Constru
t line 2MyPoint MyLine MyConstru
t NewPoint MyTurnFigure 2: Instantiation problem. Boxes stand for 
lasses, thi
k dashed arrows denotederivation, solid arrows show (template) parameters, and thin dotted arrows have to beread as \de�nes" (typedef or inheritan
e).What 
an be done to tell MyConstru
t that it should now 
onsider itself part ofNew kernel? An obvious solution would be to rede�ne Constru
t line 2 in New kernelappropriately. This is �ne in our example where it amounts to just one more typedef,but 
onsidering a real kernel with dozens of types and hundreds of operations, it wouldbe really tedious to have to repeat all these de�nitions. Note that it may well be thatthese 
lasses have to be rede�ned anyway, as the 
hange of one 
lass potentially a�e
tsall other 
lasses that intera
t with that 
lass. But often it is not ne
essary1, and we donot want this rede�nition as a general requirement.1Consider repla
ing a 
lass by another 
lass providing the same interfa
e or a superset of it, e.g.,derived 
lasses. 6



Fortunately, there is a way out. If Kernel is meant as a base for building 
ustomkernel 
lasses, it is not wise to instantiate MyPoint<>, MyLine<> and MyConstru
t<> atthat point with Kernel, as this might not be the kernel in whi
h these 
lasses �nallyend up. We rather would like to defer the instantiation, until it is 
lear what the a
tualkernel will be. This 
an be done by introdu
ing a 
lass Kernel base that serves as an\instantiation-engine." A
tual kernel 
lasses like Kernel and New kernel both derivefrom Kernel base and �nally start the instantiation by inje
ting themselves into thebase 
lass.template < 
lass K >stru
t Kernel_base ftypedef MyPoint< K > Point_2;typedef MyLine< K > Line_2;typedef MyConstru
t< K > Constru
t_line_2;typedef MyLess< K > Less_xy_2;g;stru
t Kernel : publi
 Kernel_base< Kernel > fg;It seems somewhat strange to insert a 
lass into its base 
lass, that is into itself in somesense. But looking at it more 
losely qui
kly reveals that the 
onstru
tion is not mu
hdi�erent from the previous one, ex
ept for giving the additional freedom to determinewhen MyPoint et
. are instantiated. It is still easy to 
reate new kernels by derivation,now from Kernel base. In order to be able to extend New kernel in the same way asKernel, we defer instantiation on
e again.template < 
lass K >stru
t New_kernel_base : publi
 Kernel_base< K > ftypedef NewPoint< K > Point_2;typedef MyLeftTurn< K > Left_turn_2;g;stru
t New_kernel : publi
 New_kernel_base< New_kernel > fg;Thus we a
hieve our easily extensible and adaptable kernel through the use of the kernelas a template parameter at two di�erent levels. The geometri
 obje
t 
lasses in the kerneluse the kernel as a template parameter so the distin
t geometri
 obje
ts have a way ofdis
overing the types of the other obje
ts and operations. Thus any 
hange of a typeor operation in the kernel is propagated through to the relevant obje
t 
lasses. And thekernel itself is derived from a base 
lass that is templated by the kernel, whi
h assuresthat the types and operations instantiated are the types in the derived 
lass and not inthe base 
lass. Thus any modi�ed types or operations live in the same kernel as the onesinherited from the base 
lass and there is no problem in using the two together.5 Fun
torsThe question still remains how we provide the a
tual fun
tions that are needed by the
lasses and fun
tions that intera
t through the kernel. Consider again the example fromthe previous se
tion: 7



Kernel base New kernel base
Left turn 2Constru
t line 2Line 2Point 2 New kernel

Left turn 2Constru
t line 2Line 2Point 2Line 2Point 2Constru
t line 2MyPoint MyLine MyConstru
t NewPoint MyTurnFigure 3: Deferring instantiation. Boxes stand for 
lasses, thi
k dashed arrows denotederivation, solid arrows show (template) parameters, and thin dotted arrows have to beread as \de�nes" (typedef or inheritan
e).New_kernel::Point_2 p, q;New_kernel::Constru
t_line_2 
onstru
t_line_2;// initialize p, q and 
onstru
t_line_2New_kernel::Line_2 l = 
onstru
t_line_2(p, q);What we are 
on
erned with here is how the kernel provides the fun
tion 
onstru
t line 2.There are a number of ways su
h a fun
tion 
an be provided in a way that assures adapt-ability of the kernel. Adaptability is not the only 
on
ern, however. A real kernel will
ontain many 
onstru
tions and predi
ates, most of them small, 
ontaining only a fewlines of 
ode. These fun
tions will be 
alled a huge number of times during the exe
utionof an algorithm implemented on top of the kernel; they are to geometry what additionsand multipli
ations are to arithmeti
s. Hen
e, eÆ
ien
y is very important.The 
lassi
 C-style approa
h would be to use pointers to fun
tions in the kernel.stru
t Kernel ftypedef Line_2 (*Constru
t_line_2)(Point_2 p, Point_2 q);Constru
t_line_2 
onstru
t_line_2;g;Adaptability is provided by the ability to 
hange the pointer (
onstru
t line 2 in ourexample). But the additional indire
tion when 
alling the fun
tion imposes a 
onsiderableperforman
e penalty for small fun
tions. We will demonstrate this behaviour below.Virtual fun
tions are the Java-style means of a
hieving adaptability.stru
t Kernel_base fvirtual Line_2 
onstru
t_line_2(Point_2 p, Point_2 q);g;As with pointers to fun
tions, though, there is an additional indire
tion involved (lookupin the virtual fun
tion table); moreover, many 
ompiler optimisations are not possiblethrough virtual fun
tions [31℄, as the a
tual types are not known at 
ompile time. Thisoverhead is 
onsiderable in our 
ontext [27℄.8



