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Abstract 
We prove that the dilation of an m X n toroidal mesh in an m~vertex path equals 

2min{m,n}, if m:f:. n and 2n - 1, if m = n. 

1 Introduction 

The trend in architecturesof parallel computers indicates that two dimensional meshes with 
wrap arounds play an increasingly important role. They have the main advantage that they 
can be implemented using short wires only. Of major importance is their modularity, i.e. a 
mesh architecture can usually be produced of almost arbitrary size - allways assembled out of 
identical components which are connected in a regular pattern. A problem arises assoon as the 
whole architecture does not fit onto a single board. In fact commercially available massively 
parallel machines are implemented on stacks of printed circuit boards. Here it is essential that 
the wires connecting the boards are short otherwise delay is introduced or the size of drivers 

. has to be increased or both. This paper deals with the minimal maximal wire length of the 
embedding of a parallel computer with the toroidal architecture in a stack of printed circuit 
boards. 

The problem" can be mathematically formulated as labeling the vertices of a graph G by 
distinct vertices of a "host" graph H so that the maximum distance in H between adjacent 
vertices in Gis minimized. This minmax value is called bandwidth or dilation [1, 2, 9]. It is 
known that the dilation of Pm X Pn (mesh) in Pmn (path) equals min{ni,n} [3,5]. The dilation 
of Gm X P n (cylindrical mesh) in P mn is min {m, 2n} [4]. The dilation of Gn X Gn (toroidal mesh) 

. in Gn2(cycle) is n [8]. Recently, it has been shown that dilations of Gm X Pnand Pm X Pn in Pmn 
are min{ m, n }[7). In this paper we prove that the dilation of Gm X Gn in P mn is 2 min {m, n}, 
if m #- n and 2n - 1, if m = n. As a consequence we obtain that the dilation of Gm X Gn in 
Gmn is min{m, n}, which extends the result from [8]. 

*The work of the last two authors was supported by Alexander von Humboldt Foundation, Bonn, Germany 
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2 Basic notation 

Let G = (VG,EG), H = (VB,EB) be two graphs. An embedding of G in His an injection 
<p: VG --+ VB. Let distB(Z, y) denote the distance of vertices z, y in H. An important measure 
of efficiency of the embedding <p is the so called dilation: 

diLp( G, H) = max {distB( <p( u), <p(v))}. 
(u,v)EEG 

The dilation of G in H is defined as 

dil(G,H) = min{diLp(G,H)}. 
q, 

Let X C VG . Denote 8(X) = {v E VG - X : there exists u E X, such that (u, v) E EG}. The 
set 8(X) is called the vertex boundary of X in G. Let Pie (CIe) denote a k-vertex path (cycle). 
Let VP• = Vc• = {1,2, ... ,k} and Ep• = {ij: li-jl = 1, i,j E Vp.},Ec. = Ep. U{lk}. Let 
Tmxn = Cm x Cn be a toroidal mesh. Let ri and C; denote the i-th row and the j-th column of 
Tmx", respeetively, for i = 0,1, ... , m-1 and j = 0,1, ... , n-1. Set H = Pie and for t = 1,2, ... , k, 
denote At = <p- l

( {1, 2, ... , t}) and Bt = VP• - At. 

3 A lower bound 

For the lower bound we apply a method proposed by Harper [6]: 

Lemma 3.1 For any embedding <p : G --+ PIVGI it holds diLp(G, l=,vGI) 2:: maJC:t{8(At)}. 

Theorem 3.1 Let <p be an embeddingo/ the toroidal mesh Tmxn in the path Pmn • Then 
diLp(Tmxn,Pmn) > 2min{m,n}, i/m # n and diLp(Tnxn,Pn2) 2:: 2n -1, i/m = n. 

