
On Natural Deduction
in Fixpoint Logics

Andrzej SZA LAS

MPI–I–92–203 March 1992

Authors’ Addresses

Max–Planck–Institut für Informatik
Im Stadtwald
D-W-6600 Saarbrücken
Germany
szalas@cs.uni-sb.de

also: Institute of Informatics
University of Warsaw
02-097 Warsaw 59
ul. Banacha 2
Poland
aszalas@plearn.bitnet

Abstract

In the current paper we present a powerful technique of obtaining natural
deduction (or, in other words, Gentzen-like) proof systems for first-order
fixpoint logics. The term ”fixpoint logics” refers collectively to a class of
logics consisting of modal logics with modalities definable at meta-level
by fixpoint equations on formulas. The class was found very interesting
as it contains most logics of programs with e.g. dynamic logic, temporal
logic and, of course, µ-calculus among them.

Fixpoint logics were intensively studied during the last decade. In this
paper we are going to present some results concerning deductive systems
for first-order fixpoint logics. In particular we shall present some power-
ful and general technique for obtaining natural deduction (Gentzen-like)
systems for fixpoint logics. As those logics are usually totally undecid-
able, we show how to obtain complete (but infinitary) proof systems as
well as relatively complete (finitistic) ones. More precisely, given fixpoint
equations on formulas defining nonclassical connectives of a logic, we auto-
matically derive Gentzen-like proof systems for the logic. The discussion
of implementation problems is also provided.

Keywords

completeness, fixpoint logics, natural deduction, relative completeness

1 Introduction

A great deal of attention has been devoted to formalisms dealing with fixpoints. Deno-
tational semantics, domain theory, complexity theory, specification languages - these are
just a few computer science examples of such formalisms. As logic was widely applied
in various areas of computer science, those formalisms have their natural counterparts in
calculus, which we shall further call fixpoint calculus, or fixpoint logics.

The current paper is devoted to axiomatizing a large class of multimodal logics with
modalities definable by least fixpoints of equations on formulas. The approach we consider
is discussed in [9, 10], where both complete and relatively complete Hilbert-like proof
systems for the logics were given. The approach we investigate is close to that of µ-
calculus (cf. e.g. [6]). The differences between those approaches are precisely discussed
in [10]. Let us only recall that the most important differences are:

• we require continuity of functionals defining meaning of formulas, while only their
monotonicity is required in µ-calculus. Moreover, we do not deal with greatest
fixpoints, but the least ones only (cf., however, discussion provided in section 6)

• we do not assume any particular language of considered logic, while µ-calculus
extends dynamic logic of programs and thus inherits the whole background assumed
in that logic. We find this feature an advantage of our approach.

As mentioned earlier, Hilbert-like proof systems for considered logics were already
presented in [9, 10]. On the other hand, there is also another important method of
defining proof systems, so called natural deduction method. As the method was for
the first time proposed by G. Gentzen, natural deduction proof systems are often called
Gentzen-like calculus.

It is worth emphasizing here that Hilbert style of presentation of proof systems is
more suitable for humans, while natural deduction can be much easier automated (cf.
e.g. [3]). Let us discuss the matter more precisely. The reasoning with Hilbert-like proof
systems depends on accepting a set of basic axioms (i.e. ”obvious formulas” admitted
without proof) together with derivation rules, and then on deriving conclusions directly
from axioms and/or theorems proved previously. Derivation rules are usually formulated
according to the following scheme:

if all formulas from the (possibly infinite) set of formulas (so called premises)
S are proved then formula A (so called conclusion) is proved, too.

Such a rule is denoted by S ⊢ A. The set of provable formulas is defined inductively as
the least set of formulas satisfying the following conditions:

• every axiom is provable (note that some of the axioms may be so called nonlogical
axioms coming from a specific theory describing properties of particular interpreta-
tions)

• if premises of a rule are provable then its conclusion is provable, too.

1

Hilbert-like proof systems are then accepted as a basis for formal and verifiable reasoning
about logical tautologies and properties of interpretations (due to the mentioned ”non-
logical axioms”). One can think of proof systems as of nondeterministic procedures, for
the process of proving theorems can be formulated as follows, where formula A is the one
to be proved valid:

if A is an axiom, or is already proved, then the proof if finished, otherwise
select (nondeterministically) a set of axioms or previously proved theorems and
then apply nondeterministically chosen applicable derivation rule. Accept thus
obtained conclusion as a new theorem and repeat the described procedure.

As axioms are special kinds of derivation rules (i.e. those with the empty set of premises),
nondeterminism can only appear when there are several derivation rules that can be
applied during the proof. This, however, is an usual situation. Thus the nondeterminism
makes search for the proofs difficult, or sometimes even impossible to mechanize.

Natural deduction systems offer more general form of derivation rules. The key rôle
is played here by notion of sequents, taking form Γ ⇒ ∆, where both Γ and ∆ are finite
sets of formulas. Intuitively, the sequent Γ⇒ ∆ has the following meaning:

conjunction of formulas of the set Γ implies disjunction of formulas of ∆ (in
symbols,

∧
A∈Γ A→

∨
A∈∆ A), where, by convention, conjunction of the empty

set of formulas is true, while its disjunction is false.

(Note that because of the basic rôle of sequents, natural deduction is sometimes called
also sequent calculus).

There is an essential difference between Hilbert and Gentzen methods of proofs.
Namely, as Hilbert-like calculus are used to derive single formulas from sets of formu-
las, sequent calculus allow us to derive sequents from other sequents. Moreover, Gentzen
and Hilbert-like proofs go in opposite directions. That is, to say, in Hilbert-like systems
formula to be proved is obtained in the final stage of proof, whilst in Gentzen-like proof
it is a starting point of the proof. The natural deduction proof procedure can then be
formulated as follows, where formula A is to be proved valid:

start the whole proof from sequent ∅ ⇒ {A}. If the sequent (or all other
sequents obtained during derivation, if any) is (are) indecomposable (i.e. rules
are no longer applicable) then check, whether all of the final sequents are
axioms. If the answer is yes, then A is proved valid, otherwise it is invalid.
If some sequent is decomposable then first decompose it and then repeat the
described procedure.