So if virtual fun
tions are too 
ostly, how about making 
onstru
t line 2 a plainmember fun
tion of Kernel base? The fun
tion 
an then be adapted by overwriting itin derived 
lasses. Indeed, what we propose is just one step further, and involves movingfrom 
on
rete fun
tion signatures in the programming language to a more abstra
t level.The solution is inspired by the standard C++ library [9℄, where many algorithms areparameterized with so-
alled fun
tion obje
ts, or fun
tors. The 
ru
ial observation behindthis abstra
tion is the following: it is not important whether something is a fun
tion, aslong as it behaves like a fun
tion and thus 
an be used as a fun
tion. So what is thebehaviour of a fun
tion? It is something you 
an 
all by using parentheses and passingarguments [19℄.Obviously, any fun
tion is a fun
tor. But obje
ts of a 
lass-type that de�ne an appro-priate operator() 
an be fun
tors as well.stru
t Constru
t_line_2 fLine_2 operator()(Point_2 p, Point_2 q) 
onstf // build a line from points p and q; gg;This way, any instan
e of Constru
t line 2 
an be used as if it were a fun
tion.Point_2 p, q;Constru
t_line_2 
onstru
t_line_2;Line_2 l = 
onstru
t_line_2(p,q);There are at least three advantages that make this abstra
tion worthwhile: eÆ
ien
y,ability to maintain a state, and better type 
he
king, all explained in more detail below.Although the �rst two advantages 
an be a
hieved by using plain member fun
tions ofthe kernel 
lass, there are a few reasons that fun
tors are preferable.� Geometri
 operations that are fun
tors 
an be used together with algorithms fromthe standard library su
h as sort, lower bound, et
.� Fun
tors are 
leanly separated from ea
h other and 
an maintain their states inde-pendently.� Fun
tors provide an almost uniform framework where both representations andoperations are just types in the kernel 
lass, and the me
hanisms for adapting andex
hanging them are the same.� Fun
tors provide a simpler 
alling syntax sin
e it is independent of the kernel obje
t,whereas member fun
tions require the use of the kernel obje
t in every 
all.5.1 EÆ
ien
y of Fun
torsIf the 
omplete 
lass de�nition for a fun
tor is known at 
ompile time, the operator()
an be inlined. Handing the fun
tor as a template argument to some fun
tion templateor 
lass template is like literally handing over a pie
e of 
ode that 
an be inlined andoptimized to the 
ompiler's taste. Note again the 
ontrast to the traditional fun
tionpointers and to virtual fun
tions. 9



To support this 
laim, we have made a small test: sort 5000 double numbers withbubble-sort, beginning with the numbers in worst-
ase order. The �rst fun
tion 
omparesnumbers using the built-in operator<, the se
ond is parameterized with a fun
tor forthe 
omparison, and the third with a fun
tion pointer. With 
ompilers that optimizewell, there is absolutely no di�eren
e in runtime between the generi
 fun
tor and the\hand
rafted" version, while the fun
tion pointer parameterization 
auses a 
onsiderableoverhead; see Table 1.System Compiler < fun
tor pointerLinux g++ -O3 370 430 1150Irix CC -Ofast 760 760 1350Solaris g++ -O3 770 860 5360Solaris CC -fast 890 890 3300Solaris KCC +K3 740 740 2560Table 1: Runtime in mse
. to sort 5000 double numbers.5.2 Fun
tor with StateIn addition to their potential for optimizations, fun
tors also prove to be more 
exiblethan plain fun
tions; a fun
tor of 
lass-type has a state that 
an 
arry lo
al data. Whilestate 
ould also be implemented using stati
 variables in member or global fun
tions, thiswould forbid working with more than one instan
e of the fun
tion, imposing a severeand hard-to-
he
k restri
tion. And maintaining a single monolithi
 kernel obje
t thataggregates the states of all its operations would be quite diÆ
ult to handle.Let us assume that, for the purposes of ben
hmarking, we want to 
ount the numberof 
omparisons done by a program using our fun
tor MyLess in the sample kernel Kernelabove.template <
lass K>stru
t MyLess ftypedef typename K::Point_2 Point_2;int* 
ount;MyLess(int* 
ounter) : 
ount(
ounter) fgbool operator()(Point_2 p, Point_2 q) 
onst f++(*
ount);return p.x < q.x || p.x == q.x && p.y < q.y;gg;Ea
h 
all to this fun
tor in
reases the externally referen
ed 
ounter by one. Other, moreserious, examples of fun
tors using a state are the adaptors binder1st and binder2nd10



