An Adaptable and Extensible
Geometry Kernel

Susan Hert Michael Hoffmann Lutz Kettner
Sylvain Pion Michael Seel

September 27, 2001

MPI-1-2001-1-004 September 2001

i

Authors’ Addresses

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken, Germany
Email: hertOmpi-sb.mpg.de

Institute for Theoretical Computer Science
ETH Zurich

CH-8092 Zurich, Switzerland

Email: hoffmann@inf.ethz.ch

University of North Carolina at Chapel Hill, USA.
Email: kettner@cs.unc.edu

INRIA, Sophia Antipolis - France.
Email: Sylvain.Pion@sophia.inria.fr

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85 66123 Saarbriicken, Germany
Email: seel@mpi-sb.mpg.de

Abstract

Geometric algorithms are based on geometric objects such as points, lines and
circles. The term kernel refers to a collection of representations for constant-
size geometric objects and operations on these representations. This paper
describes how such a geometry kernel can be designed and implemented in
C++, having special emphasis on adaptability, extensibility and efficiency.
We achieve these goals following the generic programming paradigm and us-
ing templates as our tools. These ideas are realized and tested in CGAL [10],
the Computational Geometry Algorithms Library.

Keywords

Computational geometry, library design, generic programming.

1 Introduction

Geometric algorithms that manipulate constant-size objects such as circles, lines, and
points are usually described independent of any particular representation of the objects.
It is assumed that these objects have certain operations defined on them and that simple
predicates exist that can be used, for example, to compare two objects or to determine
their relative position. Algorithms are described in this way because all representations
are equally valid as far as the correctness of an algorithm is concerned. Also, algorithms
can be more concisely described and are more easily seen as being applicable in many
settings when they are described in this more generic way.

We illustrate here that one can achieve the same advantages when implementing algo-
rithms by encapsulating the representation of objects and the operations and predicates
for the objects into a geometry kernel. Algorithms interact with geometric objects only
through the operations defined in the kernel. This means that the same implementation of
an algorithm can be used with many different representations for the geometric objects.
Thus, the representation can be chosen to be the one most applicable (e.g., the most
robust or most efficient) for a particular setting.

Regardless of the representation chosen by a particular kernel, it cannot hope to satisfy
the needs of every application. For example, for some applications one may wish to
maintain additional information with each point during the execution of an algorithm or
one may wish to apply a two-dimensional algorithm to a set of coplanar points in three
dimensions. Both of these things are easily accomplished if the algorithm in question is
implemented in a generic way to interact with objects through a kernel and the kernel is
implemented to allow types and operations to be redefined, that is, if the kernel is easily
adaptable. It is equally important that a kernel be extensible since some applications
may require not simply modifications of existing objects and operations but addition of
new ones.

Although adaptability and extensibility are important and worthwhile goals to strive
for, one has to keep in mind that the elements of the kernel form the very basic and
fundamental building blocks of a geometric algorithm built on top. Hence, we are not
willing to accept any loss in efficiency on the kernel level. Indeed, using template pro-
gramming techniques one can achieve genericity without sacrifying runtime-performance
by resolving the arising overhead during compile-time.

After discussing previous work on the design of geometry kernels (Section 2), we give
a general description of our new kernel concept (Section 3). We then describe how this
concept can be realized in an adaptable and extensible way under the generic programming
paradigm [24, 25] (Sections 4 through 7). Section 8 illustrates the use of such a kernel
and shows how the benefits described above are realized. Finally, we describe the models
of this type of kernel that are provided in CGAL (Section 9).

As our implementation is in C++ [9], we assume the reader is somewhat familiar with
this language. Stroustrup [30] provides a general introduction to C++ template program-
ming, which is used extensively in our design. Parts of the design of the library were
inspired by the STL. Austern [2] provides a good reference for generic programming and
the STL, and a good reference for the C++ Standard Library is the book of Josuttis [19].

2 Motivation and Previous Work

Over the past 10 years, a number of geometry libraries have been developed, each with its
own notion of a geometry kernel. The C++ libraries PLAGEO and SPAGEO [17] provide
kernels for 2- and 3-dimensional objects using floating point arithmetic, a class hierarchy,
and a common base class. The C++ library LEDA [23] provides in its geometry part two
kernels, one using exact rational arithmetic and the other floating point arithmetic. The
Java library GEOMLIB [3] provides a kernel built in a hierarchical manner and designed
around Java interfaces. None has addressed the questions of easily exchangeable and
adaptable kernels.

Flexibility is one of the cornerstones of CGAL [10], the Computational Geometry Al-
gorithms Library, which is being developed in a common project of several universities
and research institutes in Europe and Israel. The recent overview [15] gives an extensive
account of functionality, design, and implementation techniques in the library. Generic
programming is one of the tools used to achieve this flexibility [7, 24, 25].

In the original design of the geometry kernel of CGAL [14], the geometric objects
were each parameterized by a representation class, which was in turn parameterized by
a number type. This design provided easy exchange of representation classes, was exten-
sible, and provided limited adaptability of an existing representation class. However, the
design did not allow the representation classes to be extended to also include geometric
operations.

This extension was seen as desirable after the introduction of geometric traits classes
into the library, which separate the combinatorial part of an algorithm or data structure
from the underlying geometry. The term traits class was originally introduced by My-
ers [26]; we use it here to refer to a class that aggregates (geometric) types and operations.
By supplying different traits classes, the same algorithm can be applied to different kinds
of objects. Thus the use of traits classes brought about even more flexibility at a higher
level in the library and, for example, allowed an easy means of comparison of different
kernels in CGAL and LEDA using appropriate traits classes from CGAL [27].

As a kernel is generally considered to represent a basic set of building blocks for
geometric computations, it is quite natural to assume that the kernel itself can be used as
a traits class for many algorithms. This means that the concept of a kernel must include
not only the representations for objects but also the operations on these objects, and for
maximum flexibility both should be easily adaptable. Indeed, the fact that the existing
CGAL kernel did not present its functionality in a way that was immediately accessible
for the use in traits classes was one motivation for this work. Factoring out common
requirements from the traits classes of different algorithms into the kernel is very helpful
in maintaining uniform interfaces across a library and maximizing code reuse.

While the new design described here is even more flexible and more powerful than the
old design, it maintains backwards compatibility. The kernel concept now includes easily
exchangeable functors in addition to the geometric types; the ideas of traits classes and
kernel representations have been unified. The implementation is accomplished by using
a template programming idiom similar to the Barton-Nackman trick [5, 11] that uses a
derived class as a template argument for a base class template. A similar idiom has been
used in CGAL to solve cyclic template dependencies in the halfedge data structure and

polyhedral surface design [21].

3 The Kernel Concept and Architecture

A geometry kernel consists of types used to represent geometric objects and operations
on these types. Although from a C++ point of view both will be classes, we refer only to
the former as (geometric) types whereas we call the latter (geometric) operations. Since
different kernels will have different notions of what basic types and operations are required,
we do not concern ourselves here with listing the particular objects and operations to be
included in the kernel. Rather, we describe the kernel concept in terms of the interface it
provides for each object and operation.

Depending on one’s perspective, the expected interface to these types and operations
will look somewhat different. From the point of view of an imperative-style programmer,
it is natural that the types appear as stand-alone classes and the operations as global
functions or member functions of these classes.