Axioms in natural deduction systems are usually very simple. For instance, any sequent
Γ⇒ ∆ such that Γ∩∆ ̸= ∅, is an axiom in many proof systems for tautologies. Derivation
rules take more complicated form S ⊢ S, where S is a (possibly infinite) set of sequents
and S is a sequent.

In what follows we shall present both complete and relatively complete natural de-
duction systems for fixpoint logics. As the logics we consider are totally undecidable,
they cannot be completely axiomatized by effective proof systems. However the systems
we present can be implemented directly, or at least suggest possible implementations.

2

The non-effective parts of the systems can be replaced by finite formal systems of arith-
metics (cf. e.g. [11]). The obtained implementations are not as strong as the initial
proof systems. However, taking sufficiently strong finitistic formal systems of second-
order arithmetics, one can obtain very powerful systems. The techniques of measuring
the strength of such implementations can be found in the literature (cf. e.g. [1]).

2 Preliminary notions

Let us first establish a logical framework assumed in this paper. The logics we consider
are extensions of classical first-order logic. By M we shall denote an enumerable set of
non-classical connectives (or, in other words, modalities). For the sake of simplicity we
assume that the connectives are unary. The presented approach can easily be extended
to non-classical connectives that have more than one argument (cf. [9] and also example
2.3). In the sequel we shall always assume that a first-order signature is fixed. By L we
shall then denote the set of many-sorted classical first-order formulas.

Definition 2.1 Let M be an enumerable set of non-classical connectives. We form an
M-extension of classical first-order logic, M -logic in short, as triple L = ⟨L(M), C, |=⟩,
where:

1. L(M) is the set of formulas obtained from L augmented with the following syntax
rules:

• L ⊆ L(M)

• for any m ∈M and A ∈ L(M), m(A) ∈ L(M)

2. C is a class of admissible interpretations (we assume that C is a subclass of classical
first-order interpretations in relational structures)

3. |= is a satisfiability relation that agrees with the classical one for classical first-order
formulas (forM∈ C, A ∈ L(M) and valuation v of free variables,M, v |= A means
that A is satisfied by interpretation M and valuation v). 2

In what follows we shall define fixpoint logics, as understood in this paper. First,
however, let us consider two examples that illustrate the main idea (cf. also [9, 10]).

Example 2.2 Let ⟨P ∗⟩A be a modality of dynamic logic (cf. e.g. [4]) meaning that
”there is a nondeterministic iteration of program P , results of which satisfy formula A”,
i.e.

M, v |=DL ⟨P ∗⟩A iff there is i ∈ ω such that M, v |=DL ⟨P ⟩iA,

where by ⟨P ⟩i we mean ⟨P ⟩ repeated i-times and |=DL denotes the satisfiability rela-
tion of dynamic logic. Then for all M and v,

• M, v |=DL ⟨P ∗⟩A ↔ A ∨ ⟨P ⟩⟨P ∗⟩A

• M, v |=DL ⟨P ∗⟩A iff there is i ∈ ω such that M, v |=DL Gi
⟨P ∗⟩A(false),

where G⟨P ∗⟩A(x) = A ∨ ⟨P ⟩x.

3

Note that the first of the above propositions can be reformulated as follows:

• M, v |=DL ⟨P ∗⟩A ↔ G⟨P ∗⟩A(⟨P ∗⟩A). 2

In the following example we consider atnext operator of temporal logic. the original
operator was a two-argument one. Since we deal with unary modalities only, we introduce
infinitely many operators atnextB, where B’s are temporal formulas.

Example 2.3 Let AatnextB be a modality of linear time temporal logic (cf. e.g. [7])
meaning that ”there is a future time point satisfying formula B and in the first such a
point formula A is satisfied”, i.e.

M, v |=TL AatnextB iff there is i ∈ ω − {0} such that
M, v |=TL ⃝i(A ∧B), and for all 0 < j < i, M, v |=TL ⃝j(¬B),

where by⃝k we mean⃝ repeated k-times, and |=TL denotes the satisfiability relation of
temporal logic. Then for all M and v,

• M, v |=TL AatnextB ↔ ⃝(A ∧B) ∨⃝(¬B ∧ AatnextB)

• M, v |=TL AatnextB iff there is i ∈ ω such that M, v |=TL Gi
AatnextB(false),

where GAatnextB(x) =⃝(A ∧B) ∨⃝(¬B ∧ x).

Note that the first of the above propositions can be reformulated as follows:

• M, v |=TL AatnextB ↔ GAatnextB(AatnextB). 2

The above examples show the most essential characterization of non-classical connec-
tives in considered logics. Namely, equivalences given above have the following common
form:

x↔ G(x).

Moreover, each of the defined modalities is characterized as least upper bound of the
set {Gi(false) : i ∈ ω} of formulas. Thus, in a sense, usual fixpoint (or denotational)
semantics, frequently used in computer science, is transferred here into non-classical logics.

Let us now provide a more precise definition of definability of nonclassical connectives
by means of fixpoint equations (where equality on formulas is interpreted as usual equiva-
lence). Note that in the below definition we require some additional well-founded relation
on nonclassical connectives. That is a bit technical point in the definition. However,
the required relation can usually be found in a natural way. In what follows we shall
then assume that the set of nonclassical connectives, M , is always supplemented by a
well-founded relation <M .

Definition 2.4 We say that set G(M) = {Gm(A) : m ∈ M,A ∈ L(M)} defines set M
of nonclassical connectives of M -logic L provided that the following conditions hold:

• for any interpretation M of L and valuation v of free variables,

– M, v |= m(A)↔ Gm(A)(m(A))

4

– M, v |= m(A) iff there is i ∈ ω such that M, v |= Gi
m(A)(false)

• there is a well-founded relation <M on M such that righthand sides of equivalences
defining functionals Gm(A) contain (syntactically) only connectives less (w.r.t. <M)
than m. 2

For examples of functionals defining various logics see [10]. Let us now define some
notions of monotonicity that are important in the forthcoming parts of this paper. It is
worth mentioning here that in what follows we shall use both arrows ⇒ and →, the first
to separate the two parts of a sequent, the second to denote usual implication.

