
IO-Top-k: Index-access
Optimized Top-k Query

Processing

Holger Bast, Debapriyo Majumdar,
Ralf Schenkel, Martin Theobald,

Gerhard Weikum

MPI–I–2006–5–002 March 2006

Authors’ Addresses

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
{bast,dmajumda,schenkel,mtb,weikum}@mpi-inf.mpg.de

Abstract

Top-k query processing is an important building block for ranked retrieval,
with applications ranging from text and data integration to distributed ag-
gregation of network logs and sensor data. Top-k queries operate on index
lists for a query’s elementary conditions and aggregate scores for result can-
didates. One of the best implementation methods in this setting is the family
of threshold algorithms, which aim to terminate the index scans as early as
possible based on lower and upper bounds for the final scores of result can-
didates. This procedure performs sequential disk accesses for sorted index
scans, but also has the option of performing random accesses to resolve score
uncertainty. This entails scheduling for the two kinds of accesses: 1) the
prioritization of different index lists in the sequential accesses, and 2) the
decision on when to perform random accesses and for which candidates.

The prior literature has studied some of these scheduling issues, but only
for each of the two access types in isolation. The current paper takes an
integrated view of the scheduling issues and develops novel strategies that
outperform prior proposals by a large margin. Our main contributions are
new, principled, scheduling methods based on a Knapsack-related optimiza-
tion for sequential accesses and a cost model for random accesses. The meth-
ods can be further boosted by harnessing probabilistic estimators for scores,
selectivities, and index list correlations. We also discuss efficient implemen-
tation techniques for the underlying data structures. In performance experi-
ments with three different datasets (TREC Terabyte, HTTP server logs, and
IMDB), our methods achieved significant performance gains compared to the
best previously known methods: a factor of up to 3 in terms of execution
costs, and a factor of 5 in terms of absolute run-times of our implementation.
Our best techniques are close to a lower bound for the execution cost of the
considered class of threshold algorithms.

1 Introduction

1.1 Motivation

Top-k query processing is a key building block for data discovery and ranking
and has been intensively studied in the context of information retrieval [5,
24, 29], multimedia similarity search [9, 11, 12, 25], text and data integration
[15, 20], business analytics [1], preference queries over product catalogs and
Internet-based recommendation sources [3, 25], distributed aggregation of
network logs and sensor data [6], and many other important application
areas. Such queries evaluate search conditions over multiple attributes or text
keywords, assign a numeric score that reflects the similarity or relevance of a
candidate record or document for each condition, then combine these scores
by a monotonic aggregation function such as weighted summation, and finally
return the top-k results that have the highest total scores. The method that
has been most strongly advocated in recent years is the family of threshold
algorithms (TA) [12, 14, 28]. TA performs index scans over precomputed
index lists, one for each attribute or keyword in the query, which are sorted
in descending order of per-attribute or per-keyword scores. The key point of
TA is that it aggregates scores on the fly, thus computes a lower bound for
the total score of the current rank-k result record (document) and an upper
bound for the total scores of all other candidate records (documents), and is
thus often able to terminate the index scans long before it reaches the bottom
of the index lists, namely, when the lower bound for the rank-k result, the
threshold, is at least as high as the upper bound for all other candidates.

When scanning multiple index lists (over attributes from one or more
relations or document collections), top-k query processing faces an optimiza-
tion problem: combining each pair of indexes is essentially an equi-join (via
equality of the tuple or document ids in matching index entries), and we
thus need to solve a join ordering problem [7, 15, 22]. As top-k queries are
eventually interested only in the highest-score results, the problem is not just
standard join ordering but has additional complexity. [15] have called this

1

issue the problem of finding optimal rank-join execution plans. Their ap-
proach is based on a DBMS-oriented compile-time view: they consider only
binary rank joins and a join tree to combine the index lists for all attributes
or keywords of the query, and they generate the execution plan before query
execution starts. An alternative, run-time-oriented, approach follows the
Eddies-style notion of adaptive join orders on a per tuple basis [2] rather
than fixing join orders at compile-time. Then the query optimization for
top-k queries with threshold-driven evaluation becomes a scheduling prob-
lem. This is the approach that we pursue in this paper. In contrast to [2, 15]
we do not restrict ourselves to trees of binary joins, but consider all index
lists relevant to the query together.

The potential cost savings for flexible and intelligent scheduling of index-
scan steps result from the fact that the descending scores in different lists
exhibit different degrees of skew and may also be correlated across different
lists. For example, dynamically identifying one or a few lists where the scores
drop sharply after the current scan position may enable a TA-style algorithm
to eliminate many top-k candidates much more quickly and terminate the
query execution much earlier than with standard round-robin scheduling or
the best compile-time-generated plan. These savings are highly significant
when index lists are long, with millions of entries that span multiple disk
tracks, and the total data volume rules out a solution where all index lists
are completely kept in memory (i.e., with multi-Terabyte datasets like big
data warehouses, Web-scale indexes, or Internet archives).

As an example for the importance of scheduling strategies, consider a
top-1 query with three keywords and the corresponding index lists shown in
Fig. 1.1. In the first two rounds, the first two documents from the top of
the three lists are scanned, and lower and upper bounds on the final scores
of the encountered documents are computed. At this point we have seen all
potential candidates for the top document (because we know that the top
document has a score of at least 1.5, while any document not yet encountered
at all has a score of at most 1.4). However, if we stopped sorted accesses
now, we might have to do up to five random accesses (one for Doc17, two
for Doc25, and two for Doc83) to resolve which document has the highest
score. In this situation a clever algorithm will opt to continue with sorted
accesses. In the third round, now two documents from list 2 are scanned,
one from list 3, and none from list 1. This is to bring down the threshold
for unseen documents as much as possible and at the same time maximize
the chance of encountering one of our candidate documents in a list where
we have not yet seen it. In our example, this indeed happens: the threshold
drops considerably, we no longer have to consider Doc25, and we get new
information on Doc83. The algorithm now estimates that one more random

2

List 1 List 2 List 3

Doc17 : 0.8 Doc25 : 0.7 Doc83 : 0.9
Doc78 : 0.2 Doc38 : 0.5 Doc17 : 0.7

· Doc14 : 0.5 Doc61 : 0.3
· Doc83 : 0.5 ·
· · ·
· Doc17 : 0.2 ·
· · ·

Round 1 (SA on 1,2,3)

Doc17 : [0.8 , 2.4]
Doc25 : [0.7 , 2.4]
Doc83 : [0.9 , 2.4]
unseen: ≤ 2.4

Round 2 (SA on 1,2,3)

Doc17 : [1.5 , 2.0]
Doc25 : [0.7 , 1.6]
Doc83 : [0.9 , 1.6]
unseen: ≤ 1.4

Round 3 (SA on 2,2,3!)

Doc17 : [1.5 , 2.0]
Doc83 : [1.4 , 1.6]
unseen: ≤ 1.0

Round 4 (RA for Doc17)

Doc17 : 1.7
all others < 1.7
done!

Figure 1.1: A top-1 computation on three index lists, with three rounds of
sorted access, followed by one round of random access.

3

access is likely to be enough to resolve the top document (because Doc17
is likely to get a better score than Doc83). It therefore stops doing sorted
accesses and does a random access for Doc17 (the most promising in the
example), after which the top document is indeed resolved and the algorithm
can stop. The details of when our algorithms perform which kind of accesses
on which lists and why are given in Sec. 4 and 5.

1.2 Problem Statement

The problem that we address in this paper is how to schedule index-access
steps in TA-style top-k query processing in the best possible way, integrating
sequential index scans and random lookups. Our goal is to minimize the
sum of the access costs, assuming a fixed cost cS for each sorted access and
a fixed cost cR for each random access. The same assumptions were made
in [11]. We also study how to leverage statistics on score distributions for
the scheduling of index-scan steps. The statistics that we consider in this
context are histograms over the score distributions of individual index lists
and also the correlations between index lists that are processed within the
same query. For the prediction of aggregated scores over multiple index lists,
we efficiently compute histogram convolutions at query run-time.

Throughout this paper, we assume that the top-k algorithm operates on
precomputed index lists. We realize that this may not always be possible,
for example, when a SQL query with a stop-after clause uses non-indexed at-
tributes in the order-by clause. The latter situation may arise, for example,
when expensive user-defined predicates are involved in the query [8, 9, 22]
(e.g., spatial computations or conditions on images, speech, etc.). In these
cases, the query optimizer needs to find a more sophisticated overall execu-
tion plan, but it can (and often should) still use a threshold algorithm as a
subplan on the subset of attributes where index lists are available. However,
for text-centric applications and for semistructured data such as product
catalogs, customer support, or e-health repositories, there is hardly a reason
why the physical design should not include single-attribute indexes on all at-
tributes that are relevant for top-k queries. Such application classes tend to
be dominated by querying rather than in-place updates, and the disk space
cost of single-attribute indexes is not an issue. The methods presented in
this paper aim at such settings, and they are beneficial for efficient execution
of subplans even beyond.

