
An Adaptable and ExtensibleGeometry KernelSusan Hert Mi
hael Ho�mann Lutz KettnerSylvain Pion Mi
hael SeelSeptember 27, 2001

MPI{I{2001{1-004 September 2001

ii

Authors' AddressesMax-Plan
k-Institut f�ur InformatikStuhlsatzenhausweg 8566123 Saarbr�u
ken, GermanyEmail: hert�mpi-sb.mpg.deInstitute for Theoreti
al Computer S
ien
eETH Zuri
hCH-8092 Zuri
h, SwitzerlandEmail: hoffmann�inf.ethz.
hUniversity of North Carolina at Chapel Hill, USA.Email: kettner�
s.un
.eduINRIA, Sophia Antipolis - Fran
e.Email: Sylvain.Pion�sophia.inria.frMax-Plan
k-Institut f�ur InformatikStuhlsatzenhausweg 85 66123 Saarbr�u
ken, GermanyEmail: seel�mpi-sb.mpg.de

Abstra
tGeometri
 algorithms are based on geometri
 obje
ts su
h as points, lines and
ir
les. The term kernel refers to a
olle
tion of representations for
onstant-size geometri
 obje
ts and operations on these representations. This paperdes
ribes how su
h a geometry kernel
an be designed and implemented inC++, having spe
ial emphasis on adaptability, extensibility and eÆ
ien
y.We a
hieve these goals following the generi
 programming paradigm and us-ing templates as our tools. These ideas are realized and tested in Cgal [10℄,the Computational Geometry Algorithms Library.

KeywordsComputational geometry, library design, generi
 programming.

1 Introdu
tionGeometri
 algorithms that manipulate
onstant-size obje
ts su
h as
ir
les, lines, andpoints are usually des
ribed independent of any parti
ular representation of the obje
ts.It is assumed that these obje
ts have
ertain operations de�ned on them and that simplepredi
ates exist that
an be used, for example, to
ompare two obje
ts or to determinetheir relative position. Algorithms are des
ribed in this way be
ause all representationsare equally valid as far as the
orre
tness of an algorithm is
on
erned. Also, algorithms
an be more
on
isely des
ribed and are more easily seen as being appli
able in manysettings when they are des
ribed in this more generi
 way.We illustrate here that one
an a
hieve the same advantages when implementing algo-rithms by en
apsulating the representation of obje
ts and the operations and predi
atesfor the obje
ts into a geometry kernel. Algorithms intera
t with geometri
 obje
ts onlythrough the operations de�ned in the kernel. This means that the same implementation ofan algorithm
an be used with many di�erent representations for the geometri
 obje
ts.Thus, the representation
an be
hosen to be the one most appli
able (e.g., the mostrobust or most eÆ
ient) for a parti
ular setting.Regardless of the representation
hosen by a parti
ular kernel, it
annot hope to satisfythe needs of every appli
ation. For example, for some appli
ations one may wish tomaintain additional information with ea
h point during the exe
ution of an algorithm orone may wish to apply a two-dimensional algorithm to a set of
oplanar points in threedimensions. Both of these things are easily a

omplished if the algorithm in question isimplemented in a generi
 way to intera
t with obje
ts through a kernel and the kernel isimplemented to allow types and operations to be rede�ned, that is, if the kernel is easilyadaptable. It is equally important that a kernel be extensible sin
e some appli
ationsmay require not simply modi�
ations of existing obje
ts and operations but addition ofnew ones.Although adaptability and extensibility are important and worthwhile goals to strivefor, one has to keep in mind that the elements of the kernel form the very basi
 andfundamental building blo
ks of a geometri
 algorithm built on top. Hen
e, we are notwilling to a

ept any loss in eÆ
ien
y on the kernel level. Indeed, using template pro-gramming te
hniques one
an a
hieve generi
ity without sa
rifying runtime-performan
eby resolving the arising overhead during
ompile-time.After dis
ussing previous work on the design of geometry kernels (Se
tion 2), we givea general des
ription of our new kernel
on
ept (Se
tion 3). We then des
ribe how this
on
ept
an be realized in an adaptable and extensible way under the generi
 programmingparadigm [24, 25℄ (Se
tions 4 through 7). Se
tion 8 illustrates the use of su
h a kerneland shows how the bene�ts des
ribed above are realized. Finally, we des
ribe the modelsof this type of kernel that are provided in Cgal (Se
tion 9).As our implementation is in C++ [9℄, we assume the reader is somewhat familiar withthis language. Stroustrup [30℄ provides a general introdu
tion to C++ template program-ming, whi
h is used extensively in our design. Parts of the design of the library wereinspired by the STL. Austern [2℄ provides a good referen
e for generi
 programming andthe STL, and a good referen
e for the C++ Standard Library is the book of Josuttis [19℄.1

2 Motivation and Previous WorkOver the past 10 years, a number of geometry libraries have been developed, ea
h with itsown notion of a geometry kernel. The C++ libraries Plageo and SpaGeo [17℄ providekernels for 2- and 3-dimensional obje
ts using
oating point arithmeti
, a
lass hierar
hy,and a
ommon base
lass. The C++ library Leda [23℄ provides in its geometry part twokernels, one using exa
t rational arithmeti
 and the other
oating point arithmeti
. TheJava library GeomLib [3℄ provides a kernel built in a hierar
hi
al manner and designedaround Java interfa
es. None has addressed the questions of easily ex
hangeable andadaptable kernels.Flexibility is one of the
ornerstones of Cgal [10℄, the Computational Geometry Al-gorithms Library , whi
h is being developed in a
ommon proje
t of several universitiesand resear
h institutes in Europe and Israel. The re
ent overview [15℄ gives an extensivea

ount of fun
tionality, design, and implementation te
hniques in the library. Generi
programming is one of the tools used to a
hieve this
exibility [7, 24, 25℄.In the original design of the geometry kernel of Cgal [14℄, the geometri
 obje
tswere ea
h parameterized by a representation
lass, whi
h was in turn parameterized bya number type. This design provided easy ex
hange of representation
lasses, was exten-sible, and provided limited adaptability of an existing representation
lass. However, thedesign did not allow the representation
lasses to be extended to also in
lude geometri
operations.This extension was seen as desirable after the introdu
tion of geometri
 traits
lassesinto the library, whi
h separate the
ombinatorial part of an algorithm or data stru
turefrom the underlying geometry. The term traits
lass was originally introdu
ed by My-ers [26℄; we use it here to refer to a
lass that aggregates (geometri
) types and operations.By supplying di�erent traits
lasses, the same algorithm
an be applied to di�erent kindsof obje
ts. Thus the use of traits
lasses brought about even more
exibility at a higherlevel in the library and, for example, allowed an easy means of
omparison of di�erentkernels in Cgal and Leda using appropriate traits
lasses from Cgal [27℄.As a kernel is generally
onsidered to represent a basi
 set of building blo
ks forgeometri

omputations, it is quite natural to assume that the kernel itself
an be used asa traits
lass for many algorithms. This means that the
on
ept of a kernel must in
ludenot only the representations for obje
ts but also the operations on these obje
ts, and formaximum
exibility both should be easily adaptable. Indeed, the fa
t that the existingCgal kernel did not present its fun
tionality in a way that was immediately a

essiblefor the use in traits
lasses was one motivation for this work. Fa
toring out
ommonrequirements from the traits
lasses of di�erent algorithms into the kernel is very helpfulin maintaining uniform interfa
es a
ross a library and maximizing
ode reuse.While the new design des
ribed here is even more
exible and more powerful than theold design, it maintains ba
kwards
ompatibility. The kernel
on
ept now in
ludes easilyex
hangeable fun
tors in addition to the geometri
 types; the ideas of traits
lasses andkernel representations have been uni�ed. The implementation is a

omplished by usinga template programming idiom similar to the Barton-Na
kman tri
k [5, 11℄ that uses aderived
lass as a template argument for a base
lass template. A similar idiom has beenused in Cgal to solve
y
li
 template dependen
ies in the halfedge data stru
ture and2

