
'$��'$ Æ��
I N F O R M A T I K

 	

� �A Pratial Minimum SpanningTree Algorithm Using the CylePropertyIrit Katriel, Peter Sanders and JesperLarsson Tr�a�MPI{I{2002{1{003 Otober 2002FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U TF �URI N F O R M A T I KStuhlsatzenhausweg 85 66123 Saarbr�uken Germany

Authors' AddressesIrit Katriel, Peter SandersStuhlsatzenhausweg 85Max-Plank-Institut f�ur Informatik,66123 Saarbr�uken, Germanyemail: {irit,sanders}�mpi-sb.mpg.deJesper Larsson Tr�a�C&C Researh Laboratories, NEC Europe Ltd.,Sankt Augustin, Germanyemail: traff�rl-nee.de

AbstratWe present a simple new algorithm for omputing minimum spanningtrees that is more than two times faster than the best previously knownalgorithms (for dense, \diÆult" inputs). It is of oneptual interest thatthe algorithm uses the property that the heaviest edge in a yle an bedisarded. Previously this has only been exploited in asymptotially optimalalgorithms that are onsidered to be impratial. An additional advantageis that the algorithm an greatly pro�t from pipelined memory aess.Hene, an implementation on a vetor mahine is up to 13 times fasterthan previous algorithms. We outline additional re�nements for MSTsof impliitly de�ned graphs and the use of the entral data struture forquerying the heaviest edge between two nodes in the MST. The latter resultis also interesting for sparse graphs.This work is partially supported by DFG grant SA 933/1-1.

KeywordsMinimum Spanning Tree, Minimum Spanning Forest, Algorithm Engineering

1 IntrodutionGiven an undireted onneted graph G with n nodes, m edges and nonneg-ative edge weights, the minimum spanning tree (MST) problem asks for aminimum total weight subset of the edges that forms a spanning tree of G.The urrent state of the art in MST algorithms shows a gap betweentheory and pratie. The algorithms used in pratie are among the old-est network algorithms [4, 16, 8, 13℄ and are all based on the partitionproperty : a lightest edge leaving a set of nodes an be used for an MST.More spei�ally, Kruskal's algorithm [13℄ is best for sparse graphs. Its run-ning time is asymptotially dominated by the time for sorting the edgesby weight. For dense graphs (m � n), the Jarn��k-Prim (JP) algorithm isbetter [8, 18℄. Using Fibonai heap priority queues, its exeution time isO(n logn+m). Using pairing heaps [5℄ Moret and Shapiro [15℄ get quitefavorable results in pratie at the prie of slightly worse performane guar-antees (
(n logn+m log logn)).On the theoretial side there is a randomized linear time algorithm [9℄ andan almost linear time deterministi algorithm [17℄. But these algorithms areusually onsidered impratial beause they are ompliated and beause theonstant fators in the exeution time look unfavorable. These algorithmsomplement the partition property with the yle property : a heaviest edgein any yle is not needed for an MST.In this paper we partially lose this gap. We develop a simpleO(n logn +m)expeted time algorithm using the yle property that is very fast on densegraphs. Our experiments show that it is more than two times faster thanthe JP algorithm for large dense graphs that require a large number of pri-ority queue updates for JP. For future arhitetures it promises even largerspeedups beause it pro�ts from pipelining for hiding memory aess lateny.An implementation on a vetor mahine shows a speedup by a fator of 13for large dense graphs.Our algorithm is a simpli�ation of the linear time randomized algo-rithms. Its asymptoti omplexity is O(m+ n logn). When m� n logn weget a linear time algorithm with small onstant fators. The key omponentof these algorithms works as follows. Generate a smaller graph G0 by selet-ing a random sample of the edges of G. Find a minimum spanning forest T 0of G0. Then, �lter eah edge e 2 E using the yle property: Disard e ifit is the heaviest edge on a yle in T 0 [feg. Finally, �nd the MST of thegraph that ontains the edges T 0 and the edges that were not �ltered out.Sine MST edges were not disarded, this is also the MST of G.Klein and Tarjan [11℄ prove that if the sample graph G0 is obtained byinluding eah edge of G independently with probability p, then the expeted1

