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Abstract 

In this paper we consider dynamic data structures for Order Decomposable Prob­

lems. This dass of Problems indude the Convex Hull Problem, the Voronoi Diagram 

Problem, the Maxima Problem and the Intersection of Half Spaces. This paper first 

describes a scheme for maintaining convex hulls in the plane dynamically in O(logn) 

amortized time for insert ions and O(log2n ) time for deletions. O(n) space is used. 

The scheme improves on the time complexity of the original scheme by Overmars and 

Van Leeuven. We then consider the general dass of Order Decomposable Problems. 

We show improved behavior for insertions in the presence of deletions, under some 

assumptions. The main assumption we make is that the problems are required to be 

change sensitive, Le. updates to the solution of the problem at an insertion can be 

obtained in time proportional to the changes. 
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1 Introduction 

In this paper we consider dynamic data structures for Order-decomposable Problems. This 

dass of problem indude the Convex Hull problem, the Maxima problem, the Voronoi Di­

agram problem, and the Intersection of Half-Spaces etc. [Mb]. Under some assumptions, 

the main being that of change sensitivity, we give improved schemes for insertions in the 

presence of deletions. We define a problem to be change sensitive if updates to the solution 

due to an insertion can be obtained in time proportional to the changes. We first show 

improvements in the specific problem of the 2-d Convex Hull Maintenance. No assumptions 

are required for this problem. We then consider the general dass of Order Decomposable 

Problems. 

The convex hull of a set of points is of fundamental importance in Computational Ge­

ometry. Moreover, this geometric structure finds applications in the solution of problems 

in pattern recognition, path planning and graphics etc. [PS]. The algorithms using this 

structure often maintain the convex hull in a dynamic environment when points are inserted 

and deleted. Maintenance of the convex hull under insertions and deletions thus becomes 

of fundamental importance also. The best result for this problem is by Overmars and Van 

Leeuwen [OL] who gave an 0(log2n ) scheme for updating the convex hull of a set of points 

in the plane when a point is inserted or deleted. 

In this paper we first describe a scheme to improve the performance of the 2-d convex hull 

maintenance. We show that an amortized behaviour of O( logn) for insertions and O( log2n ) 

for deletions can be obtained. 

Other related results for specialized cases may be found in [HS1], [HS2]. These results 

are partial only in that the first result deals only with the case of deletions and the second 

result deals with an off-line version of the problem. Logarithmic cost is achievable under 

some restricted cases also, i.e. when updates occur only at the ends of a simple path [FHS]. 

W.l.o.g. we will consider the maintenance of upper hulls in this paper. These upper 

hulls will be stored in a balanced binary tree structure. There are two critical components 

in the maintenance of the convex hull. One is the construction of the edges of the convex 

hull obtained by constructing a cornmon tangent between the two hulls, of two separable set 

of points, present at the siblings of anode in the tree. And the other is the data structure 

for maintenance of hulls at the nodes of the binary tree. We first describe the tangent 

construction and its analysis and then the details of the data structure used. There are two 

data structures used here. One uses O( nlogn) space and allows the convex hulls at all nodes 

of the binary tree to be obtained in constant time. We term maintenance of such a data 

structure as strong maintenance. It is interesting to note that such a data structure can be 

maintained in 0(1) amortized time. The other uses O(n) space and the convex hull at a 

node of the binary tree can be obtained in O( logn) steps. 

We hope that this methodology would be useful to obtain an optimal scheme for insertions 
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and deletions. 

We ne:xt consider the general dass of Order-Decomposable Problems defined for sets. 

This dass of problems have been studied by Overmars [0]. We show that insert ions in this 

framework can be speeded in the presence of deletions. We make some assumptions which 

we describe in detail in a later section. The first assumption is that the problems are change 

sensitive. Secondly, we assume a uniqueness property of elements of the solution sets w.r.t. 

the underlying domain. The last assumption deals with the behaviour of the data structure 

under changes. These assumptions are valid for the problems of Convex Hulls, Maxima, 

Half-space intersections and Voronoi Diagrams. 

Our results show that semi-dynamic behavior can be achieved for insertions even in the 

presence of deletions. The basic strategy is to show that, at an insertion, construction of 

the solution at anode of the tree data structure results in pushing down the tree, elements 

of the underlying domain from which solution sets are constructed. Since an element can 

be pushed down the tree only O( logn) times, the insertion time is bounded. When these 

elements rise in the tree, the changes in the positions of the elements of the solution sets are 

charged to the deletion operation. 

The paper is organized as follows. Section 2 describes an outline of the data Structure 

for the convex hull problem and details of a critical construct, the bridge between two hulls. 

Section 3 details a O( nlogn) space data structure. And section 4 describes a O( n) space 

data structure. Section 5 considers Order-Decomposable Problems. The condusion discusses 

briefiy further results. 

2 The Data Structure and Tangent Constructions 

Let S be a set of points in the plane. The data structure for maintaining the convex hull 

is similar to the one used by Overmars and Van Leeuwen [OLl. W.l.o.g we will consider 

maintaining only the upper hull. The hull is obtained from a tree structure, called the 

Con'IJex Hull Tree, of S. We will let CHT(S) denote the Convex Hull Tree of S. Also at 

node u,u E CHT(S), we let CH(u) represent the upper hull at u. left(u) and right(u) 

represent the left and right sons, respectively, of node u in CHT(S). Finally, we let ST(u) 

denote the set of points in the subtree rooted at node u E CHT(S). In the description below 

we will use CHT(S) and CHT interchangeably. We let Path(p) be the path from the leaf 

containing p to the root. 

The data structure, CHT(S), comprises a primary structure which is a balanced binary 

tree. The points are stored, sorted by x co-ordinate values, at the leaves of the tree. At each 

internal node there are auxiliary data structures which store the upper hull of the points in 

the subtree rooted at that node. At the root of the tree is stored the upper hull of S. The 

convex hull at each internal node of the tree is constructed from the convex hulls at the two 
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children of the node by constructing a common tangent between the two convex hulls. This 

tangent is called a bridge. The convex hulls at internal nodes are stored in auxiliary data 

structures. Before we describe the data structure in more detail we describe the procedure 

for constructing bridges assuming that the convex hulls are available at the nodes when 

required. 

2.1 Bridge Construction 

The Bridge construction procedure is a modification of the one described by Overmars and 

Van Leeuwen [OL]. The modification is in the tangent construction part of the insertion 

su b-proced ure. 

The following definitions are required: The line segment (p, b) is said to include a point 

a or a line segment (x, y) when a or (x, y) lies be10w the line which contains the line segment 

(p, b). A point lies below a line if the point is vertically below a point on the line. A line 

segment (x, y) lies below a line, 1, if every point on the line segment lies below the line. 