polyhedral surfa
e design [21℄.3 The Kernel Con
ept and Ar
hite
tureA geometry kernel
onsists of types used to represent geometri
 obje
ts and operationson these types. Although from a C++ point of view both will be
lasses, we refer only tothe former as (geometri
) types whereas we
all the latter (geometri
) operations. Sin
edi�erent kernels will have di�erent notions of what basi
 types and operations are required,we do not
on
ern ourselves here with listing the parti
ular obje
ts and operations to bein
luded in the kernel. Rather, we des
ribe the kernel
on
ept in terms of the interfa
e itprovides for ea
h obje
t and operation.Depending on one's perspe
tive, the expe
ted interfa
e to these types and operationswill look somewhat di�erent. From the point of view of an imperative-style programmer,it is natural that the types appear as stand-alone
lasses and the operations as globalfun
tions or member fun
tions of these
lasses.K::Point_2 p(0,1), q(1,-4);K::Line_2 line(p, q);if (less_xy_2(p, q)) f ... gHowever, from the point of view of someone implementing algorithms in a generi
 way,it is most natural, indeed most useful, if types and operations are both provided by thekernel. This en
apsulation allows both types and operations to be adapted and ex
hangedin the same manner.K k;K::Constru
t_line_2
_line = k.
onstru
t_line_2_obje
t();K::Less_xy_2 less_xy = k.less_xy_2_obje
t();K::Point_2 p(0,1);K::Point_2 q(1,-4);K::Line_2 line =
_line(p, q);if (less_xy(p, q)) f ... gThe
on
ept of a kernel we introdu
e here in
ludes both of these perspe
tives. That is,ea
h operation is represented both as a type, an instan
e of whi
h
an be used like afun
tion, and as a global fun
tion or a member fun
tion of one of the obje
t
lasses.The te
hniques des
ribed in the following three se
tions allow both interfa
es to
oexistpea
efully under one roof with a minimal maintenan
e overhead, and thus lead to a kernelthat presents a good fa
e to everyone.Our kernel is
onstru
ted from three layers, illustrated in Figure 1. The bottom layer
onsists of basi
 numeri
 primitives su
h as the
omputation of matrix determinants andthe
onstru
tion of line equations from point
oordinates. These numeri
 primitives areused in the geometri
 primitives that
onstitute the se
ond layer of our stru
ture. Thetop layer then assimilates the geometri
 primitives. The s
ope of our kernel
on
ept isrepresentation-independent aÆne geometry. Thus the
on
ept in
ludes, for example, the3

stru
t Kernel;
stru
t Leftturn 2;FT determinant2x2(FT, FT, FT, FT);void line from pointsC2(FT px, FT py, FT qx, FT qy,
stru
t Constru
t line 2;

Point 2;Line 2;Constru
t line 2;Leftturn 2;stru
t Point 2;stru
t Line 2;
FT& a, FT& b, FT&
);

Kernel

alls Numeri
Primitives

Geometri
Primitives

onsistsof

Figure 1: The kernel ar
hite
ture.
onstru
tion of a point as the interse
tion of two lines but not its
onstru
tion from x andy
oordinates.4 An Adaptable KernelWe present our te
hniques using a simpli�ed example kernel. Consider the types Point 2and Line 2 representing two-dimensional points and lines, respe
tively, an operationConstru
t line 2 that
onstru
ts a Line 2 from two Point 2 arguments, and an op-eration Less xy 2 that
ompares two Point 2 obje
ts lexi
ographi
ally. The kernel forthese types and operations might then look as follows; the
lasses MyPoint, MyLine,MyConstru
t, and MyLess are arbitrary and de�ned elsewhere.stru
t Kernel ftypedef MyPoint Point_2;typedef MyLine Line_2;typedef MyConstru
t Constru
t_line_2;typedef MyLess Less_xy_2;g;In general, one probably needs more operations and possibly more types in order to beable to do something useful, but for the sake of simpli
ity we will stay with these fouritems for the time being.A �rst question might be: Constru
t line 2 has to
onstru
t a Line 2 from twoPoint 2s; hen
e it has to know something about both types. How does it get to knowthem? Sin
e we are talking about adaptability, just hard-wiring the names MyPoint andMyLine into MyConstru
t is not what we would like to do.A natural solution is to parameterize MyConstru
t with the other
lasses, that is,with our kernel. As soon as a
lass knows the kernel it resides in, it also knows all related4

lasses and operations. A straightforward way to implement this parameterization is tosupply the kernel as a template argument to the geometri

lasses.template <
lass K > stru
t MyPoint f ... g;template <
lass K > stru
t MyLine f ... g;template <
lass K > stru
t MyConstru
t f ... g;template <
lass K > stru
t MyLess f ... g;Our kernel
lass from above has to be
hanged a

ordingly.stru
t Kernel ftypedef MyPoint< Kernel > Point_2;typedef MyLine< Kernel > Line_2;typedef MyConstru
t< Kernel > Constru
t_line_2;typedef MyLess< Kernel > Less_xy_2;g;At �rst, it might look a bit awkward; inserting a
lass into its own
omponents seems to
reate
y
li
 referen
es. Indeed, one has to be
areful, as the following example demon-strates.template <
lass T >stru
t P ftypedef typename T::A B;g;stru
t K ftypedef P< K >::B B; // *typedef int A;g;A referen
e to K::B will lead to P<K>::B and further to K::A, but this type is not yetde
lared in line *. A reasonable C++
ompiler will thus give up at that point. But thereis no su
h problem with the Kernel
lass above; the
lass is
onsidered to be de
laredas soon as the
lass name has been read (
f. [9℄ 9/2), hen
e it is �ne to provide it asa template argument to other
lasses. The problem in
lass K
ame from the fa
t thatP<K>::B refers ba
k to K inside its own de�nition, to the still unde�ned type K::A.Leaving these subtleties, let us
ome ba
k to the main theme: adaptability. It shouldbe easy to extend or adapt this kernel and indeed, all that needs to be done is to derive anew
lass from Kernel where new types
an be added and existing ones
an be ex
hanged.stru
t New_kernel : publi
 Kernel ftypedef NewPoint< New_kernel > Point_2;typedef MyLeftTurn< New_kernel > Left_turn_2;g;Here Point 2 is overwritten with a di�erent type and the new operation Left turn 2 isde�ned. So let us start programming with the newly
onstru
ted kernel.5

New_kernel::Point_2 p, q;New_kernel::Constru
t_line_2
onstru
t_line_2;// initialize p, q and
onstru
t_line_2New_kernel::Line_2 l =
onstru
t_line_2(p, q);To our surprise and anger, the last line refuses to
ompile.No instan
e of fun
tion "MyConstru
t<Kernel>::operator()"mat
hes the argument list.The argument types are: (New_kernel::Point_2, New_kernel::Point_2).What has gone wrong? Apart from the fa
t that we did not show the implementationof MyConstru
t yet and hen
e the referen
e to operator() is not
lear, there is onething that should
at
h our eyes: the
ompiler
omplains about MyConstru
t<Kernel>whereas we would like to see MyConstru
t<New kernel>. On the other hand, this is notreally surprising, sin
e we did not
hange the type Constru
t line 2 in New kernel,hen
e, it is the same as in Kernel, that is MyConstru
t<Kernel>. MyConstru
t<> usesthe type Kernel::Point 2 (= MyPoint<>) and
annot handle New kernel::Point 2 (=NewPoint<>) arguments properly; hen
e, the error message.Kernel New kernel
Left turn 2Constru
t line 2Line 2Point 2Line 2Point 2Constru
t line 2MyPoint MyLine MyConstru
t NewPoint MyTurnFigure 2: Instantiation problem. Boxes stand for
lasses, thi
k dashed arrows denotederivation, solid arrows show (template) parameters, and thin dotted arrows have to beread as \de�nes" (typedef or inheritan
e).What
an be done to tell MyConstru
t that it should now
onsider itself part ofNew kernel? An obvious solution would be to rede�ne Constru
t line 2 in New kernelappropriately. This is �ne in our example where it amounts to just one more typedef,but
onsidering a real kernel with dozens of types and hundreds of operations, it wouldbe really tedious to have to repeat all these de�nitions. Note that it may well be thatthese
lasses have to be rede�ned anyway, as the
hange of one
lass potentially a�e
tsall other
lasses that intera
t with that
lass. But often it is not ne
essary1, and we donot want this rede�nition as a general requirement.1Consider repla
ing a
lass by another
lass providing the same interfa
e or a superset of it, e.g.,derived
lasses. 6