K::Point_2 p(0,1), q(1,-4);
K::Line_2 line(p, q);

if (less_xy_2(p, @) { ... }

However, from the point of view of someone implementing algorithms in a generic way,
it is most natural, indeed most useful, if types and operations are both provided by the
kernel. This encapsulation allows both types and operations to be adapted and exchanged
in the same manner.

K k;

K::Construct_line_2 c¢_line = k.construct_line_2_object();
K::Less_xy_2 less_xy = k.less_xy_2_object();
K::Point_2 p(0,1);

K::Point_2 q(1,-4);

K::Line_2 line = c_line(p, q);

if (less_xy(p, @) { ... }

The concept of a kernel we introduce here includes both of these perspectives. That is,
each operation is represented both as a type, an instance of which can be used like a
function, and as a global function or a member function of one of the object classes.
The techniques described in the following three sections allow both interfaces to coexist
peacefully under one roof with a minimal maintenance overhead, and thus lead to a kernel
that presents a good face to everyone.

Our kernel is constructed from three layers, illustrated in Figure 1. The bottom layer
consists of basic numeric primitives such as the computation of matrix determinants and
the construction of line equations from point coordinates. These numeric primitives are
used in the geometric primitives that constitute the second layer of our structure. The
top layer then assimilates the geometric primitives. The scope of our kernel concept is
representation-independent affine geometry. Thus the concept includes, for example, the

struct Kernel;

—» Point_2;
Line-2; Kernel
Leftturn_2;
COIlSiStS Construct_line_2;
of
struct Point_2; — struct Leftturn_2; Geometric
L struct Line_2; struct Construct_line_2; Primitives
calls
FT determinant2x2(FT, FT, FT, FT); Numeric
void line_from pointsC2(FT px, FT py, FT gx, FT qy Primitives

FT& a, FT& b, FT& c);

Figure 1: The kernel architecture.

construction of a point as the intersection of two lines but not its construction from = and
y coordinates.

4 An Adaptable Kernel

We present our techniques using a simplified example kernel. Consider the types Point_2
and Line_2 representing two-dimensional points and lines, respectively, an operation
Construct_line_2 that constructs a Line_2 from two Point_2 arguments, and an op-
eration Less_xy_2 that compares two Point_2 objects lexicographically. The kernel for
these types and operations might then look as follows; the classes MyPoint, MyLine,
MyConstruct, and MyLess are arbitrary and defined elsewhere.

struct Kernel {

typedef MyPoint Point_2;
typedef MyLine Line_2;
typedef MyConstruct Construct_line_2;

typedef MyLess Less_xy_2;

}s

In general, one probably needs more operations and possibly more types in order to be
able to do something useful, but for the sake of simplicity we will stay with these four
items for the time being.

A first question might be: Construct_line_2 has to construct a Line 2 from two
Point_2s; hence it has to know something about both types. How does it get to know
them? Since we are talking about adaptability, just hard-wiring the names MyPoint and
MyLine into MyConstruct is not what we would like to do.

A natural solution is to parameterize MyConstruct with the other classes, that is,
with our kernel. As soon as a class knows the kernel it resides in, it also knows all related

classes and operations. A straightforward way to implement this parameterization is to
supply the kernel as a template argument to the geometric classes.

template < class K > struct MyPoint { ... };
template < class K > struct MyLine { ... };
template < class K > struct MyConstruct { ... };
template < class K > struct MyLess { ... };

Our kernel class from above has to be changed accordingly.

struct Kernel {

typedef MyPoint< Kernel > Point_2;
typedef MyLine< Kernel > Line_2;
typedef MyConstruct< Kernel > Construct_line_2;

typedef MyLess< Kernel > Less_xy_2;

}s

At first, it might look a bit awkward; inserting a class into its own components seems to
create cyclic references. Indeed, one has to be careful, as the following example demon-
strates.

template < class T >
struct P {
typedef typename T::A B;

}s

struct K {
typedef P< K >::B B; // *
typedef int A;

}s

A reference to K::B will lead to P<K>::B and further to K::A, but this type is not yet
declared in line *. A reasonable C++ compiler will thus give up at that point. But there
is no such problem with the Kernel class above; the class is considered to be declared
as soon as the class name has been read (cf. [9] 9/2), hence it is fine to provide it as
a template argument to other classes. The problem in class K came from the fact that
P<K>: :B refers back to K inside its own definition, to the still undefined type K: : A.
Leaving these subtleties, let us come back to the main theme: adaptability. It should
be easy to extend or adapt this kernel and indeed, all that needs to be done is to derive a
new class from Kernel where new types can be added and existing ones can be exchanged.

struct New_kernel : public Kernel {
typedef NewPoint< New_kernel > Point_2;
typedef MyLeftTurn< New_kernel > Left_turn_2;

1%

Here Point_2 is overwritten with a different type and the new operation Left_turn_2 is
defined. So let us start programming with the newly constructed kernel.

New_kernel::Point_2 p, q;

New_kernel: :Construct_line_2 construct_line_2;
// initialize p, q and construct_line_2
New_kernel::Line_2 1 = construct_line_2(p, q);

To our surprise and anger, the last line refuses to compile.

No instance of function "MyConstruct<Kernel>::operator()"
matches the argument list.
The argument types are: (New_kernel::Point_2, New_kernel::Point_2).

What has gone wrong? Apart from the fact that we did not show the implementation
of MyConstruct yet and hence the reference to operator() is not clear, there is one
thing that should catch our eyes: the compiler complains about MyConstruct<Kernel>
whereas we would like to see MyConstruct<New_kernel>. On the other hand, this is not
really surprising, since we did not change the type Construct_line_2 in New_kernel,
hence, it is the same as in Kernel, that is MyConstruct<Kernel>. MyConstruct<> uses
the type Kernel::Point_2 (= MyPoint<>) and cannot handle New_kernel: :Point 2 (=
NewPoint<>) arguments properly; hence, the error message.

Kernel New_kernel

F— = [poimrea) ool
: H
! H

g T[hmea] T T [t
: H
H
"""""""""" * (YConstroctilinaio TTmmTmmtmmmemat oo™ | Gonstruct_line 2
H
H
H
b > | Left_turn_2

H
H

I
Vot | MyPoint
Vo
I

| | MyLine
v

Figure 2: Instantiation problem. Boxes stand for classes, thick dashed arrows denote
derivation, solid arrows show (template) parameters, and thin dotted arrows have to be
read as “defines” (typedef or inheritance).

What can be done to tell MyConstruct that it should now consider itself part of
New_kernel? An obvious solution would be to redefine Construct_line_2 in New_kernel
appropriately. This is fine in our example where it amounts to just one more typedef,
but considering a real kernel with dozens of types and hundreds of operations, it would
be really tedious to have to repeat all these definitions. Note that it may well be that
these classes have to be redefined anyway, as the change of one class potentially affects
all other classes that interact with that class. But often it is not necessary', and we do
not want this redefinition as a general requirement.

!Consider replacing a class by another class providing the same interface or a superset of it, e.g.,
derived classes.