The tangents are constructed as follows: 

Consider the insertion of a point p. Let P ath(p) be the path from the leaf, where p is 
inserted, to the root. Along this path let T = (a, b) be a tangent at node u in the tree. 

Assurne w.l.o.g. that ais in the same subtree as p. The tangent, T, is to be replaced if (p, b) 
includes (a, b) . Else either (b,p) intersects the current convex hull or p is included within 

C H( u) and hence does not affect any upper hull at nodes on P ath(p) above u. 

Suppose areplacement tangent is to be constructed at u. Assurne that Path(p) uses 

left(u) at u. A tangent is constructed from p to CH(right(u)). Let CHru = (Vl,V2 ... Vk) 

be the list of points on C H( right( u)) ordered by increasing x-coordinate value. The following 

procedure is used: 

ALGORITHM MODIFY - BRIDGE(p,T,u) 

begin 

Let T = (a, b)j STOP = falsej 

j ~ 1j 

Let Vi = bj 

While j ~ log n and i ~ k do 

begin 

if (p, Vi) is a tangent to C H ru then STOP=true 

else 

begin 

i ~ i + 1j 

j ~ j + 1j 

end 
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end; 

If STOP=false then 

construct tangent from p to C Hru using binary search 

end. 

In the above process instead of a binary search we perform a limited linear scan of the 

vertices to find the tangent from point p. The linear scan starts from b and continues to the 

right untillogn points are scanned. At that stage a binary search can be performed. 

We keep the deletion procedure the same as in the original scheme in [OLl. Let Path(p) 
be the path from the leaf containing the deleted point p to the root. At each node u, u E 

Path(p), a common tangent between CH(left(u)) and CH(right(u)) is constructed. The 

procedure to construct a common tangent requires O(log2n ) steps. [OL,PS]. 

We next analyze the time required for tangent constructions. The details of the data 

structure to be used will be described later. 

2.2 Analysis 

In this section we analyze the time required to construct the tangents. We ignore, in this 

section, the time required to manipulate secondary data structures. We assume that the 

nodes of the tree are labeled. On an insertion anode with a new label is added. On a 

deletion the node containing the deleted point and its label is removed. And on a single 

rotation the new node added to merge two subtrees has a new label. Anode is also deleted 

during single rotations and its label is removed. Double rotations are handled as two single 

rotations. 

The analysis uses the following sets: 

Pointset(x, u, t:J;) is the set of points that are linearly scanned and strictly included within 

the convex hull, C H( u) when a tangent from x is constructed at node u in the tree at time 

t:J;, the time of insertion of x. 
Pointset(x, u, t) is the set of points that are contained in Pointset(x, u, t'), t > t' ~ t:J; and 

are strictly included within convex hull at u when a tangent is drawn from x to C H(right(u)) 
at time t. 

Pointset(x, u, t) is said to be associated with x and u at time t. These sets will be 

manipulated by insertions, deletions and rotations only for the purpose of analysis. 

It follows from the construction of C HT that a point pES is present in convex hulls at 

consecutive nodes u, u E Path(p), starting with the leaf node containing p. Let Last(p) be 

the last node on Path(p) at which p is present. We denote by height(u) on path Path(p), 
the distance of node u from the leaf node containing p. Furthermore, we let h(p, t) denote 

the distance of Last(p) from the leaf node containing p at time instant t. This is the height 
at which the point p is last present on a convex hull. We let NS(p, t) be ISets(p, t)1 where 
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Sets(p, t) = {Pointset(q, x, t)lp E Pointset(q, x, t)}. NS(p, t) represents the number of sets 

from Pointsets which contain point p at time t. 

We next describe the manipulation of Pointsets and some of its properties during inser­

tions and deletions. It is important to note that manipulation of Pointsets is for the purpose 

of analysis only. 

t p : 

In the insertion procedure the following steps are performed when p is inserted at time 

1. Construction of new tangent at nodes on Path(p). 

2. Creation of Pointset(p,u, tp) at nodes u,u E Path(p). 

The steps when a point pis deleted at time t are: 

1. Construction of new tangents Ti = (pi, qi) at nodes Ui, Ui E P ath(p ). 

2. Removal of p from Pointsets and removal of Pointsets(p, v, t), v ECHT. 

3. Removal of Pointsets associated with v and containing qi when qi becomes part of 

C H( v) due to deletion of p. 

Since rotations will be required for balancing the tree we also consider manipulation of 

Pointsets at the rotations. At a single rotation at node v at time t, we ensure that points in 

UpEsPointset(p,left(v), t) and in UpEsPointset(p,right(v), t) are removed. Double rotations 

are treated as two consecutive single rotations. 

We now bound the insertion and deletion times. For this purpose we show some properties 

of Pointsets. 

The first lemma uses the fact that there are O( logn) new tangents and Pointsets con­

structed when pis inserted. Since during deletions and rotations, Pointsets are only deleted, 

there are O(logn) nodes, along Path(p), where non-empty Pointsets associated with p exist. 

Lemma 2.1 There are O(logn) Pointsets associated with a point p at any time instant. 

The following property is also true for Pointsets containing p. 

Lemma 2.2 At time t ~ tP1 P may be contained only in Pointset(q, u, t) where u E Path(p) . 

Proof: The proof is by induction on t-tp . The claim is trivially true when p is inserted since 

pis not contained in any Pointset. Assume that the claim is true for t - 1, t > tp. Consider 

the operations at time t. If a point q is inserted, then p may be contained in Pointset(q, u, t) 

where u is the least common ancestor of the leaf nodes containing p and q. p is not added 

to any other Pointset. The claim thus holds after insertions. When a point q is deleted p is 

not added to any Pointset. Finally, suppose a single rotation takes place at node v. Path(p) 

may now contain a new node u or anode u may be removed from Path(p). In the first 
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case there is no Point set associated with u. In the second case this node is either left( v) 
or right( v) and after a rotation is no longer on Path(p). However, all Point sets associated 

with this node are removed. The induction hypothesis is thus valid for the case of single 

rotations also. Double rotations are treated as two single rotations. 

The lemma follows. _ 

We let TA(n) be the complexity of inserting n elements. The following lemma bounds 

the insertion complexity. Note that Pointset(p, v, tp) is not null only along Path(p). 