4

1.3 Related Work

The original scheduling strategy for TA-style algorithms is round-robin over
all lists (mostly to ensure certain theoretical properties). Early variants also
made intensive use of random access (RA) to index entries to resolve missing
score values of result candidates, but for very large index lists with millions of
entries that span multiple disk tracks, the resulting random access cost cR is
50 - 50,000 times higher than the cost cS of a sorted access (SA). To remedy
this, Fagin et al. [12] and Güntzer et al. [14] already proposed the NRA (No
RA) variant of TA, but occasional, carefully scheduled RAs can still be useful
when they can contribute to major pruning of candidates. Therefore, Fagin
et al. [11] also introduced a combined algorithm (CA) framework but did not
discuss any data- or scoring-specific scheduling strategies.

Güntzer et al. [14] developed heuristic strategies for scheduling SAs over
multiple lists. These are greedy heuristics based on limited or crude estimates
of scores, namely, the score gradients up to the current cursor positions in the
index scans and the average score in an index list. This leads to preferring
SAs on index lists with steep gradient [14].

Chang et al. [8] and Marian et al. [25] developed strategies for scheduling
RAs on “expensive predicates”. They considered restricted attribute sources,
such as non-indexed attributes or Internet sites that do not support sorted
access at all (e.g., a streetfinder site that computes driving distances and
times), and showed how to integrate these sources into a threshold algorithm.
Marian et al. [25] also considered sources with widely different RA costs or
widely different SA costs (e.g., because of different network bandwidth or
server load). Our computational model differs from these settings in that
we assume that all attributes are indexes with support for both SA and RA
and that all index lists are on the same server and thus have identical access
costs. Despite these incomparabilities, specific sub-strategies of this prior
work are of interest to our work:

• Chang et al. [8] developed the MPro method. This method relies on
some standard Threshold algorithm to compute a list of candidates and
their scores for the indexed attributes of a query. Based on that list, the
top-k answer to the query is then computed by scheduling additional
RAs on the non-indexed attributes, prioritizing top-k candidates based
on their bestscores (i.e., upper bounds of their true total scores).An
extended method estimates, based on single-attribute selectivities, the
probability that a single predicate achieves a score that would qualify
the data item for the top-k result. Our methods are more powerful
by considering the convolution of score probability distributions across

5

all unresolved attributes rather than inspecting only single-attribute
selectivities.

• Bruno et al. [4, 25] developed the Upper method that conceptually
alternates between RA and SA steps. For RA scheduling, Upper selects
the data item with the highest bestscore and performs a single RA on
the attribute (source) with the highest expected score (with additional
considerations to source-specific RA costs and eliminating “redundant”
sources, which are not relevant here). This is repeated until no data
item remains that has a higher bestscore than any yet unseen document
could have; then SAs are scheduled in a round-robin way until such a
data item appears again.

• Bruno et al. [4] also developed the Pick method that runs in two phases:
in the first phase, it makes only SAs until all potential result documents
have been read (i.e., as soon as the bestscore that a yet unseen docu-
ment could have is not larger as the current kth largest partial score of
an already seen document). In the second phase, it makes RAs for the
missing dimensions of candidates that are chosen similarly to Upper,
taking the (source specific) costs of RAs and the expected score gain
into account.

Our own recent work [33] has used histograms and dynamic convolutions
on score distributions to predict the total score of top-k candidates for more
aggressive pruning; the scheduling in that work is standard round-robin, how-
ever. Probabilistic cost estimation for top-k queries has been a side issue in
the recent work of Yu et al. [35], but there is no consideration of scheduling
issues. Our TopX work on XML information retrieval [32] included specific
scheduling aspects for resolving structural path conditions, but did not con-
sider the more general problem of integrated scheduling for SAs and RAs.

The RankSQL work [16, 22, 23] considers the order of binary rank joins at
query-planning time. Thus, at query run-time there is no flexible scheduling
anymore. For the planning-time optimization, RankSQL uses simple statis-
tical models, assuming that scores within a list follow a Normal distribution
[16]. This assumption is made for tractability, to simplify convolutions. Our
experience with real datasets indicated more sophisticated score distributions
that are very different from Normal distributions, and we use more powerful
statistics like explicit histograms with histogram convolutions computed at
query time to deal with them.

6

1.4 Contribution

This paper makes several novel contributions:

• It develops novel strategies for sorted-access (SA) scheduling in TA-
style top-k query processing that are based on a knapsack-related op-
timization technique.

• It develops a statistics-based cost model for random-access (RA) schedul-
ing that employs statistical score predictors, selectivity estimators, and
estimation of correlations among attribute values and/or keywords and
provides an integrated strategy that combines SA and RA scheduling.

• It shows how these methods are best integrated into a high-performance
top-k query engine that uses a combination of low-overhead merge joins
with TA-style processing based on inverted block-index structures.

• It presents stress tests and large-scale performance experiments that
demonstrate the viability and significant benefits of the proposed schedul-
ing strategies.

On three different datasets (TREC Terabyte, HTTP server logs, and
IMDB), our methods achieve significant performance gains compared to the
best previously known methods, Fagin’s Combined Algorithm (CA) and vari-
ants of the Upper and Pick [4, 25] algorithms: a factor of up to 3 in terms
of abstract execution costs, and a factor of 5 in terms of absolute run-times
of our implementation. We also show that our best techniques are within 20
percent of a lower bound for the execution cost of any top-k algorithm from
the TA family; so we are fairly close to the optimum scheduling.

7

2 Computational Model

2.1 Query and Data Model

We consider data items, structured records or text (or semistructured) docu-
ments, dj (j = 1 . . . N), each containing a set of attribute values or keywords
(terms) that spawn an M-dimensional Cartesian-product space. We asso-
ciate with each record-value or document-term pair a numeric score that
reflects the “goodness” or relevance of the data item with regard to the
value or term. For example, for a price attribute of structured records, the
score could be inversely proportional to the amount (cheaper is better), for
a sensor the score could depend on the deviation from a target point (e.g., a
desired temperature or the set value of a control parameter), and for text or
semistructured documents the score could be an IR relevance measure such
as TF·IDF or the probabilistic BM25 score derived from term frequencies
(TF) and inverse document frequencies (IDF) [13]. We denote the score of
data item dj for the ith dimension by sij. Scores are often normalized to
the interval [0, 1], with 1 being the best possible score. We will assume such
normalized scores in this paper, but this is not a critical assumption.

Top-k queries are essentially partial-match queries on the M-dimensional
data space: 1 < m ≤ M (usually m � M) conjunctions of primitive con-
ditions of the form attribute = value or document contains term, but the
conditions are interpreted as relaxable so that not matching one of them
does not disqualify a candidate item for the query result and approximate
matches are scored and ranked. Like most of the literature, we assume that
the total score of an item is computed by a monotonic score aggregation func-
tion from the per-value or per-term scores of the item, e.g., using weighted
summation. A top-k query returns k matches or approximate matches with
the highest total scores.

8

2.2 Inverted Block-Index

The data items that contain specific values or terms and their corresponding
scores are precomputed and stored in “inverted” index lists Li (i = 1..M).
There is one such index list per data dimension, i.e., value or term. The
entries in a list are <itemID, score> pairs. The lists may be very long
(millions of entries) and reside on disk, with a B+-tree or similar data struc-
ture for efficiently locating the keys of the lists (i.e., the attribute values or
terms). We partition each index list into blocks and uses score-descending
order among blocks but keeps the index entries within each block in itemID

order. This will be key to a low-overhead maintenance of the fairly extensive
bookkeeping information that is necessary for TA-style query processing. We
coin this hybrid structure Inverted Block-Index. The block size is a config-
uration parameter that is chosen in a way that balances disk seek time and
transfer rate; a typical block size would be 32,768. More details on this index
data structure and how we use it for high-performance query processing can
be found in Section 6.

2.3 Query Processing

Our query processing model is based on the NRA and CA variants of the
TA family of algorithms. An m-dimensional top-k query (with m search
conditions) is primarily processed by scanning the corresponding m index
lists in descending score orders in an interleaved manner (and by making
judicious random accesses to look up index entries of specific data items).
Without loss of generality, we assume that these are the index lists numbered
L1 through Lm. For numerical or categorical attribute-value conditions that
are not perfectly matched, the query processor considers “alternative” values
in ascending order of similarity to the original value of the query (thus pre-
serving the overall descending-score processing order). For example, when
searching for year = 1999, after exhausting the index list for the value 1999,
the next best lists are those for 1998, 2000, 1997, 2001, and so on. Although
this relaxation involves additional lists, we treat this procedure as if it were a
single index scan (for one of the m query dimensions) where the list for 1999
is conceptually extended by “neighboring” lists. In a B+-tree-based imple-
mentation, this is easily done by opening two leaf-node scans, one in forward
and one in backward direction starting from the original query value. For
query expansion of text terms or categorical values, other techniques would
be needed [31], but these are details that are not in the scope of the current
paper.