in the STL. They use a lo
al variable to store the value to whi
h one of a fun
tor'sarguments gets bound. Also the proje
tion traits des
ribed in Se
tion 8.3 needs a stateto store the proje
tion dire
tion.Allowing lo
al data for a fun
tor adds a slight 
ompli
ation to the kernel. Clearly, ageneri
 algorithm has to be oblivious to whether a fun
tor 
arries lo
al state or not. Hen
e,the algorithm 
annot instantiate the fun
tor itself. As the example above illustrates, afun
tion with lo
al state may require the use of a non-default 
onstru
tor while onewithout a lo
al state does not. But we 
an assume that the kernel knows how to 
reatefun
tors. So we add a

ess member fun
tions to the kernel that allow a generi
 algorithmto obtain an obje
t for a fun
tor. Here is the revised kernel base 
lass for the example fromthe previous se
tion. The a

ess member fun
tions are simply inherited by all derivedkernels and kernel base 
lasses.template < 
lass K >stru
t Kernel_base ftypedef MyPoint< K > Point_2;typedef MyLine< K > Line_2;typedef MyConstru
t< K > Constru
t_line_2;typedef MyLess< K > Less_xy_2;Constru
t_line_2 
onstru
t_line_2_obje
t();Less_xy_2 less_xy_2_obje
t();g;The a
tual implementations of 
onstru
t line 2 obje
t and less xy 2 obje
t de-pend on MyConstru
t and MyLess, respe
tively, and might be as simple as the default
onstru
tors.5.3 Better Type Mat
hingThe type of a fun
tion is de�ned by its signature, while the types of general fun
tors
an be as di�erent as one likes. This is an advantage in template argument mat
hing,as there is more freedom in expressing the set of mat
hing types. Consider, for example,a data stru
ture D<> that is parameterized with a predi
ate, and imagine a 
lass P<> ofpredi
ates for whi
h you would like to share the implementation of D< P<> >. By de�ninga spe
ializationtemplate < 
lass T > stru
t D< P< T > > f ... g;this 
ode sharing is easily a

omplished, while doing so on the level of fun
tion signaturesis not possible in a straightforward manner.6 An Imperative Interfa
eSomeone used to imperative-style programming might expe
t a kernel interfa
e based onmember fun
tions and global fun
tions operating on the geometri
 
lasses rather thanhaving to deal with fun
tors and kernel obje
ts. Due to the 
exibility in our design, we
an easily provide su
h an interfa
e on top of the kernel with little overhead. However,some 
are has to be taken, su
h that the generi
ity is not lost in this step.11



Consider again the operation for determining if one point is lexi
ographi
ally smallerthan another. We have provided this operation through our kernel with the type Less xy 2and the member fun
tion less xy 2 obje
t(), whi
h 
reates an instan
e of the fun
tor.It is also quite natural to provide this operation as a global fun
tion in our kernel interfa
e.In order to handle 
orre
tly fun
tors with state, a kernel obje
t has to be a parameter ofsu
h a fun
tion. A default argument 
an be used su
h that the kernel obje
t does nothave to be provided where the default kernel suÆ
es.template < 
lass K >bool less_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())f return k.less_xy_2_obje
t()(p, q); gHowever, if the kernel parameter k is omitted, the type K 
annot be dedu
ed from thea
tual parameters of the fun
tion 
all (
f. [9℄ 14.8.2.1/4). Hen
e, the template parameterhas to be spe
i�ed expli
itly in this 
ase.Kernel::Point_2 p, q;if (less_xy_2<Kernel>(p, q)) f ... gWhile su
h fun
tions allow one to write 
ompletely generi
 