Lemma 2.3 TA(n) = O(L(p,v),PES,vECHTIPointset(p,v,tp)1 +nlogn)) 

Proof: Consider insertion of point p. Let Path(p) be the path from the leaf containing 

p to the root. At anode v, v E Path(p), the time required to construct the tangent is 

T' = 0(1 + IPointset(p, v, tp)l) since all points scanned during linear search, except the last 

one, are stored in Pointset(p,v). A binary search is performed when O(logn) points have 

been scanned. Since these points are in Pointset(p, v, tp) the time for binary search is charged 

to this set. To obtain the time bound we sum the quantity T' over all inserted points and all 

nodes on the path from each inserted point, say p, to the root. Since IPointset(p, v, tp)1 = 0 

for all nodes not on Path(p), the lemma follows. _ 

We next show another property of Pointsets. Let v be anode in the tree and let ST( v) 
be the subtree rooted at that node. The lemma below shows that a point occurs only in one 

Pointset from amongst all the Pointsets constructed at the node v. 

Lemma 2.4 Letp,q E ST(v). Ifq E Pointset(p,v,t) thenq f/. Pointset(r,v,t) , Vr E 

ST(v) where r #- p. 

Proof: The proof lS by contradiction. Suppose q E Pointset(p, v, t) and q E 

Pointset(p', v, t). Let p be inserted before p'. Note that before the insertion of p, q must be 

on the convex hull, CH(v). This follows from the indusion of q in Pointset(p,v,tp). Now, 

if q E Pointset(p', v, t) then q must be on C H( v) again when p' is inserted. Since pES at 

this step, Pointset(p, v, t) must be removed as per the manipulation of Pointsets in Step 3 

of the deletion procedure. _ 

As a corollary to Lemma 2.4 we obtain the following Lemma. 

Lemma 2.5 UpIPointset(p,v,t)1 = O(IS(v)1) , Vp E S(v), at time t. 

Next, we show a relationship between h(p, t) and NS(p, t). 

Lemma 2.6 NS(p, t) ~ 21ogn, t > tp. 

Proof: We prove the result by showing that 

h(p, t) ~ 210gn - NS(p, t), t ~ tp. 
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We first show that this property is maintained both under insert ions and deletions ignoring 

rotations. The proof is by induction on t - tp. It is trivially true when t = tp. 
On inserting a point q, tangents are constructed along Path(q). The tangent construction 

at v E Path(q) requires either a linear scan or a binary search. If the tangent construction 

scans the point p during the linear scan and the height of pis reduced by at least one then p 

is added in the corresponding Pointset. Alternatively, the height of p may be reduced by a 

binary search. Then p is not included within any Pointset associated with v. In both cases 

the relationship h(p, t) ::; 2logn - NS(p, t) is valid after the insertion. 

Next, consider deletions. On deleting a point, say q, the height of points may increase. 

Let one such point, p, be such that h(p, t) = hl . Consider a subtree rooted at anode u on 

Path(p). Furthermore, let u be at height < hl from the leaf containing p. The following 

property is true: 

Claim: There does not exist a point, say r, in the subtree rooted at u, such that 

pE Pointset(r, u, t). 
The proof of this claim is by contradiction. Suppose there exists such a point r. Let 

rE ST(left(u)) Then p would be included by a tangent drawn from r to CH(right(u)) and 

thus h(p, t) < hl . 

The above claim shows that point p is not contained in any Point set associated with tree 

nodes at a height less than hl on Path(p). However, the point p maybe an E Pointset(q,v,t) 
where v is anode such that heig ht( v) ~ h1 and q E ST( v). The number of such sets is 

bounded by the number of nodes with height ~ hl on the path Path(p). This follows from 

Lemma 2.4 since p will be contained in at most one Point set associated with each node 

u, u E Path(p) with u being at height ~ hl . Furthermore p is not contained in any Point set 

associated with nodes not on Path(p) (Lemma 2.2). This covers all the possible Pointsets 

that p may be a member of. The induction hypothesis thus holds after deletion also. 

Thus the property of the height w.r.t. the Pointsets is maintained und er insertions and 

deletions. 

Finally, consider rotations at anode v. We consider only single rotations. The new 

tangents constructed during rotations do not add points to any Pointset. And points 

in UpEST(lejt(v»Pointset(p, left( v), t) and UpEST(right(v»Pointset(p, right( v), t) are removed 

from the corresponding Pointset. Let p E S( v). By induction, h(p, t-I) ::; logn- N S(p, t-I). 

First note that all points on CH(v) are unaffected. However, h(p, t) may increase by I since 

it may be present on either CH(left(v)) or CH(right(v)) when it was not before. But 

the deletion of points from Point sets at left( v) and right( v) ensures that p is not con­

tained in any Pointset associated with left( v) or right( v). There are two cases now. Either 

h(p, t) = h(p, t - I) or h(p, t) = h(p, t - I) + 1. In the first case since N S(p, t) may only 
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have decreased h(p, t) ~ logn - NS(p, t). In the second case h(p, t) has increased by 1. But 

N S(p, t) has decreased by 1 if p was in a Point set associated with left( v) or right( v). Thus 

h(p, t) ~ logn - NS(p, t). 

-We now use the above properties to show the amortized bound. Over a sequence of n 

insertions and m deletions, points are added and deleted from the pointsets. 

First, consider the work done during the deletion of a point p at time t along the path 

Path(p) leading from the root of the tree to the leaf. 

Step 1 of the deletion procedure requires O( logn) steps at each node u, u E Path(p). 

Step 2 also requires O( logn) steps at each node since there is only one point set associated 

with p at anode u on Path(p) and IPointset(p,u, t)1 = O(logn). To bound the complexity 

of Step 3 we need the following lemma: 

Lemma 2.7 Let NewP(p,u, t) = {qlq E CH(u) only after deletion of p and 3q' s.t. q E 

Pointset(q',u,t)}. Then INewP(p,u,t)1 = 1. 

Proof: The proof is by contradiction. Suppose there are two points x and y such that both 

points have become part of C H( u) after the deletion of point p and each point is contained 

in a point set associated with u. Let x E Pointset(r, u, t) and y E Pointset(r', u, t) where 

both r and r' are in S at time t. If r = r' then either the line containing (r, x) includes y 

or the line containing (r', y )includes x. Thus both points cannot be part of the convex huH 

obtained by constructing the tangent from r to CH(right(u)). If not, i.e when r =I r', then 

assurne w.l.o.g. that r' was inserted after r. If x E Pointset(r, u, t) then the tangent from 

r' replaces the current tangent at u at time tri. Since C H( u) includes x at time tri, (r', y) 
includes x. Thus both points x and y cannot be part of CH(u) when r' is present. _ 

By the above lemma, Step 3 requires O(logn) operations at each node on Path(p) since 

one Point set is removed. The deletion process thus requires O( log2n ) steps. 