Fortunately, there is a way out. If Kernel is meant as a base for building
ustomkernel
lasses, it is not wise to instantiate MyPoint<>, MyLine<> and MyConstru
t<> atthat point with Kernel, as this might not be the kernel in whi
h these
lasses �nallyend up. We rather would like to defer the instantiation, until it is
lear what the a
tualkernel will be. This
an be done by introdu
ing a
lass Kernel base that serves as an\instantiation-engine." A
tual kernel
lasses like Kernel and New kernel both derivefrom Kernel base and �nally start the instantiation by inje
ting themselves into thebase
lass.template <
lass K >stru
t Kernel_base ftypedef MyPoint< K > Point_2;typedef MyLine< K > Line_2;typedef MyConstru
t< K > Constru
t_line_2;typedef MyLess< K > Less_xy_2;g;stru
t Kernel : publi
 Kernel_base< Kernel > fg;It seems somewhat strange to insert a
lass into its base
lass, that is into itself in somesense. But looking at it more
losely qui
kly reveals that the
onstru
tion is not mu
hdi�erent from the previous one, ex
ept for giving the additional freedom to determinewhen MyPoint et
. are instantiated. It is still easy to
reate new kernels by derivation,now from Kernel base. In order to be able to extend New kernel in the same way asKernel, we defer instantiation on
e again.template <
lass K >stru
t New_kernel_base : publi
 Kernel_base< K > ftypedef NewPoint< K > Point_2;typedef MyLeftTurn< K > Left_turn_2;g;stru
t New_kernel : publi
 New_kernel_base< New_kernel > fg;Thus we a
hieve our easily extensible and adaptable kernel through the use of the kernelas a template parameter at two di�erent levels. The geometri
 obje
t
lasses in the kerneluse the kernel as a template parameter so the distin
t geometri
 obje
ts have a way ofdis
overing the types of the other obje
ts and operations. Thus any
hange of a typeor operation in the kernel is propagated through to the relevant obje
t
lasses. And thekernel itself is derived from a base
lass that is templated by the kernel, whi
h assuresthat the types and operations instantiated are the types in the derived
lass and not inthe base
lass. Thus any modi�ed types or operations live in the same kernel as the onesinherited from the base
lass and there is no problem in using the two together.5 Fun
torsThe question still remains how we provide the a
tual fun
tions that are needed by the
lasses and fun
tions that intera
t through the kernel. Consider again the example fromthe previous se
tion: 7

Kernel base New kernel base
Left turn 2Constru
t line 2Line 2Point 2 New kernel

Left turn 2Constru
t line 2Line 2Point 2Line 2Point 2Constru
t line 2MyPoint MyLine MyConstru
t NewPoint MyTurnFigure 3: Deferring instantiation. Boxes stand for
lasses, thi
k dashed arrows denotederivation, solid arrows show (template) parameters, and thin dotted arrows have to beread as \de�nes" (typedef or inheritan
e).New_kernel::Point_2 p, q;New_kernel::Constru
t_line_2
onstru
t_line_2;// initialize p, q and
onstru
t_line_2New_kernel::Line_2 l =
onstru
t_line_2(p, q);What we are
on
erned with here is how the kernel provides the fun
tion
onstru
t line 2.There are a number of ways su
h a fun
tion
an be provided in a way that assures adapt-ability of the kernel. Adaptability is not the only
on
ern, however. A real kernel will
ontain many
onstru
tions and predi
ates, most of them small,
ontaining only a fewlines of
ode. These fun
tions will be
alled a huge number of times during the exe
utionof an algorithm implemented on top of the kernel; they are to geometry what additionsand multipli
ations are to arithmeti
s. Hen
e, eÆ
ien
y is very important.The
lassi
 C-style approa
h would be to use pointers to fun
tions in the kernel.stru
t Kernel ftypedef Line_2 (*Constru
t_line_2)(Point_2 p, Point_2 q);Constru
t_line_2
onstru
t_line_2;g;Adaptability is provided by the ability to
hange the pointer (
onstru
t line 2 in ourexample). But the additional indire
tion when
alling the fun
tion imposes a
onsiderableperforman
e penalty for small fun
tions. We will demonstrate this behaviour below.Virtual fun
tions are the Java-style means of a
hieving adaptability.stru
t Kernel_base fvirtual Line_2
onstru
t_line_2(Point_2 p, Point_2 q);g;As with pointers to fun
tions, though, there is an additional indire
tion involved (lookupin the virtual fun
tion table); moreover, many
ompiler optimisations are not possiblethrough virtual fun
tions [31℄, as the a
tual types are not known at
ompile time. Thisoverhead is
onsiderable in our
ontext [27℄.8

So if virtual fun
tions are too
ostly, how about making
onstru
t line 2 a plainmember fun
tion of Kernel base? The fun
tion
an then be adapted by overwriting itin derived
lasses. Indeed, what we propose is just one step further, and involves movingfrom
on
rete fun
tion signatures in the programming language to a more abstra
t level.The solution is inspired by the standard C++ library [9℄, where many algorithms areparameterized with so-
alled fun
tion obje
ts, or fun
tors. The
ru
ial observation behindthis abstra
tion is the following: it is not important whether something is a fun
tion, aslong as it behaves like a fun
tion and thus
an be used as a fun
tion. So what is thebehaviour of a fun
tion? It is something you
an
all by using parentheses and passingarguments [19℄.Obviously, any fun
tion is a fun
tor. But obje
ts of a
lass-type that de�ne an appro-priate operator()
an be fun
tors as well.stru
t Constru
t_line_2 fLine_2 operator()(Point_2 p, Point_2 q)
onstf // build a line from points p and q; gg;This way, any instan
e of Constru
t line 2
an be used as if it were a fun
tion.Point_2 p, q;Constru
t_line_2
onstru
t_line_2;Line_2 l =
onstru
t_line_2(p,q);There are at least three advantages that make this abstra
tion worthwhile: eÆ
ien
y,ability to maintain a state, and better type
he
king, all explained in more detail below.Although the �rst two advantages
an be a
hieved by using plain member fun
tions ofthe kernel
lass, there are a few reasons that fun
tors are preferable.� Geometri
 operations that are fun
tors
an be used together with algorithms fromthe standard library su
h as sort, lower bound, et
.� Fun
tors are
leanly separated from ea
h other and
an maintain their states inde-pendently.� Fun
tors provide an almost uniform framework where both representations andoperations are just types in the kernel
lass, and the me
hanisms for adapting andex
hanging them are the same.� Fun
tors provide a simpler
alling syntax sin
e it is independent of the kernel obje
t,whereas member fun
tions require the use of the kernel obje
t in every
all.5.1 EÆ
ien
y of Fun
torsIf the
omplete
lass de�nition for a fun
tor is known at
ompile time, the operator()
an be inlined. Handing the fun
tor as a template argument to some fun
tion templateor
lass template is like literally handing over a pie
e of
ode that
an be inlined andoptimized to the
ompiler's taste. Note again the
ontrast to the traditional fun
tionpointers and to virtual fun
tions. 9

