

A Complete and Efficient Algorithm for

the Intersection of a General and a

Convex Polyhedron

K. Dobrindt K. Meh1hom M. Y vinec

MPI-I-93-140 September 1993

A Complete and Efficient Algorithm for the Intersection
of a General and a Convex Polyhedron*

Katrin Dobrindt Kurt Mehlhom
INRIA, B.P •. 93, ~-PlaDc:k-lDsütut für lDfcmuatik,

06902 SopIüa-Aatipolis Cedex, banc:e 6600 Saarbriidr.en, Gammy

Ma.riette Y vinec
INRIA aDd CNRS-UJl.A. 1376

06902 Sophia-Amipolis, Fnmc:e

Zusammenfassung
A polyhecbon is auy set &t can be obtained Dom the open haJ:fSpaces

by a finite Dumber of set complement aud set intersec:tion operations. We
gi:ve au eftic:ient aud complete algorlthm. for inteneeting wo three-clim.ensional
polyhedra, ODe of which is CODVex. The algorlthm is efticient in the sense that
its running time is bounded by the Bise of the inputs plus the sise of the output
times a logarlthmic: fador. The algorlthm is complete in the sense that it can
handle an inputs and requires no general position assumption. We also descrlbe
a novel data mueture that can represent an three-dimensional polyhedra (the
set ofpolyhedra representable by an previous data struetures is not closed under
the basic boolean operations).

lCeywords: Computational Geometry, Solid Modeling, Data Strudures, Poly­
hedra IntersectiOD.

-The reseuch of an ÜIree authors was partly supporied by the ESPRIT Basic Research AdioDs
Program, mader cOJlind No. 1141 (project ALCOM II). The resevch ofthe secoud author was also
pariially supponed by t.he BMFT (FördemupkeJIDIei.chen ITS 9103). The paper is based on t.he
first author'. master's thesis [Dob90]. A preljmjnary TerSion was presemed ai t.he third Workshop
on Algorithms aud Dm SUuc:tmes (WADS'93).

Figure 1: Examples of general polyhedra; the second polyhedron from the right is a
cube with a hole whose frontside is closed by a plane.

1 Introduction

A polyhedron is any subset of three-dimensional Euc1idean space that can be ob­
tained from the open halfspaces by a finite number of set complement and set in­
tersection operations. Figure 1 shows some polyhedra. We give an algorithm to
compute the intersection of a polyhedron P with a convex polyhedron C. The algo­
rithm runs in time O«IPI + ICI + IPnCl)log(IPI + ICI + IPncl)) where II denotes
the size of a polyhedron. The algorithm works for all inputs and not only for inputs
in general position. The only previous algorithm with similar efiiciency of Mehlhom
and Simon [MS85] applied only to regular! polyhedra in general position, i.e., a face
of P and a face of C may intersect only if the sum of their affine hulls is the entire
space. The intersection of two regular polyhedra in general position is a.ga.in regular.

The standard data structures for three-dim.ensional polyhedra, e.g. the qua.d­
edge-structure of [GS85, EM85], the doubly-connected-edge-list of [MP78, PS85],
and the half-edge-structure of [Mä.n88] , cannot represent all polyhedra. This implies
that the class of representable (in any one of these data structures) polyhedra is not
closed under the basic boolean operations intersection, union, and complement. For
instance, Figure 2 shows that the intersection of two regular polyhedra can actually
be non-regular. Given these facts we a.re facing a crucial decision. We can either stick
to the standard representations and redefine the basic boolean operations (by a.dding
a regularization step which. is the traditional remedy, cf. [Req80, Mä.n88, Hof89]),
or stick to the standard definitions of the basic operations and give up the standard
representation. We believe that the second alternative is cleaner. Besides, the solids
shown in Figure 1 look perfectly reasonable. We introduce a new data structure
(called the local-graphs-data-structure) that can represent all three-dimensional
polyhedra. Our data structure is based on the fundamental work of Nef [Nef78]
(see also [BN88]) who studied the mathematicaJ. properties of polyhedra. The data
structure stores a polyhedron as a collection of faces (vertices, edges, and facets);
each face is described as the set of points comprising the face and its locaJ. graph.
The locaJ. graph is a planar graph embedded into a sphere that captures the local

1 All mathema.tica.l terms ud notations are summarized in the appendix A.

1

Figure 2: The intersection of two regular polyhedra is not regular

properties of the polyhedron in the neighborhood of the fa.ce. The details are given
in section 2.

Apart from the aIgorithm given by Mehlhorn Simon [MS85] mentioned above,
all efficient algorithm for intersecting two polyhedra in space apply only to convex
polyhedra. The iirst efficient aIgorithm for solving this problem was given by Muller
and Preparata [MP78]. This aIgorithm takes, for two convex polyhedra Cl and C2,
time O((lCI I+IC2Dlog(lCI I+IC2D). Alternative algorithms were proposed by Hertel
et al. [HMMN84] and by Dobkin and Kirkpatrick [DK83]. The former is based on the
space sweep technique and the latter uses the hierarchicaJ. representation of convex
polyhedra. Recently, Chazelle [Cha92] presented an algorithm for constructing the
intersection of two convex polyhedra in linear time O(\CII + IC2D. In section 3, we
describe a complete aIgorithm for intersecting a general polyhedron P with a convex
polyhedron C with running time O((lPI + ICI + IP n CDlog(lPI + ICI + IP n CD)·
This algorithm iirst computes the intersections of all faces of P and all faces of C
and then builds the 10caJ.-graphs-da.ta-structure for P n C. We employ different
strategies for intersecting faces depending on the dimensionof the faces involved
and use for the convex polyhedron also its hierarchical representation.