Moreover, at rotations at anode v, points are removed from Pointsets of points in the 

subtree rooted at v. By Lemma 2.5 above, this takes O(nl) steps where n1is the size of 

the subtree rooted at that node. Each such removal is charged to the rotation at that node. 

Note that each insertion or deletion operation is charged O(logn) operations with 0(1) time 

allocated to each node on the path from leaf to root [BM]. Since a rotation occurs after cnl 

steps at node v, the removal of nodes from the Pointsets during rotations is accounted by 

the charges allocated to that node during insertions and deletions. 

We can now derive the complexity of the tangent finding operations, TA(n,m) after n 

insert ions and m deletions. 

Lemma 2.8 Bridge Constructions during n insertions and m deletions require O(nlogn + 
mlog2n) operations 
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Proof: It is easy to see that 

TA(n,m) = O(mZog2n + nZogn + ChngPs) 
where ChngPs is the sum of all changes that have occurred in all the Pointsets during 

insertions and deletions. This includes the creation of the Pointsets. But the changes in 

the Pointsets where a point is added and subsequently removed is charged to the deletion 

operation. Thus 

TA(n,m) = O(mZog2n + nZogn + SizePs) 
where SizeP s is the size of all the Pointsets at the end of the insertions and deletions. 

These pointsets contain points added but not removed. Now each point could be in at most 

O(Zogn) Pointsets (By Lemma 2.6 and the fact that h(p, t) ~ 0). SizePs is thus bounded 

by O( nZogn) as O( n) points are present in the tree. _ 

3 Data Structure Details 

The first data structure that we describe comprises a primary structure which is a balanced 

tree, CHT. At each node, v, of the balanced tree is stored the sorted list of point, A(v), 
in the subtree rooted at v and the upper hull, U( v), of the vertices in the subtree, ST( v) 
rooted at that node. This hull is stored in the form of a linked list. It is stored as a sublist 

of the list of points, A( v). To obtain U( v) we maintain two edges incident onto p in A( v) 
called LE(p, v) and RE(p, v). LE(p, v) is an edge with the other endpoint to the Zeft, i.e. 

with x-coordinate less than that of p. And RE(p, v) is an edge with the other endpoint to 

the right, i.e. with x-coordinate greater than that of p. During insertions and deletions these 

edges change. We let C LI ST( q) be the set of points, p, such that insertion of q destroys a 

bridge incident onto p. It is easy to see that ICLIST(q)1 = O(logn). These edges, stored in 

A( v), satisfy the following property: 

Property U ppermost: 

1 If point p E ST( v) is on the upper hull U( v) then the two edges of the convex hull 

incident onto p, one to the left and the other to the right, are assigned to LE(p, v) and 

RE(p, v), respectively, in the list A( v). 

2 If p E ST( v) is not on the convex hull and is not in C LI ST( q) for anode q E ST( v) 

then LE(p, v) and RE(p, v) are LE(p, w) and RE(p, w) where w is the first descendant 

of v at which p is on the convex hull. 

Note that using this property, U( v) can be obtained from A( v) as follows: Start from 

the leftmost node, say p, in A( v) and proceed to the node given by RE(p, v) which is the 

next node on U( v) . Repeating this scan procedure with the new node gives the upper hull 

in sorted order. 
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Also stored at each node, v, of the tree C HT is the bridge, B( v) constructed at that 

node. Moreover, with each point p is associated a list data structure L(p) which lists, in 

order, bidirectional pointers. Each pointer is a bidirectionallink to a list record which stores 

point p in the list of points, A(v), where v is anode on Path(p). We denote this pointer by 

L(p,v). Apointer is stored for each occurrence of p on Path(p). The pointers in L(p) are 

ordered as follows: L(p,v) occurs before L(p,w) iff v occurs before w on the path Path(p). 
Note that IL(p, v) I = O(logn) 

We now describe how to implement the tangent construction procedure described in the 

previous section. The tangent construction involves two kinds of searches. Firstly a linear 

search and then a binary search. The linear search at node v is performed on the list of 

nodes on the upper hull, A(v). 
The binary search is performed using the bridges at the nodes. It proceeds as follows: 

Let land r be two points such that the point on the hull, U(v), to which the tangent from 

the inserted point p is to be found, lies in between 1 and r. Initially these points may be 

chosen to be the extreme points in the point set. Let B( v) = (x, y) be the bridge at node v. 
Assurne w.l.o.g. that x(p) < x(y). Suppose (p,y) is convex w.r.t the convex huB U(right(v)) 
but intersects U( v). Then the search proceeds in the left subtree at node v with r as x. 

Alternatively, if (p,y) is concave w.r.t. to U(right(v)) then the search proceeds in the right 

subtree with y as 1. The search stops when either a tangent is discovered from p to U(v) at 

y or a leaf node in C HT is reached. In the second case the tangent is (p, l) w here 1 is the 

point stored at the leaf node. 

The auxiliary data structures are updated after all the tangent constructions during an 

insertion or deletion of nodes. 

Before we give further details of an efficient technique of updating of the auxiliary struc­

tures we note that we are storing sorted lists at each of the nodes. These lists can be also 

be maintained using fractional cascading and can be maintained in a dynamic environment 

using techniques in [MN]. 

3.1 Updating the auxiliary data structures 

We first consider insertions. On constructing a tangent from a point p at anode v the edges 

in list A( v) and the upper hull U( v) at the node needs to be modified. These modifications 

require locating the records containing the endpoint of the tangent in the list A( v). There 

are two cases. 

1 If the tangent (p, q) is found by a linear search then the location of q in the current 

convex hull, U( v), is obtained during the linear scan. 

2 On the other hand if the tangent (p, q) is found by a binary search then the list L(q) 
is used to locate the record in U( v) representing q. 
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In both these cases A( v) and hence U( v) is updated as follows: Assurne w.l.o.g. that q 

is to the right of p. 

• In the first case, the pointer RE(p, v) is modified to point to the record containing q 
in A( v). Apointer to this record is available during the linear search. 

• In the second case, RE(p, v) is modified in the same fashion. The pointer to q, L( q, v), 
is obtained from L(q). 

Finally, the endpoints of the tangent removed are added to C LI ST(p). 

The time required for the update is the same as the time required to find the tangent. 

Moreover, A(x) is required to be changed due to insertion of p and its associated edges for 

all nodes, x, on Path(p) from v to either the root or the next node at which another tangent 

from p is constructed. This is to maintain Property Uppermost. Since the pointer to 

L(q,x), x on Path(p), with x initially v, is available from L(q), all the changes can be 

performed in O( 1) steps each. Finally the pointer list for p, L(p) is built in time O( logn) 

when point p is inserted since the pointers are available in sorted order. Thus the updates 

to the auxiliary data structures after an insertion requires O( logn) steps. 