To support this
laim, we have made a small test: sort 5000 double numbers withbubble-sort, beginning with the numbers in worst-
ase order. The �rst fun
tion
omparesnumbers using the built-in operator<, the se
ond is parameterized with a fun
tor forthe
omparison, and the third with a fun
tion pointer. With
ompilers that optimizewell, there is absolutely no di�eren
e in runtime between the generi
 fun
tor and the\hand
rafted" version, while the fun
tion pointer parameterization
auses a
onsiderableoverhead; see Table 1.System Compiler < fun
tor pointerLinux g++ -O3 370 430 1150Irix CC -Ofast 760 760 1350Solaris g++ -O3 770 860 5360Solaris CC -fast 890 890 3300Solaris KCC +K3 740 740 2560Table 1: Runtime in mse
. to sort 5000 double numbers.5.2 Fun
tor with StateIn addition to their potential for optimizations, fun
tors also prove to be more
exiblethan plain fun
tions; a fun
tor of
lass-type has a state that
an
arry lo
al data. Whilestate
ould also be implemented using stati
 variables in member or global fun
tions, thiswould forbid working with more than one instan
e of the fun
tion, imposing a severeand hard-to-
he
k restri
tion. And maintaining a single monolithi
 kernel obje
t thataggregates the states of all its operations would be quite diÆ
ult to handle.Let us assume that, for the purposes of ben
hmarking, we want to
ount the numberof
omparisons done by a program using our fun
tor MyLess in the sample kernel Kernelabove.template <
lass K>stru
t MyLess ftypedef typename K::Point_2 Point_2;int*
ount;MyLess(int*
ounter) :
ount(
ounter) fgbool operator()(Point_2 p, Point_2 q)
onst f++(*
ount);return p.x < q.x || p.x == q.x && p.y < q.y;gg;Ea
h
all to this fun
tor in
reases the externally referen
ed
ounter by one. Other, moreserious, examples of fun
tors using a state are the adaptors binder1st and binder2nd10

in the STL. They use a lo
al variable to store the value to whi
h one of a fun
tor'sarguments gets bound. Also the proje
tion traits des
ribed in Se
tion 8.3 needs a stateto store the proje
tion dire
tion.Allowing lo
al data for a fun
tor adds a slight
ompli
ation to the kernel. Clearly, ageneri
 algorithm has to be oblivious to whether a fun
tor
arries lo
al state or not. Hen
e,the algorithm
annot instantiate the fun
tor itself. As the example above illustrates, afun
tion with lo
al state may require the use of a non-default
onstru
tor while onewithout a lo
al state does not. But we
an assume that the kernel knows how to
reatefun
tors. So we add a

ess member fun
tions to the kernel that allow a generi
 algorithmto obtain an obje
t for a fun
tor. Here is the revised kernel base
lass for the example fromthe previous se
tion. The a

ess member fun
tions are simply inherited by all derivedkernels and kernel base
lasses.template <
lass K >stru
t Kernel_base ftypedef MyPoint< K > Point_2;typedef MyLine< K > Line_2;typedef MyConstru
t< K > Constru
t_line_2;typedef MyLess< K > Less_xy_2;Constru
t_line_2
onstru
t_line_2_obje
t();Less_xy_2 less_xy_2_obje
t();g;The a
tual implementations of
onstru
t line 2 obje
t and less xy 2 obje
t de-pend on MyConstru
t and MyLess, respe
tively, and might be as simple as the default
onstru
tors.5.3 Better Type Mat
hingThe type of a fun
tion is de�ned by its signature, while the types of general fun
tors
an be as di�erent as one likes. This is an advantage in template argument mat
hing,as there is more freedom in expressing the set of mat
hing types. Consider, for example,a data stru
ture D<> that is parameterized with a predi
ate, and imagine a
lass P<> ofpredi
ates for whi
h you would like to share the implementation of D< P<> >. By de�ninga spe
ializationtemplate <
lass T > stru
t D< P< T > > f ... g;this
ode sharing is easily a

omplished, while doing so on the level of fun
tion signaturesis not possible in a straightforward manner.6 An Imperative Interfa
eSomeone used to imperative-style programming might expe
t a kernel interfa
e based onmember fun
tions and global fun
tions operating on the geometri

lasses rather thanhaving to deal with fun
tors and kernel obje
ts. Due to the
exibility in our design, we
an easily provide su
h an interfa
e on top of the kernel with little overhead. However,some
are has to be taken, su
h that the generi
ity is not lost in this step.11

Consider again the operation for determining if one point is lexi
ographi
ally smallerthan another. We have provided this operation through our kernel with the type Less xy 2and the member fun
tion less xy 2 obje
t(), whi
h
reates an instan
e of the fun
tor.It is also quite natural to provide this operation as a global fun
tion in our kernel interfa
e.In order to handle
orre
tly fun
tors with state, a kernel obje
t has to be a parameter ofsu
h a fun
tion. A default argument
an be used su
h that the kernel obje
t does nothave to be provided where the default kernel suÆ
es.template <
lass K >bool less_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())f return k.less_xy_2_obje
t()(p, q); gHowever, if the kernel parameter k is omitted, the type K
annot be dedu
ed from thea
tual parameters of the fun
tion
all (
f. [9℄ 14.8.2.1/4). Hen
e, the template parameterhas to be spe
i�ed expli
itly in this
ase.Kernel::Point_2 p, q;if (less_xy_2<Kernel>(p, q)) f ... gWhile su
h fun
tions allow one to write
ompletely generi

ode, one might still obje
tto the spurious-looking <Kernel> parameter in the global fun
tion
all. It would bepreferable to be able to avoid this parameter in some
ases, e.g., where only one spe
i�
kernel is ever used. The solution is to overload the fun
tion for parameters from thisspe
i�
 kernel.bool less_xy_2(Point_2< Default_kernel_1 > p,Point_2< Default_kernel_1 > q)f return less_xy_2<Default_kernel_1>(p, q); gNote that these spe
ialized fun
tions
an be templated again, e.g., by a number type, aslong as they are not templated with the kernel
lass.2 Then both the spe
ialized fun
tionand the fun
tion with the kernel template parameter
an pea
efully
oexist, and also bothways of
alling them
an be used simultaneously.One might also want to add some fun
tionality to the geometri
 types. For example,if the kernel supports the
onstru
tion of a line from two points, it is natural that the
lass MyLine has a
onstru
tor that takes two point arguments.template <
lass K >stru
t MyLine fMyLine(typename K::Point_2 p, typename K::Point_2 q)f ... use e.g. K::Constru
t_line_2 ... gg;Again it is important that MyLine does not make assumptions about the point type, butuses the operations provided by K only. This way, the geometri
 types remain ni
elyseparated, as their { sometimes
lose { relationships are en
apsulated into appropriateoperations.2If they were, the
all less xy 2<Default kernel 1>(...) would be ambiguous.12

7 A Fun
tion ToolboxOur kernel
on
ept ni
ely separates the representation of geometri
 obje
ts from the oper-ations on these obje
ts. But when implementing a spe
i�
 operation su
h as Left turn 2,the representation of the
orresponding point type Point 2 will inevitably
ome into play;in the end, the predi
ate is evaluated using arithmeti
 operations on some number type.The nontrivial3 algebrai

omputations needed in predi
ates and
onstru
tions are en
ap-sulated in the bottom layer of our kernel ar
hite
ture (Figure 1), the number-type-basedfun
tion toolbox, whi
h we des
ribe in this se
tion.A number type refers to a numeri
al type that we use to store
oordinates and to
al-
ulate results. Given that the
oordinates we start with are rational numbers, it suÆ
esto
ompute within the domain of rational numbers. For
ertain operations we will gobeyond rational arithmeti
 and require roots. However, sin
e the majority of our kernelrequires only rational arithmeti
 we fo
us on this aspe
t here. Depending on the
al
ula-tions required for
ertain operations, we distinguish between di�erent
on
epts of numbertypes that are taken from algebra. A ring supports addition, subtra
tion and multipli
a-tion. A Eu
lidean ring supports the three ring operations and an integral division withremainder, whi
h allows the
al
ulation of greatest
ommon divisors used, e.g., to
an
el
ommon fa
tors in fra
tions. In
ontrast, a �eld type supports exa
t division instead ofintegral division.Many of the operations in our kernel boil down to determinant evaluations, e.g., sided-ness tests, in-
ir
le tests, or segment interse
tion. For example, the left-turn predi
ate isevaluated by
omputing the sign of the determinant of a 2�2 matrix built from di�eren
esof the points'
oordinates. Sin
e the evaluation of su
h a determinant is needed in severalother predi
ates as well, it makes sense to fa
tor out this step into a separate fun
tion,whi
h is parameterized by a number type (here FT for �eld type) to maintain
exibilityeven at this level of the kernel:template <
lass FT >FT determinant2x2(FT a00, FT a01, FT a10, FT a11)f return a00 * a11 - a10 * a01; gThe fun
tion
an now be shared by all predi
ates and
onstru
tions that need to evaluatea 2�2 determinant. This
ode reuse is desirable not only be
ause it redu
es maintenan
eoverhead but also from a robustness point of view, as it isolates potential problems in asmall number of pla
es. And this also enhan
es the adaptability and extensibility of ourkernel. These basi
 numeri
al operations are equally as a

essible to anyone providingadditional or
ustomized operations on top of our kernel in the future.8 Adaptable AlgorithmsIn the previous se
tions, we have illustrated the te
hniques used to realize a kernel
on
eptthat in
ludes fun
tors as well as types in a way that makes both easily adaptable. Herewe show how su
h a kernel
an be put to good use in the implementation and adaptationof an algorithm.3beyond a single addition or
omparison 13