ode, one might still obje
tto the spurious-looking <Kernel> parameter in the global fun
tion 
all. It would bepreferable to be able to avoid this parameter in some 
ases, e.g., where only one spe
i�
kernel is ever used. The solution is to overload the fun
tion for parameters from thisspe
i�
 kernel.bool less_xy_2(Point_2< Default_kernel_1 > p,Point_2< Default_kernel_1 > q)f return less_xy_2<Default_kernel_1>(p, q); gNote that these spe
ialized fun
tions 
an be templated again, e.g., by a number type, aslong as they are not templated with the kernel 
lass.2 Then both the spe
ialized fun
tionand the fun
tion with the kernel template parameter 
an pea
efully 
oexist, and also bothways of 
alling them 
an be used simultaneously.One might also want to add some fun
tionality to the geometri
 types. For example,if the kernel supports the 
onstru
tion of a line from two points, it is natural that the
lass MyLine has a 
onstru
tor that takes two point arguments.template < 
lass K >stru
t MyLine fMyLine(typename K::Point_2 p, typename K::Point_2 q)f ... use e.g. K::Constru
t_line_2 ... gg;Again it is important that MyLine does not make assumptions about the point type, butuses the operations provided by K only. This way, the geometri
 types remain ni
elyseparated, as their { sometimes 
lose { relationships are en
apsulated into appropriateoperations.2If they were, the 
all less xy 2<Default kernel 1>(...) would be ambiguous.12



7 A Fun
tion ToolboxOur kernel 
on
ept ni
ely separates the representation of geometri
 obje
ts from the oper-ations on these obje
ts. But when implementing a spe
i�
 operation su
h as Left turn 2,the representation of the 
orresponding point type Point 2 will inevitably 
ome into play;in the end, the predi
ate is evaluated using arithmeti
 operations on some number type.The nontrivial3 algebrai
 
omputations needed in predi
ates and 
onstru
tions are en
ap-sulated in the bottom layer of our kernel ar
hite
ture (Figure 1), the number-type-basedfun
tion toolbox, whi
h we des
ribe in this se
tion.A number type refers to a numeri
al type that we use to store 
oordinates and to 
al-
ulate results. Given that the 
oordinates we start with are rational numbers, it suÆ
esto 
ompute within the domain of rational numbers. For 
ertain operations we will gobeyond rational arithmeti
 and require roots. However, sin
e the majority of our kernelrequires only rational arithmeti
 we fo
us on this aspe
t here. Depending on the 
al
ula-tions required for 
ertain operations, we distinguish between di�erent 
on
epts of numbertypes that are taken from algebra. A ring supports addition, subtra
tion and multipli
a-tion. A Eu
lidean ring supports the three ring operations and an integral division withremainder, whi
h allows the 
al
ulation of greatest 
ommon divisors used, e.g., to 
an
el
ommon fa
tors in fra
tions. In 
ontrast, a �eld type supports exa
t division instead ofintegral division.Many of the operations in our kernel boil down to determinant evaluations, e.g., sided-ness tests, in-
ir
le tests, or segment interse
tion. For example, the left-turn predi
ate isevaluated by 
omputing the sign of the determinant of a 2�2 matrix built from di�eren
esof the points' 
oordinates. Sin
e the evaluation of su
h a determinant is needed in severalother predi
ates as well, it makes sense to fa
tor out this step into a separate fun
tion,whi
h is parameterized by a number type (here FT for �eld type) to maintain 
exibilityeven at this level of the kernel:template < 
lass FT >FT determinant2x2(FT a00, FT a01, FT a10, FT a11)f return a00 * a11 - a10 * a01; gThe fun
tion 
an now be shared by all predi
ates and 
onstru
tions that need to evaluatea 2�2 determinant. This 
ode reuse is desirable not only be
ause it redu
es maintenan
eoverhead but also from a robustness point of view, as it isolates potential problems in asmall number of pla
es. And this also enhan
es the adaptability and extensibility of ourkernel. These basi
 numeri
al operations are equally as a

essible to anyone providingadditional or 
ustomized operations on top of our kernel in the future.8 Adaptable AlgorithmsIn the previous se
tions, we have illustrated the te
hniques used to realize a kernel 
on
eptthat in
ludes fun
tors as well as types in a way that makes both easily adaptable. Herewe show how su
h a kernel 
an be put to good use in the implementation and adaptationof an algorithm.3beyond a single addition or 
omparison 13



In Cgal, the geometri
 requirements of an algorithm are 
olle
ted in a geometri
traits 
lass that is a template parameter for the algorithm. With the addition of fun
torsto the kernel 
on
ept, it is now possible simply to supply a kernel as the argument forthe geometri
 traits 
lass of an algorithm. And it is also now quite easy to repla
e a typeor predi
ate provided with one of the kernels in Cgal with another, 
ustomized type orpredi
ate and then use the adapted kernel as the traits 
lass argument. We illustratethese points below.In general, the requirements of many geometri
 traits 
lasses are only a subset of therequirements of a kernel. Other geometri
 traits 
lasses might have requirements that arenot part of the kernel 
on
ept. They 
an be implemented as extensions on top, havingeasy a