number of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both reursively solved MST instanes an be made small.It remains to �nd an eÆient way to implement �ltering.King [10℄ suggests a �ltering sheme whih requires an O�n log m+nn � pre-proessing stage, after whih the �ltering an be done with O(1) time peredge (for a total of O(m)). The preproessing stage runs Boruvka's [4, 16℄algorithm on the spanning tree T and uses the intermediate results to on-strut a tree B that has the verties of G as leaves suh that: (1) the heaviestedge on the path between two leaves in B is the same as the heaviest edgebetween them in T 0. (2) B is a full branhing tree; that is, all the leaves of Bare at the same level and eah internal node has at least two sons. (3) B hasat most 2n nodes. It is then possible to apply to B Koml�os's algorithm [12℄for maximum edge weight queries on a full branhing tree. This algorithmbuilds a data struture of size O�n log(m+nn)� whih an be used to �nd themaximum edge weight on the path between leaves u and v, denoted F (u; v),in onstant time. A path between two leaves is divided at their least om-mon anestor (LCA) into two half paths and the maximum weight on eahhalf path is preomputed. In addition, during the preproessing stage thealgorithm generates information with whih the LCA of two leaves an befound in onstant time.In Setion 2 we develop a simpler �ltering sheme whih is based onthe order in whih the JP algorithm adds nodes to the MSF of the samplegraph G0. We show that using this ordering, omputing F (u; v) redues toa single interval maximum query. This is signi�antly simpler to implementthan Koml�os's algorithm beause (1) we do not need to onvert the MSF ofthe sample into a di�erent tree. (2) interval maximum omputation is morestrutured than path maximum in a full branhing tree, where nodes mayhave di�erent degrees. As a onsequene, the preproessing stage involvesomputation of simpler funtions and needs simpler data strutures.Interval maximum an be found in onstant time by applying a standardtehnique that uses preomputed tables of total size O(n logn). The tablesstore pre�x minima and suÆx maxima [7℄. We explain how to arrange thesetables in suh a way that F (u; v) an be found using two table lookupsfor �nding the JP-order, one xor operation, one operation �nding the mostsigni�ant nonzero bit, two table lookups in fused pre�x and suÆx tables andsome shifts and adds for index alulations. These operations an be exeutedindependently for all edges in ontrast to the priority queue aesses of theJP algorithm that have to be exeuted sequentially to preserve orretness.In Setion 3 and Appendix B.1 we report measurements on urrent high-end miroproessors that show speedup up to a fator 3.35 ompared to ahighly tuned implementation of the JP algorithm. An implementation on a2

vetor omputer results in even higher speedup of up to 13.Our algorithm is also interesting for sparse graphs when we are interestedin the all-pairs minimax shortest-paths problem [2, 6℄. Details are explainedin Appendix A.3.2 The I-Max-Filter AlgorithmIn Setion 2.1 we explain how �nding the heaviest edge between two nodesin an MST an be redued to �nding an interval maximum. The array usedis the edge weights of the MST stored in the order in whih the edges areadded by the JP algorithm. Then in Setion 2.2 we explain how this intervalmaximum an be omputed using one further table lookup per node, an xoroperation and a omputation of the position of the most signi�ant one-bitin an integer. In Setion 2.3 we use these omponents to assemble the I-Max-Filter algorithm for omputing MSTs. Appendix A presents re�nements thatredue the number of ahe faults, give improved performane for impliitlyde�ned graphs and explain how our algorithm an be applied to the all-pairsminimax shortest paths problem.2.1 Redution to Interval MaximaThe following lemma shows that by renumbering nodes aording to theorder in whih they are added to the MST by the JP algorithm, heaviestedge queries an be redued to simple interval maximum queries.Lemma 1 Consider an MST T = (f0; : : : ; n� 1g ; ET) where the JP algo-rithm (JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei,0 < i < n denote the edge used to add node i to the tree by the JP algorithm.Let wi, denote the weight of ei. Then, for all nodes u < v, the heaviest edgeon the path from u to v in T has weight maxu<j�v wj.Proof: By indution over v. The laim is trivially true for v = 1. For theindution step we assume that the laim is true for all pairs of nodes (u; v0)with u < v0 < v and show that it is also true for the pair (u; v). First notethat ev is on the path from u to v beause in the JP algorithm u is insertedbefore v and v is an isolated node until ev is added to the tree. Let v0 < vdenote the node at the other end of edge ev. Edge ev is heavier than all theedges ev0+1, : : : ev�1 beause otherwise the JP algorithm would have addedv, using ev, earlier. There are two ases to onsider (see Figure 1).3

1 4 3 850

1 4 3 850

3
84

5

1

Case 1: v’ < u

Case 2: v’ > u

v’

u
v

8
3

4

5

1

u

v’

v

Figure 1: Illustration of the two ases of Lemma 1. The JP algorithm addsthe nodes from left to right.Case v0 � u: By the indution hypothesis, the heaviest edge on the pathfrom v0 to u is maxv0<j�uwj. Sine all these edges are lighter than ev, themaximum over wu, : : : ,wv �nds the orret answer wv.Case v0 > u: By the indution hypothesis, the heaviest edge on the pathbetween u and v0 has weight maxu<j�v0 wj. Hene, the heaviest edge we arelooking for has weight max fwv;maxu<j�v0 wjg. Maximizing over the largerset maxu<j�v wj will return the right answer sine ev is heavier than the edgesev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an unonneted graphrather than the MST of a onneted graph. When JP spans a onnetedomponent, it selets an arbitrary node i and adds it to the MSF with wi =1. Then the interval maxima for two nodes whih are in two di�erentomponents is 1, as we would expet.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n�1℄, we explain how max a[i::j℄ an be omputed inonstant time using preproessing time and spae O(n logn). The emphasisis on very simple and fast queries sine we are looking at appliations wheremany more than n logn queries are made. To this end we develop an eÆientimplementation of a basi method desribed in [7, Setion 3.4.3℄ whih isa speial ase of the general method in [3℄. This algorithm might be of4

