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AbstratWe present a simple new algorithm for omputing minimum spanningtrees that is more than two times faster than the best previously knownalgorithms (for dense, \diÆult" inputs). It is of oneptual interest thatthe algorithm uses the property that the heaviest edge in a yle an bedisarded. Previously this has only been exploited in asymptotially optimalalgorithms that are onsidered to be impratial. An additional advantageis that the algorithm an greatly pro�t from pipelined memory aess.Hene, an implementation on a vetor mahine is up to 13 times fasterthan previous algorithms. We outline additional re�nements for MSTsof impliitly de�ned graphs and the use of the entral data struture forquerying the heaviest edge between two nodes in the MST. The latter resultis also interesting for sparse graphs.This work is partially supported by DFG grant SA 933/1-1.
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1 IntrodutionGiven an undireted onneted graph G with n nodes, m edges and nonneg-ative edge weights, the minimum spanning tree (MST) problem asks for aminimum total weight subset of the edges that forms a spanning tree of G.The urrent state of the art in MST algorithms shows a gap betweentheory and pratie. The algorithms used in pratie are among the old-est network algorithms [4, 16, 8, 13℄ and are all based on the partitionproperty : a lightest edge leaving a set of nodes an be used for an MST.More spei�ally, Kruskal's algorithm [13℄ is best for sparse graphs. Its run-ning time is asymptotially dominated by the time for sorting the edgesby weight. For dense graphs (m � n), the Jarn��k-Prim (JP) algorithm isbetter [8, 18℄. Using Fibonai heap priority queues, its exeution time isO(n logn+m). Using pairing heaps [5℄ Moret and Shapiro [15℄ get quitefavorable results in pratie at the prie of slightly worse performane guar-antees (
(n logn+m log logn)).On the theoretial side there is a randomized linear time algorithm [9℄ andan almost linear time deterministi algorithm [17℄. But these algorithms areusually onsidered impratial beause they are ompliated and beause theonstant fators in the exeution time look unfavorable. These algorithmsomplement the partition property with the yle property : a heaviest edgein any yle is not needed for an MST.In this paper we partially lose this gap. We develop a simpleO(n logn +m)expeted time algorithm using the yle property that is very fast on densegraphs. Our experiments show that it is more than two times faster thanthe JP algorithm for large dense graphs that require a large number of pri-ority queue updates for JP. For future arhitetures it promises even largerspeedups beause it pro�ts from pipelining for hiding memory aess lateny.An implementation on a vetor mahine shows a speedup by a fator of 13for large dense graphs.Our algorithm is a simpli�ation of the linear time randomized algo-rithms. Its asymptoti omplexity is O(m+ n logn). When m� n logn weget a linear time algorithm with small onstant fators. The key omponentof these algorithms works as follows. Generate a smaller graph G0 by selet-ing a random sample of the edges of G. Find a minimum spanning forest T 0of G0. Then, �lter eah edge e 2 E using the yle property: Disard e ifit is the heaviest edge on a yle in T 0 [ feg. Finally, �nd the MST of thegraph that ontains the edges T 0 and the edges that were not �ltered out.Sine MST edges were not disarded, this is also the MST of G.Klein and Tarjan [11℄ prove that if the sample graph G0 is obtained byinluding eah edge of G independently with probability p, then the expeted1



number of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both reursively solved MST instanes an be made small.It remains to �nd an eÆient way to implement �ltering.King [10℄ suggests a �ltering sheme whih requires an O�n log m+nn � pre-proessing stage, after whih the �ltering an be done with O(1) time peredge (for a total of O(m)). The preproessing stage runs Boruvka's [4, 16℄algorithm on the spanning tree T and uses the intermediate results to on-strut a tree B that has the verties of G as leaves suh that: (1) the heaviestedge on the path between two leaves in B is the same as the heaviest edgebetween them in T 0. (2) B is a full branhing tree; that is, all the leaves of Bare at the same level and eah internal node has at least two sons. (3) B hasat most 2n nodes. It is then possible to apply to B Koml�os's algorithm [12℄for maximum edge weight queries on a full branhing tree. This algorithmbuilds a data struture of size O�n log(m+nn )� whih an be used to �nd themaximum edge weight on the path between leaves u and v, denoted F (u; v),in onstant time. A path between two leaves is divided at their least om-mon anestor (LCA) into two half paths and the maximum weight on eahhalf path is preomputed. In addition, during the preproessing stage thealgorithm generates information with whih the LCA of two leaves an befound in