Fortunately, there is a way out. If Kernel is meant as a base for building custom
kernel classes, it is not wise to instantiate MyPoint<>, MyLine<> and MyConstruct<> at
that point with Kernel, as this might not be the kernel in which these classes finally
end up. We rather would like to defer the instantiation, until it is clear what the actual
kernel will be. This can be done by introducing a class Kernel_base that serves as an
“instantiation-engine.” Actual kernel classes like Kernel and New_kernel both derive
from Kernel_base and finally start the instantiation by injecting themselves into the
base class.

template < class K >
struct Kernel_base {

typedef MyPoint< K > Point_2;
typedef MyLine< K > Line_2;
typedef MyConstruct< K > Construct_line_2;
typedef MyLess< K > Less_xy_2;
}s

struct Kernel : public Kernel_base< Kernel > {};

It seems somewhat strange to insert a class into its base class, that is into itself in some
sense. But looking at it more closely quickly reveals that the construction is not much
different from the previous one, except for giving the additional freedom to determine
when MyPoint etc. are instantiated. It is still easy to create new kernels by derivation,
now from Kernel_base. In order to be able to extend New_kernel in the same way as
Kernel, we defer instantiation once again.

template < class K >

struct New_kernel_base : public Kernel_base< K > {
typedef NewPoint< K > Point_2;

typedef MyLeftTurn< K > Left_turn_2;

}s

struct New_kernel : public New_kernel_base< New_kernel > {};

Thus we achieve our easily extensible and adaptable kernel through the use of the kernel
as a template parameter at two different levels. The geometric object classes in the kernel
use the kernel as a template parameter so the distinct geometric objects have a way of
discovering the types of the other objects and operations. Thus any change of a type
or operation in the kernel is propagated through to the relevant object classes. And the
kernel itself is derived from a base class that is templated by the kernel, which assures
that the types and operations instantiated are the types in the derived class and not in
the base class. Thus any modified types or operations live in the same kernel as the ones
inherited from the base class and there is no problem in using the two together.

5 Functors

The question still remains how we provide the actual functions that are needed by the
classes and functions that interact through the kernel. Consider again the example from
the previous section:

Kernel_base rw New_kernel_base New_kernel
A] R ot)
' '
' '
i B e | R A g PEE B] [inec2]
'
! '
' '
e ~[Gommmeriimaz] {]eeee et (o] {1 [[timea]
! '
i |
S e | & B)
I
N |
[H
H E :| MyPoint | | MyLine | |MyConstruct | v NewPoint | | MyTurn |
H " " " . " "

Figure 3: Deferring instantiation. Boxes stand for classes, thick dashed arrows denote
derivation, solid arrows show (template) parameters, and thin dotted arrows have to be
read as “defines” (typedef or inheritance).

New_kernel::Point_2 p, q;

New_kernel: :Construct_line_2 construct_line_2;
// initialize p, q and construct_line_2
New_kernel::Line_2 1 = construct_line_2(p, q);

What we are concerned with here is how the kernel provides the function construct_line_2.
There are a number of ways such a function can be provided in a way that assures adapt-
ability of the kernel. Adaptability is not the only concern, however. A real kernel will
contain many constructions and predicates, most of them small, containing only a few
lines of code. These functions will be called a huge number of times during the execution
of an algorithm implemented on top of the kernel; they are to geometry what additions
and multiplications are to arithmetics. Hence, efficiency is very important.
The classic C-style approach would be to use pointers to functions in the kernel.

struct Kernel {
typedef Line_2 (*Construct_line_2)(Point_2 p, Point_2 q);
Construct_line_2 construct_line_2;

1%

Adaptability is provided by the ability to change the pointer (construct_line_2 in our
example). But the additional indirection when calling the function imposes a considerable
performance penalty for small functions. We will demonstrate this behaviour below.
Virtual functions are the Java-style means of achieving adaptability.

struct Kernel_base {
virtual Line_2 construct_line_2(Point_2 p, Point_2 q);

1%

As with pointers to functions, though, there is an additional indirection involved (lookup
in the virtual function table); moreover, many compiler optimisations are not possible
through virtual functions [31], as the actual types are not known at compile time. This
overhead is considerable in our context [27].

So if virtual functions are too costly, how about making construct_line_2 a plain
member function of Kernel_base? The function can then be adapted by overwriting it
in derived classes. Indeed, what we propose is just one step further, and involves moving
from concrete function signatures in the programming language to a more abstract level.
The solution is inspired by the standard C++ library [9], where many algorithms are
parameterized with so-called function objects, or functors. The crucial observation behind
this abstraction is the following: it is not important whether something ¢s a function, as
long as it behaves like a function and thus can be used as a function. So what is the
behaviour of a function? It is something you can call by using parentheses and passing
arguments [19].

Obviously, any function is a functor. But objects of a class-type that define an appro-
priate operator() can be functors as well.

struct Construct_line_2 {
Line_2 operator() (Point_2 p, Point_2 q) const
{ // build a line from points p and q; }

}s
This way, any instance of Construct_line_2 can be used as if it were a function.

Point_2 p, q;
Construct_line_2 construct_line_2;
Line_2 1 = construct_line_2(p,q);

There are at least three advantages that make this abstraction worthwhile: efficiency,
ability to maintain a state, and better type checking, all explained in more detail below.
Although the first two advantages can be achieved by using plain member functions of
the kernel class, there are a few reasons that functors are preferable.

e Geometric operations that are functors can be used together with algorithms from
the standard library such as sort, lower_bound, etc.

e Functors are cleanly separated from each other and can maintain their states inde-
pendently.

e Functors provide an almost uniform framework where both representations and
operations are just types in the kernel class, and the mechanisms for adapting and
exchanging them are the same.

e Functors provide a simpler calling syntax since it is independent of the kernel object,
whereas member functions require the use of the kernel object in every call.

5.1 Efficiency of Functors

If the complete class definition for a functor is known at compile time, the operator ()
can be inlined. Handing the functor as a template argument to some function template
or class template is like literally handing over a piece of code that can be inlined and
optimized to the compiler’s taste. Note again the contrast to the traditional function
pointers and to virtual functions.

To support this claim, we have made a small test: sort 5000 double numbers with
bubble-sort, beginning with the numbers in worst-case order. The first function compares
numbers using the built-in operator<, the second is parameterized with a functor for
the comparison, and the third with a function pointer. With compilers that optimize
well, there is absolutely no difference in runtime between the generic functor and the
“handcrafted” version, while the function pointer parameterization causes a considerable
overhead; see Table 1.

System Compiler < functor pointer
LINUX g++ -03 370 430 1150
IRIX CC -Ofast 760 760 1350
SOLARIS g++ -03 770 860 5360
SOLARIS CC -fast 890 890 3300
SOLARIS KCC +K3 740 740 2560

Table 1: Runtime in msec. to sort 5000 double numbers.

5.2 Functor with State

In addition to their potential for optimizations, functors also prove to be more flexible
than plain functions; a functor of class-type has a state that can carry local data. While
state could also be implemented using static variables in member or global functions, this
would forbid working with more than one instance of the function, imposing a severe
and hard-to-check restriction. And maintaining a single monolithic kernel object that
aggregates the states of all its operations would be quite difficult to handle.