Definition 2.5

• Given an M -logic, we shall say that set M of non-classical connectives is monotone
iff for any interpretation M, nonclassical connective m ∈M , and formulas A,B:

M |= A→ B implies M |= m(A)→ m(B)

• Given an M -logic, we shall say that set G of functionals is monotone iff for any
interpretation M, functional G ∈ G and formulas A,B:

M |= A→ B implies M |= G(A)→ G(B)

• We say that an M -logic is monotone iff M is monotone and there is a monotone set
of functionals defining connectives of M . 2

To indicate the fact that set of nonclassical connectives of monotone M -logic is defin-
able by monotone set G(M) of functionals we shall write (M,G)-logic instead of M -logic.

What now remains to define is the natural deduction method.

Definition 2.6 Let L be an M -logic.

• By a sequent of logic L we shall mean any expression of the form Γ ⇒ ∆, where
both Γ and ∆ are finite sets of formulas of L.

• By M, v |= Γ⇒ ∆ we shall mean that M, v |= ∧
A∈Γ A→

∨
A∈∆A.

• By a natural deduction proof system we shall mean any pair ⟨Ax,R⟩ such that

– Ax, called the set of axioms, is any set of sequents of L
– R is any set of derivation rules of the form Σ ⊢ S, where Σ is any set of sequents

of L, and S is a sequent of L.

• We say that sequent S (formula A) is indecomposable in a given natural deduction
proof system iff no rule of the system is applicable to S (to any sequent of the form
Σ, A,Γ ⇒ ∆ or Γ ⇒ Σ, A,∆). A sequent (formula) is called decomposable iff it is
not indecomposable. 2

5

Definition 2.7 Let P = ⟨Ax,R⟩ be a natural deduction system for logic L.

• By a decomposition tree of a sequent S in proof system P we shall mean a a rooted
tree with nodes labelled by sequents, such that

– the root of the tree is labelled by S

– all leaves of the tree are labelled by indecomposable sequents

– any node n in the tree is either labelled by an element of Ax, or by sequent S
for which there is a derivation rule S ⊢ S in R such that

∗ S = {t : t is a label of a son of n in the tree}
∗ the first decomposable formula (counting from left to right) of sequent

labelling n is decomposed.

• By a proof of sequent S in P we shall mean a decomposition tree of S satisfying the
following additional conditions

– the height of the tree is finite

– all leaves are labelled by axioms of Ax. 2

Note that proofs are carried out top down and afterwards read bottom up. Note also
that, according to notational conventions used in the literature, by Γ,∆,Π,Σ we shall
denote finite sets of formulas. Similarly, by Γ, A,∆ we shall mean set Γ∪ {A} ∪∆. Thus
colon corresponds to set-theoretical union. Semicolon is used to separate sequents from
each other.

It is worth emphasizing here that both proof systems we present are ”cut-free”. This
means that the cut rule is not included in those proof system. This, of course, considerably
simplifies both the search for proofs and possible implementations of the proof systems.
(In fact, a very weak form of cut rule appears in definition 4.1 (rule 5′.a). This, however,
as we shall see, causes no further implementation problems.)

3 An infinitary proof system

Let us now define infinitary proof systems for fixpoint logics. For the sake of simplicity, in
the classical part of the proof system we introduce rules for ¬,∧ and ∀ only. Other Boolean
connectives and existential quantifier ∃ can be defined by the above ones as usually. One
can also easily derive proof rules for thus obtained quantifier and connectives.

In what follows we shall always assume that an enumeration of the set of terms is
given. By ti, where i ∈ ω, we shall then denote the i-th term (w.r.t. the enumeration).
For a sequent S labelling node, say n, in a decomposition tree T , by ΓS (by ∆S) we
shall mean

∪
l∈N Γl (or

∪
l∈N ∆l, respectively), where N is the set of all nodes on the path

from n to the root of the tree (including n) and Γl, ∆l denote respective parts of sequent
labelling node l.

Definition 3.1 Let L be an (M,G)-logic. By IPL we shall mean the following proof
system

6

• axioms:
⊢ Γ⇒ ∆, when Γ ∩∆ ̸= ∅

• rules:

1. (a) A,Γ⇒ Σ,∆ ⊢ Γ⇒ Σ,¬A,∆
(b) Σ,Γ⇒ A,∆ ⊢ Σ,¬A,Γ⇒ ∆

2. (a) Σ, A,B,Γ⇒ ∆ ⊢ Σ, A ∧B,Γ⇒ ∆

(b) Γ⇒ Σ, A,∆; Γ⇒ Σ, B,∆ ⊢ Γ⇒ Σ, A ∧B,∆

3. (a) Σ, A(x← t),Γ⇒ ∆,¬∀x(A(x)) ⊢ Σ, ∀x(A(x)),Γ⇒ ∆,
where t is the first term (w.r.t. given enumeration) for which A(x ← t)
does not appear in ΓΣ,∀x(A(x)),Γ⇒∆, and A(x ← t) denotes the formula
obtained from A by replacing x by t with renaming the free variables of t
which are bound in A, if necessary

(b) Γ⇒ Σ, A(x),∆ ⊢ Γ⇒ Σ,∀x(A(x)),∆,
where variable x does not appear neither in Γ, nor in ∆

4. for all m ∈ M and formula A such that Gm(A)(x) is a constant functional
(syntactically, i.e. functional containing no occurrences of x) we assume the
following rules:

(a) Σ, Gm(A)(false),Γ⇒ ∆ ⊢ Σ,m(A),Γ⇒ ∆

(b) Γ⇒ Σ, Gm(A)(false),∆ ⊢ Γ⇒ Σ,m(A),∆

5. for all m ∈M other than those above we assume the following rules:

(a) Γ⇒ Σ, Gi
m(A)(false),∆,m(A) ⊢ Γ⇒ Σ,m(A),∆,

where i is the smallest natural number for which Gi
m(A)(false) does not

appear in ∆Γ⇒Σ,m(A),∆

(b) {Σ, Gi
m(A)(false),Γ⇒ ∆}i∈ω ⊢ Σ,m(A),Γ⇒ ∆. 2

Note that the rules 4.a and 4.b are special cases of rules 5.a and 5.b. We introduced
them in order to simplify the obtained proof systems. Constant functionals appear in
considered logic rather frequently but, on the other hand, need no infinitary characteri-
zation.