9

When scanning the m index lists, the query processor collects candidates
for the query result and maintains them in two priority queues, one for the
current top-k items and another one for all other candidates that could still
make it into the final top-k. For simpler presentation, we assume that the
score aggregation function is simple summation (but it is easy to extend this
to other monotonic functions). The query processor maintains the following
state information:

• the current cursor position posi for each list Li,

• the score values highi at the current cursor positions, which serve as
upper bounds for the unknown scores in the lists’ tails,

• a set of current top-k items, d1 through dk (renumbered to reflect their
current ranks) and a set of data items dj (j = k + 1..k + q) in the
current candidate queue Q, each with

– a set of evaluated dimensions E(dj) in which dj has already been
seen during the scans or by random lookups,

– a set of remainder dimensions Ē(dj) for which the score of dj is
still unknown,

– a lower bound worstscore(dj) for the total score of dj which is the
sum of the scores from E(dj),

– an upper bound bestscore(dj) for the total score of dj which is
equal to

worstscore(dj) +
∑

ν∈Ē(dj)

highν

(and not actually stored but rather computed from worstscore(dj)
and the current highν values whenever needed).

In addition, the following information is derived at each step:

• the minimum worstscore min-k of the current top-k docs, which serves
as the stopping threshold,

• the bestscore that any currently unseen document can get, which is
computed as the sum of the current highi values, and

• and for each candidate, a score deficit δj = min-k−worstscore(dj) that
dj would have to reach in order to qualify for the current top-k.

The top-k queue is sorted by worstscore values, and the candidate queue is
sorted by descending bestscore values. Ties among scores may be broken
by using the concatenation of <score, itemID> for sorting. The invariant

10

that separates the two is that the rank-k worstscore of the top-k queue is at
least as high as the best worstscore in the candidate queue. The algorithm
can safely terminate, yielding the correct top-k results, when the maximum
bestscore of the candidate queue is not larger than the rank-k worstscore of
the current top-k, i.e., when

min
d∈top-k

{worstscore(d)} =: min-k ≥ max
c∈Q

{bestscore(c)}

More generally, whenever a candidate in the queue Q has a bestscore that is
not higher than min-k, this candidate can be pruned from the queue. Early
termination (i.e., the point when the queue becomes empty) is one goal of
efficient top-k processing, but early pruning to keep the queue and its mem-
ory consumption small is an equally important goal (and is not necessarily
implied by early termination). The candidate bookkeeping is illustrated in
Fig. 2.1.

Figure 2.1: Top-k and candidate bookkeeping.

In the rest of the paper we will primarily use the IR-oriented terminology
of documents and terms. It is straightforward to carry over our methods
and results to settings with numerical or categorical attributes of structured
records.

2.4 Taxonomy of Scheduling Strategies for

Threshold Algorithms

Different algorithmic instances within the paradigm of threshold algorithms
differ in the ways how they handle three fundamental issues: (1) how sorted
accesses are scheduled, (2) how random accesses are scheduled, and (3) how
random accesses are ordered. This section presents a taxonomy of the differ-
ent possibilities for each dimension, classifies the existing approaches in this
scheme and points out the new approaches presented in this paper.

11

2.4.1 SA-Scheduling

RR: Schedule SA in a round-robin manner across the lists (TA, NRA, CA,
Upper, and Pick).
KSR: Schedule different amounts of SA per list in order to maximize the
reduction of scores at the future scan positions for a fixed batch of sorted
accesses, using a Knapsack-based optimization algorithm (see Sec. 4.1).

KBA: Schedule different amounts of SA per list in order to maximize an ag-
gregated benefit among all candidates currently being in the queue for a fixed
batch of sorted accesses, using a Knapsack-based optimization algorithm (see
Sec. 4.2).

2.4.2 RA-Scheduling

Never: Perform SA only (NRA).

All: After each round of SA, perform full RA for each new candidate to
retrieve its final score; no candidate queuing is required (TA).

Top: After each round of SA, schedule RA on the currently best candidates
in the queue (including the not yet fully evaluated documents currently in
the top-k). An extreme instance of such an algorithm is Upper that schedules
RA for all candidates that have a higher bestscore than the current bestscore
of a yet unseen document.
Each: After each round of SAs, schedule a balanced amount of RA according
to the current cost ratio cR/cS between RA and SA performed so far (CA).

Last: Perform only batches of SAs initially and, at some point in the al-
gorithm, switch to performing only RA, thus scheduling the full amount of
RA to eliminate all the remaining items in the queue. One algorithm in this
class is Pick that switches from SA to RA as soon as the best score that an
unseen document can get drops below the current min-k threshold. In con-
trast, our algorithms (see Sec. 5.1 and 5.2) stop the SA batches according to
the estimated cost for the remaining RA (i.e., corresponding to the estimated
number of candidates in the queue that need to be looked up to raise min-k
above the bestscore of the currently best candidate).

2.4.3 RA-Ordering

Best: Perform RAs in descending order of bestscore(dj) (CA, Upper and
Sec. 5.1).

Ben: Perform RAs according to a cost model, i.e., proportionally to the
probability p(dj) that dj gets into the top-k results (see Sec. 5.2).

12

Any algorithm for TA-style top-k query processing now corresponds to
a triplet, for example, the NRA scheme corresponds to RR-Never, TA corre-
sponds to RR-All, CA is RR-Each-Best, and Upper corresponds to RR-Top-Best.
In Sections 4 and 5, we will investigate the more sophisticated combinations.
Our best results will be obtained by the combination KSR-Last-Ben.

2.5 Computing Lower Bounds

Fagin et al. [12] proved that their CA algorithm has costs that are always
within a factor of 4m + k of the optimum, where m is the number of lists
and k is the number of top items we want to see. Even for small values of m
and k, this factor is fairly large (e.g., 22 if we want the top-10 of a 3-word
query), and, it seems, way too pessimistic.

Bruno et al. [4] presented a way to compute a lower bound on the cost of
individual queries for the special case of queries with only a single indexed
attributed (and possibly other non-index attributes that can be accessed
with RA only). We extend their approach to our setting where all lists can
be accessed with sorted and random accesses, based on the following key
idea: For any top-k query processing method, after it has done its last sorted
access, consider the set X of documents which were seen in at least one of
the sorted accesses, and which have a bestscore not only above the current
min-k score, but even above the final min-kscore (which the method does
not know at this time). If only a fraction of each list has been scanned, this
set X is typically of considerable size. Now it is not hard to see that the
method must do a random lookup for every document from X in order to
be correct. (Otherwise, let d be one of the documents that are not looked
up, and consider input lists, where d comes right after where our scheme has
stopped scanning the lists, achieving the maximal score still possible then.
Then d is one of the top-k items, but our scheme will fail to recognize it as
such.)

Therefore, the following construction gives a lower bound on the cost of
any1 top-k method: try all possible combinations of scan depths in each of
the input lists, and for each such combination compute the cost of scanning
until this depth plus the cost of the then absolutely necessary random ac-
cesses according to the explanation above. In this computation, we restrict
ourselves to scan depths that are multiples of a certain block size (as we
consider only such block-oriented schemes in this paper, and other methods

1under the reasonable assumption that random lookups are done only for documents
which have been previously seen under sorted access; doing otherwise was coined wild
guessing in Fagin et al. [12]

13

could be better only by at most the blocks size times the number of input lists
anyway). Note that the outlined computation is not a real top-k algorithm
itself, but merely serves to determine lower bounds for comparison.

14

3 Probabilistic Foundations

3.1 Score Predictor

In this section we develop the details for estimating the probability p(d) that
a candidate document d with non-empty remainder set Ē(d) may qualify for
the top-k results. The way how we estimate p(d) depends on the assumptions
that we make about the distribution of the unknown scores that d would
obtain from each remaining list; for each missing dimension, we consider
a random variable Si for the score of d in that dimension. As we don’t
know the actual distribution of the Si unless we have read the whole list, we
have to model or approximate the distribution. We use histograms [18] as
an efficient and commonly used means to compactly capture arbitrary score
distributions. In our application, we precompute a histogram for the score
distribution of each index list, discretizing the score domain for each index
list into H buckets with lower buckets bounds s1, . . . , sH and storing the
respective document frequency and the cumulated document frequency for
each of the histogram buckets. Using the approximated distributions of the
scores in each list, we can estimate the probability that a candidate document
can get enough score mass from its remaining lists to enter the top-k as

ps(dj) := P

⎡
⎣ ∑

i∈Ē(dj)

Si > δj |Si ≤ highi

⎤
⎦

As this involves the sum of random variables, we need to compute the con-
volution of the corresponding distributions to compute this probability. Our
previous paper [33] has shown how to do this efficiently at query run-time.
Among the techniques presented there, the current paper adopts histogram
convolutions, which are recomputed periodically after every batch of SA
steps. The computational overhead for the convolutions was never a bot-
tleneck in the overall top-k algorithm.