ess to the part of their fun
tionality that is provided by the kernel.8.1 Kernel as a Traits ClassLet us 
onsider as a simple example Andrew's variant of Graham's s
an [1, 12℄ for 
om-puting the 
onvex hull of a set of points in two dimensions. This algorithm requires onlya point type, the lexi
ographi
al 
omparison of points, and a left-turn predi
ate from itstraits 
lass. Thus, the kernel New kernel from Se
tion 4 suÆ
es for this algorithm.The fun
tion that implements this algorithm takes a range of random-a

ess iteratorsproviding the input sequen
e of points and a bidire
tional iterator for the resulting se-quen
e of hull points. The last argument is the traits 
lass, that is, our kernel. For athorough des
ription of the standard iterator 
on
epts refer to the book of Austern [2℄ orthe online referen
e of SGI's STL [29℄. Informally speaking, one 
an think of random-a

ess iterators as pointers to an array, while bidire
tional iterators 
an be regarded aspointers to a doubly-linked list.Let us 
esh out the example of the 
onvex hull algorithm and see how it 
ould beimplemented4. The algorithm 
omputes the 
onvex hull and 
opies all points on theboundary of the 
onvex hull (not only its 
orners) in 
ounter
lo
kwise order to the iteratorresult. It runs in O(n logn) time, for a set of n input points, using linear spa
e and 
anprodu
e up to 2n� 2 output points in the degenerate 
ase that all points are 
ollinear.template < 
lass RandomA

essIterator,
lass Bidire
tionalIterator,
lass Traits >Bidire
tionalIterator
h_graham_andrew_s
an(RandomA

essIterator first,RandomA

essIterator beyond,Bidire
tionalIterator result,
onst Traits& traits)f typename Traits::Left_turn_2 left_turn_2 = traits.left_turn_2_obje
t();// lexi
ographi
al sorting + remove dupli
atesstd::sort(first, beyond, traits.less_xy_2_obje
t());beyond = std::unique(first, beyond, std::not2(traits.less_xy_2_obje
t()));4The implementation provided in Cgal is somewhat di�erent.14



// lower 
onvex hull (left to right)result = 
opy_if_triple_2(first, beyond, result, left_turn_2);// upper 
onvex hull (right to left)typedef std::reverse_iterator< RandomA

essIterator > Rev;result = 
opy_if_triple_2(Rev(beyond), Rev(first), --result, left_turn_2);return --result;gNote that the implementation is very simple and 
on
ise due to the use of algorithms anddata stru
tures from the standard C++ library. It also uses the following fun
tion that, al-though non-standard, is heavily inspired by standard algorithms su
h as std::remove ifand std::unique.template < 
lass ForwardIterator, 
lass RandomA

essIterator, 
lass Predi
ate >RandomA

essIterator
opy_if_triple_2(ForwardIterator first,ForwardIterator beyond,RandomA

essIterator result,Predi
ate pred)// 
opy a subrange of [f, b) to r, s.t. for any 3 
onse
utive elmts p// is true. The subrange is obtained by su

essively removing the 2nd// element from the 1st triple in [f, b) not satisfying p.f *result = *first, ++result, ++first;RandomA

essIterator o = result;*result = *first, ++result, ++first;for (; first != beyond; ++result, ++first) fwhile (result != o && pred(*first, result[-1℄, result[-2℄))--result;*result = *first;greturn result;gCalling the algorithm with a kernel is straightforward. We 
an simplify the 
all fur-ther and hide the kernel parameter with a default argument. For the default we 
hoosethe kernel used for the points of the input sequen
e. We obtain the point type usingstd::iterator traits and use the same te
hnique in Kernel traits, to dedu
e thekernel of a geometri
 obje
t. Note that for this me
hanism the kernel has to be default
onstru
tible.template < 
lass Bidire
tionalIterator, 
lass OutputIterator >OutputIterator
h_graham_andrew_s
an(Bidire
tionalIterator first,Bidire
tionalIterator beyond,OutputIterator result)f 15



typedef typename std::iterator_traits< Bidire
tionalIterator >::value_type P;typedef typename Kernel_traits< P >::Kernel Kernel;return 
h_graham_andrew_s
an(first, beyond, result, Kernel());gThe 
lass Kernel traits is modelled after std::iterator traits. The default imple-mentation 
ould be as follows.template < 
lass T >stru
t Kernel_traits ftypedef typename T::Kernel Kernel;g;We assume a 
onvention that points provide a lo
al type Kernel for their kernel. For ge-ometri
 