Let us assume that, for the purposes of benchmarking, we want to count the number
of comparisons done by a program using our functor MyLess in the sample kernel Kernel
above.

template <class K>
struct MyLess {
typedef typename K::Point_2 Point_2;

int* count;
MyLess(int* counter) : count(counter) {}
bool operator() (Point_2 p, Point_2 q) const {
++(*count) ;
return p.x < q.x || p.x == q.x & p.y < q.y;
}
}s

Each call to this functor increases the externally referenced counter by one. Other, more
serious, examples of functors using a state are the adaptors binderist and binder2nd

10

in the STL. They use a local variable to store the value to which one of a functor’s
arguments gets bound. Also the projection traits described in Section 8.3 needs a state
to store the projection direction.

Allowing local data for a functor adds a slight complication to the kernel. Clearly, a
generic algorithm has to be oblivious to whether a functor carries local state or not. Hence,
the algorithm cannot instantiate the functor itself. As the example above illustrates, a
function with local state may require the use of a non-default constructor while one
without a local state does not. But we can assume that the kernel knows how to create
functors. So we add access member functions to the kernel that allow a generic algorithm
to obtain an object for a functor. Here is the revised kernel base class for the example from
the previous section. The access member functions are simply inherited by all derived
kernels and kernel base classes.

template < class K >
struct Kernel_base {

typedef MyPoint< K > Point_2;
typedef MyLine< K > Line_2;
typedef MyConstruct< K > Construct_line_2;
typedef MyLess< K > Less_xy_2;
Construct_line_2 construct_line_2_object();
Less_xy_2 less_xy_2_object();

b

The actual implementations of construct_line 2 object and less_xy_2 object de-
pend on MyConstruct and MyLess, respectively, and might be as simple as the default
constructors.

5.3 Better Type Matching

The type of a function is defined by its signature, while the types of general functors
can be as different as one likes. This is an advantage in template argument matching,
as there is more freedom in expressing the set of matching types. Consider, for example,
a data structure D<> that is parameterized with a predicate, and imagine a class P<> of
predicates for which you would like to share the implementation of D< P<> >. By defining
a specialization

template < class T > struct DK PK T > > { ... };

this code sharing is easily accomplished, while doing so on the level of function signatures
is not possible in a straightforward manner.

6 An Imperative Interface

Someone used to imperative-style programming might expect a kernel interface based on
member functions and global functions operating on the geometric classes rather than
having to deal with functors and kernel objects. Due to the flexibility in our design, we
can easily provide such an interface on top of the kernel with little overhead. However,
some care has to be taken, such that the genericity is not lost in this step.

11

Consider again the operation for determining if one point is lexicographically smaller
than another. We have provided this operation through our kernel with the type Less_xy_2
and the member function less_xy_2_object (), which creates an instance of the functor.
It is also quite natural to provide this operation as a global function in our kernel interface.
In order to handle correctly functors with state, a kernel object has to be a parameter of
such a function. A default argument can be used such that the kernel object does not
have to be provided where the default kernel suffices.

template < class K >
bool less_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())
{ return k.less_xy_2_object() (p, q@); }

However, if the kernel parameter k is omitted, the type K cannot be deduced from the
actual parameters of the function call (cf. [9] 14.8.2.1/4). Hence, the template parameter
has to be specified explicitly in this case.

Kernel::Point_2 p, q;
if (less_xy_2<Kernel>(p, q@)) { ... }

While such functions allow one to write completely generic code, one might still object
to the spurious-looking <Kernel> parameter in the global function call. It would be
preferable to be able to avoid this parameter in some cases, e.g., where only one specific
kernel is ever used. The solution is to overload the function for parameters from this
specific kernel.

bool less_xy_2(Point_2< Default_kernel_1 > p,
Point_2< Default_kernel_1 > q)
{ return less_xy_2<Default_kernel_1>(p, q); }

Note that these specialized functions can be templated again, e.g., by a number type, as
long as they are not templated with the kernel class.?2 Then both the specialized function
and the function with the kernel template parameter can peacefully coexist, and also both
ways of calling them can be used simultaneously.

One might also want to add some functionality to the geometric types. For example,
if the kernel supports the construction of a line from two points, it is natural that the
class MyLine has a constructor that takes two point arguments.

template < class K >

struct MyLine {
MyLine (typename K::Point_2 p, typename K::Point_2 q)
{ ... use e.g. K::Construct_line_2 ... }

1%

Again it is important that MyLine does not make assumptions about the point type, but
uses the operations provided by K only. This way, the geometric types remain nicely
separated, as their — sometimes close — relationships are encapsulated into appropriate
operations.

2If they were, the call less_xy_2<Default_kernel_1>(...) would be ambiguous.

12

7 A Function Toolbox

Our kernel concept nicely separates the representation of geometric objects from the oper-
ations on these objects. But when implementing a specific operation such as Left_turn_2,
the representation of the corresponding point type Point_2 will inevitably come into play;
in the end, the predicate is evaluated using arithmetic operations on some number type.
The nontrivial® algebraic computations needed in predicates and constructions are encap-
sulated in the bottom layer of our kernel architecture (Figure 1), the number-type-based
function toolbozr, which we describe in this section.

A number type refers to a numerical type that we use to store coordinates and to cal-
culate results. Given that the coordinates we start with are rational numbers, it suffices
to compute within the domain of rational numbers. For certain operations we will go
beyond rational arithmetic and require roots. However, since the majority of our kernel
requires only rational arithmetic we focus on this aspect here. Depending on the calcula-
tions required for certain operations, we distinguish between different concepts of number
types that are taken from algebra. A ring supports addition, subtraction and multiplica-
tion. A Fuclidean ring supports the three ring operations and an integral division with
remainder, which allows the calculation of greatest common divisors used, e.g., to cancel
common factors in fractions. In contrast, a field type supports exact division instead of
integral division.

Many of the operations in our kernel boil down to determinant evaluations, e.g., sided-
ness tests, in-circle tests, or segment intersection. For example, the left-turn predicate is
evaluated by computing the sign of the determinant of a 2x2 matrix built from differences
of the points’ coordinates. Since the evaluation of such a determinant is needed in several
other predicates as well, it makes sense to factor out this step into a separate function,
which is parameterized by a number type (here FT for field type) to maintain flexibility
even at this level of the kernel:

template < class FT >
FT determinant2x2(FT a00, FT a01, FT al0, FT all)
{ return a00 * all - al0 * aO1; }

The function can now be shared by all predicates and constructions that need to evaluate
a 2x2 determinant. This code reuse is desirable not only because it reduces maintenance
overhead but also from a robustness point of view, as it isolates potential problems in a
small number of places. And this also enhances the adaptability and extensibility of our
kernel. These basic numerical operations are equally as accessible to anyone providing
additional or customized operations on top of our kernel in the future.

8 Adaptable Algorithms

In the previous sections, we have illustrated the techniques used to realize a kernel concept
that includes functors as well as types in a way that makes both easily adaptable. Here
we show how such a kernel can be put to good use in the implementation and adaptation
of an algorithm.

*beyond a single addition or comparison

13

In CcAL, the geometric requirements of an algorithm are collected in a geometric
traits class that is a template parameter for the algorithm. With the addition of functors
to the kernel concept, it is now possible simply to supply a kernel as the argument for
the geometric traits class of an algorithm. And it is also now quite easy to replace a type
or predicate provided with one of the kernels in CGAL with another, customized type or
predicate and then use the adapted kernel as the traits class argument. We illustrate
these points below.