onstant time.In Setion 2 we develop a simpler �ltering sheme whih is based onthe order in whih the JP algorithm adds nodes to the MSF of the samplegraph G0. We show that using this ordering, omputing F (u; v) redues toa single interval maximum query. This is signi�antly simpler to implementthan Koml�os's algorithm beause (1) we do not need to onvert the MSF ofthe sample into a di�erent tree. (2) interval maximum omputation is morestrutured than path maximum in a full branhing tree, where nodes mayhave di�erent degrees. As a onsequene, the preproessing stage involvesomputation of simpler funtions and needs simpler data strutures.Interval maximum an be found in onstant time by applying a standardtehnique that uses preomputed tables of total size O(n logn). The tablesstore pre�x minima and suÆx maxima [7℄. We explain how to arrange thesetables in suh a way that F (u; v) an be found using two table lookupsfor �nding the JP-order, one xor operation, one operation �nding the mostsigni�ant nonzero bit, two table lookups in fused pre�x and suÆx tables andsome shifts and adds for index alulations. These operations an be exeutedindependently for all edges in ontrast to the priority queue aesses of theJP algorithm that have to be exeuted sequentially to preserve orretness.In Setion 3 and Appendix B.1 we report measurements on urrent high-end miroproessors that show speedup up to a fator 3.35 ompared to ahighly tuned implementation of the JP algorithm. An implementation on a2



vetor omputer results in even higher speedup of up to 13.Our algorithm is also interesting for sparse graphs when we are interestedin the all-pairs minimax shortest-paths problem [2, 6℄. Details are explainedin Appendix A.3.2 The I-Max-Filter AlgorithmIn Setion 2.1 we explain how �nding the heaviest edge between two nodesin an MST an be redued to �nding an interval maximum. The array usedis the edge weights of the MST stored in the order in whih the edges areadded by the JP algorithm. Then in Setion 2.2 we explain how this intervalmaximum an be omputed using one further table lookup per node, an xoroperation and a omputation of the position of the most signi�ant one-bitin an integer. In Setion 2.3 we use these omponents to assemble the I-Max-Filter algorithm for omputing MSTs. Appendix A presents re�nements thatredue the number of ahe faults, give improved performane for impliitlyde�ned graphs and explain how our algorithm an be applied to the all-pairsminimax shortest paths problem.2.1 Redution to Interval MaximaThe following lemma shows that by renumbering nodes aording to theorder in whih they are added to the MST by the JP algorithm, heaviestedge queries an be redued to simple interval maximum queries.Lemma 1 Consider an MST T = (f0; : : : ; n� 1g ; ET ) where the JP algo-rithm (JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei,0 < i < n denote the edge used to add node i to the tree by the JP algorithm.Let wi, denote the weight of ei. Then, for all nodes u < v, the heaviest edgeon the path from u to v in T has weight maxu<j�v wj.Proof: By indution over v. The laim is trivially true for v = 1. For theindution step we assume that the laim is true for all pairs of nodes (u; v0)with u < v0 < v and show that it is also true for the pair (u; v). First notethat ev is on the path from u to v beause in the JP algorithm u is insertedbefore v and v is an isolated node until ev is added to the tree. Let v0 < vdenote the node at the other end of edge ev. Edge ev is heavier than all theedges ev0+1, : : : ev�1 beause otherwise the JP algorithm would have addedv, using ev, earlier. There are two ases to onsider (see Figure 1).3
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Figure 1: Illustration of the two ases of Lemma 1. The JP algorithm addsthe nodes from left to right.Case v0 � u: By the indution hypothesis, the heaviest edge on the pathfrom v0 to u is maxv0<j�uwj. Sine all these edges are lighter than ev, themaximum over wu, : : : ,wv �nds the orret answer wv.Case v0 > u: By the indution hypothesis, the heaviest edge on the pathbetween u and v0 has weight maxu<j�v0 wj. Hene, the heaviest edge we arelooking for has weight max fwv;maxu<j�v0 wjg. Maximizing over the largerset maxu<j�v wj will return the right answer sine ev is heavier than the edgesev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an unonneted graphrather than the MST of a onneted graph. When JP spans a onnetedomponent, it selets an arbitrary node i and adds it to the MSF with wi =1. Then the interval maxima for two nodes whih are in two di�erentomponents is 1, as we would expet.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n�1℄, we explain how max a[i::j℄ an be omputed inonstant time using preproessing time and spae O(n logn). The emphasisis on very simple and fast queries sine we are looking at appliations wheremany more than n logn queries are made. To this end we develop an eÆientimplementation of a basi method desribed in [7, Setion 3.4.3℄ whih isa speial ase of the general method in [3℄. This algorithm might be of4