56 98 41 745688 7677347515 8062526530

77 80

98 98 15 75 77 80

76745275659830

65 75 77 62 767498

7452

417798

88 65 75 77

Level 0

Level 1

Level 2

98 75 34 52 77 8098 7777779898 75 75 56 77 Level 3

56Figure 2: Example of a layers array for interval maxima. The suÆx setionsare marked by an extra surrounding box.independent interest for other appliations. Slight modi�ations of this basialgorithm are neessary in order to use it in the I-Max-Filter algorithm. Theywill be desribed later. In the following, we assume that n is a power of two.Adaption to the general ase is simple by either rounding up to the nextpower of two and �lling the array with �1 or by introduing a few asedistintions while initializing the data struture.Consider a omplete binary tree built on top of a so that the entries of aare the leaves (see level 0 in Figure 2). The idea is to store an array of pre�xor suÆx maxima with every internal node of the tree. Left suessors storesuÆx maxima. Right suessors store pre�x maxima. The size of an array isproportional to the size of the subtree rooted at the orresponding node. Toompute the interval maximum max a[i::j℄, let v denote the least ommonanestor of a[i℄ and a[j℄. Let u denote the left suessor of v and let w denotethe right suessor of v. Let u[i℄ denote the suÆx maximum orrespondingto leaf i in the suÆx maxima array stored in u. Correspondingly, let w[j℄denote the pre�x maximum orresponding to leaf j in the pre�x maximaarray stored in w. Then max a[i::j℄ = max(u[i℄; w[j℄).We observed that this approah an be implemented in a very simple wayusing a log(n) � n array preSuf. As an be seen in Figure 2, all suÆx andpre�x arrays in one layer an be assembled in one array as followspreSuf[`℄[i℄ = � max(a[2`b::i℄) for odd bmax(a[i::(2` + 1)b� 1℄) elsewhere b = �i=2`�.Furthermore, the interval boundaries an be used to index the arrays. Wesimply have max a[i::j℄ = max(preSuf[`℄[i℄; preSuf[`℄[j℄) where ` = msbPos(i�j); � is the bit-wise exlusive-or operation and msbPos(x) = blog2 x, whihis equal to the position of the most signi�ant nonzero bit of x (starting at5

(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Funtion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the orderin whih JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n� 1℄as desribed in Setion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ andwe < preSuf[`℄[jpNum[v℄℄ thenadd e to E00return JP-MST(E00)Figure 3: The I-Max-Filter algorithm0). Layer 0 is idential to a. msbPos(x) an be omputed by a table lookup1.A further optimization stores a pointer to the array preSuf[`℄ in this layertable. As the omputation is symmetri, we an ondut a table lookup withindies i; j without knowing whether i < j or j < i.To use this data struture for the I-Max-Filter algorithm we need a smallmodi�ation sine we are interested in maxima of the form max a[min(i; j)+1::max(i; j)℄ without knowing whih of two endpoints is the smaller. Herewe simply note that the approah still works if we rede�ne the suÆx maximato exlude the �rst entry, i.e., preSuf[`℄[i℄ = max(a[i+1::(2`+1) �i=2`�� 1℄)if �i=2`� is even.2.3 Putting the Piees TogetherFigure 3 summarizes the I-Max-Filter algorithm and the following Theoremestablishes its omplexity.Theorem 1 The I-Max-Filter algorithm omputes MSTs in expeted timemT�lter + O(n logn+pnm) where T�lter is the time required to query the�lter about one edge.In partiular, if m = !(n logn), the exeution time is (1 + o(1))mT�lter.1Alternatively, one ould inspet the exponent in a oating point representation of x.6

Proof: Taking a sample an be implemented to run in onstant time persampled element. Running JP on the sample takes time O(n logn +pnm)if a Fibonai heap (or another data struture with similar time bounds)is used for the priority queue. The lookup tables an be omputed in timeO(n logn). The �ltering loop takes time mT�lter.2 By the sampling lemmaexplained in the introdution [11, Lemma 1℄, the expeted number of edgesin E 00 is n=pn=m = pnm. Hene, running JP on E 00 takes expeted timeO(n logn+pnm). Summing all the omponent exeution times yields thelaimed time bound.3 Experimental EvaluationThe objetive of this setion is to demonstrate that the I-Max-Filter algo-rithm is a serious ontestant for the fastest MST algorithm for dense graphs(m � n logn). We ompare our implementation with a fast implementa-tion of the JP algorithm. In [15℄ the exeution time of the JP algorithmusing di�erent priority queues is ompared and pairing heaps are found tobe the fastest on dense graphs. We took the pairing heap from their odeand ombined it with a faster, array based graph representation.3 This im-plementation of JP onsistently outperforms [15℄ and LEDA [14℄.3.1 Graph RepresentationsOne issue in omparing MST-algorithms for dense graphs is the underlyinggraph representation. The JP algorithm requires a representation that allowsfast iteration over all edges that are adjaent to a given node. In a linked listimplementation eah edge resides in two linked lists; one for eah inidentnode. In our adjaeny array representation eah edge is represented twiein an array with 2m entries suh that the edges adjaent to eah soure nodeare stored ontiguously. For eah edge, the target node and weight is stored.In terms of spae requirements, eah soure and eah target is stored one,and only the weight is dupliated. A seond array of size n holds for eahnode a pointer to the beginning of its adjaeny array.The I-Max-Filter algorithm, on the other hand, an be implemented towork well with any representation that allows sampling edges in time linear2Note that it would be ounterprodutive to exempt the nodes in E0 from �lteringbeause this would require an extra test for eah edge or we would have to omputeE �E0 expliitly during sampling.3The original implementation [15℄ uses linked lists whih were quite appropriate at thetime, when ahe e�ets were less important.7