In general, the requirements of many geometric traits classes are only a subset of the
requirements of a kernel. Other geometric traits classes might have requirements that are
not part of the kernel concept. They can be implemented as extensions on top, having
easy access to the part of their functionality that is provided by the kernel.

8.1 Kernel as a Traits Class

Let us consider as a simple example Andrew’s variant of Graham’s scan [1, 12] for com-
puting the convex hull of a set of points in two dimensions. This algorithm requires only
a point type, the lexicographical comparison of points, and a left-turn predicate from its
traits class. Thus, the kernel New_kernel from Section 4 suffices for this algorithm.

The function that implements this algorithm takes a range of random-access iterators
providing the input sequence of points and a bidirectional iterator for the resulting se-
quence of hull points. The last argument is the traits class, that is, our kernel. For a
thorough description of the standard iterator concepts refer to the book of Austern [2] or
the online reference of SGI's STL [29]. Informally speaking, one can think of random-
access iterators as pointers to an array, while bidirectional iterators can be regarded as
pointers to a doubly-linked list.

Let us flesh out the example of the convex hull algorithm and see how it could be
implemented?. The algorithm computes the convex hull and copies all points on the
boundary of the convex hull (not only its corners) in counterclockwise order to the iterator
result. It runs in O(n logn) time, for a set of n input points, using linear space and can
produce up to 2n — 2 output points in the degenerate case that all points are collinear.

template < class RandomAccessIterator,
class Bidirectionallterator,
class Traits >
Bidirectionallterator
ch_graham_andrew_scan(RandomAccessIterator first,
RandomAccessIterator beyond,
Bidirectionallterator result,
const Traits& traits)

typename Traits::Left_turn_2 left_turn_2 = traits.left_turn_2_object();
// lexicographical sorting + remove duplicates

std: :sort(first, beyond, traits.less_xy_2_object());
beyond = std::unique(first, beyond, std::not2(traits.less_xy_2_object()));

4The implementation provided in CGAL is somewhat different.

14

}

Note that the implementation is very simple and concise due to the use of algorithms and
data structures from the standard C++ library. It also uses the following function that, al-
though non-standard, is heavily inspired by standard algorithms such as std: :remove_if

// lower convex hull (left to right)
result = copy_if_triple_2(first, beyond, result, left_turn_2);

// upper convex hull (right to left)
typedef std::reverse_iterator< RandomAccessIterator > Rev;

result = copy_if_triple_2(Rev(beyond), Rev(first), --result, left_turn_2);

return --result;

and std: :unique.

template < class ForwardIterator, class RandomAccessIterator, class Predicate >

RandomAccessIterator
copy_if_triple_2(ForwardIterator first,

ForwardIterator beyond,
RandomAccessIterator result,
Predicate pred)

// copy a subrange of [f, b) to r, s.t. for any 3 consecutive elmts p
// is true. The subrange is obtained by successively removing the 2nd
// element from the 1st triple in [f, b) not satisfying p.

{

}

Calling the algorithm with a kernel is straightforward. We can simplify the call fur-
ther and hide the kernel parameter with a default argument. For the default we choose
the kernel used for the points of the input sequence. We obtain the point type using
std::iterator_traits and use the same technique in Kernel_traits, to deduce the
kernel of a geometric object. Note that for this mechanism the kernel has to be default

*result = *first, ++result, ++first;
RandomAccessIterator o = result;
*result = *first, ++result, ++first;

for (; first != beyond; ++result, ++first) {
while (result != o && pred(*first, result[-1], result[-2]))
--result;
*result = xfirst;
}

return result;

constructible.

template < class Bidirectionallterator, class Outputlterator >
OutputIterator
ch_graham_andrew_scan(BidirectionalIterator first,

Bidirectionallterator beyond,
OutputIterator result)

15

typedef typename std::iterator_traits< Bidirectionallterator >::value_type P;
typedef typename Kernel_traits< P >::Kernel Kernel;
return ch_graham_andrew_scan(first, beyond, result, Kernel());

}

The class Kernel_traits is modelled after std::iterator_traits. The default imple-
mentation could be as follows.

template < class T >
struct Kernel_traits {
typedef typename T::Kernel Kernel;

1%

We assume a convention that points provide a local type Kernel for their kernel. For ge-
ometric classes that do not provide this type one has to define appropriate specializations
of Kernel_traits.

8.2 Adapting a Predicate

Assume we use the convex hull function from above with a kernel that represents points by
their Cartesian coordinates of type double®. The left-turn predicate amounts to evaluat-
ing the sign of a 2x2-determinant; if this is done in the straightforward way by calculations
with doubles, the result is not guaranteed to be correct due to roundoff errors caused by
the limited precision. It cannot be stressed enough, that this is not just a question of
some minor errors in the output, 7.e., some points close to the boundary of the convex hull
being classified wrongly; the whole combinatorics can break down, causing the algorithm
to output garbage or even to loop endlessly.

While there is an easy way out, that is, using an exact number type [8, 20] instead
of double, this often has to be paid for with a considerable loss in performance. An
in-between solution is to do the calculations on the fast floating point type and calculate
an error-bound from which one can deduce whether the result is correct, i.e., the sign of
the expression is known. Exact arithmetic is only used in those cases where the floating
point calculation is not known to give the correct results, and the hope is that this
happens seldom. The described technique is called floating point filtering [6, 16, 28],
and depending on how the error bound is computed, one refers to the filters as static,
semi-static or dynamic.

We will now describe how to adapt the kernel to use a statically filtered left-turn
predicate, using the types double and some arbitrary-precision number type, which we
call exact. Assume, we know that the coordinates of the input points are double values
from (—1, 1). It can be shown (cf. [28]) that in this case the correct sign can be determined
from the double calculation, if the absolute value of the result exceeds

3+(2770 4+ 2719%) < 2.6645352591003765e-15 .

template < class K >
struct Static_filter_left_turn_2 {

A double precision floating point number type as defined in IEEE 754 [18].

16

typedef typename K::Point_2 Point_2;

bool operator() (Point_2 p, Point_2 q, Point_2 r) const {
// compute approximation
double a = determinant2x2(q.x - p.x, 9.y - pP.¥,

T.Xx - p.X, r.y - pP.Y);

// test for error bound:

const double epsilon = 2.6645352591003765e-15;
if (a < -epsilon) return false;

if (a > epsilon) return true;

// else compute exactly ...
exact epx = p.X, e€py = p.¥;
exact egx = q.X, eqy = q.Y;
exact erx = r.x, ery = r.y;

return determinant2x2(eqx - epx, eqy - epy,
erx - epx, ery - epy) > exact(0);
}

}
Inserting this into our kernel is straightforward.

struct Filtered_kernel : public Kernel_base< Filtered_kernel > {
typedef Static_filter_left_turn_2< Filtered_kernel > Left_turn_2;
Left_turn_2 left_turn_2_object() const { return Left_turn_2(); }

1%

And supplying this adapted kernel to the convex hull function will guarantee that the
correct result is produced.

The example given here is specific for two particular number types (double and exact)
and for a particular range of values for the coordinates. Thus, though useful, our adapted
predicate is not applicable in all cases. In Section 9, we describe a model for a kernel
provided in CGAL that is parameterized by two number types and automatically filters
all predicates of a given, unfiltered kernel, although using a different method than the one
illustrated above.