One can find some context conditions, referring to the path in decomposition tree (cf.
rules 3.a and 5.a), somewhat unusual. We introduced them to be closer to implementation
of given proof systems. On can, however, reformulate them into the form of ”pure” natural
deduction method as follows:

3.a Γ, A(x← ti+1),Σ⇒ ∆,¬∀x(A(x)),¬A(x← t0), ...,¬A(x← ti),¬A(x← ti+1)
⊢ Γ,∀x(A(x)),Σ⇒ ∆,¬A(x← t0), ...,¬A(x← ti) ,

5.a Γ⇒ ∆, Gi
m(A)(false),Σ,m(A), Gi

m(A)(false) ⊢ Γ⇒ ∆,m(A),Σ,

where i is the smallest natural number for which Gi
m(A)(false) does not appear in

∆ ∪ Σ.

Observe that both A(x ← ti+1) and Gi
m(A)(false) appear in the premises twice, for the

second time artificially, in a context where they can never be decomposed, since we only

7

allow the first decomposable formula to be decomposed (cf. definition 2.7). In our case,
always ¬∀x(A(x)) or m(A) is then to be decomposed before the latter occurrence of
¬A(x ← t) or Gi

m(A)(false), respectively. That is a technical trick, due to which all
suitable formulas remain all the time inside of sequents so that, in a sense, a sequent
”remembers” which formulas were used during its proof. This makes it possible to check
context conditions which are directly related to a sequent (but indirectly, of course, again
to the whole path which is now ”stored” inside of the sequent).

Note also, that formula ¬∀x(A(x)) appears at righthand sides of sequent in the
premises of both 3.a and 3.a. This is again a technical trick, due to which sequents
”remember” that formula ∀x(A(x)) can still be decomposed, but after the decomposi-
tion of formulas in ∆. (That is, of course, not necessary in case of rules 5.a and 5.a, as
respective formulas already appear at the rightmost sides of sequents.)

As we are now going to show that proof system IPL is both sound and complete, let
us first briefly discuss notions of soundness and completeness. First of all, soundness is
the most fundamental property of proof systems, for it means that all proved conclusions
are semantically true. In terms of procedures one can define soundness as correctness
of procedure implementing proof system. All results of the procedure have then to be
correct. Completeness, however, means that all semantically true conclusions can indeed
be obtained as results of the procedure. In other words, soundness means that all answers
given by a proof system are correct, while completeness means that all correct answers can
be obtained using the proof system. As soundness is then always required, completeness
serves as a measure of quality of proof systems. Let us now define those notions more
precisely.

Definition 3.2 Let P be a proof system for the logic L = ⟨F, C, |=⟩. Then

• we shall say that proof system P is sound iff for any sequent Γ⇒ ∆ provable in P ,
|= Γ⇒ ∆

• we shall say that proof system P is complete iff any sequent Γ ⇒ ∆ such that
|= Γ⇒ ∆ is provable in P . 2

The following theorems provide us with a very interesting characterization of proof
system IPL.

Theorem 3.3 For any (M,G)-logic L, proof system IPL is sound.

Proof

First of all, note that both axiom and rules 1−3 are usual rules for classical first-order
logic. As the logics we consider are extensions of classical logic, rules 1 − 3 still remain
sound.

As mentioned earlier, rules 4.a and 4.b are particular cases of 5.a and 5.b and thus
need no separate proof. The soundness of 5.a easily follows from the fact that each m(A)
is definable by Gm(A) (one has simply to use definition 2.4).

To prove 5.b assume that all premises of the rule are valid and suppose that the con-
clusion is not valid. This means that there is an interpretation M and a valuation v
of free variables such that M, v |= (

∧
B∈Σ∪ΓB) ∧m(A) and not M, v |= ∨

B∈∆ B. Since

8

M, v |= m(A), by definition 2.4, there is i ∈ ω such that M, v |= Gi
m(A)(false). Thus,

for that particular i, M and v, the i-th premise of the rule 5.b is not satisfied, i.e. not
M, v |= Σ, Gi

m(A)(false),Γ⇒ ∆ and then a contradiction is reached. 2

Theorem 3.4 For any (M,G)-logic L, proof system IPL is complete.

Proof

Observe that the completeness proof of the infinitary calculus extended by cut rule
could easily be reduced to the proof given in [10], for all axioms and proof rules given
there would then have their counterparts in IP + cut . In order to avoid cut rule we shall
present another proof. The technique we use is somehow similar to that applied in [8]
for algorithmic logic.

First observe that for any interpretationM of L any valuation v of free variables and
any rule of IPL of the form {Γk ⇒ ∆k}k∈K ⊢ Γ⇒ ∆,

M, v |= Γ⇒ ∆ iff M, v |=
∧
k∈K

(
∧

A∈Γk

A⇒
∨

A∈∆k

A).

(note that all rules have the form required above, most of them with K of cardinality
1). Now, by structural induction on sequents and then by induction on the height of
decomposition tree, one can easily prove the following proposition.

Proposition

For any interpretation M and valuation v of free variables, if M, v do not
satisfy a sequent labelling a node, say n, in a decomposition tree, then they
do not satisfy any sequent labelling nodes on the path from n to the root of
the tree.

The proof of completeness theorem can now be be carried out by proving the following
two claims:

1. if
∧

A∈Γ A→
∨

A∈∆A is a tautology of L and the decomposition tree of sequent Γ⇒
∆ has a finite height, then all leafs are labelled by axioms (i.e. the decomposition
tree is then a proof of Γ⇒ ∆ in IPL - cf. definition 2.7)

2. if a decomposition tree of Γ ⇒ ∆ has an infinite path (i.e. its height is not finite),
then

∧
A∈Γ A→

∨
A∈∆ A is not a tautology.

Proof of 1.