Consider deletion of a point r next . Edges are removed due to deletion of r. And new 

edges added due to bridge construction. First consider the case of addition of new edges. 

Let e = (p, q) be the bridge edge added at anode u. Assurne that q is to the right of 

p. The records containing p and q at u are found using L(p) and L( q) by a linear search 

requiring O( logn) steps. A( u) is then modified. The bridge edge B is also required at 

ancestor nodes since Property Uppermost needs to be maintained. Thus this edge, (p, q), 
modifies RE(p, x), (LE(q,x) ) in the records of p, (q respectively) in A(x), for each node x 
on the path from u to the root until 

(1) Ei ther the root is reached or 

(2) Anode is reached where a different edge from p, ( q respectively), exists on the convex 

hull and e lies "below" that edge. 

This requires O( logn) time for each bridge (p, q), constructed since it requires a scan of 

L(p) and L(q). As there are O(logn) bridges constructed we get a time bound of O(log2n ). 

N ext, consider the case when an edge incident on a point p at tree node v is removed 

and the bridge constructed at v is not incident onto p. W.l.o.g assurne that this edge, ep has 

its other endpoint with x-coordinate greater than p i.e. is RE(p, v). The edge incident on p 

in A( v) is then replaced by the hull edge, e~ = RE(p, vt), incident on p at VI, the son of v 
which lies on Path(p). The edge e~ also replaces edge ep in A( x) at ancestor nodes, x, until 

(1) Either the root is reached or 
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(2) Anode is reached where a different edge from p exists on the convex hull and e~ lies 

"below" that edge. 

O( logn) time is required for this update. There are O( logn) such updates since O( logn) 

edges of the form (p, r) are removed during bridge constructions and a total of O( 10g2n ) 

time is required. The following operations are also performed. 

(a) LE and RE edges incident onto points in CLIST(r), which are currently in the point 

set, are updated by constructing tangents and propagating them up the convex hull 

tree. 

(b) L( r) is removed. 

The first step requires O( 10g2n ) steps since there are O( logn) points in C LI ST( r) . The 

second step requires O( logn) steps. We show below that the above steps ensure that for all 

points affected by the deletion procedure, either due to an addition or deletion of an edge, 

Property Uppermost is satisfied. A total of O(10g2n ) time is required for the deletion 

procedure. 

We finally consider the work done during rotations. At every rotation, at anode v, the 

lists and convex hulls are updated in O(nl + logn) time when there are nl nodes in the 

sub·tree rooted at v. The lists at node, v, are rebuilt using the lists at the sons, u and w. 

FUrthermore bridges are constructed using binary search. The changes, due to new bridge 

constructions, in lists A(x), for nodes x on the path from u to the root, are implemented as 

in the insertion or deletion case in O( logn) steps. The rebalancing occurs after cnl insertions 

or deletions in the subtree rooted at v. Each such insertion and deletion contributes a unit 

charge to v and this charge accounts for the work during the rotation at v. Moreover since 

each insertion or deletion contributes O( logn) charges to no des along the insertion or deletion 

path, O( nlogn) total charges are required for n insertions and deletions during rotations. 

We prove correctness of the data structure maintenance by the following lemma: 

Lemma 3.1 Property Uppermost is maintained during a sequence of insertions and 

deletions. 

Proof: The proof is by induction on the number of insert ions and deletions. For the base case 

when no insertions or deletions have been performed, the initial tree satisfies the Property 

Uppermost. For the induction step, assurne that the property is satisfied upto the ith step. 

We now consider the i + 1st step. 

First consider the case of insertions. Suppose the insertion of p to the set of points in 

A( u) at anode u changes the convex hull and the bridge edge constructed is (p, r). The 

bridge edge (p, r) is added to the list A( u) and to A( x) for all x on P ath(p) until either the 

root is reached or a new tangent from p to the right, which includes the edge (p, r) , is added 

to U ( x ). Thus the property is maintained for p at nodes in C HT. 
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N ext consider another point q in A( u). If q was on the convex hull and is no longer on 

the convex hull then there are two cases. Either the bridge removed due to insertion of p 

was from q in which case q is added to C LI ST(p). Else q does not have the deleted bridge 

incident onto it and thus the current edges incident to q are the same as the ones incident to 

q before the insertion. If q was on the convex hull and still is, then either the edges incident 

onto it are unaffected or a new bridge is incident onto it. In the first case no change is 

required to be made. In the second case, the new bridge edge is propagated upwards during 

the insertion procedure in order to maintain Property Uppermost. Finally, if q was not 

on the convex hull at u then the edges to q remain unaffected. This is true for all nodes in 

Path(p) . Points at nodes not on the path remain unaffected. Thus Property Uppermost 

is satisfied after the insertion operation ignoring rotations. 

Now consider deletion of a point q. Let v be anode where LE(p, v) or RE(p, v) is 

changed. Assurne w.l.o.g. that the edge to the right, RE(p, v), is changed. If p was on the 

convex hull and is still on the convex hull then there are two cases: Either the edge is the 

new bridge edge in which case the updating of A( v) is correct by construction. Or the edge 

is obtained from w, the son of v, where pis on the convex hull. This update is correct since 

the bridge has changed so that it is a tangent to the convex hulls at the left and right sons 

of v at a point p' such that X(p') > x(p). Thus the edge from p in the convex hull at w is in 

the convex hull at v. 

Next, consider when p was not on the convex hull and now iso This occurs when the 

bridge at v changes. The point p must be on the convex hull at the son of v and the relevant 

incident edges already exist correct1y at v since by induction, Property U ppermost is 

maintained at the ith step. 

Finally, consider the case when p was not in C H( v) before the deletion and is still not on 

C H( v). This does not affect the convex hull edge at V. However LE(p, v) or RE(p, v) may 

have changed due to changes at convex hulls at descendant nodes. This change is correctly 

propagated up along the path Path(p) in the deletion procedure. 

Lastly, consider rotations at node v. The lists at nodes involved in the rebalancing are 

completely rebuilt using lists at the immediate descendant nodes. Thus the points in the lists 

A( v) have correct edges incident onto them. The lists at nodes above v are modified only due 

to change in the bridge edges at nodes involved in the rotations. That these modifications 

are made correct1y follows from the correctness of the propagation of the change along the 

path from v to the root. Also lists at those nodes in the subtree rooted at v not involved in 

the rotations are also unaffected. Thus the lemma is proved. _ 

The space requirement of this data structure is O( nlogn). 