lasses that do not provide this type one has to de�ne appropriate spe
ializationsof Kernel traits.8.2 Adapting a Predi
ateAssume we use the 
onvex hull fun
tion from above with a kernel that represents points bytheir Cartesian 
oordinates of type double5. The left-turn predi
ate amounts to evaluat-ing the sign of a 2�2-determinant; if this is done in the straightforward way by 
al
ulationswith doubles, the result is not guaranteed to be 
orre
t due to roundo� errors 
aused bythe limited pre
ision. It 
annot be stressed enough, that this is not just a question ofsome minor errors in the output, i.e., some points 
lose to the boundary of the 
onvex hullbeing 
lassi�ed wrongly; the whole 
ombinatori
s 
an break down, 
ausing the algorithmto output garbage or even to loop endlessly.While there is an easy way out, that is, using an exa
t number type [8, 20℄ insteadof double, this often has to be paid for with a 
onsiderable loss in performan
e. Anin-between solution is to do the 
al
ulations on the fast 
oating point type and 
al
ulatean error-bound from whi
h one 
an dedu
e whether the result is 
orre
t, i.e., the sign ofthe expression is known. Exa
t arithmeti
 is only used in those 
ases where the 
oatingpoint 
al
ulation is not known to give the 
orre
t results, and the hope is that thishappens seldom. The des
ribed te
hnique is 
alled 
oating point �ltering [6, 16, 28℄,and depending on how the error bound is 
omputed, one refers to the �lters as stati
,semi-stati
 or dynami
.We will now des
ribe how to adapt the kernel to use a stati
ally �ltered left-turnpredi
ate, using the types double and some arbitrary-pre
ision number type, whi
h we
all exa
t. Assume, we know that the 
oordinates of the input points are double valuesfrom (�1; 1). It 
an be shown (
f. [28℄) that in this 
ase the 
orre
t sign 
an be determinedfrom the double 
al
ulation, if the absolute value of the result ex
eeds3 � (2�50 + 2�102) < 2.6645352591003765e-15 :template < 
lass K >stru
t Stati
_filter_left_turn_2 f5A double pre
ision 
oating point number type as de�ned in IEEE 754 [18℄.16



typedef typename K::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q, Point_2 r) 
onst f// 
ompute approximationdouble a = determinant2x2(q.x - p.x, q.y - p.y,r.x - p.x, r.y - p.y);// test for error bound:
onst double epsilon = 2.6645352591003765e-15;if (a < -epsilon) return false;if (a > epsilon) return true;// else 
ompute exa
tly ...exa
t epx = p.x, epy = p.y;exa
t eqx = q.x, eqy = q.y;exa
t erx = r.x, ery = r.y;return determinant2x2(eqx - epx, eqy - epy,erx - epx, ery - epy) > exa
t(0);ggInserting this into our kernel is straightforward.stru
t Filtered_kernel : publi
 Kernel_base< Filtered_kernel > ftypedef Stati
_filter_left_turn_2< Filtered_kernel > Left_turn_2;Left_turn_2 left_turn_2_obje
t() 
onst f return Left_turn_2(); gg;And supplying this adapted kernel to the 
onvex hull fun
tion will guarantee that the
orre
t result is produ
ed.The example given here is spe
i�
 for two parti
ular number types (double and exa
t)and for a parti
ular range of values for the 
oordinates. Thus, though useful, our adaptedpredi
ate is not appli
able in all 
ases. In Se
tion 9, we des
ribe a model for a kernelprovided in Cgal that is parameterized by two number types and automati
ally �ltersall predi
ates of a given, un�ltered kernel, although using a di�erent method than the oneillustrated above.8.3 Proje
tion TraitsAs mentioned in Se
tion 5, one bene�t of using fun
tors in the traits 
lass and kernel 
lassis the possible asso
iation of a state with the fun
tor. This 
exibility 
an be used, forexample, to apply a two-dimensional algorithm to a set of 
oplanar points in three dimen-sions. Consider the problem of triangulating a set of points on a polyhedral surfa
e. Ea
hfa
e of the surfa
e 
an be triangulated separately using a two-dimensional triangulationalgorithm and a kernel 
an be written whose two-dimensional part realizes the proje
tionof the points onto the plane of the fa
e in all fun
tors while a
tually using the originalthree-dimensional data. The predi
ates must therefore know about the plane in whi
hthey are operating and this is maintained by the fun
tors in a state variable.17



9 Kernel ModelsThe te
hniques des
ribed in the previous se
tions have been used to realize several modelsfor the geometry kernel 
on
ept des
ribed in Se
tion 3. In fa
t, we use 
lass templatesto 
reate a whole family of models at on
e. The template parameter is usually thenumber type used for 
oordinates and arithmeti
 (Se
tion 7). We 
ategorize our kernelfamilies a