In Cgal, the geometri
 requirements of an algorithm are
olle
ted in a geometri
traits
lass that is a template parameter for the algorithm. With the addition of fun
torsto the kernel
on
ept, it is now possible simply to supply a kernel as the argument forthe geometri
 traits
lass of an algorithm. And it is also now quite easy to repla
e a typeor predi
ate provided with one of the kernels in Cgal with another,
ustomized type orpredi
ate and then use the adapted kernel as the traits
lass argument. We illustratethese points below.In general, the requirements of many geometri
 traits
lasses are only a subset of therequirements of a kernel. Other geometri
 traits
lasses might have requirements that arenot part of the kernel
on
ept. They
an be implemented as extensions on top, havingeasy a

ess to the part of their fun
tionality that is provided by the kernel.8.1 Kernel as a Traits ClassLet us
onsider as a simple example Andrew's variant of Graham's s
an [1, 12℄ for
om-puting the
onvex hull of a set of points in two dimensions. This algorithm requires onlya point type, the lexi
ographi
al
omparison of points, and a left-turn predi
ate from itstraits
lass. Thus, the kernel New kernel from Se
tion 4 suÆ
es for this algorithm.The fun
tion that implements this algorithm takes a range of random-a

ess iteratorsproviding the input sequen
e of points and a bidire
tional iterator for the resulting se-quen
e of hull points. The last argument is the traits
lass, that is, our kernel. For athorough des
ription of the standard iterator
on
epts refer to the book of Austern [2℄ orthe online referen
e of SGI's STL [29℄. Informally speaking, one
an think of random-a

ess iterators as pointers to an array, while bidire
tional iterators
an be regarded aspointers to a doubly-linked list.Let us
esh out the example of the
onvex hull algorithm and see how it
ould beimplemented4. The algorithm
omputes the
onvex hull and
opies all points on theboundary of the
onvex hull (not only its
orners) in
ounter
lo
kwise order to the iteratorresult. It runs in O(n logn) time, for a set of n input points, using linear spa
e and
anprodu
e up to 2n� 2 output points in the degenerate
ase that all points are
ollinear.template <
lass RandomA

essIterator,
lass Bidire
tionalIterator,
lass Traits >Bidire
tionalIterator
h_graham_andrew_s
an(RandomA

essIterator first,RandomA

essIterator beyond,Bidire
tionalIterator result,
onst Traits& traits)f typename Traits::Left_turn_2 left_turn_2 = traits.left_turn_2_obje
t();// lexi
ographi
al sorting + remove dupli
atesstd::sort(first, beyond, traits.less_xy_2_obje
t());beyond = std::unique(first, beyond, std::not2(traits.less_xy_2_obje
t()));4The implementation provided in Cgal is somewhat di�erent.14

// lower
onvex hull (left to right)result =
opy_if_triple_2(first, beyond, result, left_turn_2);// upper
onvex hull (right to left)typedef std::reverse_iterator< RandomA

essIterator > Rev;result =
opy_if_triple_2(Rev(beyond), Rev(first), --result, left_turn_2);return --result;gNote that the implementation is very simple and
on
ise due to the use of algorithms anddata stru
tures from the standard C++ library. It also uses the following fun
tion that, al-though non-standard, is heavily inspired by standard algorithms su
h as std::remove ifand std::unique.template <
lass ForwardIterator,
lass RandomA

essIterator,
lass Predi
ate >RandomA

essIterator
opy_if_triple_2(ForwardIterator first,ForwardIterator beyond,RandomA

essIterator result,Predi
ate pred)//
opy a subrange of [f, b) to r, s.t. for any 3
onse
utive elmts p// is true. The subrange is obtained by su

essively removing the 2nd// element from the 1st triple in [f, b) not satisfying p.f *result = *first, ++result, ++first;RandomA

essIterator o = result;*result = *first, ++result, ++first;for (; first != beyond; ++result, ++first) fwhile (result != o && pred(*first, result[-1℄, result[-2℄))--result;*result = *first;greturn result;gCalling the algorithm with a kernel is straightforward. We
an simplify the
all fur-ther and hide the kernel parameter with a default argument. For the default we
hoosethe kernel used for the points of the input sequen
e. We obtain the point type usingstd::iterator traits and use the same te
hnique in Kernel traits, to dedu
e thekernel of a geometri
 obje
t. Note that for this me
hanism the kernel has to be default
onstru
tible.template <
lass Bidire
tionalIterator,
lass OutputIterator >OutputIterator
h_graham_andrew_s
an(Bidire
tionalIterator first,Bidire
tionalIterator beyond,OutputIterator result)f 15

typedef typename std::iterator_traits< Bidire
tionalIterator >::value_type P;typedef typename Kernel_traits< P >::Kernel Kernel;return
h_graham_andrew_s
an(first, beyond, result, Kernel());gThe
lass Kernel traits is modelled after std::iterator traits. The default imple-mentation
ould be as follows.template <
lass T >stru
t Kernel_traits ftypedef typename T::Kernel Kernel;g;We assume a
onvention that points provide a lo
al type Kernel for their kernel. For ge-ometri

lasses that do not provide this type one has to de�ne appropriate spe
ializationsof Kernel traits.8.2 Adapting a Predi
ateAssume we use the
onvex hull fun
tion from above with a kernel that represents points bytheir Cartesian
oordinates of type double5. The left-turn predi
ate amounts to evaluat-ing the sign of a 2�2-determinant; if this is done in the straightforward way by
al
ulationswith doubles, the result is not guaranteed to be
orre
t due to roundo� errors
aused bythe limited pre
ision. It
annot be stressed enough, that this is not just a question ofsome minor errors in the output, i.e., some points
lose to the boundary of the
onvex hullbeing
lassi�ed wrongly; the whole
ombinatori
s
an break down,
ausing the algorithmto output garbage or even to loop endlessly.While there is an easy way out, that is, using an exa
t number type [8, 20℄ insteadof double, this often has to be paid for with a
onsiderable loss in performan
e. Anin-between solution is to do the
al
ulations on the fast
oating point type and
al
ulatean error-bound from whi
h one
an dedu
e whether the result is
orre
t, i.e., the sign ofthe expression is known. Exa
t arithmeti
 is only used in those
ases where the
oatingpoint
al
ulation is not known to give the
orre
t results, and the hope is that thishappens seldom. The des
ribed te
hnique is
alled
oating point �ltering [6, 16, 28℄,and depending on how the error bound is
omputed, one refers to the �lters as stati
,semi-stati
 or dynami
.We will now des
ribe how to adapt the kernel to use a stati
ally �ltered left-turnpredi
ate, using the types double and some arbitrary-pre
ision number type, whi
h we
all exa
t. Assume, we know that the
oordinates of the input points are double valuesfrom (�1; 1). It
an be shown (
f. [28℄) that in this
ase the
orre
t sign
an be determinedfrom the double
al
ulation, if the absolute value of the result ex
eeds3 � (2�50 + 2�102) < 2.6645352591003765e-15 :template <
lass K >stru
t Stati
_filter_left_turn_2 f5A double pre
ision
oating point number type as de�ned in IEEE 754 [18℄.16