8.3 Projection Traits

As mentioned in Section 5, one benefit of using functors in the traits class and kernel class
is the possible association of a state with the functor. This flexibility can be used, for
example, to apply a two-dimensional algorithm to a set of coplanar points in three dimen-
sions. Consider the problem of triangulating a set of points on a polyhedral surface. Each
face of the surface can be triangulated separately using a two-dimensional triangulation
algorithm and a kernel can be written whose two-dimensional part realizes the projection
of the points onto the plane of the face in all functors while actually using the original
three-dimensional data. The predicates must therefore know about the plane in which
they are operating and this is maintained by the functors in a state variable.

17

9 Kernel Models

The techniques described in the previous sections have been used to realize several models
for the geometry kernel concept described in Section 3. In fact, we use class templates
to create a whole family of models at once. The template parameter is usually the
number type used for coordinates and arithmetic (Section 7). We categorize our kernel
families according to coordinate representation, object reference and construction, and
level of runtime optimization. Furthermore, we have actually two kernel concepts in
CacAL: a lower-dimensional kernel concept for the fixed dimensions 2 and 3, and a higher-
dimensional kernel concept for arbitrary dimension d. For more details beyond what can
be presented here, the reader is referred to the CGAL reference manuals [10].

9.1 Coordinate Representation

We distinguish two coordinate representations: Cartesian and homogeneous. The Carte-
sian representation is a class template Cartesian<FT> with the template parameter FT
indicating the requirements for a field type. The homogeneous representation is a class
template Homogeneous<RT> with the template parameter RT indicating the requirements
for a ring type. Homogeneous representation allows many operations to factor out di-
visions into a common denominator, thus avoiding divisions in the computation, which
can sometimes improve efficiency and robustness greatly. The Cartesian representation,
however, avoids the extra time and space overhead required to maintain the homogenizing
coordinate and thus can also be more efficient for certain applications.

9.2 Memory Allocation and Construction

An additional facet of optimization is the memory layout of the geometric objects. The
standard technique of smart pointers can be used to speed up copy constructions and
assignments of objects with a reference-counted handle-representation scheme. Runtime
experiments show that this scheme pays off for objects whose size is larger than a cer-
tain threshold (around 4 words depending on the machine architecture). To allow for
an optimal choice, CGAL offers for each representation a simple and a smart-pointer
based version. In the Cartesian case, these models are called Simple_cartesian<FT> and
Cartesian<FT>.

9.3 Filtered Models

The established approach for robust geometric algorithms following the exact computation
paradigm [32] requires the exact evaluation of geometric predicates, i.e., decisions derived
from geometric computations have to be correct. While this can be achieved straight-
forwardly by relying on an exact number type, this is not the most efficient approach,
and the idea of so-called filters has been developed to speed up the exact evaluation of
predicates [6, 16, 28]. See also the example in Section 8.

The basic idea is to use a filtering step before the costly computation with an exact
number type. The filter step evaluates quickly and approximately the result of the pred-
icate, but is also able to decide if the answer it gives is certified to be true or if there is

18

a risk for a false answer, in which case the exact number type is used to find the correct
answer.

CcAL implements such a filtering technique using interval arithmetic, via the number
type Interval nt [6]. This number type stores an interval of two double values that
changes to reflect the round-off errors that occur during floating point computations.
The comparison operators on this number type have the property that they throw a C++
exception in case that the two intervals to be compared overlap. When this occurs, it
means that the filter cannot certify the exactness of the result using its approximate
computation. Then we have to find a different method to evaluate exactly the predicate,
by using an exact, but slower, number type. As this failure is supposed to happen rarely on
average, the overall performance of using the filtering is about the same as the evaluation
of the predicate over the intervals, which is pretty fast.

CGAL provides an adaptor Filter_predicate<>, which makes it easy to use the
filter technique for a given predicate, and also a full kernel Filtered_kernel<> with all
predicates filtered using the scheme presented above.

Here is an example of an application to the orientation predicate. The functor
Cartesian<FT>::0Orientation_2 is templated by a field type. This allows us to build the
filtered version of the orientation predicate easily, provided we have an exact number type
like 1leda_real. We simply define one version of the predicate with the interval number
type as the field type and one with the exact number type and use both of these to define
our filtered predicate.

typedef Cartesian< Interval_nt >::0rientation_2 Approx;

typedef Cartesian< leda_real >::0Orientation_2 Exact;
typedef Filter_predicate< Approx, Exact > Filter;
typedef Cartesian< double >::Point_2 Point;
{

Point p(1.0, 2.0), q(2.0, 3.0), r(3.0, 4.0);
return Filter() (p, q,);

}

Filter_predicate<> has default template parameters specifying how to convert a Point
to a Cartesian<Interval_nt>::Point_2 in order to call the approximate version, and
similarly in order to convert a Point_2 to a Cartesian<leda_real>::Point_2 for the
eventual exact computation.

9.4 Higher-dimensional Kernel

The higher-dimensional kernel defines a concept with the same type and functor technol-
ogy, but is well separated from the lower-dimensional kernel concepts. Higher-dimensional
affine geometry is strongly connected to its mathematical foundation in linear algebra and
analytical geometry. Therefore, a central task is the implementation and integration of
a generic linear algebra module. Since the dimension is now a parameter of the inter-
face and since the solution of linear systems can be done in different ways [13, 4, 22],
a linear algebra concept is part of the interface of the higher dimensional kernel models
Cartesian d<FT,LA> and Homogeneous d<RT,LA>. The linear algebra concept provides

19

a standard interface to matrix and vector types and the solution of linear systems of
equations.

10 Conclusions

Many of the ideas presented here have already been realized in CGAL; parts of them
still need to be implemented. Although standard compliance is still a big issue for C++
compilers, more and more compilers are able to accept template code such as ours.

We would like to remind the reader that in this paper we have lifted the curtain to how
to implement a library, which is considerably more involved than using a library. A user of
our design can be gradually introduced to the default use of one kernel, then exchanging
one kernel with another kernel in an algorithm, exchanging individual pieces in a kernel,
and finally — for experts — writing a new kernel. Only creators of a new library need to
know all inner workings of a design, but we believe also interested users will benefit from
studying the design.

Acknowledgments

This work has been supported by ESPRIT LTR projects No. 21957 (CGAL) and No.
28155 (GALIA). The second author also acknowledges support from the Swiss Federal
Office for Education and Science (CGAL and GALIA).

Many more people have been involved in the CGAL project, and contributed in one
or the other way to the discussion that finally lead to the design presented here. We
thank especially Hervé Bronnimann, Bernd Gartner, Stefan Schirra, Wieger Wesselink,
and Mariette Yvinec for their valuable input.

References

[1] ANDREW, A. M. Another efficient algorithm for convex hulls in two dimensions.
Inform. Process. Lett. 9,5 (1979), 216-219.

[2] AUSTERN, M. H. Generic Programming and the STL. Addison-Wesley, 1998.

(3] BAKER, J. E., TAMmASSIA, R., AND VISMARA, L. GeomLib: Algorithm engineering
for a geometric computing library, 1997. (Preliminary report).

[4] BARREIS, E. Computational solutions of matrix problems over an integral domain.
J. Inst. Maths Applications 10 (1972), 68-104.