We thus have the following result where we show that the convex hulls at each of the 

nodes of the balanced tree C HT can be maintained efficiently: 
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Theorem 1 Strong Maintenance of the Convex Hull Tree requires O(nlogn + mlog2n) op­

erations and O( nlogn) space when there are O( n) inserlions and O( m) deletions. 

4 An 0 (n) space solution 

To get an O(n) space solution for maintenance of the convex hull we use the technique of 

Overmars and Van Leeuwen and store portions of the convex hull. 

Each point will be stored in arecord. This record will be part of a list which stores a 

complete or partial convex hulI. Moreover, from the leaf containing point p there is apointer 

to the record containing p. 

The lists are stored as follows: Suppose in constructing the convex hull at node v, C H( v), 
in the tree C HT, we eliminate the sequence of points L and R where L is part of the convex 

hull at the left son, VI, and R is part of the convex hull at the right son, vr . L and Rare 

stored at VI and Vr respectively. The root stores the convex hull of all the points. 

Let V be anode in the tree CHT. Suppose we have CH(v) available in the form of an 

ordered linked list. It is easy to see that using the hull portions stored at VI and Vr and 

the position of the bridge in C H( v) the convex hull at the sons of V can be constructed in 

constant time. Let P be a path from the root to a leaf node in C HT. The convex hull 

at nodes on the path and their immediate descendants can thus be constructed in O( logn ) 

steps. 

U sing these hulls it is easy to use linear search to construct tangents. Binary search is 

performed using the bridges at the nodes of the tree C HT as in the previous section. 

To update the convex hull structures after a bridge is constructed at node V we need to 

determine the position of the points defining the bridge in the linear lists storing the convex 

hulls. The following data structure is used: 

• Apointer from the leaf node containing a point q to the record storing the point q in 

a list at some tree node v. 

The position of bridge points is thus easily determined when the tangent is constructed 

at anode v. When linear search determines the tangent in the list of convex hull edges at 

the current node the position of the points is immediately known. When binary search is 

used to locate a tangent endpoint, say q, on the convex hull at node v, the position is given 

bya pointer from the leaf node containing q to the record storing the point, q, in the linear 

list forming the convex hull at node v. The position of the two points of the bridge is used 

to split the convex hull at v into the required parts in 0(1) time. 

The changes in the tree T during rotations can be handled similarly. Suppose a rotation 

performed at anode v. The convex hull at the immediate descendants of v can be obtained 

in O( logn) steps. The required bridges can be constructed in O( logn) steps using binary 
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search and the modifications to the convex hulls sublists, stored at the nodes of the tree 

involved in the rotation, can be done as above. Thus each rotation requires O( logn) steps 

to perform. 

We thus have proved the following result: 

Theorem 2 The convex hull of a set of points can be maintained in O( nlogn + mlog2n) 

operations and O( n) space when there are O( n) insertions and O( m) deletions. 

5 Order-Decomposable Problems 

In this section we show how to extend the results for the convex hull problem to a larger 

dass of problems termed as order decomposable problems. 

Definition Let Sr, S2 and S3 be sets and let P : 251 ~ S2, S2 ~ 253 be a set problem. 

P is order decomposable if there is a linear order < and an operator /:1 : S2 x S2 ~ S2 such 

that for every subset S ~ Sb S = {al< a2 < ... < an} and every i 

P( {al, ... , an}) = /:1(P( {al' . .. ' ad), P( {ai+l, ... , an} )). (1) 

S3 is an underlying domain. We will let ISI, S E S2 represent the size of the set S. S2 

comprises sets of elements from S3 satisfying some desired property. /:1 is termed as a merge 

operator and the time required to compute it is termed as merge time. 

Example 1. For the convex hull problem Sl is a set of points from the plane and S2 

is the set of convex polygons, each convex polygon being defined by a sequence of points. S3 

is thus the set of points in the plane, again. 

We make some assumptions. The first assumption we make is about the behaviour of /:1. 

Assumption 1 1f So. E S2 changes by one element p, then Se = /:1 (So. , Sb) can be updated 

in time proportional to min(8Se, G(n)), where 8Se = Change in the size of the set Se and 

G(n) is the merge time, i.e. the time required to merge the solutions of two subproblems of 

total size n. 

We call such a problem a change sensitive order decomposable problem. 

In our analysis below we assurne the following behaviour of the solutions. 

Assumption 2 P(So.) n P(Sb) = <I> when So. and Sb are disjoint. 

This assumption is reasonable for most problems since the solution, P( S), is dependent 

on the set S. 

We first show the following Monotonicity property: 
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Lemma 5.1 Monotonicity Property: Let P be an order decomposable problem. Let pE 

Pset, Pset E S2' Suppose p E P( {akt ... alt}), 1 ~ I' ~ k' ~ k. 1f p rt P( {ak"" al}) then 

p rt P({ai, . .. aj}), i ~ k ~ I ~ j. 

Proof: The proof is by contradiction. Suppose it is, i.e . pE P(ai,'" aj). However, 

P( {ai,'" aj}) = ß(P( {al,"" ak-1}), ß(P( {ak, ... , al}), P( {al+1"'" aj} ))) 

Moreover, by Assumption 2, p rt P({ai ... ak-t}) and p rt P({al+1 ... aj}). Thus p E 

P( {ak"" al}) .• 

We now detail the data structure used for dynamic maintenance of order decomposable 

problems. 

We use a weight balanced tree TP(S), where S is the input set. At the leaves are the 

elements of the input set S , arranged in order. At each internal node, v, is stored an 

auxiliary data structure comprising the set P(ST(v)), where ST(v) is the subtree rooted 

at v. We will use P(ST(v)) and P(v) interchangeably. P(ST(r)), where r is the root of 

TP(S), is the solution to the problem. 

We make the foHowing additional assumption on the data structure: 

Assumption 3 Let Sc = ß(Sa., Sb)' Then the auxiliary data structure, storing Sc, can be 

updated in time proportional to min(6Se , C(n)), where 6Se = Change in the size of the set 

Sc and C(n) is the time to merge two subproblems of total size n . 

It is easy to see that the assumptions above are valid for the problems of maintenance 

of 2-d Convex Hulls and for 2-d Voronoi Diagrams given the location of the point in the 

Voronoi sub division. 

We now describe a scheme for dynamically updating TP( S) so as to improve the insertion 

time. 

As in the solution for the convex huH problem, we maintain sets called Pointsets which 

help in the analysis . 