in the sample size and that allows fast iteration over all edges. In partiular,it is suÆient to store eah edge one. Our implementation for I-Max-Filteruses an array in whih eah edge appears one as (u; v) with u < v and theedges are sorted by soure node (u).4 Only for the two small graphs for whihthe JP-algorithm is alled it generates an adjaeny array representation (seeFigure 3).To get a fair omparison we deided that eah algorithm gets the originalinput in its \favorite" representation. This deision favors JP beause theonversion from an edge array to an adjaeny array is muh more expensivethan vie versa. Furthermore, I-Max-Filter ould run on the adjaeny arrayrepresentation with only a small overhead: during the sampling and �lteringstages it would use the adjaeny array while ignoring edges (u; v) with u > v.3.2 Filtering Aess PatternIn the implementation, we aess the interval maxima data struture by JPorder of soure node rather than by the order in whih the edges happen tobe stored. In Appendix A.1 we explain why this inreases the ahe eÆienyof these aesses. With the graph representation we use, this aess patternadds one irregular ahe aess per node, when aessing the �rst edge of anode's list. In order for the optimization to be bene�ial, these n additionalirregular aesses need to be ompensated by the more regular aesses to thetable. For very small densities, then, we might lose. In the results reportedhere (for graphs with up to 10,000 nodes), this aess sequene resulted in aspeedup of about 5 perent. For graphs with more nodes, the table is largerand so is the impat of this heuristi. For instane, on graphs with 25,000nodes and just over 31,000,000 edges we observed a speedup of 11 perent onthe SUN. All reported exeution times are with this optimization enabled.3.3 Implementation on Vetor-MahinesA vetor-mahine has the apability to perform operations on vetors (in-stead of salars) of some �xed size (in urrent vetor-mahines 256 or 512elements) in one instrution. Vetor-instrutions typially inlude arithmetiand boolean operations, memory aess instrutions (onseutive, strided,and indiret), and speial instrutions like pre�x-summation and minimumsearh. Vetorized memory aesses irumvent the ahe. The �ltering loop4These requirements ould be dropped at very small ost. In partiular, I-Max-Filteran work eÆiently with a ompletely unsorted edge array or with an adjaeny arrayrepresentation that stores eah edge only in one diretion. The latter only needs spae form+ n node indies and m edge weights. 8

of Figure 3 an readily be implemented on a vetor-mahine. The edgesare stored onseutively in an array and an immediately be aessed in avetorized loop; indiret memory aess makes vetorized lookup of soureand target verties possible. For the �ltering itself, bitwise exlusive or andtwo additional table lookups in the preSuf array are neessary. Using thepre�x-summation apabilities, the edges that are not �ltered out are storedonseutively in a new edge array. Also the onstrution of the preSuf data-struture an be vetorized. The only possibility for vetorization in theJP-MST algorithm is the loop that sans and updates adjaent verties ofthe vertex just added to the MST. We divide this loop into a sanning loopwhih ollets the adjaent verties for whih a priority queue update isneeded, and an update loop performing the atual priority queue updates.Using pre�x-summation the sanning loop an immediately be vetorized.For the update there is little hope, unless a favorable data struture allowingsimultaneous derease-key operations an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and om-piled using GNU g++ version 3.0.4 with optimization level -O6. We usea SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ proessors. InAppendix B.1 we also give measurements on a Dell Preision 530 work-station with 1.7 GHz Intel P4 Xeon proessors that show similar results.Soure odes are available at http://www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.We performed measurements with four di�erent families of graphs, eahwith adjustable edge density � = 2m=n(n� 1). This inludes all the familiesin [15℄ that admit dense inputs. A test instane is de�ned by three param-eters: the graph type, the number of nodes and the density of edges (thenumber of edges is omputed from these parameters). Eah reported resultis the average of ten exeutions of the relevant algorithm; eah on a di�er-ent randomly generated graph with the given parameters. Furthermore, theI-Max-Filter algorithm is randomized beause the sample graph is seletedat random. Despite the randomization, the variane of the exeution timeswithin one test was onsistently very small (less than 1 perent), hene weonly plot the averages.Worst-Case: � � n(n� 1)=2 edges are seleted at random and the edges areassigned weights that ause JP to perform as many Derease Key operationsas possible [15℄.Linear-Random: � � n(n � 1)=2 edges are seleted at random. Eah edge(u; v) is assigned the weight w(u; v) = ju� vj where u and v are the integer9

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 4: Worst-Case graph, 10000 nodes, SUN.