Let T be a finite height decomposition tree of sequent S = Γ⇒ ∆. Suppose now that
there is a leaf l of T labelled by a sequent, say Γl ⇒ ∆l, that is not an axiom. That means
that Γl ∩∆l = ∅. We are thus able to define an interpretationM for first-order language
L such that M = ⟨U, {fi}i∈I , {rj}j∈J⟩, where

• U is the set of all terms of the language L

• an application of an n-argument function ofM, say f , to terms t1, ..., tn, gives as a
result term f(t1, ..., tn)

9

• for any terms t1, ..., tm and any m-argument relation r of M, M |= r(t1, ..., tm) iff
r(t1, ..., tm) ∈ Γl.

Let v be a valuation of free variables in U such that for all x, v(x) = x. From the
definition of M and v it immediately follows that M, v |= ¬(

∧
A∈Γl

A→ ∨
A∈∆l

A). This,
by proposition from the beginning of the proof, means that none of sequents labelling
nodes on the path from l to the root of decomposition tree of S is satisfied by M and v.
In particular, this concerns sequent S, too. This means that

∧
A∈Γ A →

∨
A∈∆A is not a

tautology of L, and a contradiction is reached.

Proof of 2.

Let T be an infinite height decomposition tree of sequent S = Γ0 ⇒ ∆0. This means
that there is an infinite path in T , starting from the root. Assume that {Γl ⇒ ∆l}l∈ω are
all sequents labelling nodes on the infinite path (ordered respectively). Let us define an
interpretation M for first-order language L and valuation v o free variables in M, such
that M, v ̸|= ∧

A∈Γ0
A→ ∨

A∈∆0
A. Let now Γ =

∪
l∈ω Γl, and ∆ =

∪
l∈ω ∆l.

Define M = ⟨U, {fi}i∈I , {rj}j∈J⟩ as follows:

• U is the set of all terms of the language L

• an application of an n-argument function ofM, say f , to terms t1, ..., tn, gives as a
result term f(t1, ..., tn)

• for any terms t1, ..., tm and any m-argument relation r of M, M |= r(t1, ..., tm) iff
r(t1, ..., tm) ∈ Γ.

Let v(x) = x for all variables x. We shall prove the following proposition.

Proposition

For any formula A,
if A ∈ Γ then M, v |= A

and
if A ∈ ∆ then M, v |= ¬A.

Observe that the above proposition implies claim 2, for the existence of an infinite
path in decomposition tree of a sequent implies then the existence ofM and v for which
M, v |= ¬(

∧
A∈Γ0

A→ ∨
A∈∆0

A), for Γ0 ⊆ Γ, and ∆0 ⊆ ∆.

For the purpose of proving the proposition we shall need a well-founded relation ≺
ordering formulas, defined as the transitive closure of the smallest (w.r.t. ⊆) binary
relation satisfying the following conditions:

• all indecomposable formulas are minimal w.r.t. ≺

• A ≺ ¬A

• A ≺ A∧B and B ≺ A∧B, (for any other binary Boolean connectives, if one defines
any, the rule should be similar)

• for any term t, A(x← t) ≺ ∀xA(x)

• for any i ∈ ω and m ∈M , Gi
m(A)(false) ≺ m(A).

10

Note that the well-foundness of ≺ follows from the fact that Gi
m(A)(false) contains only

connectives less w.r.t. well-founded relation <M ensured by definition 2.4.

Now we shall prove our proposition by induction on ≺.

First we start with minimal elements (i.e. with indecomposable formulas). Assume A
is indecomposable and A ∈ Γ∪∆. Thus there is k ∈ ω such that A ∈ Γk ∪∆k and for all
0 ≤ n < k, not A ∈ Γn ∪∆n. Since the path we consider is an infinite one, Γk ∩∆k = ∅.
This means that either A ∈ Γk or A ∈ ∆k and, moreover, since A is indecomposable,
either for any k′ ∈ ω such that k′ ≥ k A ∈ Γk′ or for any such k′, A ∈ ∆k′ , i.e. either
A ∈ Γ or A ∈ ∆. By definition of M, if A ∈ Γ then M, v |= A and if A ∈ ∆ then A ̸∈ Γ,
thus M, v |= ¬A.

Let us now prove the induction step.

• Assume that formula A is of the form ¬B. By rule 1 of IPL, ¬B ∈ Γ implies that
B ∈ ∆ and ¬B ∈ ∆ implies that B ∈ Γ. This, by inductive assumption, proves the
inductive step in the case of negation.

• Assume that formula A is of the form B ∧ C. By rule 2 of proof system IPL either
B and C appear both in Γ, or one of them appears in ∆. Thus, by inductive
assumption, M, v |= B and M, v |= C, or M, v |= ¬BC (where BC is either B or
C). Thus eitherM, v |= B∧C, orM, v |= ¬(B∧C), the former in case B∧C ∈ Γ,
the latter in case B ∧ C ∈ ∆.

• Assume that formula A is of the form ∀xB(x). Now rule 3 is applicable. Consider
rule rule 3.a of IPL (the proof in case of rule 3.b is similar and thus will not be
presented here). SupposeM, v |= ¬∀xB(x). This means that for some element x of
M, B(x) is not satisfied by M and v. As elements of M are terms, for some term
t, M, v |= ¬B(x ← t). This contradicts our inductive assumption, for B(x ← t) is
obtained after finitely many decomposition steps at the lefthand side of a sequent,
thus belongs to Γ and should then be satisfied by M and v.

• Assume that formula A is of the form m(B). Now two rules (4 and 5) of IPL are
applicable. We do not have to consider rule 4 separately, as that is a special case
of rule 5. First consider the case of rules 5.a. Suppose that M, v |= m(A). By
definition 2.4 we thus have that there is j ∈ ω such that M, v |= Gj

m(A)(false),
but then one can apply rule 5.a j times and reach the contradiction with inductive
assumption. Namely, for all i ∈ ω, Gi

m(A)(false) ≺ m(A) and Gj
m(A)(false) ∈ ∆.

Thus, by inductive assumption, M, v |= ¬Gj
m(A)(false).