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(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Funtion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the orderin whih JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n� 1℄as desribed in Setion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ andwe < preSuf[`℄[jpNum[v℄℄ thenadd e to E00return JP-MST(E00)Figure 3: The I-Max-Filter algorithm0). Layer 0 is idential to a. msbPos(x) an be omputed by a table lookup1.A further optimization stores a pointer to the array preSuf[`℄ in this layertable. As the omputation is symmetri, we an ondut a table lookup withindies i; j without knowing whether i < j or j < i.To use this data struture for the I-Max-Filter algorithm we need a smallmodi�ation sine we are interested in maxima of the form max a[min(i; j)+1::max(i; j)℄ without knowing whih of two endpoints is the smaller. Herewe simply note that the approah still works if we rede�ne the suÆx maximato exlude the �rst entry, i.e., preSuf[`℄[i℄ = max(a[i+1::(2`+1) �i=2`�� 1℄)if �i=2`� is even.2.3 Putting the Piees TogetherFigure 3 summarizes the I-Max-Filter algorithm and the following Theoremestablishes its omplexity.Theorem 1 The I-Max-Filter algorithm omputes MSTs in expeted timemT�lter + O(n logn+pnm) where T�lter is the time required to query the�lter about one edge.In partiular, if m = !(n logn), the exeution time is (1 + o(1))mT�lter.1Alternatively, one ould inspet the exponent in a oating point representation of x.6



Proof: Taking a sample an be implemented to run in onstant time persampled element. Running JP on the sample takes time O(n logn +pnm)if a Fibonai heap (or another data struture with similar time bounds)is used for the priority queue. The lookup tables an be omputed in timeO(n logn). The �ltering loop takes time mT�lter.2 By the sampling lemmaexplained in the introdution [11, Lemma 1℄, the expeted number of edgesin E 00 is n=pn=m = pnm. Hene, running JP on E 00 takes expeted timeO(n logn+pnm). Summing all the omponent exeution times yields thelaimed time bound.3 Experimental EvaluationThe objetive of this setion is to demonstrate that the I-Max-Filter algo-rithm is a serious ontestant for the fastest MST algorithm for dense graphs(m � n logn). We ompare our implementation with a fast implementa-tion of the JP algorithm. In [15℄ the exeution time of the JP algorithmusing di�erent priority queues is ompared and pairing heaps are found tobe the fastest on dense graphs. We took the pairing heap from their odeand ombined it with a faster, array based graph representation.3 This im-plementation of JP onsistently outperforms [15℄ and LEDA [14℄.3.1 Graph RepresentationsOne issue in omparing MST-algorithms for dense graphs is the underlyinggraph representation. The JP algorithm requires a representation that allowsfast iteration over all edges that are adjaent to a given node. In a linked listimplementation eah edge resides in two linked lists; one for eah inidentnode. In our adjaeny array representation eah edge is represented twiein an array with 2m entries suh that the edges adjaent to eah soure nodeare stored ontiguously. For eah edge, the target node and weight is stored.In terms of spae requirements, eah soure and eah target is stored one,and only the weight is dupliated. A seond array of size n holds for eahnode a pointer to the beginning of its adjaeny array.The I-Max-Filter algorithm, on the other hand, an be implemented towork well with any representation that allows sampling edges in time linear2Note that it would be ounterprodutive to exempt the nodes in E0 from �lteringbeause this would require an extra test for eah edge or we would have to omputeE �E0 expliitly during sampling.3The original implementation [15℄ uses linked lists whih were quite appropriate at thetime, when ahe e�ets were less important.7



in the sample size and that allows fast iteration over all edges. In partiular,it is suÆient to store eah edge one. Our implementation for I-Max-Filteruses an array in whih eah edge appears one as (u; v) with u < v and theedges are sorted by soure node (u).4 Only for the two small graphs for whihthe JP-algorithm is alled it generates an adjaeny array representation (seeFigure 3).To get a fair omparison we deided that eah algorithm gets the originalinput in its \favorite" representation. This deision favors JP beause theonversion from an edge array to an adjaeny array is muh more expensivethan vie versa. Furthermore, I-Max-Filter ould run on the adjaeny arrayrepresentation with only a small overhead: during the sampling and �lteringstages it would use the adjaeny array while ignoring edges (u; v) with u > v.3.2 Filtering Aess PatternIn the implementation, we aess the interval maxima data struture by JPorder of soure node rather than by the order in whih the edges happen tobe stored. In Appendix A.1 we explain why this