typedef typename K::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q, Point_2 r)
onst f//
ompute approximationdouble a = determinant2x2(q.x - p.x, q.y - p.y,r.x - p.x, r.y - p.y);// test for error bound:
onst double epsilon = 2.6645352591003765e-15;if (a < -epsilon) return false;if (a > epsilon) return true;// else
ompute exa
tly ...exa
t epx = p.x, epy = p.y;exa
t eqx = q.x, eqy = q.y;exa
t erx = r.x, ery = r.y;return determinant2x2(eqx - epx, eqy - epy,erx - epx, ery - epy) > exa
t(0);ggInserting this into our kernel is straightforward.stru
t Filtered_kernel : publi
 Kernel_base< Filtered_kernel > ftypedef Stati
_filter_left_turn_2< Filtered_kernel > Left_turn_2;Left_turn_2 left_turn_2_obje
t()
onst f return Left_turn_2(); gg;And supplying this adapted kernel to the
onvex hull fun
tion will guarantee that the
orre
t result is produ
ed.The example given here is spe
i�
 for two parti
ular number types (double and exa
t)and for a parti
ular range of values for the
oordinates. Thus, though useful, our adaptedpredi
ate is not appli
able in all
ases. In Se
tion 9, we des
ribe a model for a kernelprovided in Cgal that is parameterized by two number types and automati
ally �ltersall predi
ates of a given, un�ltered kernel, although using a di�erent method than the oneillustrated above.8.3 Proje
tion TraitsAs mentioned in Se
tion 5, one bene�t of using fun
tors in the traits
lass and kernel
lassis the possible asso
iation of a state with the fun
tor. This
exibility
an be used, forexample, to apply a two-dimensional algorithm to a set of
oplanar points in three dimen-sions. Consider the problem of triangulating a set of points on a polyhedral surfa
e. Ea
hfa
e of the surfa
e
an be triangulated separately using a two-dimensional triangulationalgorithm and a kernel
an be written whose two-dimensional part realizes the proje
tionof the points onto the plane of the fa
e in all fun
tors while a
tually using the originalthree-dimensional data. The predi
ates must therefore know about the plane in whi
hthey are operating and this is maintained by the fun
tors in a state variable.17

9 Kernel ModelsThe te
hniques des
ribed in the previous se
tions have been used to realize several modelsfor the geometry kernel
on
ept des
ribed in Se
tion 3. In fa
t, we use
lass templatesto
reate a whole family of models at on
e. The template parameter is usually thenumber type used for
oordinates and arithmeti
 (Se
tion 7). We
ategorize our kernelfamilies a

ording to
oordinate representation, obje
t referen
e and
onstru
tion, andlevel of runtime optimization. Furthermore, we have a
tually two kernel
on
epts inCgal: a lower-dimensional kernel
on
ept for the �xed dimensions 2 and 3, and a higher-dimensional kernel
on
ept for arbitrary dimension d. For more details beyond what
anbe presented here, the reader is referred to the Cgal referen
e manuals [10℄.9.1 Coordinate RepresentationWe distinguish two
oordinate representations: Cartesian and homogeneous. The Carte-sian representation is a
lass template Cartesian<FT> with the template parameter FTindi
ating the requirements for a �eld type. The homogeneous representation is a
lasstemplate Homogeneous<RT> with the template parameter RT indi
ating the requirementsfor a ring type. Homogeneous representation allows many operations to fa
tor out di-visions into a
ommon denominator, thus avoiding divisions in the
omputation, whi
h
an sometimes improve eÆ
ien
y and robustness greatly. The Cartesian representation,however, avoids the extra time and spa
e overhead required to maintain the homogenizing
oordinate and thus
an also be more eÆ
ient for
ertain appli
ations.9.2 Memory Allo
ation and Constru
tionAn additional fa
et of optimization is the memory layout of the geometri
 obje
ts. Thestandard te
hnique of smart pointers
an be used to speed up
opy
onstru
tions andassignments of obje
ts with a referen
e-
ounted handle-representation s
heme. Runtimeexperiments show that this s
heme pays o� for obje
ts whose size is larger than a
er-tain threshold (around 4 words depending on the ma
hine ar
hite
ture). To allow foran optimal
hoi
e, Cgal o�ers for ea
h representation a simple and a smart-pointerbased version. In the Cartesian
ase, these models are
alled Simple
artesian<FT> andCartesian<FT>.9.3 Filtered ModelsThe established approa
h for robust geometri
 algorithms following the exa
t
omputationparadigm [32℄ requires the exa
t evaluation of geometri
 predi
ates, i.e., de
isions derivedfrom geometri

omputations have to be
orre
t. While this
an be a
hieved straight-forwardly by relying on an exa
t number type, this is not the most eÆ
ient approa
h,and the idea of so-
alled �lters has been developed to speed up the exa
t evaluation ofpredi
ates [6, 16, 28℄. See also the example in Se
tion 8.The basi
 idea is to use a �ltering step before the
ostly
omputation with an exa
tnumber type. The �lter step evaluates qui
kly and approximately the result of the pred-i
ate, but is also able to de
ide if the answer it gives is
erti�ed to be true or if there is18

a risk for a false answer, in whi
h
ase the exa
t number type is used to �nd the
orre
tanswer.Cgal implements su
h a �ltering te
hnique using interval arithmeti
, via the numbertype Interval nt [6℄. This number type stores an interval of two double values that
hanges to re
e
t the round-o� errors that o

ur during
oating point
omputations.The
omparison operators on this number type have the property that they throw a C++ex
eption in
ase that the two intervals to be
ompared overlap. When this o

urs, itmeans that the �lter
annot
ertify the exa
tness of the result using its approximate
omputation. Then we have to �nd a di�erent method to evaluate exa
tly the predi
ate,by using an exa
t, but slower, number type. As this failure is supposed to happen rarely onaverage, the overall performan
e of using the �ltering is about the same as the evaluationof the predi
ate over the intervals, whi
h is pretty fast.Cgal provides an adaptor Filter predi
ate<>, whi
h makes it easy to use the�lter te
hnique for a given predi
ate, and also a full kernel Filtered kernel<> with allpredi
ates �ltered using the s
heme presented above.Here is an example of an appli
ation to the orientation predi
ate. The fun
torCartesian<FT>::Orientation 2 is templated by a �eld type. This allows us to build the�ltered version of the orientation predi
ate easily, provided we have an exa
t number typelike leda real. We simply de�ne one version of the predi
ate with the interval numbertype as the �eld type and one with the exa
t number type and use both of these to de�neour �ltered predi
ate.typedef Cartesian< Interval_nt >::Orientation_2 Approx;typedef Cartesian< leda_real >::Orientation_2 Exa
t;typedef Filter_predi
ate< Approx, Exa
t > Filter;typedef Cartesian< double >::Point_2 Point;f Point p(1.0, 2.0), q(2.0, 3.0), r(3.0, 4.0);return Filter()(p, q, r);gFilter predi
ate<> has default template parameters spe
ifying how to
onvert a Pointto a Cartesian<Interval nt>::Point 2 in order to
all the approximate version, andsimilarly in order to
onvert a Point 2 to a Cartesian<leda real>::Point 2 for theeventual exa
t
omputation.9.4 Higher-dimensional KernelThe higher-dimensional kernel de�nes a
on
ept with the same type and fun
tor te
hnol-ogy, but is well separated from the lower-dimensional kernel
on
epts. Higher-dimensionalaÆne geometry is strongly
onne
ted to its mathemati
al foundation in linear algebra andanalyti
al geometry. Therefore, a
entral task is the implementation and integration ofa generi
 linear algebra module. Sin
e the dimension is now a parameter of the inter-fa
e and sin
e the solution of linear systems
an be done in di�erent ways [13, 4, 22℄,a linear algebra
on
ept is part of the interfa
e of the higher dimensional kernel modelsCartesian d<FT,LA> and Homogeneous d<RT,LA>. The linear algebra
on
ept provides19

a standard interfa
e to matrix and ve
tor types and the solution of linear systems ofequations.10 Con
lusionsMany of the ideas presented here have already been realized in Cgal; parts of themstill need to be implemented. Although standard
omplian
e is still a big issue for C++
ompilers, more and more
ompilers are able to a

ept template
ode su
h as ours.We would like to remind the reader that in this paper we have lifted the
urtain to howto implement a library, whi
h is
onsiderably more involved than using a library. A user ofour design
an be gradually introdu
ed to the default use of one kernel, then ex
hangingone kernel with another kernel in an algorithm, ex
hanging individual pie
es in a kernel,and �nally { for experts { writing a new kernel. Only
reators of a new library need toknow all inner workings of a design, but we believe also interested users will bene�t fromstudying the design.A
knowledgmentsThis work has been supported by ESPRIT LTR proje
ts No. 21957 (CGAL) and No.28155 (GALIA). The se
ond author also a
knowledges support from the Swiss FederalOÆ
e for Edu
ation and S
ien
e (CGAL and GALIA).Many more people have been involved in the Cgal proje
t, and
ontributed in oneor the other way to the dis
ussion that �nally lead to the design presented here. Wethank espe
ially Herv�e Br�onnimann, Bernd G�artner, Stefan S
hirra, Wieger Wesselink,and Mariette Yvine
 for their valuable input.Referen
es[1℄ Andrew, A. M. Another eÆ
ient algorithm for
onvex hulls in two dimensions.Inform. Pro
ess. Lett. 9, 5 (1979), 216{219.[2℄ Austern, M. H. Generi
 Programming and the STL. Addison-Wesley, 1998.[3℄ Baker, J. E., Tamassia, R., and Vismara, L. GeomLib: Algorithm engineeringfor a geometri