15

3.2 Selectivity Estimator

The score predictor implicitly assumes that a document occurs in all its
missing dimensions, hence it inherently overestimates the probability that
a document can get a score higher than the current min-k. For a more
precise estimation, we take the selectivity of the lists into account, i.e., the
probability that a document occurs in the remaining part of a list. For a
single list Li with length li and a total dataset size of n documents, this
probability is

qi(d) :=
li − posi

n − posi

For a partially evaluated document d with a set Ē(d) of remainder dimen-
sions, the probability q(d) that d occurs in at least one of the dimensions in
Ē(d) is computed as

q(d) := P [d occurs in at least one list in Ē(d)]

= 1 − P [d does not occur in any list in Ē(d)]

= 1 − ∏
i∈Ē(d)

(1 − qi(d))

assuming independence for tractability. This independence assumption can
be relaxed by the covariance-based technique mentioned in Sec. 3.4.

3.3 Combined Score Predictor & Selectivity

Estimator

We write A(d, Y ′) for the probabilistic event that d occurs in all lists Y ′ and in
none of the remaining lists in Ē(d) \ Y ′, and O(d, Ē(d)) for the probabilistic
event that d occurs in at least one of the dimensions in Ē(d). Then the
combined probability that a document d can reach the top-k can be estimated
as follows:

p(d) := P [d ∈ top-k]

=
∑

Y ′⊆Ē(d)

P [A(d, Y ′) ∧ ∑
i∈Y ′

Si > min-k]

≤ ∑
Y ′⊆Ē(d)

P [A(d, Y ′) ∧ ∑
i∈Ē(d)

Si > min-k]

= P [O(d, Ē(d)) ∧ ∑
i∈Ē(d)

Si > min-k]

16

= P [
∑

i∈Ē(d)

Si > min-k|O(d, Ē(d))] · P [O(d, Ē(d))]

= ps(d) · q(d)

This corresponds to a conjunctive combination of the probabilities from the
score predictor and selectivity estimates.

3.4 Feature Correlations

Assuming that documents occur independently in different lists may lead
to a crude and practically useless estimator as terms used in queries are
frequently highly correlated. To capture this in our probability estimator,
we precompute pairwise term covariances for terms in frequent queries (e.g.,
derived from query logs). For two such terms and their corresponding lists
Li and Lj, we use a contingency table to capture co-occurrence statistics for
these terms. We denote by li the length of list Li and by lij the number of
docs that are in both Li and Lj . We then consider the random variable Xi

which is 1 if some doc d is in Li (the same distribution for all d, but not
the same value, of course), and 0 otherwise. To predict Xj(d) after knowing
Xi(d) = 1, we have to compute the covariance cov(Xi(d), Xj(d)) of Xi and
Xj . Following basic probability theory, we can estimate this covariance as

cov(Xi, Xj) = lij
n
− li·lj

n2 .
In the remainder of this section, we show how feature correlations can

be exploited for a better estimation of selectivities. We want to estimate
the probability qi(d) that a document d occurs in the remainder of the list
Li given that it already has occurred in some lists E(d), using the pair-
wise covariances of Li with the lists in E(d). First we consider the case
where E(d) = {j} consists of a single list. Using the equality P [Xi ∧ Xj] =
P [Xi]P [Xj] + cov(Xi, Xj) for Bernoulli random variables, we can derive

P [Xi|Xj] =
P [Xi ∧ Xj]

P [Xj]

=
P [Xi]P [Xj] + cov(Xi, Xj)

P [Xj]

=
li
n
· lj

n
+

lij
n
− li·lj

n2

lj
n

=
lij
lj

We would like to estimate P [Xi = 1|E(d)] := P [Xi = 1|X1 = 1, X2 =
1, ..., Xj = 1] with E(d) = {1, 2, . . . , j} and the elements of E(d) conveniently

17

renumbered. As we only have pairwise covariance estimates, we work with
the approximation P [Xi = 1|E(d)] ≥ maxj∈E(d) P [Xi = 1|Xj = 1] which
yields

qi(d) = P [Xi = 1|E(d)]

≥ max
j∈E(d)

P [Xi = 1|Xj] = max
j∈E(d)

lij
lj

We can plug this correlation-aware estimation for the probability that a doc-
ument occurs in a single list in the selectivity estimator from Sec. 3.2 and
the combined score predictor from Sec. 3.3.

18

4 Sorted Access Scheduling

Index lists are processed in batches of b sorted accesses. That is, the query
engine fetches b index entries from all m query-relevant index lists, and these
b entries can be distributed across the lists in an arbitrary manner. The
priority queue Q for result candidates is rebuilt with updated priorities after
each round of b such steps. For our inverted block index, as we described
it in Sec. 2.2, we choose b as a multiple of the block size. Since the blocks
are sorted by item IDs, the required bookkeeping can then be efficiently
implemented via merge joins, without the need for any priority queue or
hash data structure; details are given in Section 6. Note that this implies a
slightly coarser granularity of the TA-style query processing.

Our overriding goal is to minimze the weighted sum of sorted-access (SA)
and random-access (RA) steps for computing the top-k results of a query:
cS × #SA + cR × #RA. In this section, we assume a fixed strategy for
RAs (e.g., no RAs at all in an NRA-style method or periodic RAs for the
best candidates after every cR/cS rounds of SAs), and focus on the SA cost
part. Our goal in SA scheduling is to optimize the individual batch sizes
bi (i = 1..m) across all the lists, i.e., choose b1, . . . , bm so as to maximize
some benefit function under the constraint

∑m
i=1 bi = b. For the block-orga-

nized index, the units of the scheduling decisions are entire blocks. In the
following we will present our methods in terms of SAs to individual index
entries; the block-oriented variant follows in a straightforward manner.

Inspired by the earlier work on simple scheduling heuristics [14], our first
method aims to reduce the scores at the index scan positions, the highi

bounds, as quickly as possible. The rationale of this strategy is that low highi

values result in lower bestscores of all top-k candidates, which in turn enables
us to prune more candidates earlier. It turns out, however, that this strategy
does not perform well in many cases. We have developed a more general and
typically better performing scheduling strategy that considers an explicit
notion of benefit of a candidate in Q and aggregates over all candidates for
a judicious decision on the bi steps. The benefit function will be defined so

19

as to strive for low SA costs in the overall objective function (weighted sum
of SAs and RAs). Both strategies lead to the NP-hard knapsack problem,
hence we have coined them KSR (Knapsack scheduling for Score Reduction)
and KBA (Knapsack scheduling for Benefit Aggregation).

4.1 Knapsack Scheduling for Score Reduction

(KSR)

Given the current scan positions pos1, . . . , posm, we are looking for a sched-
ule of b1, . . . , bm steps (with b1 + . . . + bm = b), such that we maximize the
total reduction in bestscores of the documents currently present in our can-
didate queue. For a candidate document d ∈ Q, bestscore(d) reduces by
∆i = highi − scorei(posi + bi) if i ∈ Ē(d) and by 0 if i ∈ E(d) when we
scan bi elements further into list Li and do not see the document d in the
list Li. Since the probability of seeing a particular document by scanning a
small part of a list is close to zero, the expected reduction in bestscore(d) can
be considered as ∆i. Hence the expected aggregated reduction in bestscores
for all documents in Q is given by wi∆i where wi = |{d ∈ Q|i ∈ Ē(d)}| is
the number of documents for which a reduction in bestscore is expected by
scanning into list Li. We can easily estimate the scorei(posi + bi) from the
precomputed histograms, assuming a uniform distribution of scores within a
histogram cell. We can now define our objective function for the choice of
bi values: maximize the score reduction SR(b1, . . . , bm) =

∑m
i=1 wi∆i, where

we treat the ∆i values as a (deterministic) function of the bi choices (ignor-
ing potential estimation errors caused by the histograms). This problem is
NP-hard, as we can reduce the well-known knapsack problem to it (see Ap-
pendix A for the proof). However, in all our applications the number m of
lists is relatively small and we schedule only a small multiple of m in every
round, so that we can actually check all possible combinations in very little
time compared to the reads and merges.

4.2 Knapsack Scheduling for Benefit Aggre-

gation (KBA)

The knapsack scheduling framework introduced in the previous subsection is
intriguing and powerful, but solely aiming to reduce the scores at the scan
positions as quickly as possible is not the best optimization criterion. It
allows us to identify some low-scoring candidates and prune them earlier,

20

but it does not necessarily lead to more information about the high-scoring
candidates. In particular, we may not find any additional scores of the current
top-k results, so that we cannot improve the min-k threshold, which would
be another way of pruning many candidates quickly. Key to increasing the
min-k threshold would rather be to perform additional random accesses; we
will come back to this issue in the next section.

An aspect directly related to SA scheduling is that we do not only want to
reduce the bestscore bounds of some candidates as much as possible, but are
actually more concerned about the bestscore bounds of those candidates that
are close to the min-k threshold and, more generally, would prefer a modest
bestscore reduction of many candidates over a big reduction for some smaller
fraction only. To address these issues we now define an explicit formalization
of the benefit that we obtain from scanning forward by (b1, . . . , bm) positions
in the m index lists, taking into consideration not only the current scan
positions and score statistics, but also the knowledge that we have compiled
about the documents seen so far during the scans. Benefit will be defined for
each document, and we will then aggregate the benefits of all documents in
the current top-k or the candidate queue Q.