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 5: Linear-Random graph, 10000 nodes, SUN.IDs of the nodes.Uniform-Random: � �n(n� 1)=2 edges are seleted at random and eah isassigned an edge weight whih is seleted uniformly at random.Random-Geometri:[15℄ Nodes are random 2D points in a 1 � y retan-gle for some streth fator y > 0. Edges are between nodes with Eulideandistane at most � and the weight of an edge is equal to the distane be-tween its endpoints. The parameter � indiretly ontrols density whereasthe streth fator y allows us to interpolate between behavior similar to lassUniform-Random and behavior similar to lass Linear-Random.

10

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFigure 6: Uniform-Random graph, 10000 nodes, SUN.3.5 Results on MiroproessorsFigures 4{6 show exeution times per edge on the SUN for the three graphfamilies Worst-Case, Linear-Random and Uniform-Random for n = 10000nodes and varying density. We an see that I-Max-Filter is up to 2.46 timesfaster than JP. This is not only for the \engineered" Worst-Case instanesbut also for Linear-Random graphs. The speedup is smaller for Uniform-Random graphs. On the Pentium 4 (see Appendix B.1) JP is even fasterthan I-Max-Filter on the Uniform-Random graphs. The reason is that for\average" inputs JP needs to perform only a sublinear number of derease-key operations so that the part of ode dominating the exeution time of JPis sanning adjaeny lists and omparing the weight of eah edge with thedistane of the target node from the urrent MST. There is no hope to besigni�antly faster than that. On the other hand, we observed a speedupof up to a fator of 3.35 on dense Worst-Case graphs. Hene, when we saythat I-Max-Filter outperforms JP this is with respet to spae onsumption,simpliity of input onventions and worst-ase performane guarantees ratherthan average ase exeution time.On very sparse graphs, I-Max-Filter is up to two times slower than JP,beause pmn = �(m) and as a result both the sample graph and the graphthat remains after the �ltering stage are not muh smaller than the originalgraph. Hene, the runtime is equivalent to two runs of JP on the input.Appendix B.2 inludes similar plots for Random-Geometri graphs withdi�erent streth fators y. When the area from whih node loations areseleted is lose to a square, the behavior of the MST algorithms is similarto that on the Uniform-Random graphs. As the streth fator inreases, thegraph beomes loser to a Linear-Random graph. This is reeted in the11

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 7: Worst-Case graph, 10000 nodes, NEC SX-5results, whih show that the bene�t from �ltering inreases with the streth.3.6 Results On A Vetor MahineFigures 7{9 show similar measurements on a NEC SX-5 vetor omputer.For eah of the two algorithms (JP and I-Max-Filter), runtimes per edge areplotted for salar as well as vetorized version. The results of the salar odeshow, one again, that JP is very fast on Uniform-Random graphs while I-Max-Filter is faster on the diÆult graphs. In addition, we an see that onthe \diÆult" inputs I-Max-Filter bene�ts more than JP from vetorization.This is to be expeted; JP beomes less vetorizable when many dereasekey operations are performed, while the exeution time of I-Max-Filter isdominated by the �ltering stage, whih in turn is not sensitive to the graphtype. As a onsequene, we see a speedup of up to 13 on the \diÆult"graphs 5.5omparing the vetorized versions of JP and I-Max-Filter.
12

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 8: Linear-Random graph, 10000 nodes, NEC SX-5

0

200

400

600

800

1000

1200

1400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 9: Uniform-Random graph, 10000 nodes, NEC SX-513

4 ConlusionsWe have seen that the yle property an be pratially useful to designimproved MST algorithms for rather dense graphs. An open question iswhether we an �nd improved pratial algorithms for sparse graphs thatuse further ideas from the asymptotially best theoretial algorithms. Oneissue is whether reduing the number of nodes based on Boruvka's [4, 16℄algorithm has ompetitive speed. On urrent mahines this seems a bitunlikely for sequential internal memory algorithms. But node redution hasgreat potential for parallel and external-memory implementations.Referenes[1℄ J. Abello, A. L. Buhsbaum, and J. R. Westbrook. A funtional ap-proah to external graph algorithms. Algorithmia, 32:437{458, 2002.[2℄ R. K. Ahuja, R. L. Magnanti, and J. B. Orlin. Network Flows. PrentieHall, 1993.[3℄ N. Alon and B. Shieber. Optimal preproessing for answering on-lineprodut queries. Tehnial Report TR 71/87, Tel Aviv University, 1987.[4℄ O. Boruvka. O jist�em probl�emu minim�aln��m. Pr�ae, Moravsk�ePrirodovedek�e Spolenosti, pages 1{58, 1926.[5℄ M. L. Fredman. On the eÆieny of pairing heaps and related datastrutures. Journal of the ACM, 46(4):473{501, July 1999.[6℄ T. C. Hu. The maximum apaity route problem. Operations Researh,9:898{900, 1961.[7℄ J. J�aj�a. An Introdution to Parallel Algorithms. Addison Wesley, 1992.[8℄ V. Jarn��k. O jist�em probl�emu minim�aln��m. Pr�aa Moravsk�eP�r��rodov�edek�e Spole�nosti, 6:57{63, 1930. In Czeh.[9℄ David Karger, Philip N. Klein, and Robert E. Tarjan. A randomizedlinear-time algorithm for �nding minimum spanning trees. J. Asso.Comput. Mah., 42:321{329, 1995.[10℄ V. King. A simpler minimum spanning tree veri�ation algorithm. Al-gorithmia, 18:263{270, 1997. 14