inreases the ahe eÆienyof these aesses. With the graph representation we use, this aess patternadds one irregular ahe aess per node, when aessing the �rst edge of anode's list. In order for the optimization to be bene�ial, these n additionalirregular aesses need to be ompensated by the more regular aesses to thetable. For very small densities, then, we might lose. In the results reportedhere (for graphs with up to 10,000 nodes), this aess sequene resulted in aspeedup of about 5 perent. For graphs with more nodes, the table is largerand so is the impat of this heuristi. For instane, on graphs with 25,000nodes and just over 31,000,000 edges we observed a speedup of 11 perent onthe SUN. All reported exeution times are with this optimization enabled.3.3 Implementation on Vetor-MahinesA vetor-mahine has the apability to perform operations on vetors (in-stead of salars) of some �xed size (in urrent vetor-mahines 256 or 512elements) in one instrution. Vetor-instrutions typially inlude arithmetiand boolean operations, memory aess instrutions (onseutive, strided,and indiret), and speial instrutions like pre�x-summation and minimumsearh. Vetorized memory aesses irumvent the ahe. The �ltering loop4These requirements ould be dropped at very small ost. In partiular, I-Max-Filteran work eÆiently with a ompletely unsorted edge array or with an adjaeny arrayrepresentation that stores eah edge only in one diretion. The latter only needs spae form+ n node indies and m edge weights. 8



of Figure 3 an readily be implemented on a vetor-mahine. The edgesare stored onseutively in an array and an immediately be aessed in avetorized loop; indiret memory aess makes vetorized lookup of soureand target verties possible. For the �ltering itself, bitwise exlusive or andtwo additional table lookups in the preSuf array are neessary. Using thepre�x-summation apabilities, the edges that are not �ltered out are storedonseutively in a new edge array. Also the onstrution of the preSuf data-struture an be vetorized. The only possibility for vetorization in theJP-MST algorithm is the loop that sans and updates adjaent verties ofthe vertex just added to the MST. We divide this loop into a sanning loopwhih ollets the adjaent verties for whih a priority queue update isneeded, and an update loop performing the atual priority queue updates.Using pre�x-summation the sanning loop an immediately be vetorized.For the update there is little hope, unless a favorable data struture allowingsimultaneous derease-key operations an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and om-piled using GNU g++ version 3.0.4 with optimization level -O6. We usea SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ proessors. InAppendix B.1 we also give measurements on a Dell Preision 530 work-station with 1.7 GHz Intel P4 Xeon proessors that show similar results.Soure odes are available at http://www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.We performed measurements with four di�erent families of graphs, eahwith adjustable edge density � = 2m=n(n� 1). This inludes all the familiesin [15℄ that admit dense inputs. A test instane is de�ned by three param-eters: the graph type, the number of nodes and the density of edges (thenumber of edges is omputed from these parameters). Eah reported resultis the average of ten exeutions of the relevant algorithm; eah on a di�er-ent randomly generated graph with the given parameters. Furthermore, theI-Max-Filter algorithm is randomized beause the sample graph is seletedat random. Despite the randomization, the variane of the exeution timeswithin one test was onsistently very small (less than 1 perent), hene weonly plot the averages.Worst-Case: � � n(n� 1)=2 edges are seleted at random and the edges areassigned weights that ause JP to perform as many Derease Key operationsas possible [15℄.Linear-Random: � � n(n � 1)=2 edges are seleted at random. Eah edge(u; v) is assigned the weight w(u; v) = ju� vj where u and v are the integer9
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Figure 7: Worst-Case graph, 10000 nodes, NEC SX-5results, whih show that the bene�t from �ltering inreases with the streth.3.6 Results On A Vetor MahineFigures 7{9 show similar measurements on a NEC SX-5 vetor omputer.For eah of the two algorithms (JP and I-Max-Filter), runtimes per edge areplotted for salar as well as vetorized version. The results of the salar odeshow, one again, that JP is very fast on Uniform-Random graphs while I-Max-Filter is faster on the diÆult graphs. In addition, we an see that onthe \diÆult" inputs I-Max-Filter bene�ts more than JP from vetorization.This is to be expeted; JP beomes less vetorizable when many dereasekey operations are performed, while the exeution time of I-Max-Filter isdominated by the �ltering stage, whih in turn is not sensitive to the graphtype. As a onsequene, we see a speedup of up to 13 on the \diÆult"graphs 5.5omparing the vetorized versions of JP and I-Max-Filter.