Consider now the case of rule 5.b. By definition of ≺ we have that for any i ∈ ω
and m ∈ M , Gi

m(B)(false) ≺ m(B). Thus, by inductive assumption, for all i ∈ ω,

M, v |= Gi
m(B)(false). Thus, by definition 2.4, also M, v |= m(B).

This completes the proof of our proposition, and thus of the completeness theorem,
too. 2

The above theorems give us the following important characterization of proof system
IPL, where L is an (M,G)-logic:

11

the set of sequents provable in IPL is equal to the set of all sequents Γ ⇒ ∆
for which |= Γ⇒ ∆. in particular, the set of all formulas A for which sequent
∅ ⇒ A is provable in IPL is equal to the set of all tautologies of logic L.

4 A relatively complete proof system

In this section we define proof systems RPL which are obtained from the previous ones
by substituting infinitary proof rules. In what follows we shall always assume, that the
first-order signature contains (at least) constant symbols 0 and 1, two binary function
symbols + and ∗, and a binary relation symbol ≤.

Definition 4.1 Let L be an (M,G)-logic. By RPL we shall mean the proof system
obtained from the infinitary system IPL (cf. definition 3.1) by replacing the proof rule 5
by the following ones:

5’. (a) Gm(A)(C)⇒ C; Γ, C,Σ⇒ ∆ ⊢ Γ,m(A),Σ⇒ ∆

(b) C(n← n + 1)⇒ Gm(A)(C(n)); C(n← 0)⇒ ∅; Γ⇒ Σ,∃n(C(n)),∆
⊢ Γ⇒ Σ,m(A),∆,

where n does not appear in m(A). 2

Note that the presence of formula C in rules 5′.a and 5′.b seems to complicate the
search for proofs or even make it impossible to automatize. However, as it will follow
from the proof of theorem 4.5, the search for a suitable formula can also in this case be
automated. The formula obtained from the proof, as a general one, is usually not the
simplest one. Some heuristics are then necessary to make the process of proving theorems
more efficient.

Let us now discuss the notion of relative completeness. It was for the first time con-
sidered by Cook (cf. [2]) in context of Hoare logics. Cook separated the reasoning about
programs from reasoning about properties of data structures. He then restricted the class
of admissible interpretations to so called expressive interpretations only. Later it turned
out, that one has to restrict himself to arithmetical interpretations when considering logics
more expressive than that of Hoare. Arithmetical completeness, reflecting this restriction,
has then been derived from relative completeness by Harel in [4], in context of dynamic
logic. Harel gave finitary proof rules for first-order dynamic logic that allow us to eliminate
programs from formulas of the logic. As first-order dynamic logic is totally undecidable,
there was of course price to paid, namely the set of axioms forms now a totally unde-
cidable set. On the other hand, those axioms, as classical first-order properties of data
structures are supposed to be known by a programmer, who should never write programs
based on unknown properties of data. Yet another restriction of class of interpretations
was considered in [9], where the only admissible interpretations are strictly arithmetical
interpretations. Such a class of interpretations is a proper subclass of arithmetical inter-
pretation. It is, however, still large and worth interest. For instance, domains of finite
stacks, queues, trees, arrays, symbols etc. with usual operations on them are all strictly
arithmetical. More precise definition follows.

12

Definition 4.2 Let L = ⟨F, C, |=⟩ be an M -logic. InterpretationM∈ C is called strictly
arithmetical (s-arithmetical, in short) provided that:

• M contains sort ω of natural numbers together with constants 0, 1, functions +, ∗
and relation ≤ (interpreted as usual)

• for each sort s of M there is an effective binary relation es ”encoding elements of
sort s”, i.e. such that for each x of sort s there is exactly one i ∈ ω with es(x, i)
true in M. 2

We are now ready to define notions of relative and strictly arithmetical completeness.

Definition 4.3 Let P be a proof system for the logic L = ⟨F, C, |=⟩. Then

• we say that P is sound (complete) for L relative to class I ⊆ C provided that for
any interpretation M∈ I and any sequent Γ⇒ ∆ of L,

⊢ThM Γ⇒ ∆ implies (is implied by) M |= Γ⇒ ∆,

where ThM denotes the first-order theory of interpretationM, i.e. the set {A ∈ L :
M |= A}, and ⊢ThM denotes the syntactic consequence relation of proof system P
augmented with the following set of axioms:

{Π⇒ Σ1, A,Σ2 : A ∈ ThM}

• we say that P is s-arithmetically sound (complete) provided that it is sound (com-
plete) for L relative to the class of s-arithmetical interpretations. 2

In order to simplify our considerations, in what follows we shall consider one-sorted
s-arithmetical interpretations with sort ω, operations 0, 1,+, ∗ and additional functions
of signature ω → ω. In the presence of encoding relations this can be done without loss
of generality. Namely, functions and relations on sorts other than ω can be represented
by functions with signature ω → ω or ω → {0, 1}, respectively.

Let us now briefly discuss the notion of partial recursive functional, as it is needed
in the proof of s-arithmetical completeness of proof system RPL. Namely, by a partial
recursive functional we shall mean mean any functional that, interpreted in s-arithmetical
interpretation, is partial recursive (perhaps relative to some oracle). That is, to say, a
functional G is partial recursive whenever for each formula A and vector of variables x,
given an oracle answering whether A(x) is true, the question whether G(A)(x) is true,
is partial recursive. This notion of partial recursiveness is well known and its precise
definition need not be quoted here. The definition of partial recursive functionals that
perhaps best serves our purposes is to be found in the book [5].

Now we are ready to prove the main results of this section.

Theorem 4.4 For any (M,G)-logic L, proof system RPL is s-arithmetically sound.

Proof

13

Soundness of rules 1− 4 easily follows from their soundness in proof system IPL. Let
us then first prove soundness of rule 5′.a.

Assume that the premises are true in some interpretation M. We shall then show
that for all i ∈ ω,

M |= Γ, Gi
m(A)(false),Σ⇒ ∆.

Let us first show that for all i ∈ ω,

M |= Gi
m(A)(false)⇒ C.