[11℄ P. N. Klein and R. E. Tarjan. A randomized linear-time algorithm for�nding minimum spanning trees. In Proeedings of the Twenty-SixthAnnual ACM Symposium on the Theory of Computing, pages 9{15,Montr�eal, Qu�ebe, Canada, 23{25 May 1994.[12℄ J. Koml�os. Linear veri�ation for spanning trees. In IEEE, editor, 25thannual Symposium on Foundations of Computer Siene, Otober 24{26, 1984, Singer Island, Florida, pages 201{206, 1109 Spring Street,Suite 300, Silver, 1984. IEEE Computer Soiety Press. IEEE atalogno. 84CH2085-9.[13℄ J. B. Kruskal. On the shortest spanning subtree of a graph and thetraveling salesman problem. Proeedings of the Amerian MathematialSoiety, 7:48{50, 1956.[14℄ K. Mehlhorn and S. N�aher. The LEDA Platform of Combinatorial andGeometri Computing. Cambridge University Press, 1999.[15℄ B. M. E. Moret and H. D. Shapiro. An empirial analysis of algorithmsfor onstruting a minimum spanning tree. In Workshop Algorithmsand Data Strutures (WADS), number 519 in LNCS, pages 400{411.Springer, August 1991.[16℄ Nesetril, Milkova, and Nesetrilova. Otakar boruvka on minimum span-ning tree problem: Translation of both the 1926 papers, omments,history. DMATH: Disrete Mathematis, 233, 2001.[17℄ S. Pettie and V. Ramahandran. An optimal minimum spanning treealgorithm. In 27th ICALP, volume 1853 of LNCS, pages 49{60. Springer,2000.[18℄ R. C. Prim. Shortest onnetion networks and some generalizations.Bell Systems Tehnial Journal, pages 1389{1401, November 1957.[19℄ D. D. Sleator and R. E. Tarjan. A data struture for dynami trees.Journal of Computer and System Sienes, 26(3):362{391, 1983.
15

iFigure 10: The ative set for soure node with jpNum = i.A Algorithmi Re�nementsA.1 Cahe EÆienyBy arefully seleting the order in whih the edges are �ltered, we an reduethe spae requirements of the interval maxima data struture from O(n logn)to O(n). Assume that the edges are stored as pairs (i; j) and that they aresorted by soure node (i). We propose to �lter the edges in the order thattheir soure nodes were inserted by the JP algorithm.Let the ative set Ai be the set of pre�x and suÆx arrays that an be a-essed while �ltering the edges (u; v) suh that jpNum[u℄ = i (see Figure 10).Note that eah ative set ontains at most logn arrays orresponding to thesoure node and logn arrays orresponding to the target node: from eahlayer, one pre�x array to the right of the soure node and one suÆx arrayto its left are ative. When �ltering iterates over the edges by nondereasingjpNum of the soure node i, eah pre�x or suÆx array beomes ative in Aione, stays ative for a while, and then beomes inative forever. This meansthat the arrays an be generated on-the-y instead of in a preproessing stagesuh that eah pre�x or suÆx array is generated at most one and not morethan 2n spae is required at a time.Even if the whole O(n logn) table is alulated in a preproessing stage,this observation gives us a way to improve ahe eÆieny: �ltering the edgesin the order desribed above redues the irregularity of ahe aessed suhthat at any point in time, O(n) ative entries are in ahe.A.2 Impliitly De�ned GraphsMany appliations of MSTs work with omplete graphs that are de�ned im-pliitly by an orale funtion that returns the edge weight for any pair ofnodes [2℄. In this ase our algorithm an be implemented to work withlinear spae: Run JP on an impliitly de�ned sample of the graph by pik-ing sample edges with soure v only when v is inserted into the tree. For16