Proo/: Aeeording to Lemma 3.1 our aim is to find t which maximize the vertex boundary of At. 
It is easy to see that there exists t such that for each row rand each eolumn C it holds IrnBtl 2:: 2, 
Ic n Bt I 2:: 2 and some row ri or some eolumn Cle satisfies: Iri n Bt+ll = 1 or ICIe n Bt+ll = 1. 
W.l.o.g. assume that the seeond possibility oeeurs. Denote by r; the row eontaining the vertex 
Cle n Bt+l and by rz the row eontaining the vertex <p-l(t + 1) . As in all rows exeept r; and rz 
there is a vertex from At and two vertiees from BH 1! for eaeh 0 :5 i :5 m - 1, i # j,l it holds: 
Iri n 8(At )1 = Iri n 8(AH1 )1 > 2. Henee 

m-l m-l 

L h n 8(At ) I = L · h n 8(At+l)1 ~ 2m - 4. (1) 
i=O,i~;,Z i=O,i~;,Z 

Distinguish two eases regarding the eardinality of r; n At. 

1. Let Ir; n Atl 2:: 1. This implies Ir; n 8(At) I 2:: 2 and Ir; n 8(At+l)1 2: 2. 

(a) H Irz n At l2:: 1 then Ir, n 8(At )l2:: 2. This ease together with (1) gives 18(At) I 2:: 2m. 

(b) H IrznAtl = 0 then Irzn8(AH1)1 2:: 2. This ease together with (1) gives 18(At+l) I 2:: 2m. 

2. Let Ir; n Atl = O. 

(a) Assume Irz n 8(AH1 )1 == n - 1. Then all rows except r; eontain a vertex from At 
ud two vertiees from B t • In addition, r; contains at least one vertex belonging to 
8(At ). This gives 18(At)1 2:: 2m - 1. If m > n or m == n then we have 18(At)1 2:: 2n 
or 18(At)1 2:: 2n - 1, respeetively. Suppose m < n. Denote by q the eolumn which 
eontains the vertex r, n Bt+l' All eolumns exeept Cle and Cq eontain a vertex from At+l 
and 2 vertices from Bt+l' The eolumns Cle and cq eontain at least one vertex from 
8(At+l) each. This gives 18(AH1 )1 2:: 2(n - 2) + 2 2:: 2m. 



(b) Assume now that Irz n At+ll < n - 2. Consider successively the sets At+p, Bt+p, for 
p = 2,3,4, ... until one of the following three cases occurs: 
(a) H Ir; n At+pl = 1 then for each i, 0 ::::; i ::::; m - 1, it holds Iri n 8(At+p)I ~ 2, hence 
18(At+p)I ~ 2m. 
(ß) Hthere exist a row r., s '# j, such that Ir. n At+pl = n - 1 then we continue as in 
the case 2( a). 
(;) H there exists a column Cu, u '# k, such that ICu n At+pl = m - 1 then all rows 
except rj contain two vertices {rom both At+p and Bt+p and, in addition, r; contains 
at least two vertices belonging to 8(At+p), which gives 18(At+p)I ~ 2m. 0 

Theorem 3.1 allows to extend the result on dil(Tnxn, Cn 2) [8] for arbitrary toroidal meshes. 

Corollary 3.1 dil(Tmxn, Cmn) = min{m, n}. 

Proof: An analog of Harpers Lemma for embeddings in cycles asserts that for any embedding 
4> : G -+ Clvol it holds cli4(G, C!Vol) > maxt{8(At)}/2. This and the proof of Theorem 3.1 
implies the lower bound. 

Assume m ~ n. By placing consecutively the l-st, 2-nd, 3-rd, ... ,m-th row of Tmxn on Cmn 
we construct an embedding with dilation n. 

4 Upper bounds 

Theorem 4.1 dil(Tmxn,Pt'nn) < 2min{m,n}. 