• Pointset(x, u, (,:) is the set of elements that are eliminated from P(ST(u)), with size 

bounded above by C(n), when x E Sl is added to ST(u) at time t:z;, the time of 

insertion of x . 

• Pointset(x, u, t) is the set of elements that are contained in Pointset(x, u, t'), t:z; ~ t' < 
t and are absent from P(ST(u)) at node u at time t. 

Pointset(x,u,t) is said to be associated with x and u at time t. These sets will be manipulated 

by insertions, deletions and rotations only for the purpose of analysis. 
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As in the previous problem we note that an element pES, SE S2 is present in the solution 

to P only at nodes u s.t. u E Path(x) for some x where Path(x) is the path from the leaf 

node to the root node. Let Last(p) be the last node on Path( x) at which p is present. And we 

denote by height( u), the distance of node u from the leaf node containing x on path Path(x). 

Furthermore, we let h(p, t) denote the distance of Last(x) from the leaf node containing x 

at time instant t. This is the height at which the element p is last present on a convex hull. 

We let NS(p, t) be ISets(p, t)1 where Sets(p, t) = {Pointset(x, u, t)lp E Pointset(x, u, t)}. 

NS(p, t) represents the number of sets from Point sets which contain the element p at time 

t. 
We next describe the manipulation of Pointsets and some of its properties during inser­

tions and deletions. It is important to note that manipulation of Pointsets is for the purpose 

of analysis only. 

Consider insertion of x. The following steps are required. 

1. Construction of updated P(ST(u)) at nodes u,u E Path(x). 

2. Creation of Pointset(x,u,t:z:) at nodes u such that u E Path(x). 

The steps when an element x is deleted at time t are: 

1. Construction of updated P(ST(u)) at nodes u s.t. u E Path(x). 

2. Removal of p from Pointsets and removal of Pointset(x,u, t),u E TP. 

3. Removal of qi from the Pointset containing it when qi becomes part of P(ST(v)) due 

to deletion of x. 

Finally, consider rotations. At a single rotation at node v at time t, we ensure that points 

in U:z:ES1 Pointset( x, left( v), t) and in U:z:ES1 Pointset( x, right( v), t) are removed. Double ro­

tations are treated as two consecutive single rotations. 

We next state some properties of Pointsets. The proof of the following lemma is similar 

to that of Lemma 2.1 and hence omitted. 

Lemma 5.2 There are O( logn) Pointsets associated with a point x E Sl at any time instant. 

The following property is also true for Pointsets containing p 

Lemma 5.3 At time t ~ tp } P may be contained only in Pointset(x, u, t) where u E Path(x)} 

for some x. 

Proof: First note that by Assumption 2, p exists only in the solution set at nodes on one 

path in the tree. Let Path( x) be such a path. Point~ets associated with x and with labeled 

nodes on Path( x) may ce ase to exist on this path "because of rotations. But the Pointsets 

associated with nodes involved in the rotation areremoved. The lemma follows .• 
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We let TA ( n) be the complexity of inserting n elements. The following lemma bounds 

the insertion complexity. The proof is similar to the one in the previous section and hence 

omitted. 

The lemma below shows that a point occurs only in one Pointset from amongst all the 

Pointsets constructed at the node v. 

Lemma 5.5 Let p E P(ST(v)). If p E Pointset(x, v, t) then p (j. Pointset(y, v, t) J Vy E 

ST(v) where y i- x. 

Proof: Suppose p E Pointset(x,v,t). Then p E Pointset(x,v,t:z;) and thus p E P(v) at 

time t ::; t:z; - 1 but P (j:. P( v) at time t 2:: t:z;. If y is inserted before x then obviously 

p (j:. Pointset(y, v, ty ) and hence p (j:. Pointset(y, v, t). If y is inserted after x then we come 

to the same conclusion since p (j:. P( v) at time t, t > t:z; .• 
The following lemma establishes abound on the number of Pointsets containing p. 

Lemma 5.6 h(p, t) ::; 210gn - NS(p, t), t 2:: t:z; for some x. 

Proof: We show that this property holds under insertions, deletions and rotations. The 

proof is by induction on t - t:z;, where p becomes part of a solution set after inserting x. 

On an insertion of some point q, the point p may be eliminated from P( v) for some 

tree node v. By an argument similar to that in Lemma 2.6 the height relation, h(p, t) ::; 
210gn - N S(p, t), is satisfled. 

Next, consider deletions. Suppose h(p, t) increases after a deletion. Let u be anode at 

height < h(p, t). The following claim is true: 

Claim: There does not exist an element, say y, in the subtree rooted at u, such that 

pE Pointset(y, u, t). 
The proof of this claim is by contradiction. Suppose there did exist such a point. Then by 

the Monotonicity Property, p cannot be in the solution set at the node at height h(p, t). The 

remainder of the proof is similar to that in Lemma 2.6. 

Finally, consider rotations. Since points are removed at the nodes involved in the rotation, 

if the height of p increases then p must be removed from a Pointset. This is achieved in 

the rotation procedure by the removal of all Pointsets associated with the nodes le ft( v) and 

right(v), when a rotation is performed at node v. The relationship of h(p, t) with NS(p, t), 
i.e. h(p, t) ::; 210gn - NS(p, t) is thus maintained. The details of the proof are again similar 

to that of Lemma 2.6 .• 

We can now derive the complexity of the tangent finding operations, TA(n,m) after n 
insertions and m deletions. We need the following parameters. 
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• Size(n) is defined to be the number of distinct elements constituting sets in S2 in the 

data structure TP, i.e. Size(n) = 1 Ul~i9 {plp E P(v),v E TP(ti)}1, 
where TP(ti) is the tree data structure at the ith time instant. Size(n) is the total 

number of elements of S3 that are created during the insertions and deletions . 

• 6R is the maximum number of elements in Pointsets added to a solution, P( v), v E TP 
during adeletion. This represents the number of elements in Pointsets that may change 

height at anode in the tree data structure during a deletion operation. In fact, 6R is 

bounded above by the changes in P( v), v E TP, during adeletion. 

Theorem 3 TP} the data structure which maintains the solution to the change sensitive 
order decomposable problem} p} can be updated during n insertions and m deletions in 

O(Size(n)logn + m(C(n) + 6R)logn) operations where C(k) is the time required to merge 
two solutions of total size k. 

Proof: First consider the time complexity of insertions. The time complexity of the in­

sertions is TA(n). This includes the time for updating the solution to the problem and 

constructing Pointsets. 