[5] BARTON, J. J., AND NACKMAN, L. R. Scientific and Engineering C++. Addison-
Wesley, Reading, MA, 1997.

(6] BRONNIMANN, H., BURNIKEL, C., AND PION, S. Interval arithmetic yields efficient
dynamic filters for computational geometry. In Proc. 1/th Annu. ACM Sympos.
Comput. Geom. (1998), pp. 165-174.

20

[7]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BRONNIMANN, H., KETTNER, L., SCHIRRA, S., AND VELTKAMP, R. Applica-
tions of the generic programming paradigm in the design of CGAL. In Generic
Programming—Proceedings of a Dagstuhl Seminar (2000), M. Jazayeri, R. Loos, and
D. Musser, Eds., LNCS 1766, Springer-Verlag.

BURNIKEL, C., MEHLHORN, K., AND SCHIRRA, S. The LEDA class real num-
ber. Technical Report MPI-I-96-1-001, Max-Planck Institut Inform., Saarbriicken,
Germany, Jan. 1996.

International standard ISO/IEC 14882: Programming languages — C++. American
National Standards Institute, 11 West 42nd Street, New York 10036, 1998.

CGAL, the Computational Geometry Algorithms Library. http://www.cgal.org/.

CoprLIEN, J. O. Curiously recurring template patterns. C++ Report (Feb. 1995),
24-27.

DE BERG, M., vAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O.

Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
1997.

EbpmMmonDs, J. Systems of distinct representatives and linear algebra. Journal of
Research of the National Bureau of Standards 71(B) (1967), 241-245.

FABRI, A., GIEZEMAN, G.-J., KETTNER, L., SCHIRRA, S., AND SCHONHERR, S.
The CGAL kernel: A basis for geometric computation. In Proc. 1st ACM Workshop
on Appl. Comput. Geom. (1996), M. C. Lin and D. Manocha, Eds., vol. 1148 of
Lecture Notes Comput. Sci., Springer-Verlag, pp. 191-202.

FABRI, A., GIEZEMAN, G.-J., KETTNER, L., SCHIRRA, S., AND SCHONHERR, S.
On the design of CGAL, the computational geometry algorithms library. Software —
Practice and Ezperience 30 (2000), 1167-1202.

ForTUNE, S., AND VAN WYk, C. J. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Trans. Graph. 15, 3 (July 1996), 223~
248.

GIEZEMAN, G.-J. PlaGeo, a library for planar geometry, and SpaGeo, a library for
spatial geometry. Utrecht University, 1994.

IEEE Standard for binary floating point arithmetic, ANSI/IEEE Std 754—1985. New
York, NY, 1985. Reprinted in SIGPLAN Notices, 22(2):9-25, 1987.

JosutTis, N. M. The C++ Standard Library, A Tutorial and Reference. Addison-
Wesley, 1999.

KaAramcHETI, V., L1, C., PECHTCHANSKI, 1., AND YAP, C. The CORE Library
Project, 1.2 ed., 1999. http://www.cs.nyu.edu/exact/core/.

21

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]
[30]

31]

32]

A
//

KETTNER, L. Using generic programming for designing a data structure for polyhe-
dral surfaces. Comput. Geom. Theory Appl. 13 (1999), 65-90.

McCLELLAN, MICHAEL T. The Exact Solution of Systems of Linear Equations with
Polynomial Coefficients. JACM 20, 4 (October 1973), 563-588.

MEHLHORN, K., AND NAHER, S. LEDA: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, UK, 1999.

MUSSER, D. R., AND STEPANOV, A. A. Generic programming. In 1st Intl. Joint
Conf. of ISSAC-88 and AAEC-6 (1989), Springer LNCS 358, pp. 13-25.

MUSsSER, D. R., AND STEPANOV, A. A. Algorithm-oriented generic libraries.
Software — Practice and Experience 24, 7 (July 1994), 623-642.

MYERS, N. C. Traits: A new and useful template technique. C++ Report (June
1995). http://www.cantrip.org/traits.html.

SCHIRRA, S. A case study on the cost of geometric computing. In Proc. Workshop
on Algorithm Engineering and Experimentation (1999), vol. 1619 of Lecture Notes
Comput. Sci., Springer-Verlag, pp. 156-176.

SHEWCHUK, J. R. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete Comput. Geom. 18, 3 (1997), 305-363.

Standard Template Library programmer’s guide. http://www.sgi.com/tech/stl/.

STROUSTRUP, B. The C++ Programming Language, 3rd Edition. Addison-Wesley,
1997.

VELDHUIZEN, T. Techniques for scientific C++4. Technical Report 542, Department
of Computer Science, Indiana University, 2000. http://www.extreme.indiana.edu/
“tveldhui/papers/techniques/.

Yapr, C. K., AND DUBE, T. The exact computation paradigm. In Computing in
Euclidean Geometry, D.-Z. Du and F. K. Hwang, Eds., 2nd ed., vol. 4 of Lecture
Notes Series on Computing. World Scientific, Singapore, 1995, pp. 452-492.

A Simple Example Kernel

// bottom layer: number type based function toolbox

//

template < class FT >
FT determinant2x2(FT a00, FT a01, FT al0, FT all)
{ return a00 * all - al0 * aO1; }

template < class FT >

22

void line_from_pointsC2(FT px, FT py, FT qgx, FT qy,
FT& a, FT& b, FT& c)

{
a = py - qy;
b = gx - px;
C =-px * a - py * b;
}
[m e -

// mid layer: representations, predicates and constructions

//

template < class K_ >
struct Point_2 {
typedef K_ K;
typedef typename K::FT FT;
Point_2() {}
Point_2(FT x_, FT y_) : x(x_), y(y_) {}
FT x, y;

1%

template < class K_ >

struct Line_2 {
typedef K_ K;
typedef typename K::Point_2 Point_2;
Line_2() {}
Line_2(Point_2 p, Point_2 q)
{ *this = K::Construct_line_2(p, q); }
typename K::FT a, b, c;

}s

template < class K_ >
struct Segment_2 {

typedef K_ K;

typename K::Point_2 s, e;

}s

template < class K_ >
struct Less_xy_2 {
typedef typename K_::Point_2 Point_2;
bool operator() (Point_2 p, Point_2 q) const
{ return p.x < q.x || p.x == q.x && p.y < q.y; }

}s

template < class K_ >
struct Left_turn_2 {
typedef typename K_::Point_2 Point_2;
bool operator() (Point_2 p, Point_2 g, Point_2 r) const

23

{

return determinant2x2(q.x - p.X, 9.y - P-¥»
r.x - p.x, r.y - p.y) > 0;
}

1%

template < class K_ >
struct Construct_line_2 {
typedef typename K_::Point_2 Point_2;
typedef typename K_::Line_2 Line_2;
Line_2 operator() (Point_2 p, Point_2 q) const {

Line_2 1;

line_from_pointsC2(p.x, p.y, 9.%X, 9.y, l.a, 1.b, 1l.c);

return 1;

}

1%
YA
// top layer: geometric kernel
//

template < class K_, class FT_ >
struct Kernel_base {

typedef K_ K;

typedef FT_ FT;

typedef Point_2< K > Point_2;
typedef Line_2< K > Line_2;
typedef Segment_2< K > Segment_2;
typedef Less_xy_2< K > Less_xy_2;
typedef Left_turn_2< K > Left_turn_2;

typedef Construct_line_2< K > Construct_line_2;