the �ltering stage, we are free to iterate over the edges (u; v) suh that(jpNum[u℄; jpNum[v℄) are visited in inreasing lexiographi order. This notonly allows us to ompute lookup tables just in time as desribed in Ap-pendix A.1 but also means that these arrays are just sanned leading to onlyO(n + n2=B) ahe faults overall for ahe bloks of size B. Furthermore,the inner loop from Figure 3 an be rewritten in suh a way that most valuesare kept in registers. Only omputing the pre�x maximum for the targetnode will require a single table lookup. Edges that are not �ltered out arenot stored but immediately inserted into the MST of edges seen so far. Usingdynami trees this an be implemented to run in O(n) spae and O(logn)time per opertation [1, 19℄. All in all, we get an O(n2) time O(n) spaealgorithm for impliitly de�ned graphs with very favorable onstant fators.A.3 All-Pairs Minimax Shortest PathsA minimax shortest path from u to v is a path P from u to v that minimizesthe weight of the heaviest edge on P . An important appliation of minimumspanning trees is the observation that a minimax shortest path an be ob-tained by taking the unique path from u to v in the minimum spanning tree[2, 6℄. In partiular, the heaviest edge weight on this path an be omputedin onstant time using O(n logn+m) preproessing time by running the JPalgorithm on the input and onstruting the lookup tables desribed in Se-tions 2.1 and 2.2. Our ontribution here is a very simple method with betteronstant fators for the queries.B More Experimental ResultsB.1 Results on an Intel proessorFigures 11{13 show exeution time on a PC per edge for the three graphfamilies Worst-Case, Linear-Random, and Uniform-Random, for n = 7000nodes and varying density (Currently this mahine laks suÆient memoryfor reliable measurements with n = 10000).B.2 Random-Geometri graphsFigures 14{16 show exeution time per edge on a PC for three families ofRandom-Geometri graphs; with streth fators y = 2; 160 and 500. In the�rst family, the nodes are spread in something lose to a square, and the MSTalgorithms behave as on the Uniform-Random graphs; JP is faster beause17

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 11: Worst-Case graph, 7000 nodes, PC.
0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 12: Linear-Random graph, 7000 nodes, PC.
0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 13: Uniform-Random graph, 7000 nodes, PC.18

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 14: Random-Geometri graph, streth fator 2, 7000 nodes, PC.

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 15: Random-Geometri graph, streth fator 160, 7000 nodes, PC.there are few derease keys operations. As y inreases, the graphs beomeloser to the Linear-Random family and the plots, aordingly, reet aninreasing gain from �ltering.B.3 Larger graphs with �xed densityFigures 17 and 18 show the e�et of inreasing the size of a Linear-Randomgraph while keeping the density �xed at 0.1. The results show again thatI-Max-Filter is faster than JP on large graphs and that I-Max-Filter bene-�ts more from the vetor mahine. Furthermore, these e�ets beome moresigni�ant as the graph size inreases.
19

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

Figure 16: Random-Geometri graph, streth fator 500, 7000 nodes, PC.

0

50

100

150

200

250

300

350

400

450

500

1000 10000 100000

T
im

e
pe

r
ed

ge
 [n

s]

Number of nodes

Prim (Linear-Random)
I-Max (Linear-Random)

Figure 17: Linear-Random graph, density 0.1, SUN.
20

0

200

400

600

800

1000

1200

1400

1000 10000 100000

T
im

e
pe

r
ed

ge
 [n

s]

Number Of Nodes

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Figure 18: Linear-Random graph, density 0.1, NEC SX-5.Graph Type Edge Density Filter Time (se) Total Time (se)Uniform-Random 0.5 4.75 6.26Uniform-Random 0.9 8.80 10.70Linear-Random 0.5 4.56 5.90Linear-Random 0.9 8.72 10.36Worst-Case 0.5 4.15 5.60Worst-Case 0.9 7.73 9.34Table 1: Filtering time ompared to other stages. All graphs are with 10000nodes.B.4 Lower Order Terms Of The I-Max-Filter algorithmTable 1 shows the runtime on a SUN of the �ltering stage as well as thetotal running time of the I-Max-Filter algorithm, for several instanes. Thedi�erene between the two �gures is the time required for generating a sampleof the edges, onverting it to adjaeny list form, running JP on it and afterthe �lter stage, onverting the remaining edges into adjaeny list form andrunning JP on them. The results indiate that the �ltering stage stronglydominates the exeution time. 21