Proof: W.l.o.g. assume that m ~ n. By placing the l-st, m-th, 2-nd, (m - l)-st, 3-rd, ... row 
ofthe toroidal mesh Tmxn on the path Pt'nn we obtain' an embedding with dilation 2n. 0 

Now, let us consider the following "spiral" embedding of the toroidal mesh Tnxn in the 
path Pn 2. It can be viewed as an n X n table containing numbers 1,2,3, ... ,n2• The maximum 
of differences of neighbouring numbers (consider the wrap-around neighbourhood too) is the 
dilation. A possible :filling of the table is shown in Figure 1 for n = 7 and 8. The dilations 13 and 
15 appear e.g. between 23, 36 and 19, 34, respectively. The explicit function 4J for the "spiral" 
embedding can be described as follows. Let VT .. x.. = {(i,j) : -L(n -1)/2J ::::; i,j ::::; Ln/2J}, 
where (i,j) and (k, l) are neighbours iff li - kl + Ij - II = 1, or li - kl = n - 1 and j = l, 
or i = k and Ij - II = n - 1. Let [0,(0) x (0,00), (0, ~oo) X [0,(0), [0, -(0) x (0, -(0) and 
(0,00) x [0, -(0) denote the l-st, 2-nd, 3-rd and 4-th quadrant, respectively. 

46 39 28 16 29 40 47 61 54 43 29 44 55 62 64 
38 27 15 7 17 30 41 53 42 28 16 30 45 56 60 
26 14 6 2 8 18 31 41 27 15 7 17 31 46 52 
25 13 5 1 3 9 19 26 14 6 2 8 18 32 40 
37 24 12 4 10 20 32 25 13 5 1 3 9 19 33 
45 36 23 11 21 33 42 39 24 12 4 10 20 34 47 
49 44 35 22 34 43 48 51 38 23 11 21 35 48 57 

59 50 37 22 36 49 58 63 

Figure 1: Embeddings of T7x7 and Tsxs 



· Set </>(0,0) = 1. 

1. Let n be an odd number. 

(a) H Izi + lyl ~ (n - 1)/2 and (z, y) belongs to the i-th quadrant then 
</>(z, y) = 2(lzl + lyl? + Izl«2 - i)mod 4 + imod 2 - 2) + lyl«2 - i)mod 4+ 
+(i + 1)mod 2 - 2) + 1. 

(b) If Izi + IYI2: (n + 1)/2 and (z,y) belongs to the i-th quadrant then 
</>(z,y) = -2(lzl + lyl)2 + Izl(4n + 2 - (2 - i)mod 4 - (i + 1)mod 2)+ 
+lyl(4n + 2 - (2 - i)mod 4 - imod2) - n2+ n«2 - i)mod4 - 3/2) + 1/2. 

2. Let n be an even number. 

(a) H Izi + lyl ~ n/2 then </> is defined by the same equation as in 1(a), except for the 
case Izi + lyl = n/2, z < 0, Y < 0, when the last term 1 is omitted. 

(b) Let Izi + lyl > n/2 + 1. Set </>(n/2,y) = n2 - (n + 2 - 2j)(n - 2j)/2, for y > o. 
Otherwise </> is defined by the same equation as in 1(b), except for the term 1/2 which 
is replaced by 1 (0) for the 1-st and 4-th (2-nd and 3-rd) quadrants. 

By a straightforward computation one can prove the following theorem: 

Theorem 4.2 Thefunction </> is a bijection and ifdistT .. x .. «z,y), (u,v)) = 1 then 

l<I>(z,y) - </>(u,v)1 ~ 2n -1. 0 

5 Conclusion 

In this paper we find exact dilations of toroidal meshes in paths. For the practical problem 
of embedding a parallel computer with toroidal interconnection network of size m x n this 
has the consequence that the embeddings, described in the 4-th section are optimal achieving a . 
maximal wire length of board to board connections of length 2 min{ m, n} and in the case m = n 
even 2n - 1. In practice there is an alternative which leads to shorter off-board connections 
(but longer on-board connections), i.e. the toroidal array can firstly be embedded in a 2-
dimensional array (with constant wire length). Then the 2-dimensional array can be embedded 
in the linear array using row major order. This way the maximal wire length for off-board wires 
is min{m,n}. The price for this solution is a strong increase in on-board wire area and thus in 
many applications might be rejected. 
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