ording to 
oordinate representation, obje
t referen
e and 
onstru
tion, andlevel of runtime optimization. Furthermore, we have a
tually two kernel 
on
epts inCgal: a lower-dimensional kernel 
on
ept for the �xed dimensions 2 and 3, and a higher-dimensional kernel 
on
ept for arbitrary dimension d. For more details beyond what 
anbe presented here, the reader is referred to the Cgal referen
e manuals [10℄.9.1 Coordinate RepresentationWe distinguish two 
oordinate representations: Cartesian and homogeneous. The Carte-sian representation is a 
lass template Cartesian<FT> with the template parameter FTindi
ating the requirements for a �eld type. The homogeneous representation is a 
lasstemplate Homogeneous<RT> with the template parameter RT indi
ating the requirementsfor a ring type. Homogeneous representation allows many operations to fa
tor out di-visions into a 
ommon denominator, thus avoiding divisions in the 
omputation, whi
h
an sometimes improve eÆ
ien
y and robustness greatly. The Cartesian representation,however, avoids the extra time and spa
e overhead required to maintain the homogenizing
oordinate and thus 
an also be more eÆ
ient for 
ertain appli
ations.9.2 Memory Allo
ation and Constru
tionAn additional fa
et of optimization is the memory layout of the geometri
 obje
ts. Thestandard te
hnique of smart pointers 
an be used to speed up 
opy 
onstru
tions andassignments of obje
ts with a referen
e-
ounted handle-representation s
heme. Runtimeexperiments show that this s
heme pays o� for obje
ts whose size is larger than a 
er-tain threshold (around 4 words depending on the ma
hine ar
hite
ture). To allow foran optimal 
hoi
e, Cgal o�ers for ea
h representation a simple and a smart-pointerbased version. In the Cartesian 
ase, these models are 
alled Simple 
artesian<FT> andCartesian<FT>.9.3 Filtered ModelsThe established approa
h for robust geometri
 algorithms following the exa
t 
omputationparadigm [32℄ requires the exa
t evaluation of geometri
 predi
ates, i.e., de
isions derivedfrom geometri
 
omputations have to be 
orre
t. While this 
an be a
hieved straight-forwardly by relying on an exa
t number type, this is not the most eÆ
ient approa
h,and the idea of so-
alled �lters has been developed to speed up the exa
t evaluation ofpredi
ates [6, 16, 28℄. See also the example in Se
tion 8.The basi
 idea is to use a �ltering step before the 
ostly 
omputation with an exa
tnumber type. The �lter step evaluates qui
kly and approximately the result of the pred-i
ate, but is also able to de
ide if the answer it gives is 
erti�ed to be true or if there is18



a risk for a false answer, in whi
h 
ase the exa
t number type is used to �nd the 
orre
tanswer.Cgal implements su
h a �ltering te
hnique using interval arithmeti
, via the numbertype Interval nt [6℄. This number type stores an interval of two double values that
hanges to re
e
t the round-o� errors that o

ur during 
oating point 
omputations.The 
omparison operators on this number type have the property that they throw a C++ex
eption in 
ase that the two intervals to be 
ompared overlap. When this o

urs, itmeans that the �lter 
annot 
ertify the exa
tness of the result using its approximate
omputation. Then we have to �nd a di�erent method to evaluate exa
tly the predi
ate,by using an exa
t, but slower, number type. As this failure is supposed to happen rarely onaverage, the overall performan
e of using the �ltering is about the same as the evaluationof the predi
ate over the intervals, whi
h is pretty fast.Cgal provides an adaptor Filter predi
ate<>, whi
h makes it easy to use the�lter te
hnique for a given predi
ate, and also a full kernel Filtered kernel<> with allpredi
ates �ltered using the s
heme presented above.Here is an example of an appli
ation to the orientation predi
ate. The fun
torCartesian<FT>::Orientation 2 is templated by a �eld type. This allows us to build the�ltered version of the orientation predi
ate easily, provided we have an exa
t number typelike leda real. We simply de�ne one version of the predi
ate with the interval numbertype as the �eld type and one with the exa
t number type and use both of these to de�neour �ltered predi
ate.typedef Cartesian< Interval_nt >::Orientation_2 Approx;typedef Cartesian< leda_real >::Orientation_2 Exa
t;typedef Filter_predi
ate< Approx, Exa
t > Filter;typedef Cartesian< double >::Point_2 Point;f Point p(1.0, 2.0), q(2.0, 3.0), r(3.0, 4.0);return Filter()(p, q, r);gFilter predi
ate<> has default template parameters spe
ifying how to 
onvert a Pointto a Cartesian<Interval nt>::Point 2 in order to 
all the approximate version, andsimilarly in order to 
onvert a Point 2 to a Cartesian<leda real>::Point 2 for theeventual exa
t 
omputation.9.4 Higher-dimensional KernelThe higher-dimensional kernel de�nes a 
on
ept with the same type and fun
tor te
hnol-ogy, but is well separated from the lower-dimensional kernel 
on
epts. Higher-dimensionalaÆne geometry is strongly 
onne
ted to its mathemati
al foundation in linear algebra andanalyti
al geometry. Therefore, a 
entral task is the implementation and integration ofa generi
 linear algebra module. Sin
e the dimension is now a parameter of the inter-fa
e and sin
e the solution of linear systems 
an be done in di�erent ways [13, 4, 22℄,a linear algebra 
on
ept is part of the interfa
e of the higher dimensional kernel modelsCartesian d<FT,LA> and Homogeneous d<RT,LA>. The linear algebra 
on
ept provides19