������ kI N F O R M A T I KBelow you �nd a list of the most reent tehnial reports of the Max-Plank-Institut f�ur Informatik. Theyare available by anonymous ftp from ftp.mpi-sb.mpg.de under the diretory pub/papers/reports. Mostof the reports are also aessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have anyquestions onerning ftp or WWW aess, please ontat reports�mpi-sb.mpg.de. Paper opies (whihare not neessarily free of harge) an be ordered either by regular mail or by e-mail at the address below.Max-Plank-Institut f�ur InformatikLibraryattn. Anja BekerStuhlsatzenhausweg 8566123 Saarbr�ukenGERMANYe-mail: library�mpi-sb.mpg.deMPI-I-2002-4-002 F. Drago, W. Martens, K. Myszkowski,H. Seidel ?MPI-I-2002-4-001 M. Goesele Tutorial Notes ACM SM 02 A Framework for theAquisition, Proessing and Interative Display of HighQuality 3D ModelsMPI-I-2002-2-008 W. Charatonik, J. Talbot Atomi Set Constraints with ProjetionMPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the E�etiveness of Logi in ComputerSiene in Honour of Moshe VardiMPI-I-2002-1-008 P. Sanders, J.L. Tr�a� The Fator Algorithm for All-to-all Communiation onClusters of SMP NodesMPI-I-2002-1-002 F. Grandoni Inrementally maintaining the number of l-liquesMPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the SteinerproblemMPI-I-2001-4-005 H.P.A. Lensh, M. Goesele, H. Seidel A Framework for the Aquisition, Proessing andInterative Display of High Quality 3D ModelsMPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly InjetiveDomainMPI-I-2001-4-003 K. Daubert, W. Heidrih, J. Kautz,J. Dishler, H. Seidel EÆient Light Transport Using Preomputed VisibilityMPI-I-2001-4-002 H.P.A. Lensh, J. Kautz, M. Goesele,H. Seidel A Framework for the Aquisition, Proessing,Transmission, and Interative Display of High Quality3D Models on the WebMPI-I-2001-4-001 H.P.A. Lensh, J. Kautz, M. Goesele,W. Heidrih, H. Seidel Image-Based Reonstrution of Spatially VaryingMaterialsMPI-I-2001-2-006 H. Nivelle, S. Shulz Proeeding of the Seond International Workshop of theImplementation of LogisMPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based deision proedures for the universaltheory of some lasses of distributive latties withoperatorsMPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher OrderNatural Dedution using Type TheoryMPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms onCompletely Unimodel HyperubesMPI-I-2001-2-002 P. Maier A Set-Theoreti Framework for Assume-GuaranteeReasoningMPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally OrderedDivisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Redution Tehniques for the Steiner TreeProblem: A Combination of Alternative-andBound-Based ApproahesMPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Tehniques for the Steiner ProblemMPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees inHypergraphsMPI-I-2001-1-004 S. Hert, M. Ho�mann, L. Kettner, S. Pion,M. Seel An Adaptable and Extensible Geometry KernelMPI-I-2001-1-003 M. Seel Implementation of Planar Nef PolyhedraMPI-I-2001-1-002 U. Meyer Direted Single-Soure Shortest-Paths in LinearAverage-Case TimeMPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Conneted NetworksMPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperboli Hausdor� Distane for Medial AxisTransformMPI-I-2000-4-002 L.P. Kobbelt, S. Bisho�, K. K�ahler,R. Shneider, M. Botsh, C. R�ossl,J. Vorsatz Geometri Modeling Based on Polygonal MeshesMPI-I-2000-4-001 J. Kautz, W. Heidrih, K. Daubert Bump Map Shadows for OpenGL RenderingMPI-I-2000-2-001 F. Eisenbrand Short Vetors of Planar Latties Via ContinuedFrationsMPI-I-2000-1-005 M. Seel, K. Mehlhorn In�maximal Frames: A Tehnique for Making LinesLook Like SegmentsMPI-I-2000-1-004 K. Mehlhorn, S. Shirra Generalized and improved onstrutive separationbound for real algebrai expressionsMPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First Sheduling of ParallelComputations with Synhronization VariablesMPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristi for Telephone GossipingMPI-I-2000-1-001 E. Althaus, O. Kohlbaher, H. Lenhof,P. M�uller A branh and ut algorithm for the optimal solution ofthe side-hain plaement problemMPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy ImageCompressionMPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. Shobbens Axioms for Real-Time LogisMPI-I-1999-3-004 J. Raskin, P. Shobbens Proving a onjeture of Andreka on temporal logiMPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. Shobbens Fully Deidable Logis, Automata and ClassialTheories for De�ning Regular Real-Time LanguagesMPI-I-1999-3-002 J. Raskin, P. Shobbens The Logi of Event CloksMPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and theHigher-Order Mathing Problem in the Simply TypedLambda CalulusMPI-I-1999-2-008 A. Bokmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in FixedDimensionMPI-I-1999-2-007 G. Delzanno, J. Raskin Symboli Representation of Upward-losed SetsMPI-I-1999-2-006 A. Nonnengart A Dedutive Model Cheking Approah for HybridSystemsMPI-I-1999-2-005 J. Wu Symmetries in Logi ProgramsMPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Jaquemard,M. Veanes Deidable fragments of simultaneous rigid reahabilityMPI-I-1999-2-003 U. Waldmann Canellative Superposition Deides the Theory ofDivisible Torsion-Free Abelian GroupsMPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite TreesMPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to reognize a orret Voronoi diagram ofline segmentsMPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDAMPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?MPI-I-1999-1-004 M. Nissen, K. Weihe How generi language extensions enable \open-world"desing in JavaMPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Conurrent Aess to Parallel Disks

MPI-I-1999-1-002 N.P. Boghossian, O. Kohlbaher,H.-. Lenhof BALL: Biohemial Algorithms LibraryMPI-I-1999-1-001 A. Crauser, P. Ferragina A Theoretial and Experimental Study on theConstrution of SuÆx Arrays in External MemoryMPI-I-98-2-018 F. Eisenbrand A Note on the Membership Problem for the FirstElementary Closure of a Polyhedron