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Figure 8: Linear-Random graph, 10000 nodes, NEC SX-5
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iFigure 10: The ative set for soure node with jpNum = i.A Algorithmi Re�nementsA.1 Cahe EÆienyBy arefully seleting the order in whih the edges are �ltered, we an reduethe spae requirements of the interval maxima data struture from O(n logn)to O(n). Assume that the edges are stored as pairs (i; j) and that they aresorted by soure node (i). We propose to �lter the edges in the order thattheir soure nodes were inserted by the JP algorithm.Let the ative set Ai be the set of pre�x and suÆx arrays that an be a-essed while �ltering the edges (u; v) suh that jpNum[u℄ = i (see Figure 10).Note that eah ative set ontains at most logn arrays orresponding to thesoure node and logn arrays orresponding to the target node: from eahlayer, one pre�x array to the right of the soure node and one suÆx arrayto its left are ative. When �ltering iterates over the edges by nondereasingjpNum of the soure node i, eah pre�x or suÆx array beomes ative in Aione, stays ative for a while, and then beomes inative forever. This meansthat the arrays an be generated on-the-y instead of in a preproessing stagesuh that eah pre�x or suÆx array is generated at most one and not morethan 2n spae is required at a time.Even if the whole O(n logn) table is alulated in a preproessing stage,this observation gives us a way to improve ahe eÆieny: �ltering the edgesin the order desribed above redues the irregularity of ahe aessed suhthat at any point in time, O(n) ative entries are in ahe.A.2 Impliitly De�ned GraphsMany appliations of MSTs work with omplete graphs that are de�ned im-pliitly by an orale funtion that returns the edge weight for any pair ofnodes [2℄. In this ase our algorithm an be implemented to work withlinear spae: Run JP on an impliitly de�ned sample of the graph by pik-ing sample edges with soure v only when v is inserted into the tree. For16



the �ltering stage, we are free to iterate over the edges (u; v) suh that(jpNum[u℄; jpNum[v℄) are visited in inreasing lexiographi order. This notonly allows us to ompute lookup tables just in time as desribed in Ap-pendix A.1 but also means that these arrays are just sanned leading to onlyO(n + n2=B) ahe faults overall for ahe bloks of size B. Furthermore,the inner loop from Figure 3 an be rewritten in suh a way that most valuesare kept in registers. Only omputing the pre�x maximum for the targetnode will require a single table lookup. Edges that are not �ltered out arenot stored but immediately inserted into the MST of edges seen so far. Usingdynami trees this an be implemented to run in O(n) spae and O(logn)time per opertation [1, 19℄. All in all, we get an O(n2) time O(n) spaealgorithm for impliitly de�ned graphs with very favorable onstant fators.A.3 All-Pairs Minimax Shortest PathsA minimax shortest path from u to v is a path P from u to v that minimizesthe weight of the heaviest edge on P . An important appliation of minimumspanning trees is the observation that a minimax shortest path an be ob-tained by taking the unique path from u to v in the minimum spanning tree[2, 6℄. In partiular, the heaviest edge weight on this path an be omputedin onstant time using O(n logn+m) preproessing time by running the JPalgorithm on the input and onstruting the lookup tables desribed in Se-tions 2.1 and 2.2. Our ontribution here is a very simple method with betteronstant fators for the queries.B More Experimental ResultsB.1 Results on an Intel proessorFigures 11{13 show exeution time on a PC per edge for the three graphfamilies Worst-Case, Linear-Random, and Uniform-Random, for n = 7000nodes and varying density (Currently this mahine laks suÆient memoryfor reliable measurements with n = 10000).B.2 Random-Geometri graphsFigures 14{16 show exeution time per edge on a PC for three families ofRandom-Geometri graphs; with streth fators y = 2; 160 and 500. In the�rst family, the nodes are spread in something lose to a square, and the MSTalgorithms behave as on the Uniform-Random graphs; JP is faster beause17
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Figure 11: Worst-Case graph, 7000 nodes, PC.
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Figure 12: Linear-Random graph, 7000 nodes, PC.
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Figure 13: Uniform-Random graph, 7000 nodes, PC.18
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Figure 14: Random-Geometri graph, streth fator 2, 7000 nodes, PC.
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Figure 15: Random-Geometri graph, streth fator 160, 7000 nodes, PC.there are few derease keys operations. As y inreases, the graphs beomeloser to the Linear-Random family and the plots, aordingly, reet aninreasing gain from �ltering.B.3 Larger graphs with �xed densityFigures 17 and 18 show the e�et of inreasing the size of a Linear-Randomgraph while keeping the density �xed at 0.1. The results show again thatI-Max-Filter is faster than JP on large graphs and that I-Max-Filter bene-�ts more from the vetor mahine. Furthermore, these e�ets beome moresigni�ant as the graph size inreases.
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Figure 16: Random-Geometri graph, streth fator 500, 7000 nodes, PC.
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Figure 17: Linear-Random graph, density 0.1, SUN.
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