omputing library, 1997. (Preliminary report).[4℄ Barreis, E. Computational solutions of matrix problems over an integral domain.J. Inst. Maths Appli
ations 10 (1972), 68{104.[5℄ Barton, J. J., and Na
kman, L. R. S
ienti�
 and Engineering C++. Addison-Wesley, Reading, MA, 1997.[6℄ Br�onnimann, H., Burnikel, C., and Pion, S. Interval arithmeti
 yields eÆ
ientdynami
 �lters for
omputational geometry. In Pro
. 14th Annu. ACM Sympos.Comput. Geom. (1998), pp. 165{174. 20

[7℄ Br�onnimann, H., Kettner, L., S
hirra, S., and Veltkamp, R. Appli
a-tions of the generi
 programming paradigm in the design of CGAL. In Generi
Programming|Pro
eedings of a Dagstuhl Seminar (2000), M. Jazayeri, R. Loos, andD. Musser, Eds., LNCS 1766, Springer-Verlag.[8℄ Burnikel, C., Mehlhorn, K., and S
hirra, S. The LEDA
lass real num-ber. Te
hni
al Report MPI-I-96-1-001, Max-Plan
k Institut Inform., Saarbr�u
ken,Germany, Jan. 1996.[9℄ International standard ISO/IEC 14882: Programming languages { C++. Ameri
anNational Standards Institute, 11 West 42nd Street, New York 10036, 1998.[10℄ CGAL, the Computational Geometry Algorithms Library. http://www.
gal.org/.[11℄ Coplien, J. O. Curiously re
urring template patterns. C++ Report (Feb. 1995),24{27.[12℄ de Berg, M., van Kreveld, M., Overmars, M., and S
hwarzkopf, O.Computational Geometry: Algorithms and Appli
ations. Springer-Verlag, Berlin,1997.[13℄ Edmonds, J. Systems of distin
t representatives and linear algebra. Journal ofResear
h of the National Bureau of Standards 71(B) (1967), 241{245.[14℄ Fabri, A., Giezeman, G.-J., Kettner, L., S
hirra, S., and S
h�onherr, S.The CGAL kernel: A basis for geometri

omputation. In Pro
. 1st ACM Workshopon Appl. Comput. Geom. (1996), M. C. Lin and D. Mano
ha, Eds., vol. 1148 ofLe
ture Notes Comput. S
i., Springer-Verlag, pp. 191{202.[15℄ Fabri, A., Giezeman, G.-J., Kettner, L., S
hirra, S., and S
h�onherr, S.On the design of CGAL, the
omputational geometry algorithms library. Software {Pra
ti
e and Experien
e 30 (2000), 1167{1202.[16℄ Fortune, S., and Van Wyk, C. J. Stati
 analysis yields eÆ
ient exa
t integerarithmeti
 for
omputational geometry. ACM Trans. Graph. 15, 3 (July 1996), 223{248.[17℄ Giezeman, G.-J. PlaGeo, a library for planar geometry, and SpaGeo, a library forspatial geometry. Utre
ht University, 1994.[18℄ IEEE Standard for binary
oating point arithmeti
, ANSI/IEEE Std 754�1985. NewYork, NY, 1985. Reprinted in SIGPLAN Noti
es, 22(2):9{25, 1987.[19℄ Josuttis, N. M. The C++ Standard Library, A Tutorial and Referen
e. Addison-Wesley, 1999.[20℄ Karam
heti, V., Li, C., Pe
ht
hanski, I., and Yap, C. The CORE LibraryProje
t, 1.2 ed., 1999. http://www.
s.nyu.edu/exa
t/
ore/.21

[21℄ Kettner, L. Using generi
 programming for designing a data stru
ture for polyhe-dral surfa
es. Comput. Geom. Theory Appl. 13 (1999), 65{90.[22℄ M
Clellan, Mi
hael T. The Exa
t Solution of Systems of Linear Equations withPolynomial CoeÆ
ients. JACM 20, 4 (O
tober 1973), 563{588.[23℄ Mehlhorn, K., and N�aher, S. LEDA: A Platform for Combinatorial and Geo-metri
 Computing. Cambridge University Press, Cambridge, UK, 1999.[24℄ Musser, D. R., and Stepanov, A. A. Generi
 programming. In 1st Intl. JointConf. of ISSAC-88 and AAEC-6 (1989), Springer LNCS 358, pp. 13{25.[25℄ Musser, D. R., and Stepanov, A. A. Algorithm-oriented generi
 libraries.Software { Pra
ti
e and Experien
e 24, 7 (July 1994), 623{642.[26℄ Myers, N. C. Traits: A new and useful template te
hnique. C++ Report (June1995). http://www.
antrip.org/traits.html.[27℄ S
hirra, S. A
ase study on the
ost of geometri

omputing. In Pro
. Workshopon Algorithm Engineering and Experimentation (1999), vol. 1619 of Le
ture NotesComput. S
i., Springer-Verlag, pp. 156{176.[28℄ Shew
huk, J. R. Adaptive pre
ision
oating-point arithmeti
 and fast robustgeometri
 predi
ates. Dis
rete Comput. Geom. 18, 3 (1997), 305{363.[29℄ Standard Template Library programmer's guide. http://www.sgi.
om/te
h/stl/.[30℄ Stroustrup, B. The C++ Programming Language, 3rd Edition. Addison-Wesley,1997.[31℄ Veldhuizen, T. Te
hniques for s
ienti�
 C++. Te
hni
al Report 542, Departmentof Computer S
ien
e, Indiana University, 2000. http://www.extreme.indiana.edu/~tveldhui/papers/te
hniques/.[32℄ Yap, C. K., and Dub�e, T. The exa
t
omputation paradigm. In Computing inEu
lidean Geometry, D.-Z. Du and F. K. Hwang, Eds., 2nd ed., vol. 4 of Le
tureNotes Series on Computing. World S
ienti�
, Singapore, 1995, pp. 452{492.A A Simple Example Kernel// ---// bottom layer: number type based fun
tion toolbox//template <
lass FT >FT determinant2x2(FT a00, FT a01, FT a10, FT a11)f return a00 * a11 - a10 * a01; gtemplate <
lass FT > 22

void line_from_pointsC2(FT px, FT py, FT qx, FT qy,FT& a, FT& b, FT&
)f a = py - qy;b = qx - px;
 = -px * a - py * b;g// ---// mid layer: representations, predi
ates and
onstru
tions//template <
lass K_ >stru
t Point_2 ftypedef K_ K;typedef typename K::FT FT;Point_2() fgPoint_2(FT x_, FT y_) : x(x_), y(y_) fgFT x, y;g;template <
lass K_ >stru
t Line_2 ftypedef K_ K;typedef typename K::Point_2 Point_2;Line_2() fgLine_2(Point_2 p, Point_2 q)f *this = K::Constru
t_line_2(p, q); gtypename K::FT a, b,
;g;template <
lass K_ >stru
t Segment_2 ftypedef K_ K;typename K::Point_2 s, e;g;template <
lass K_ >stru
t Less_xy_2 ftypedef typename K_::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q)
onstf return p.x < q.x || p.x == q.x && p.y < q.y; gg;template <
lass K_ >stru
t Left_turn_2 ftypedef typename K_::Point_2 Point_2;bool operator()(Point_2 p, Point_2 q, Point_2 r)
onst23