Observe that if a candidate document d has already been seen in list Li,
then neither bestscore(d) nor worstscore(d) changes when we scan Li further.
So, for each list Li, we shall consider only the documents d ∈ Q which are
not seen in Li, i.e. i ∈ Ē(d). The probability qbi

i (d) that a document d is
seen in Li in the next bi steps is

qbi
i (d) = P [d in next bi elements of Li|E(d)]

= P [d in next bi|d ∈ Li ∧ E(d)] · P [d ∈ Li|E(d)]

=
bi

li − posi

· P [d ∈ Li|E(d)]

=
bi

li − posi
· P [Xi = 1|E(d)]

≥ bi

li − posi

· max
j∈E(d)

lij
lj

If a document d is actually found in Li by scanning further to depth bi, the
worstscore of d increases, which in turn contributes to increasing min-k and
thus pruning more documents. The expected gain in worstscore(d) when list
Li is scanned further to depth bi is given by qbi

i (d)µ(posi, bi) where µ(posi, bi)
is the mean score of the documents from current scan position posi to posi +
bi. We can estimate µ(posi, bi) as well from the precomputed histogram.
Similarly, we can estimate the reduction in bestscore of a candidate document
d ∈ Q with regard to list Li as (1 − qbi

i (d))∆i, if it is not seen in the next bi

21

steps. Now we can define our benefit function for every candidate document
d ∈ Q not already seen in list Li as

Beni(d, bi) = qbi
i (d)µ(posi, bi) + (1 − qbi

i (d))∆i

and the total benefit of scanning to depth bi in Li as

Beni(bi) =
∑

d∈Q,i∈Ē(d)

Beni(d, bi)

Finally, we can define the overall benefit for a schedule s = (b1, . . . , bm) by a
simple benefit aggregation:

Ben(s) =
m∑

i=1

Beni(bi)

So we are looking for a schedule s for which the benefit Ben(s) is maxi-
mized. This notion of overall benefit includes an implicit weighting of lists,
by giving higher weight to the lists for which we have many documents in the
queue that have not yet been seen there and which would benefit from a sig-
nificant reduction of the highi bounds for these lists. Thus scanning on these
lists could make the decisive difference between pruning many candidates or
having to keep them in the queue.

22

5 Random Access Scheduling

Random-access (RA) scheduling is crucial both in the early and the late
stages of top-k query processing. In the early stage, it is important to en-
sure that the min-k threshold moves up quickly so as to make the candidate
pruning more effective as the scans proceed and collect large amounts of can-
didates. Later, it is important to avoid that the algorithm cannot terminate
merely because of a few pieces of information missing about a few borderline
candidates. In the following we present various strategies for deciding when
to issue RAs and for which candidates in which lists. Some of them have a
surprisingly simple heuristic nature, others are cost-model-driven. Following
the literature [8, 25], we refer to score lookups by RA as probing. As in [12],
we denote by cS the cost of a sorted access, and by cR the cost of a random
access.

5.1 Last-Probing

In Last-Probing, just as in CA, we do a balanced number of random accesses,
that is, we see that the total cost of the random accesses is about the same
as the total cost of all sorted accesses. In CA, this is trivially achieved by
doing one random access after each round of �cR/cS� sorted accesses. In
Last-Probing, we perform random accesses only after the last round, that is,
we have a phase of only sorted accesses, followed by a phase of only random
accesses.

We do this by estimating, after each round, the number of random ac-
cesses that would have to be done if this were the last round of sorted ac-
cesses. Two criteria must be met for this round of sorted accesses being
the last. First, the estimated number of random accesses must be less than
�cR/cS� times the number of all sorted accesses done up to this point Sec-
ond, we must have

∑m
i=1 highi ≤ min-k, since only then we can be sure that

we have encounterd all the top-k items already. We remark that in all our

23

applications, the second criterion is typically fulfilled long before (that is,
after much fewer rounds than) the first criterion.

A trivial estimate for the number of random lookups that would have to
be done if we stopped doing sorted accesses at a certain point, is the number
of candidate documents which are then in our queue. Clearly, this estimate
is an upper bound. When the distribution is very skewed, it is in fact quite
a good estimate, because then each document in the queue has a positive
but only very tiny probability of becoming one of the top-k items. For more
uniform score distributions like BM25, however, it turns out than we can do
much better.

Consider the queue after some round, and assume an ordering of the
documents by descending bestscores, i.e., highest bestscore first. For the ith
document in that ordering, let Wi and Bi denote its worstscore and bestscore,
respectively, and by Fi its final score (which we do not know before doing
random accesses, unless Wi = Bi). Now consider the lth document (in the
bestscore ordering), and let k′ be the number of top-k items with worstscore
below Bl. Then it is not hard to see that there will be a random lookup for
this lth document, if and only if at most k′ of the l−1 documents d1, . . . , dl−1

have a final score larger than Bl. Let Rl be the random indicator variable
that is 1 if that happens and 0 otherwise. Let pi,l := P [Fi > Bl], which can
be computed as described in Sec. 3.1. Since the pi,l are small, and l tends
to be large, the number of i for which Fi > Bl can be approximated very
accurately by a random variable Xl with a Poisson distribution with mean
p1,l + · · · + pl−1,l. We then have E(Rl) = P [Rl = 1] = P [Xl < k], which
can be computed very efficiently and accurately by means of the incomplete
gamma function [30].

As described so far, the probabilities p1,l, . . . , pl−1,l would have to be com-
puted from scratch for every document. The time for computing

∑
l E(Rl) as

an estimate for the number of random accesses would then be quadratic in
the number of documents in the queue. We improve on this by approximating
pi,l = P [Fi > Bl] by

p̃i,l = P [Fi > min-k] · Bl − min-k

Bi − min-k

Note that by the bestscore ordering we have that Bl ≤ Bi, for i < l. It
then suffices to compute P [Fi > min-k], once for each document i, and to
maintain, while processing the documents in order of descending bestscores,
the number of top-k items which are smaller than the current document,
which can be done in linear overall time. It is not hard to see, that from
these quantities,

∑l−1
i=1 p̃i,l can be computed in constant time, for any given l.

24

When doing the random accesses, it plays a role in which order we process
the documents for which we do random lookups. In the basic Last-Probing,
we simply order them by decreasing bestscore (Last-Best); this is similar to
CA, which after each round of sorted accesses does a random access for the
candidate document with the highest bestscore. In the next section, we see
a more sophisticated ordering.

5.2 Ben-Probing

The Beneficial Probing strategy, Ben-Probing for short, extends the Last-
Probing by a probabilistic cost model for assessing the benefit of making
RAs versus continuing with SAs in the index scans. The cost comparison
is updated periodically every b steps, i.e., whenever we need to make an
SA-scheduling decision anyway. The cost is computed for each document d
in the candidate queue or the current top-k separately; obviously SA costs
per document are then fractions of the full SA costs as index-scan steps are
amortized over multiple documents. Then we can either schedule RAs for
individual documents based on the outcome of the cost comparison, or we
can batch RAs for multiple candidates and would then simply aggregate the
per-candidate RA costs. In the following, we first develop the cost estimates
and then come back to the issue of specific scheduling decisions. We denote
the number of documents in the priority queue by q = |Q|.

For both cost categories, we consider the expected wasted cost (EWC)
which is the expected cost of random (or sorted) accesses that our decision
would incur but would not be made by an optimal schedule that would make
random lookups only for the final top-k and traverse index lists with minimal
depths. To compute the EWCs, we set the cost of an SA to 1 and the cost
of an RA to cR/cS, hence the model uses only the cost ratio, not the actual
costs.

For looking up unknown scores of a candidate document d in the index
lists Ē(d), we would incur |Ē(d)| random accesses which are wasted if d does
not qualify for the final top-k result. We can compute this probability using
the combined score estimator from Sec. 3.3 and exploiting correlations as
shown in Sec. 3.4, as

P [d /∈ top-k] = 1 − p(d)

= 1 − pS(d) · q(d)

= 1 − pS(d) ·
⎛
⎝1 − ∏

i∈Ē(d)

(1 − qi(d))

⎞
⎠

25

≤ 1 − pS(d) ·
⎛
⎝1 − ∏

i∈Ē(d)

(
1 − max

j∈E(d)

lij
lj

)⎞
⎠

Then the random accesses to resolve the missing scores have expected wasted
cost:

EWCRA(d) := |Ē(d)| · (1 − p(d)) · cR

cS

Analogously, the next batch of b sorted accesses for an additional depth
bi at index list Li, with

∑
i bi = b, incurs a fractional cost to each candidate

in the priority queue, and these total costs are shared by all |Q| candidates.
For a candidate d, the sorted accesses are wasted if either we do not learn
any new information about the total score of d (that is, when we do not
encounter d in any of the m remainder dimensions), or if we encounter d,
but it does not make it to the top-k. Denoting the probability of seeing d in
the ith list in the next bi steps as qbi

i (d) like in Sec. 4.2, we can compute the
probability qb(d) of seeing d in at least one list in the batch of size b as

qb(d) := 1 − P [d not seen in any list]

= 1 − ∏
i∈Ē(d)

(1 − P [d seen in Li in next bi steps])

= 1 − ∏
i∈Ē(d)

(
1 − qbi

i (d)
)

Hence the probability of not seeing d in any list is 1− qb(d). The probability
that d is seen in at least one list, but does not make it to the top-k can be
computed as qS(d) := (1 − pS(d)) · qb(d) analogously to Sec. 3.3. Then the
total costs for the next batch of b sorted accesses are shared by all candidates
in Q, and this incurs expected wasted cost:

EWCSA :=
b

|Q| ·
∑
d∈Q

(
(1 − qb(d)) + (1 − pS(d)) · qb(d)

)

=
b

|Q| ·
∑
d∈Q

(
1 − qb(d) · pS(d)

)

We can now replace the real costs (as counted by Last-Probing) with the
expected wasted costs EWCRA and EWCSA for the Ben-Probing. In order
to trigger random accesses for specific candidates, we always consider the
cumulated EWCRA costs and compare them to the cumulated EWCSA of all
batches done so far. For Last-Ben, we exclusively perform SA batches until
the sum of the expected wasted costs of all remaining candidates in the queue
is less than the cumulated expected wasted costs of all previous SA batches;

26

we then perform the RAs for all documents in the queue in ascending order
of the documents’ EWCRA.