We proceed by induction on i. The case of i = 0 is trivial, for G0
m(A) applied to any

formula, is, by convention, false. Assume that our claim is true for some i ∈ ω. We shall
show that it then remains true also for i + 1. Note that, by inductive assumption and
monotonicity of G (cf. definition 2.5), we have thatM |= Gi

m(A)(false)⇒ C impliesM |=
G(Gi

m(A)(false)) ⇒ Gm(A)(C). Since the first of premises, Gm(A)(C) ⇒ C, is assumed

valid in M, we also have that M |= G(Gi
m(A)(false))⇒ C, i.e. M |= Gi+1

m(A)(false)⇒ C,
which completes the proof of our claim.

By the second of premises of the rule we now have that for all i ∈ ω,

M |= Γ, Gi
m(A)(false),Σ⇒ ∆.

Now the rest of the proof of soundness of rule 5′.a can be carried out just like in the case
of rule 5.b of proof system IPL.

What now remains to prove is the soundness of rule 5′b. Assume that all premises of
rule 5′.b are true in interpretation M. We shall show that for all i ∈ ω,

M |= C(i)⇒ Gi
m(A)(false).

We proceed by induction on i. The case of i = 0. is trivial for formula C(0) ⇒
G0

m(A)(false) is just the second of premises. Assume M |= C(i) ⇒ Gi
m(A)(false). Then,

by monotonicity of Gm(A), M |= Gm(A)(C(i)) ⇒ Gm(A)(G
i
m(A)(false)). From the first

premise of our rule we have M |= C(i + 1) ⇒ Gm(A)(C(i)). Thus M |= C(i + 1) ⇒
Gm(A)(G

i
m(A)(false)), i.e. M |= C(i + 1)⇒ Gi+1

m(A)(false).

Now note that, by the third premise of our rule,M |= Γ⇒ Σ,∃n(C(n)),∆. Thus, by
the above and definition 2.4, M |= Γ⇒ Σ,m(A),∆, which proves the result. 2

Theorem 4.5 For any (M,G)-logic L, if all functionals of G are partial recursive then
proof system RPL is s-arithmetically complete.

Proof

The proof of s-arithmetical completeness can easily be reduced to the proof of similar
theorem shown in [9] for Hilbert-like proof systems. One can base on lemma 4.4 of [9],
where the reasoning about fixpoint formulas is reduced to reasoning about classical first-
order ones. Namely, formula C required in rule 5′ is constructed there and appears to
be a classical first-order one. Formula C that satisfies premises of rules 5′.a and 5′.b can
defined inductively as follows:

C(n← 0)↔ false

14

C(n← n + 1)↔ Gm(A)(C(n)).

(Note that M |= m(A)↔ ∃n(C(n))).

The only (and, in fact, most difficult) problem to be solved is that we still have to
eliminate the inductive definition of C and find a formula that explicitly defines C. There
is, however, a theorem in recursion theory (cf. e.g. theorem 3.5 in [5], p. 92) that
guarantees that such an elimination is indeed possible (cf. also [9]). Moreover, the
required formula can be constructed automatically.

Having a procedure of finding suitable formula C one can step by step eliminate
nonclassical operators from sequents. As there can be only finitely many such operators,
and Gm(A)(C) can contain only new operators that are less than m (w.r.t. ordering <M

required in definition 2.4), such an elimination terminates after finitely many steps. Those
steps are reflected by application of suitable parts of rule 5.

This completes the proof of s-arithmetical completeness of RPL. 2

The above theorems give us the following important characterization of proof system
RPL, where L is an (M,G)-logic with all functionals of G partial recursive:

if interpretation M is strictly arithmetical, then the set of sequents provable
in RPL augmented with set {Π⇒ Σ1, A,Σ2 : A ∈ ThM} of axioms is equal
to the set of all sequents Γ ⇒ ∆ for which M |= Γ ⇒ ∆. In particular, the
set of all formulas A, for which sequent ∅ ⇒ A is provable in RPL augmented
with {Π⇒ Σ1, A,Σ2 : A ∈ ThM} is equal to the set of all formulas valid in
interpretation M.

5 Examples of applications

Let us now show two examples of application of the theorems given in the previous section.

Example 5.1 Consider modality ⟨P ∗⟩A of dynamic logic (cf. example 2.2). The follow-
ing axioms and proof rules (together with some other ones for other modalities of dynamic
logic, that can be easily derived from equations given e.g. in [9]) give sound and complete
characterization of ⟨P ∗⟩A.

• axioms and rules 1− 3 given in definition 3.1

• Γ⇒ Σ, Gi
⟨P ∗⟩A(false),∆, ⟨P ∗⟩A ⊢ Γ⇒ Σ, ⟨P ∗⟩A,∆,

where i is the smallest natural number for which Gi
⟨P ∗⟩A(false) does not appear in

∆Γ⇒Σ,⟨P ∗⟩A,∆

• {Σ, Gi
⟨P ∗⟩A(false),Γ⇒ ∆}i∈ω ⊢ Σ, ⟨P ∗⟩A,Γ⇒ ∆.

After applying Gi
⟨P ∗⟩A and making minor cosmetics, one can formulate the last two rules

as follows:

• Γ⇒ Σ, ⟨P ⟩iA,∆, ⟨P ∗⟩A ⊢ Γ⇒ Σ, ⟨P ∗⟩A,∆,
where i is the smallest natural number for which Gi

⟨P ∗⟩A(false) does not appear in

∆Γ⇒Σ,⟨P ∗⟩A,∆

15

• {Σ, ⟨P ⟩iA,Γ⇒ ∆}i∈ω ⊢ Σ, ⟨P ∗⟩A,Γ⇒ ∆.

After replacing the last two rules by

• A ∨ ⟨P ⟩C ⇒ C; Γ, C,Σ⇒ ∆ ⊢ Γ, ⟨P ∗⟩A,Σ⇒ ∆

• C(n ← n + 1) ⇒ A ∨ ⟨P ⟩C(n); C(n ← 0) ⇒ ∅; Γ ⇒ Σ,∃n(C(n)),∆ ⊢ Γ ⇒
Σ, ⟨P ∗⟩A,∆,
where n does not appear in ⟨P ∗⟩A

one obtains s-arithmetically sound and complete characterization of ⟨P ∗⟩A.