f return determinant2x2(q.x - p.x, q.y - p.y,r.x - p.x, r.y - p.y) > 0;gg;template <
lass K_ >stru
t Constru
t_line_2 ftypedef typename K_::Point_2 Point_2;typedef typename K_::Line_2 Line_2;Line_2 operator()(Point_2 p, Point_2 q)
onst fLine_2 l;line_from_pointsC2(p.x, p.y, q.x, q.y, l.a, l.b, l.
);return l;gg;// ---// top layer: geometri
 kernel//template <
lass K_,
lass FT_ >stru
t Kernel_base ftypedef K_ K;typedef FT_ FT;typedef Point_2< K > Point_2;typedef Line_2< K > Line_2;typedef Segment_2< K > Segment_2;typedef Less_xy_2< K > Less_xy_2;typedef Left_turn_2< K > Left_turn_2;typedef Constru
t_line_2< K > Constru
t_line_2;Less_xy_2 less_xy_2_obje
t()
onstf return Less_xy_2(); gLeft_turn_2 left_turn_2_obje
t()
onstf return Left_turn_2(); gConstru
t_line_2
onstru
t_line_2_obje
t()
onstf return Constru
t_line_2(); gg;template <
lass FT_ >stru
t Kernel : publi
 Kernel_base< Kernel< FT_ >, FT_ >fg;// ---//
onvenien
e layer: global fun
tions// 24

template <
lass K > inlineboolless_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())f return k.less_xy_2_obje
t()(p, q); gtemplate <
lass K > inlineboolleft_turn_2(typename K::Point_2 p,typename K::Point_2 q,typename K::Point_2 r,K k = K())f return k.left_turn_2_obje
t()(p, q, r); g// ---// even more
onvenien
e: spe
ializations for Kernel//template <
lass FT > inlineboolleft_turn_2(Point_2< Kernel< FT > > p,Point_2< Kernel< FT > > q,Point_2< Kernel< FT > > r)f return left_turn_2(p, q, r, Kernel< FT >()); gtemplate <
lass FT > inlineboolless_xy_2(Point_2< Kernel< FT > > p, Point_2< Kernel< FT > > q)f return less_xy_2(p, q, Kernel< FT >()); g

25

������ kI N F O R M A T I KBelow you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. Theyare available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
tory pub/papers/reports. Mostof the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have anyquestions
on
erning ftp or WWW a

ess, please
onta
t reports�mpi-sb.mpg.de. Paper
opies (whi
hare not ne
essarily free of
harge)
an be ordered either by regular mail or by e-mail at the address below.Max-Plan
k-Institut f�ur InformatikLibraryattn. Anja Be
kerStuhlsatzenhausweg 8566123 Saarbr�u
kenGERMANYe-mail: library�mpi-sb.mpg.deMPI-I-2001-4-005 H.P.A. Lens
h, M. Goesele, H. Seidel A Framework for the A
quisition, Pro
essing andIntera
tive Display of High Quality 3D ModelsMPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Inje
tiveDomainMPI-I-2001-4-003 K. Daubert, W. Heidri
h, J. Kautz,J. Dis
hler, H. Seidel EÆ
ient Light Transport Using Pre
omputed VisibilityMPI-I-2001-4-002 H.P.A. Lens
h, J. Kautz, M. Goesele,H. Seidel A Framework for the A
quisition, Pro
essing,Transmission, and Intera
tive Display of High Quality3D Models on the WebMPI-I-2001-4-001 H.P.A. Lens
h, J. Kautz, M. Goesele,W. Heidri
h, H. Seidel Image-Based Re
onstru
tion of Spatially VaryingMaterialsMPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based de
ision pro
edures for the universaltheory of some
lasses of distributive latti
es withoperatorsMPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher OrderNatural Dedu
tion using Type TheoryMPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms onCompletely Unimodel Hyper
ubesMPI-I-2001-2-002 P. Maier A Set-Theoreti
 Framework for Assume-GuaranteeReasoningMPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally OrderedDivisible Abelian GroupsMPI-I-2001-1-004 S. Hert, M. Ho�mann, L. Kettner, S. Pion,M. Seel An Adaptable and Extensible Geometry KernelMPI-I-2001-1-003 M. Seel Implementation of Planar Nef PolyhedraMPI-I-2001-1-002 U. Meyer Dire
ted Single-Sour
e Shortest-Paths in LinearAverage-Case TimeMPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Conne
ted NetworksMPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperboli
 Hausdor� Distan
e for Medial AxisTransformMPI-I-2000-4-002 L.P. Kobbelt, S. Bis
ho�, K. K�ahler,R. S
hneider, M. Bots
h, C. R�ossl,J. Vorsatz Geometri
 Modeling Based on Polygonal MeshesMPI-I-2000-4-001 J. Kautz, W. Heidri
h, K. Daubert Bump Map Shadows for OpenGL RenderingMPI-I-2000-2-001 F. Eisenbrand Short Ve
tors of Planar Latti
es Via ContinuedFra
tionsMPI-I-2000-1-005 M. Seel, K. Mehlhorn In�maximal Frames A Te
hnique for Making LinesLook Like Segments

MPI-I-2000-1-004 K. Mehlhorn, S. S
hirra Generalized and improved
onstru
tive separationbound for real algebrai
 expressionsMPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First S
heduling of ParallelComputations with Syn
hronization VariablesMPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristi
 for Telephone GossipingMPI-I-2000-1-001 E. Althaus, O. Kohlba
her, H. Lenhof,P. M�uller A bran
h and
ut algorithm for the optimal solution ofthe side-
hain pla
ement problemMPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy ImageCompressionMPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. S
hobbens Axioms for Real-Time Logi
sMPI-I-1999-3-004 J. Raskin, P. S
hobbens Proving a
onje
ture of Andreka on temporal logi
MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. S
hobbens Fully De
idable Logi
s, Automata and Classi
alTheories for De�ning Regular Real-Time LanguagesMPI-I-1999-3-002 J. Raskin, P. S
hobbens The Logi
 of Event Clo
ksMPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and theHigher-Order Mat
hing Problem in the Simply TypedLambda Cal
ulusMPI-I-1999-2-008 A. Bo
kmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in FixedDimensionMPI-I-1999-2-007 G. Delzanno, J. Raskin Symboli
 Representation of Upward-
losed SetsMPI-I-1999-2-006 A. Nonnengart A Dedu
tive Model Che
king Approa
h for HybridSystemsMPI-I-1999-2-005 J. Wu Symmetries in Logi
 ProgramsMPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Ja
quemard,M. Veanes De
idable fragments of simultaneous rigid rea
habilityMPI-I-1999-2-003 U. Waldmann Can
ellative Superposition De
ides the Theory ofDivisible Torsion-Free Abelian GroupsMPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite TreesMPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to re
ognize a
orre
t Voronoi diagram ofline segmentsMPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDAMPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?MPI-I-1999-1-004 M. Nissen, K. Weihe How generi
 language extensions enable \open-world"desing in JavaMPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Con
urrent A

ess to Parallel DisksMPI-I-1999-1-002 N.P. Boghossian, O. Kohlba
her,H.-. Lenhof BALL: Bio
hemi
al Algorithms LibraryMPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoreti
al and Experimental Study on theConstru
tion of SuÆx Arrays in External MemoryMPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the FirstElementary Closure of a PolyhedronMPI-I-98-2-017 M. Tzakova, P. Bla
kburn Hybridizing Con
ept LanguagesMPI-I-98-2-014 Y. Gurevi
h, M. Veanes Partisan Corroboration, and Shifted PairingMPI-I-98-2-013 H. Ganzinger, F. Ja
quemard, M. Veanes Rigid Rea
habilityMPI-I-98-2-012 G. Delzanno, A. Podelski Model Che
king In�nite-state Systems in CLPMPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Cal
uliMPI-I-98-2-010 S. Ramangalahy Strategies for Conforman
e TestingMPI-I-98-2-009 S. Vorobyov The Unde
idability of the First-Order Theories of OneStep Rewriting in Linear Canoni
al SystemsMPI-I-98-2-008 S. Vorobyov AE-Equational theory of
ontext uni�
ation isCo-RE-HardMPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Dire
t LowerBound Proof)MPI-I-98-2-006 P. Bla
kburn, M. Tzakova Hybrid Languages and Temporal Logi
MPI-I-98-2-005 M. Veanes The Relation Between Se
ond-Order Uni�
ation andSimultaneous Rigid E-Uni�
ation