Less_xy_2 less_xy_2_object() const
{ return Less_xy_2(); }
Left_turn_2 left_turn_2_object() const

{ return Left_turn_2(Q); }
Construct_line_2 construct_line_2_object() const
{ return Construct_line_2(); }

}s

template < class FT_ >
struct Kernel : public Kernel_base< Kernel< FT_ >, FT_ >

{}s
A

// convenience layer: global functions

//

24

template < class K > inline

bool

less_xy_2(typename K::Point_2 p, typename K::Point_2 q, K k = K())
{ return k.less_xy_2_object(O)(p, q); }

template < class K > inline
bool
left_turn_2(typename K::Point_2 p,
typename K::Point_2 q,
typename K::Point_2 r,
K k = KQ))
{ return k.left_turn_2_object()(p, q, r); }

e Sty
// even more convenience: specializations for Kernel

//

template < class FT > inline
bool
left_turn_2(Point_2< Kernel< FT > > p,
Point_2< Kernel< FT > > q,
Point_2< Kernel< FT > > r)
{ return left_turn_2(p, q, r, Kernel< FT >()); }

template < class FT > inline

bool

less_xy_2(Point_2< Kernel< FT > > p, Point_2< Kernel< FT > > q)
{ return less_xy_2(p, q, Kernel< FT >()); }

25

o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2001-4-005 H.P.A. Lensch, M. Goesele, H. Seidel A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models
MPI-1-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Injective
Domain
MPI-1-2001-4-003 K. Daubert, W. Heidrich, J. Kautz, Efficient Light Transport Using Precomputed Visibility
J. Dischler, H. Seidel
MPI-1-2001-4-002 H.P.A. Lensch, J. Kautz, M. Goesele, A Framework for the Acquisition, Processing,
H. Seidel Transmission, and Interactive Display of High Quality
3D Models on the Web
MPI-1-2001-4-001 H.P.A. Lensch, J. Kautz, M. Goesele, Image-Based Reconstruction of Spatially Varying
W. Heidrich, H. Seidel Materials
MPI-1-2001-2-005 V. Sofronie-Stokkermans Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators
MPI-1-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory
MPI-1-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes
MPI-1-2001-2-002 P. Maier A Set-Theoretic Framework for Assume-Guarantee
Reasoning
MPI-1-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered

Divisible Abelian Groups
MPI-1-2001-1-004 S. Hert, M. Hoffmann, L. Kettner, S. Pion, An Adaptable and Extensible Geometry Kernel

M. Seel
MPI-1-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra
MPI-1-2001-1-002 U. Meyer Directed Single-Source Shortest-Paths in Linear
Average-Case Time
MPI-1-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Connected Networks
MPI-1-2000-4-003 S.W. Choi, H. Seidel Hyperbolic Hausdorff Distance for Medial Axis
Transform
MPI-1-2000-4-002 L.P. Kobbelt, S. Bischoff, K. K&hler, Geometric Modeling Based on Polygonal Meshes
R. Schneider, M. Botsch, C. Réssl,
J. Vorsatz
MPI-1-2000-4-001 J. Kautz, W. Heidrich, K. Daubert Bump Map Shadows for OpenGL Rendering
MPI-1-2000-2-001 F. Eisenbrand Short Vectors of Planar Lattices Via Continued
Fractions
MPI-1-2000-1-005 M. Seel, K. Mehlhorn Infimaximal Frames A Technique for Making Lines

Look Like Segments

MPI-1-2000-1-004

MPI-1-2000-1-003

MPI-1-2000-1-002
MPI-1-2000-1-001

MPI-1-1999-4-001

MPI-1-1999-3-005
MPI-1-1999-3-004
MPI-1-1999-3-003

MPI-1-1999-3-002

MPI-1-1999-3-001

MPI-1-1999-2-008

MPI-1-1999-2-007
MPI-1-1999-2-006

MPI-1-1999-2-005
MPI-1-1999-2-004

MPI-1-1999-2-003

MPI-1-1999-2-001
MPI-1-1999-1-007

MPI-1-1999-1-006
MPI-1-1999-1-005
MPI-1-1999-1-004

MPI-1-1999-1-003
MPI-1-1999-1-002

MPI-1-1999-1-001

MPI-1-98-2-018

MPI-1-98-2-017
MPI-1-98-2-014
MPI-1-98-2-013
MPI-1-98-2-012
MPI-1-98-2-011
MPI-1-98-2-010
MPI-1-98-2-009

MPI-1-98-2-008

MPI-1-98-2-007

MPI-1-98-2-006
MPI-1-98-2-005

K. Mehlhorn, S. Schirra

P. Fatourou

R. Beier, J. Sibeyn

E. Althaus, O. Kohlbacher, H. Lenhof,
P. Miiller

J. Haber, H. Seidel

T.A. Henzinger, J. Raskin, P. Schobbens
J. Raskin, P. Schobbens
T.A. Henzinger, J. Raskin, P. Schobbens

J. Raskin, P. Schobbens
S. Vorobyov

A. Bockmayr, F. Eisenbrand

G. Delzanno, J. Raskin
A. Nonnengart

J. Wu

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik
C. Burnikel, K. Mehlhorn, M. Seel

M. Nissen
J.F. Sibeyn
M. Nissen, K. Weihe

P. Sanders, S. Egner, J. Korst

N.P. Boghossian, O. Kohlbacher,
H.-. Lenhof

A. Crauser, P. Ferragina

F. Eisenbrand

M. Tzakova, P. Blackburn

Y. Gurevich, M. Veanes

H. Ganzinger, F. Jacquemard, M. Veanes
G. Delzanno, A. Podelski

A. Degtyarev, A. Voronkov

S. Ramangalahy

S. Vorobyov

S. Vorobyov

S. Vorobyov

P. Blackburn, M. Tzakova
M. Veanes

Generalized and improved constructive separation
bound for real algebraic expressions

Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

A Powerful Heuristic for Telephone Gossiping

A branch and cut algorithm for the optimal solution of
the side-chain placement problem

A Framework for Evaluating the Quality of Lossy Image
Compression

Axioms for Real-Time Logics
Proving a conjecture of Andreka on temporal logic

Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

The Logic of Event Clocks

New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

Cutting Planes and the Elementary Closure in Fixed
Dimension

Symbolic Representation of Upward-closed Sets

A Deductive Model Checking Approach for Hybrid
Systems

Symmetries in Logic Programs

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

Automata on DAG Representations of Finite Trees

A simple way to recognize a correct Voronoi diagram of
line segments

Integration of Graph Iterators into LEDA
Ultimate Parallel List Ranking ?

How generic language extensions enable “open-world”
desing in Java

Fast Concurrent Access to Parallel Disks
BALL: Biochemical Algorithms Library

A Theoretical and Experimental Study on the
Construction of Suffix Arrays in External Memory

A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

Hybridizing Concept Languages

Partisan Corroboration, and Shifted Pairing
Rigid Reachability

Model Checking Infinite-state Systems in CLP
Equality Reasoning in Sequent-Based Calculi
Strategies for Conformance Testing

The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

AE-Equational theory of context unification is
Co-RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification and
Simultaneous Rigid E-Unification