Both classical and s-arithmetical soundness and completeness follow, of course, from
theorems 3.3, 3.4 and 4.4, 4.5, respectively. 2

Example 5.2 Consider modality AatnextB of temporal logic (cf. example 2.3). The
following axioms and proof rules (together with some other ones for the nexttime operator
⃝, that can be easily derived from equations given e.g. in [9]) give sound and complete
characterization of AatnextB.

• axioms and rules 1− 3 given in definition 3.1

• Γ⇒ Σ, Gi
AatnextB(false),∆, AatnextB ⊢ Γ⇒ Σ, AatnextB,∆,

where i is the smallest natural number for which Gi
AatnextB(false) does not appear

in ∆Γ⇒Σ,AatnextB ,∆

• {Σ, Gi
AatnextB(false),Γ⇒ ∆}i∈ω ⊢ Σ, AatnextB,Γ⇒ ∆.

After applying Gi
AatnextB and making minor cosmetics, one can formulate the last two

rules as follows:

• Γ⇒ Σ,
∧

0<j<i⃝j(¬B) ∧⃝i(A ∧B),∆, AatnextB ⊢ Γ⇒ Σ, AatnextB,∆,
where i is the smallest natural number for which Gi

AatnextB(false) does not appear
in ∆Γ⇒Σ,AatnextB ,∆

• {Σ,
∧

0<j<i⃝j(¬B) ∧⃝i(A ∧B),Γ⇒ ∆}i∈ω ⊢ Σ, AatnextB,Γ⇒ ∆,

The last rule, after applying rule for conjunction, can be formulated as follows:

• {Σ,⃝(¬B), ...,⃝i−1(¬B),⃝iB,⃝iA,Γ⇒ ∆}i∈ω ⊢ Σ, AatnextB,Γ⇒ ∆.

After replacing the last two rules by

• ⃝(A ∧B) ∨⃝(¬B ∨ C)⇒ C; Γ, C,Σ⇒ ∆ ⊢ Γ, AatnextB,Σ⇒ ∆

• C(n← n+ 1)⇒⃝(A∧B)∨⃝(¬B ∨C(n)); C(n← 0)⇒ ∅; Γ⇒ Σ,∃n(C(n)),∆
⊢ Γ⇒ Σ, AatnextB,∆,

where n does not appear in AatnextB

one obtains s-arithmetically sound and complete characterization of AatnextB.

Both classical and s-arithmetical soundness and completeness again follow from theo-
rems 3.3, 3.4 and 4.4, 4.5, respectively. 2

16

6 Final remarks

As mentioned in the introduction, our axiomatizations do not deal with greatest fixpoints.
Observe, however, that one can add axioms and proof rules that, in some cases, deal with
greatest fixpoints, too. Namely, assume that some Gw(A) is downward continuous (i.e. for
all M and v, M, v |= w(A) iff for all i ∈ ω, M, v |= Gi

w(A)(true)).

One can then add the following rules to our infinitary proof systems (cf. definition
3.1):

6. for all w defined as above,

(a) Γ, Gi
w(A)(true),Σ, w(A)⇒ ∆ ⊢ Γ, w(A),Σ⇒ ∆,

where i is the smallest natural number for which Gi
w(A)(true) does not appear

in ΓΓ,w(A),Σ⇒∆

(b) {Γ⇒ Σ, Gi
w(A)(true),∆}i∈ω ⊢ Γ⇒ Σ, w(A),∆.

The proofs of soundness and completeness of the obtained calculus can now be carried
out as in the case of theorems 3.3 and 3.4.

Similarly, one can easily add suitable proof rules to proof systems defined in definition
4.1 in order to obtain s-arithmetically sound and complete proof systems:

6’. (a) C ⇒ Gw(A)(C); Γ⇒ Σ, C,∆ ⊢ Γ⇒ Σ, w(A),∆

(b) ∅ ⇒ C(n← 0); Gw(A)(C(n))⇒ C(n← n + 1); Γ,∀n(C(n)),Σ⇒ ∆
⊢ Γ, w(A),Σ⇒ ∆,

where n does not appear in w(A).

Observe also that the technique of infinitary proof systems we presented is applicable
to the case of propositional fixpoint logics, too. In order to obtain sound and complete
infinitary axiomatizations of those logics one simply has to assume axioms and rules 1, 2, 4
and 5 of proof systems IPL defined in definition 3.1. This also applies to propositional
µ-calculus, as that has the finite model property (cf. e.g. [6]). Thus, when considering
validity of µ formulas, one can restrict the class of models to finite ones only. Then all
monotone functionals become both continuous and backward continuous and can thus be
captured by our approach.

17

Bibliography

[1] H. Andréka, I. Németi, I. Sain: A Complete Logic for Reasoning about Programs via
Nonstandard Model Theory (Parts I and II), TCS 17, 1982, 193-212 and 213-216.

[2] S.A. Cook: Soundness and Completeness of Axiom System for Program Verification,
SIAM J. Comput., 7, 1, 1978, 70-90.

[3] M.J. Gordon, A.J. Milner, C.P. Wadsworth: Edinburgh LCF, LNCS 78, Springer-
Verlag 1979.

[4] D. Harel: Dynamic Logic, in: Handbook of Philosophical Logic (D. Gabbay and F.
Guenthner, eds.), vol. 2, D. Reidel Pub. Co., 1984, 497-607.

[5] P.G. Hinman: Recursion Theoretic Hierarchies, Springer-Verlag, 1978.

[6] D. Kozen: Results on the Propositional µ-calculus, TCS, 27, 1983, 333-354.

[7] F. Kröger: Temporal Logic of Programs, EATCS Monographs in Comp. Sci., 8,
Springer-Verlag, 1987.

[8] G. Mirkowska, A. Salwicki: Algorithmic Logic, PWN and D. Reidel Pub. Co., 1987.

[9] A. Sza las: On Strictly Arithmetical Completeness in Logics of Programs, TCS, 79,
1991, 341-355.

[10] A. Sza las: Axiomatizing Fixpoint Logics, to appear in IPL.

[11] G. Takeuti: Proof Theory, North-Holland Pub. Co., 1975.

18