For each candidate d, we actually perform the RAs one at a time in
ascending order of index list selectivity li/n, for all i ∈ Ē(d), thus counting
a single RA for each candidate and list. We may safely break this sequence
of RAs on d, if bestscore(d) ≤ min-k, hence drop that candidate, and save
some RA costs for another candidate.

27

6 Implementation Details

As explained in Sec. 2.3, all our algorithms have to maintain certain state
information for each document, from the point it is first encountered to the
point where it is surely known that either the document is one of the top− k
or that it cannot be: the worstscore, the bestscore, and the set of lists where
it has not yet been seen. This has to be contrasted with a simple full merge
(of the lists sorted by document ids), which can compute the full scores
document by document, and then determine the top-k items by a (partial)
sort. It is not at all obvious, and indeed put forward as an open problem in
[12], whether the state maintenance of any of the sophisticated algorithms
can be implemented effciently enough so that the gains in the abstract cost
indeed show in faster running times.

In our first implementation we maintained all state information in a hash
data structure; indeed, this is the approach taken in all top-k implementa-
tions that we are aware of [34]. However, despite their strong advantage in
theoretical cost, none of our sophisticated algorithms could beat the simple
full-merge baseline in this implementation. We then switched to the inverted
block-index described in Sec. 2.2. An essential ingredient of our implemen-
tation is to keep the state information in-place, i.e., in a contiguous memory
segment together with the document id. The process of merging two or more
document lists, and updating all state information then has almost optimal
locality properties.

The most time-critical step in the merge is the computation of the best-
score, which we do not store explicitely but rather compute from the worst-
score and the set of lists in which the documents have been seen so far.
We store this seen information by a simple m-bit vector, where m is the
number of lists, and for each round precompute all 2m partial sums of the
high-scores highi of each list (see Sec 2.3). For any document, the bestscore
can then be computed from the worstscore by a simple table lookup with the
seen-bitvector serving as a direct index into that table.

To keep the merges as fast as those of the baseline full-merge, we also do

28

not maintain the set of top-k items as we merge, and not even the min-k
score. We rather do the merge twice, outputting only the scores in the first
round, doing a partial sort of these to obtain the min-k score, and then
repeat the merge, but this time with an on-the-fly pruning of all documents
with a bestscore below that min-k score. By these, and a bag of other tricks,
we managed to keep the overhead for maintaining the state-information a
small fraction of the essential operations of reading and merging blocks of
pairs of document ids and score, sorted by document id. This is reflected by
the fact that Fig. 7.1 shows very similar relative gains for access costs of our
algorithms over the various baselines as Fig. 7.2 does for run-times.

29

7 Experiments

7.1 Data Collections & Setup

We consider three structurally different data collections: the TREC Terabyte
collection, movie data from IMDB, and a huge HTTP server log.

The TREC Terabyte benchmark collection [10] consists of more than
25 million Web pages from the .gov domain, mostly HTML and PDF files
with a total size of about 426 gigabytes. It provides a set of 50 ad-hoc
keyword queries like “kyrgyzstan united states relations” or “women state
legislature” with an average length of m = 2.9 and a maximum of m = 5.
One particularity of the TREC queries (or so called topics) is that they
also come shipped with larger description and narrative fields that allow the
extraction of larger keyword queries. We indexed the collection with BM25
and a standard TF·IDF scoring model [13].

We imported movie information from the Internet Movie Database IMDB
[17] for more than 375,000 movies and more than 1,200,000 persons (ac-
tors, directors, etc.) into a four-attribute relational table with the schema
Movies(Title, Genre, Actors, Description) where Title and Descrip-

tion are text attributes and Genre and Actors are set-valued categorical
attributes. Genre typically contains two or three genres, and actors were
limited to those that appeared in at least five different movies. For similarity
scores among genres and among actors we precomputed the Dice coefficient
for each pair of Genre values and for each pair of actors that appeared to-
gether in at least five movies. So the similarity for genres or actors x and y
is set to

2 · #{movies containing x and y}
#{movies containing x} + #{movies containing y}

and the index list for x contains entries for similar values y, too, with scores
weighted with the similarity of x and y. A typical query is Title="War"

Genre=SciFi Actors="Tom Cruise" Description="alien, earth,

30

destroy". We compiled 20 queries of this kind by asking colleagues. Note
that our scoring does not require a matching movie to satisfy all conditions.

The Internet Traffic Archive [19] provides a huge HTTP server log with
about 1.3 billion HTTP requests from the 1998 FIFA soccer world champi-
onship. We aggregated the information from this log into a relational table
with the schema Log(interval,userid,bytes), aggregating the traffic (in
bytes) for each user within one-day intervals. Queries ask for the top-k users,
i.e., the k users with the highest aggregated traffic, within a subset of all in-
tervals (like “from June 1 to June 10”); our query load consists of 20 such
queries.

We compared our new algorithms against the best prior methods. The
main competitors turned out to be NRA and CA. We also implemented a
full merge of the index lists (followed by a partial sort to obtain the top-k
results). The full merge is not very competitive in cost, because each element
is accessed, but it is actually a tough competitor in terms of running time,
because of the significant bookkeeping overhead incurred by all the treshold
methods. We further computed the lower bound from Sec. 2.5 to assess how
close our algorithms get to the optimum.

We also ran our experiments for the RA-extensive threshold algorithms
TA, Upper[4, 25] and Pick[4]. In our setting, where both sorted and random
access is possible and a random access is much more expensive than a sorted
access (the lowest ratio we consider is 100), all these methods performed
considerably worse than even the full merge baseline, in terms of both costs
and running times, and for all values of k and cR/cS we considered. For
example, for k=10 and cR/cS=1000 on Terabyte-BM25, they resulted in total
cost 72,389,140 (TA), 31,496,440 (Upper), and 3,798,549 (Pick), compared
to 2,890,768 for the full merge, 788,511 for NRA and 386,847 for our best
method. We therefore did not include these methods in our charts. Note
that, as we discussed in Sec. 1.3, MPro, Upper and Pick were actually designed
for a different setting, where some lists are accessible by random access only.

We focus on experiments with the Terabyte collection with BM25 scores
as this is the most challenging and most realistic collection and scoring model;
main results for the two other collections are presented afterwards. Unless
stated otherwise, we use a cost ratio cR/cS = 1, 000 and a block size b =
32, 768 (i.e., the batch sizes bi determined by the sorted access scheduler
are multiples of this value) for the experiments which is reasonable for our
implementation. We report the average query cost as COST = #SA+cR/cS ·
#RA computed over the whole batch of queries as our primary performance
measure. The runtime of our algorithms was measured using a two-processor
Opteron 250 server with 8 Gigabytes of memory and all data loaded from a
SCSI RAID.

31

7.2 Terabyte Runs

Fig. 7.1 presents the average cost savings of our best approach (KSR-Last-Ben)
which outperforms all our three baselines by factors of up to 3. Even for
k = 1, 000, there is a 50% improvement over all three baselines. Note that
the end user of top-k results (as in web search) would typically set k to 10–
100, whereas application classes with automated result post-processing (such
as multimedia retrieval) may choose k values between 100 and 1,000. Espe-
cially remarkable is the fact that we consistently approach the absolute lower
bound by about 20% even for large k, whereas both CA and NRA increasingly
degenerate; CA even exceeds the FullMerge baseline in terms of access cost
for k > 200.

10 50 100 200 500
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

*
#R

A
s)

Terabyte−BM25

Full merge
RR−Never (NRA)
RR−Each−Best (CA)
KSR−Last−Ben (NEW)
Lower bound

Figure 7.1: Average costs for Terabyte-BM25 of our best algorithm compared
to various baselines and a computed lower bound, for varying k.