We next consider the time complexity of deletions. Let p be the deleted point. The time 

to update the solution P(ST(u)) at anode u E TP is O(C(n)). This update is required at 

each node on the deletion path. We next consider the time required to manipulate Pointsets 

at each node on Path(p). Step 2 of the deletion procedure requires O( C( n)) steps for each 

node giving a total of O(C(n)logn) steps. Step 3 requires O(6R) steps at each node. The 

time complexity of deletions is thus O(m(C(n) + 6R)logn). 
We next show that the amortized time complexity of rotations is O( Size( n )logn + 

C(n)logn). Every insertion and deletion is charged O((Size(ST( v)) + C(IST( v)I))/IST( v )1) 
for each node v, v E Path(p) where p is the inserted or deleted node. Size(ST(v)) = 
~uEST(1J)P(U), C(IT(v)1 is the time required to merge the solutions at left(v) and right(v)and 
1 ST( v) 1 is the number of no des in ST( v). We next show that these charges suffice to pay for 

the recomputation of solutions and removal of Pointsets since rotations at anode v occur 

after cIST(v)1 , ca constant, operations. The time required for Pointset manipulations dur­

ing rotations at anode v is O( Size( ST( v)) since Pointsets associated with the left and right 

son of v are removed. This is charged to the insertion or deletion of points in ST( v) since 

each such manipulation occurs after O(IST(v)l) steps. The total charges for all Point set 

manipulation during rotations equals ~1JETPSize(ST(v)) = O(Size(n)logn). Next, consider 

the time required for recomputing the solutions at the left and right son of v and at v itself. 

This time is C(IST(v)l) and is charged to the insertion or deletion as described above. Note 

that C(IST(v)I)/IST(v)1 is bounded by C(n)/n forlinear or superlinear C(n). Thus if every 

inserted point is charged (C(n)logn)/n, reconstruction of the solution at each node during 
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a rotation can be charged to the inserted point. The total charges are C(n)logn. This gives 

the desired bound. 

We finally bound TA(n). Note that TA(n) = SizePs + RemPs where SizePs = 
00:::(P,V),PES,vE'T1' IPointset(p, v, tf) I), and tf is the time at the end oft he insertions and dele­

tions. RemPsis the number of points removed from Pointsets during deletions and rotations. 

RemPs is bounded by O(m(C(n) + SR)logn). Furthermore SizePs = O(Size(n)logn) since 

each element can occur in O( logn) Pointsets. _ 

The above result can be strengthened when C(n) = O(n) resulting in removal oft he logn 

factor in the second term of the time complexity. 

We next consider some specific problems: 

• For the Convex Hull problem, Size(n) = O(n) and SR = O(logn) as proven before . 

• For the Voronoi Diagram problem, SR = O(n) and Size(n) = No. of distinct Voronoi 

vertices created, which is O(n2
) in the worst case. It is interesting to note that at 

any time instant there are only O( nlogn) elements (Voronoi vertices and edges) in 

TP. The above result gives a scheme for maintenance of Voronoi Diagrams where n 

insertions require O((Ny + nlog2n)logn) steps in the presence of deletions. Here Ny 

is the number of distinct Voronoi vertices created. A data structure for planar point 

location is required to be maintained, contributing the nlog2n factor as the merge time 

[PT]. The deletion time is mO(nlog2n) for m deletions. The straightforward approach 

to this problem would require at least O( No. of structural changes ) steps. 

6 Conclusions 

In this paper we have shown that semi-dynamic behaviour is possible for insert ions in the 

presence of deletions. 

For the convex hull problem, note that in the worst case, insert ions require O( log2n ) 

time and thus the data structure strictly improves on the time complexity of convex hull 

maintenance. 

We furt her note that the methodology for storing the convex hulls can be improved so 

as to give a simpler O(n) space data structure than the one described by Overmars and Van 

Leeuwen [OLl. The scheme is along the same lines as described for the maxima problem 

[Ka]. A constant amount of space is used per node in the tree. (details omitted ) 

7 Acknowledgements 

I would like to thank Herbert Edelsbrunner, Kurt Mehlhorn, Sandeep Sen and Michiel Smid 

for helpful comments. I would also like to thank MPI, Germany for generous support during 

21 



parts of this work. 

References 

[lJ [BMJ N. Blum and K. Mehlhorn, On the Average Number of Rebalancing operations in 

Weight Balanced Trees, Theoretical Computer Science, 11(1980),303-320. 

[2J [FHSJ J. Friedman, J. Hershberger and J. Snoeyink, Compliant motion in a simple polygon, 

Proc. 5th ACM Symposium on Computational Geometry, 175-186, 1989. 

[3J [HS1J J. Hershberger and S. Suri, Application of a semi-dynamic convex hull algorithm, 

Proc. of the 2nd Scandinavian Workshop on Algorithm Theory, pp. 380-392, Springer­

Verlag, 1990. 

[4J [HS2J J. Hershberger and S. Suri, Offline Maintainence of Planar Configurations, Proceed­

ings of SODA, 1991, pp. 32-41. 

[5J [KaJ Sanjiv Kapoor, Dynamically Maintaining Maxima in 2-dimension, Proceedings of the 

10th ACM Conf. on Computational Geometry, 1994. 

[6J [MbJ K. Mehlhorn, Data Structures and Algorithms 3, Multi-dimensional Searching and 

Computational Geometry, Springer Verlag. 

[7J [MNJ K. Mehlhorn and S. Naher, Dynamic fractional Cascading, Algorithmica 5 (1990), 

pp.215-241. 

[8J [OJ Overmars, M.H., Dynamization of order decomposable set problems, J. of Algorithms 

2,245-260. 

[9J [OLJ M. Overmars and J. Van Leeuwan, Maintainence of configurations in the plane, 

Journal of Computer and System Sciences, 23, pp.166-204, 1981. 

[10J [PSJ F.P Preparata and M. I. Shamos, Computational Geometry- An Introduction, 

Springer Verlag, (1985). 

[11] [PT] F.P. Preparata and R. Tamassia, Dynamic Planar Point Location with Optimal 

Querry Time, TCS, Vol. 74, No. 1,95-114, 1990. 

22 




	95-1-0150001
	95-1-0020002
	95-1-0150003
	95-1-0150004
	95-1-0150005
	95-1-0150006
	95-1-0150007
	95-1-0150008
	95-1-0150009
	95-1-0150010
	95-1-0150011
	95-1-0150012
	95-1-0150013
	95-1-0150014
	95-1-0150015
	95-1-0150016
	95-1-0150017
	95-1-0150018
	95-1-0150019
	95-1-0150020
	95-1-0150021
	95-1-0150022
	95-1-0150023
	95-1-0150024
	95-1-0150025
	95-1-0150026
	cover-hinten_2099-2897-300dpi