a standard interfa
e to matrix and ve
tor types and the solution of linear systems ofequations.10 Con
lusionsMany of the ideas presented here have already been realized in Cgal; parts of themstill need to be implemented. Although standard 
omplian
e is still a big issue for C++
ompilers, more and more 
ompilers are able to a

ept template 
ode su
h as ours.We would like to remind the reader that in this paper we have lifted the 
urtain to howto implement a library, whi
h is 
onsiderably more involved than using a library. A user ofour design 
an be gradually introdu
ed to the default use of one kernel, then ex
hangingone kernel with another kernel in an algorithm, ex
hanging individual pie
es in a kernel,and �nally { for experts { writing a new kernel. Only 
reators of a new library need toknow all inner workings of a design, but we believe also interested users will bene�t fromstudying the design.A
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tion toolbox//template < 
lass FT >FT determinant2x2(FT a00, FT a01, FT a10, FT a11)f return a00 * a11 - a10 * a01; gtemplate < 
lass FT > 22



void line_from_pointsC2(FT px, FT py, FT qx, FT qy,FT& a, FT& b, FT& 
)f a = py - qy;b = qx - px;
 = -px * a - py * b;g// ---------------------------------------------------------// mid layer: representations, predi
ates and 
onstru
tions//template < 
lass K_ >stru
t Point_2 ftypedef K_ K;typedef typename K::FT FT;Point_2() fgPoint_2(FT x_, FT y_) : x(x_), y(y_) fgFT x, y;g;template < 
lass K_ >stru
t Line_2 ftypedef K_ K;typedef typename K::Point_2 Point_2;Line_2() fgLine_2(Point_2 p, Point_2 q)f *this = K::Constru
t_line_2(p, q); gtypename K::FT a, b, 
;g;template < 
lass K_ >stru
t Segment_2 ftypedef K_ K;typename K::Point_2 s, e;g;template < 
lass K_ >stru
t Less_xy_2 ftypedef typename K_::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q) 
onstf return p.x < q.x || p.x == q.x && p.y < q.y; gg;template < 
lass K_ >stru
t Left_turn_2 ftypedef typename K_::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q, Point_2 r) 
onst23



f return determinant2x2(q.x - p.x, q.y - p.y,r.x - p.x, r.y - p.y) > 0;gg;template < 
lass K_ >stru
t Constru
t_line_2 ftypedef typename K_::Point_2 Point_2;typedef typename K_::Line_2 Line_2;Line_2 operator()(Point_2 p, Point_2 q) 
onst fLine_2 l;line_from_pointsC2(p.x, p.y, q.x, q.y, l.a, l.b, l.
);return l;gg;// ---------------------------------------------------------// top layer: geometri
 kernel//template < 
lass K_, 
lass FT_ >stru
t Kernel_base ftypedef K_ K;typedef FT_ FT;typedef Point_2< K > Point_2;typedef Line_2< K > Line_2;typedef Segment_2< K > Segment_2;typedef Less_xy_2< K > Less_xy_2;typedef Left_turn_2< K > Left_turn_2;typedef Constru
t_line_2< K > Constru
t_line_2;Less_xy_2 less_xy_2_obje
t() 
onstf return Less_xy_2(); gLeft_turn_2 left_turn_2_obje
t() 
onstf return Left_turn_2(); gConstru
t_line_2 
onstru
t_line_2_obje
t() 
onstf return Constru
t_line_2(); gg;template < 
lass FT_ >stru
t Kernel : publi
 Kernel_base< Kernel< FT_ >, FT_ >fg;// ---------------------------------------------------------// 
onvenien
e layer: global fun
tions// 24



template < 
lass K > inlineboolless_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())f return k.less_xy_2_obje
t()(p, q); gtemplate < 
lass K > inlineboolleft_turn_2(typename K::Point_2 p,typename K::Point_2 q,typename K::Point_2 r,K k = K())f return k.left_turn_2_obje
t()(p, q, r); g// ---------------------------------------------------------// even more 
onvenien
e: spe
ializations for Kernel//template < 
lass FT > inlineboolleft_turn_2(Point_2< Kernel< FT > > p,Point_2< Kernel< FT > > q,Point_2< Kernel< FT > > r)f return left_turn_2(p, q, r, Kernel< FT >()); gtemplate < 
lass FT > inlineboolless_xy_2(Point_2< Kernel< FT > > p, Point_2< Kernel< FT > > q)f return less_xy_2(p, q, Kernel< FT >()); g

25
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