Fig. 7.2 shows the average runtimes we achieve per query are in the order
of 30–60 milliseconds for 10 ≤ k ≤ 100, even when the total list length is
in the millions, which outperforms the NRA and FullMerge baselines by a
factor of up to 5. Interestingly, for k > 20 our true baseline for measuring
runtimes is no longer CA, because it is already outperformed by the DBMS-
style FullMerge. Here, NRA is already out of the question because of its
high overhead in index access costs (Fig. 7.1) and its additional need for
candidate bookkeeping, whereas the amount of access costs saved by our
improved scheduling approaches (KSR-Last-Ben) more than compensates the
bookkeeping overhead. To pick just one example, the full merge on the query
“kyrgyzstan united states relations”, which has a total list volume of over 15
million doc ids, takes about one second, while our best top-k algorithms, by

32

scanning only about 2% of this volume and by doing about 300 well-targeted
random lookups, process the same query in about 10 milliseconds.

10 50 100 200 500
0

50

100

150

200

250

number of top items computed (k)

av
er

ag
e

ru
nn

in
g

tim
e

in
 m

ill
is

ec
on

ds

Terabyte−BM25

Full Merge
RR−Never (NRA)
RR−Last−Best (NEW)

Figure 7.2: Average running times in milliseconds of our best algorithm
compared to FullMerge and NRA, for Terabyte-BM25 and varying k.

7.2.1 Sorted Access Scheduling

To analyze the benefit of our Knapsack-driven SA scheduling approaches, we
fix the RA scheduling to the Last-Best strategy and focus on the individual
SA scheduling performance of the Knapsack optimizations. Fig. 7.3 shows
relatively low performance gains in between 2–5% for BM25 scores compared
to round-robin. For more skewed distrubutions such as TF·IDF, we observe
larger benefits of up to 15% for k ≥ 50. Here, the more sophisticated benefit-
optimized Knapsack (KBA) wins overall.

7.2.2 Random Access Scheduling

Now we fix the SA scheduling to the basic round-robin (RR) strategy and
analyze our different RA scheduling approaches. Fig. 7.4 shows that we
gradually improve our RA scheduling performance as we move from the
original CA baseline over the simple Last-Best strategy toward the more
sophisticated cost-driven scheduling Last-Ben. Interestingly, the step from
RR-Each-Best (CA) to RR-Last-Best already provides 90% of the overall
gain we can achieve, whereas the more complex RR-Last-Ben achieves about
10% more cost savings with an overall factor of about 2.3 compared to the
CA baseline.

33

10 20 50 100 200
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Terabyte−BM25

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
00

 ×
 #

R
A

s)

RR−Last−Best
KSR−Last−Best
KBA−Last−Best

1020 50 100 200
0

100,000

200,000

300,000

400,000

500,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
 ×

 #
R

A
s)

Terabyte−TFIDF

RR−Last−Best
KSR−Last−Best
KBA−Last−Best

Figure 7.3: Average cost for the different SA scheduling approaches for Ter-
abyte with a BM25 (left) and a TF·IDF model (right), for varying k.

10 50 100 200 500
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

*
#R

A
s)

Terabyte−BM25

RR−Each−Best (CA)
RR−Last−Best (NEW1)
RR−Last−Ben (NEW2)
Lower bound

Figure 7.4: Average cost for the different RA scheduling approaches for
Terabyte-BM25, for varying k.

7.2.3 Varying the Query Size

In the next setup we increase the query size m for the Terabyte setting by also
taking terms from the TREC topic descriptions into account, i.e., we increase
the average query size from m = 2.9 to m = 8.3 with a maximum of m = 15
terms which roughly simulates a query expansion task – a common technique
in IR. Increasing the query dimensionality m yields further performance gains
of up to a factor of 2.3 over NRA and a factor of 4 over CA. Note that NRA and
CA essentially scan the whole lists for the larger m; then NRA has essentially
the same costs as FullMerge, while CA costs almost twice as much, due to its
proportional number of random accesses.

34

average query size 3 average query size 8
0

5,000,000

10,000,000

15,000,000

20,000,000

Terabyte−BM25

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

Full
merge

Full
merge

NRA

NRA

CA

CA

KSR

KSR

Figure 7.5: Average costs for Terabyte-BM25 of our best algorithm
(KSR-Last-Ben) compared to various baselines, for shorter queries (left) and
longer queries (right), for k = 100.

7.2.4 Varying the cR/cS Ratio

By tuning the cR/cS ratio we can easily simulate different systems setups.
Obviously, large ratios punish RA and make the NRA or even the FullMerge
more attractive. This is the case in systems with high sequential throughput
and relatively low RA performance (e.g., cR/cS = 10, 000 for mostly raw disk
accesses with hardly any caching as opposed to cR/cS = 100 for a DBMS with
lower sequential throughput but higher RA performance through caching).
Fig. 7.6 shows that for low values of cR/cS between 100 and 1,000, the com-
bined scheduling strategies provide the highest cost savings with a factor
of more than 2 for k = 100. Even when only very few RA are allowed, a
clever scheduling can still make a decisive difference and improve over NRA
or FullMerge.

7.3 Various Data Collections

7.3.1 IMDB

The largest index lists derived from the IMDB collection with up to a length
of 285,000 entries are generated by the categorical attributes such as Genres
and Years, whereas the largest inverted lists from text contents only yield a
few thousand entries which are typically scanned through by the first block.
This makes the collection provide an interesting mixture of short textual lists

35

100 1000 10000
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

Terabyte−BM25

av
er

ag
e

co
st

 (
#S

A
s

+
 c

R
/c

S
 ×

 #
R

A
s)

c
R

/c
S

Full
merge

Full
merge

Full
merge

NRA NRA NRA

CA

CA

CA

KSR

KSR

KSR

Figure 7.6: Average cost for Terabyte-BM25 of our best algorithm
(KSR-Last-Ben) compared to various baselines with cR/cS = 100 (left),
cR/cS = 1, 000 (middle) and cR/cS = 10, 000 (right), for k = 100.

with quickly decreasing scores and longer lists of categorical values with a
low skew and many score ties. Fig. 7.7 shows that the performance gains here
are a bit less than for Terabyte with a factor of 1.5 to 1.8 for 10 ≤ k ≤ 200.
For this particular combination of lists and mixture of score distributions,
all top-k algorithms outperform the FullMerge baseline by a large margin, for
wide ranges of k. Note that we are still able to stay very close to the lower
bound compared to CA and NRA.

10 20 30 40 50 60 70 80 90 100
0

50,000

100,000

150,000

200,000

250,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

IMDB

Full merge
RR−Never (NRA)
RR−Each−Best (CA)
KSR−Last−Ben (NEW)
Lower bound

Figure 7.7: Average cost for IMDB of our best algorithm compared to various
baselines and a computed lower bound, for varying k.

36

7.3.2 HTTP Worldcup Log

The HTTP Worldcup log yields highly skewed score distributions with a
few users having downloaded up to 750 MB per day, whereas the average
traffic per user and day lies between 50-100 KB. Fig. 7.8 shows that CA
(which is already close to optimal) becomes more competitive to our best
algorithm (KBA-Last-Ben here) with only a factor of about 1.2 additional
cost for k up to 100, because a few random accesses on the currently best-
scored items typically suffice to yield the final top-k results. KBA-Last-Ben

almost touches the lower bound for wide ranges of k. Note that for these
skewed distributions, the benefit-optimized Knapsack KBA yields the better
basis for SA scheduling. Also note that here NRA ends up scanning the full
lists already for relatively small k.

0 20 50 100 150 200
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

HTTP Worldcup logs

Full merge
RR−Never
RR−Each−Best (CA)
KBA−Last−Ben (NEW)
Lower bound

Figure 7.8: Average cost for the HTTP Worldcup logs of our best algorithm
compared to various baselines and a computed lower bound, for varying k.

7.4 Discussion of Experiments

For many real-word data sets and score distributions, Fagin’s originally pro-
posed CA algorithm already yields a tough baseline. Except for extremely
skewed distributions and small values of k, NRA is out of the question, be-
cause there is typically only a marginal difference between the final scores
of the kth and (k + 1)-ranked result which makes the best- and worstscores
converge very slowly and leads to a very late threshold termination (Fig. 7.1).
On the other extreme, TA with its high overhead in random I/O is a viable

37

choice only for setups with an extremely low cR/cS ratio. Our experiments
demonstrate that our proposed algorithms perform much better than CA
which is considered the most versatile variant of Fagin’s algorithm, especially
for larger k.

A comparison with two artificially generated Uniform and Zipf distribu-
tions for Terabyte reveals that for uniformly distributed scores, the round-
robin SA scheduling already provides the best approach, whereas only for
more skewed distributions (e.g., TF·IDF, Fig. 7.3, or Zipf) the Knapsack-
based optimizations take effect. Fortunately, the Knapsack implementations
tend to converge exactly to such a round-robin-like SA schedule in the Uni-
form case, hence they do not degenerate, but also can not improve much over
the round-robin baseline in this case. Generally, a few judiciously scheduled
RA have the potential to yield an order of magnitude higher cost savings
than the best SA scheduling could do.

For all setups, our algorithms that postpone random accesses to a late,
more cost-beneficial phase and hence gather more information about the
intermediate top-k and candidate items outperform their algorithmic pen-
dants that eagerly trigger random accesses after each batch of sorted accesses
(Fig. 7.4). For all values of k and cost ratios cR/cS, our probabilistic exten-
sions outperform the baseline algorithms by a large margin; moreover, they
never degenerate or lead to higher access costs than their non-probabilistic
counterparts. The simple Last-Probing approach with its heuristic stopping
criterion is already a very solid basis; the cost-based Ben-Probing beats it
merely by another 10% of costs saved and in fact comes close to the lower
bound for many queries and collections (Fig. 7.1, 7.7, and 7.8). Note that
the iterative evaluation of the cost formulas in Sec. 4, 5.1, and 5.2 is fairly
light-weight so that the overhead of running the cost models for all candi-
dates after a batch of b SAs is acceptable with regard to the costs saved in
physical I/O.

38

8 Conclusions

This paper presents a comprehensive algorithmic framework and extensive
experimentation for various data collections and system setups to address
the problem of index access scheduling in top-k query processing. Unlike
more aggressive pruning strategies proposed in the literature [21, 27, 33]
that provide approximate top-k results, the methods we presented here are
non-approximative and achieve major runtime gains of factors up to 5 over
existing state-of-the-art approaches with no loss in result precision. More-
over, we show that already the simpler methods of our framework, coined
the Last strategies, provide the largest contribution to this improvement,
and the probabilistic extensions get very close to a lower bound for the op-
timum cost. Future work could investigate the combination of our approach
with approximative pruning strategies; also the extension of our index access
scheduling framework for processing XML data along the lines of [20, 26]
would be very interesting.

39

Appendix A NP-hardness of
the Sorted-Access Scheduling
Problem

The KNAPSACK decision problem can be formulated as follows. Given m
items Xi (i = 1..m), each with weight wi and utility ui, and a weight capacity
C, decide for a given constant U if there is a subset S ⊆ [1..m] such that
the total utility is at least U ,

∑
j∈S uj ≥ U , and the capacity constraint∑

j∈S wj ≤ C is satisfied. As usual, the solution to the optimization problem
(i.e., maximize the total utility) can be derived from the solution to the
decision problem by a binary search over U .

Given an instance of KNAPSACK, we construct the following instance of
the sorted-access scheduling decision problem SAS as follows. We consider
m lists where the ith list has at its first wi−1 positions a constant score of 1
and thus score decrease 0, at position wi a score decrease ui (i.e., a resulting
score 1− ui, and subsequently the same constant score, i.e., no further score
decrease. We claim that (A) a packing for this instance of KNAPSACK
has capacity ≤ C and utility ≥ U if and only if (B) the corresponding SAS
instance has a scan of total depth C and score decrease of ≥ U .
Proof of (A) ⇒ (B) : Given (A), we have i1, . . . , ik such that wi1+...+wik ≤ C
and ui1 + ... + uik ≥ U . Then scanning lists i1, . . . , ik to depths wi1 , . . . , wik ,
respectively, yields a total scan depth ≤ C (and we can get exactly C by
scanning a few more positions without further score decrease in any of the
lists) and a total score decrease of ui1 + ... + uik ≥ U .
Proof of (B) ⇒ (A) : Given (B), let i1, . . . , , ik be the lists where a non-zero
score decrease has been achieved. List ij has then been scanned at least to
depth wij , and therefore the total scan depth C is at least wi1 + ... + wik .
The total score reduction of these lists is exactly ui1 + ... +uik , which by (B)
is ≥ U . The choice of items i1, . . . , ik yields a packing that satisfies (A).

40

Bibliography

[1] S. Agrawal et al. Automated ranking of database query results. In
CIDR, 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD 2000, pages 261–272, 2000.

[3] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient distributed skylin-
ing for web information systems. In EDBT 2004, pages 256–273, 2004.

[4] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. In ICDE 2002, pages 369–380, 2002.

[5] C. Buckley, G. Salton, and J. Allan. The effect of adding relevance
information in a relevance feedback environment. In SIGIR 1994, pages
292–300, 1994.

[6] P. Cao and Z. Wang. Efficient top-k query calculation in distributed
networks. In PODC 2004, pages 206–215, 2004.

[7] M. J. Carey and D. Kossmann. On saying ”enough already!” in SQL.
In SIGMOD 1997, pages 219–230, 1997.

[8] K. C.-C. Chang and S.-W. Hwang. Minimal probing: supporting ex-
pensive predicates for top-k queries. In SIGMOD 2002, pages 346–357,
2002.

[9] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection
queries over multimedia repositories. IEEE Trans. Knowl. Data Eng.,
16(8):992–1009, 2004.

[10] C. L. A. Clarke, N. Craswell, and I. Soboroff. The TREC terabyte
retrieval track. SIGIR Forum, 39(1):25, 2005.

41

[11] R. Fagin. Combining fuzzy information: an overview. SIGMOD Record,
31(2):109–118, 2002.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[13] D. A. Grossman and O. Frieder. Information Retrieval. Springer, 2005.

[14] U. Güntzer, W.-T. Balke, and W. Kießling. Towards efficient multi-
feature queries in heterogeneous environments. In ITCC 2001, pages
622–628, 2001.

[15] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases. VLDB J., 13(3):207–221, 2004.

[16] I. F. Ilyas et al. Rank-aware query optimization. In SIGMOD 2004,
pages 203–214, 2004.

[17] The Internet Movie Database. http://www.imdb.org.

[18] Y. E. Ioannidis. The history of histograms (abridged). In VLDB 2003,
pages 19–30, 2003.

[19] The Internet Traffic Archive. http://ita.ee.lbl.gov.

[20] R. Kaushik et al. On the integration of structure indexes and inverted
lists. In SIGMOD 2004, pages 779–790, 2004.

[21] N. Lester et al. Space-limited ranked query evaluation using adaptive
pruning. In WISE 2005, pages 470–477, 2005.

[22] C. Li et al. RankSQL: Query algebra and optimization for relational
top-k queries. In SIGMOD 2005, pages 131–142, 2005.

[23] C. Li et al. RankSQL: Supporting ranking queries in relational database
management systems. In VLDB 2005, pages 1342–1345, 2005.

[24] X. Long and T. Suel. Optimized query execution in large search engines
with global page ordering. In VLDB 2003, pages 129–140, 2003.

[25] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over
web-accessible databases. ACM Trans. Database Syst., 29(2):319–362,
2004.

[26] A. Marian et al. Adaptive processing of top-k queries in XML. In ICDE
2005, pages 162–173, 2005.

42

[27] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval.
ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[28] S. Nepal and M. V. Ramakrishna. Query processing issues in image
(multimedia) databases. In ICDE 1999, pages 22–29, 1999.

[29] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. JASIS, 47(10):749–764, 1996.

[30] W. H. Press et al. Numerical Recipes in C. Cambridge University Press,
1992.

[31] M. Theobald, R. Schenkel, and G. Weikum. Efficient and self-tuning
incremental query expansion for top-k query processing. In SIGIR 2005,
pages 242–249, 2005.

[32] M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile
query engine for TopX search. In VLDB 2005, pages 625–636, 2005.

[33] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation
with probabilistic guarantees. In VLDB 2004, pages 648–659, 2004.

[34] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann, 2nd
edition, 1999.

[35] H. Yu et al. Efficient processing of distributed top-k queries. In DEXA
2005, pages 65–74, 2005.

43

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-008 D. Michail ?

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger,
H. Seidel

Visualization of Volume Data with Quadratic Super
Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nrnberger,
C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C1 Splines of Arbitrary Degree on a
Tetrahedral Partition

MPI-I-2003-4-004 P. Bekaert, P. Slusallek, R. Cools,
V. Havran, H. Seidel

A custom designed density estimation method for light
transport

MPI-I-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening

MPI-I-2003-4-002 C. Theobalt, M. Li, M. Magnor,
H. Seidel

A Flexible and Versatile Studio for Synchronized
Multi-view Video Recording

MPI-I-2003-4-001 M. Tarini, H.P.A. Lensch, M. Goesele,
H. Seidel

3D Acquisition of Mirroring Objects

MPI-I-2003-2-004 A. Podelski, A. Rybalchenko Software Model Checking of Liveness Properties via
Transition Invariants

MPI-I-2003-2-003 Y. Kazakov, H. de Nivelle Subsumption of concepts in DL FL0 for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete

MPI-I-2003-2-002 M. Jaeger A Representation Theorem and Applications to
Measure Selection and Noninformative Priors

MPI-I-2003-2-001 P. Maier Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete

MPI-I-2003-1-018 G. Schaefer A Note on the Smoothed Complexity of the
Single-Source Shortest Path Problem

MPI-I-2003-1-017 G. Schfer, S. Leonardi Cross-Monotonic Cost Sharing Methods for Connected
Facility Location Games

MPI-I-2003-1-016 G. Schfer, N. Sivadasan Topology Matters: Smoothed Competitive Analysis of
Metrical Task Systems