In [DMY93] we outlined an intersection aIgorithm based on the symbolic pertur­
bation technique introduced by Edelsbrunner and Mücke [EM90]. We believe that
the algorithm presented here is simpler. In the other algorithm, we first perturb
the convex polyhedron C by moving its facets outwards by infinitesimal amounts.
This brings the two polyhedra into general position. We then apply an extension
of the intersection aIgorithm of Mehlhorn and Simon [MS85] to P and the pertur­
bation C(e) of C. Finally, we let e go to zero and obtain P n C from P n C(e).
The limit process is mathematicaJ.ly and aIgorithmicaJly quite involved and so the
overall aIgorithm is more complex than. the aIgorithm presented here. However, if
the exact output is not needed and P n C(e) suffices then the other algorithm is to
be preferred.

The paper is organized as follows. In Section 2 we introduce a data structure for
representing polyhedra. Theintersection algorithm is described in Section 3.

2

2 The Local-Graphs-Data-Structure

We start with a brief review of Nef's theory of polyhedra [Nef78, BN88].

Definition 2.1 [Nef78] A polyhedron in m.3 is a set P ~ m.3 generated from a finite
number of open halfspaces by set complement and set intersection operations.

Figure 1 shows some polyhedra. A face of a polyhedron is a maximal set of points
which have the same local view of the polyhedron. The exact definition requires the
concept of the local pyramid of a point.

Definition 2.2 A set K ~ m.3 is called a cone tDith apez 0, if K = m.+ K and a
cone tDith apez z, Z E m.3, if K = z + m.+(K - z). Thus, for a cone K with apex
z, (K - z) is a cone with apex O. A cone is polyhedral if it is a polyhedron. A set
Q ~ m.3 is called a pyramid tDith apez z, if it is a a polyhedral cone with apex z.

Note that m.+ does not include zero and thus a cone K with apex z may or may
not include z. Forthermore, a cone can have more than one apex and the set of a1l
apices of a cone is a fiat.

Definition 2.3 [Nef78] Let P ~ m.3 be a polyhedron and z E m.3 • There is a
neighborhood Uo(z) of z such that the cone Q := z + m.+«P n U(z» - z) is the
same for a1l neighborhoods U(z) ~ Uo(z). The cone Q is called the localpyramid of
the polyhedron P in the point z and is denoted Pyrp(z).

Indeed, the cone Q is a polyhedron and thus a pyramid with apex z. It describes
the local characteristics of the polyhedron in the neighborhood of the point z.

Definition 2.4 [Nef78] Let P ~ m.3 be a polyhedron. A face 8 of Pis a maximal
(with respect to set inclusion) non-empty subset of m.3 such that a1l of its points
have the same local pyramid Q, i.e., 8 = {z E m.3 IPyrp(z) = Q}. Q is called the
pyramid associated with the face and is denoted Pyrp(8) or simply Pyr(s). The
dimension of S is the dimension of the linear subspace of a1l apices of Q.

A face SI is incidentto aface 82 if SI ~ cloS(82). Asusual we call a O-dimensional
face avertu, a 1-dimensional face an edge, and a 2-dimensional face a facet. A face
of dimension two or less is called low-climensional. In Figure 3 an example in m. 2 is
given: the polyhedron has one vertex v, two edges el and e2, and two 2-dimensional
faces f and int(cpl(J». We now!ist some basic properties of faces.

Fact 2.1 [Nef78]

a) All faces of a polybedron are polybedra.

b) Tbe linear subspace of aJ1 apices of tbe pyramid associated witb a face is tbe
a.fIine buH of tbe face.

c) Faces are relative1y open sets.

3

Figure 3: Example in]R2: the edge et belongs to the polyhedron and e2 does not.

d) z E Pyrp(z) iffz E P.

e) A polyb.edron P b.as at most two 3-dimensional faces, namely int(P) = {z E
]R3IPyrp(z) =]R3} and ext(P) = {z E]R3IPyrp(z) = 0}. Tb.e boundary
bd P = {Zj 0 # pnu # U for every neigb.borb.ood U ofz} is equal to tb.e union
of tb.e low-dimensional faces.

f) Let s be a face of tb.e polyb.edron P and let t be a fare of s. Tb.en t is tb.e union
of some faces of P (cf. Figure 3 for an illustration: tb.e face f b.as one edge e
tb.at is tb.e union offaces et, v, and e2')

g) A face of Pis eitb.er a subset of P or disjoint from P.

A polyhedron may have an arbitrary number of edges with the same a.ffine hull
but can have at most six facets with the same a.ffine hull (since the loeal pyramid
of a facet is either an open or a closed haJfspace or aplane or the complement of a
plane). A face is not necessarily connected nor bounded and a polyhedron does not
necessarily have fa.ces of aJl dimensions. We are now ready to define the (abstract)
representation of a polyhedron. We williater develop a concrete data structure for
it.

Definition 2.5 For a polyhedron P let rep(P) be the set {(s, Pyrp(s»j s is a
low-dimensional face of P}.

Every polyhedron different from the full spa.ce and the empty set has alow-dimensional
face.

Lemma 2.2 Let P and R be distinct polyb.edra. Tb.en rep(P) :/; rep(R) or {P, R} =
{0,]R3}.

Proof: Let P and R be distinct polyhedra. We mayassume w.l.o.g. that P\R # 0.
If P =]R 3 then there is nothing to show. Otherwise, let z and y be points with
z E P \ R and y rt P. Let z be the first point on the ray from z to y that belongs
to the boundary of either P or R. We claim that Pyrp(z) :/; PyrR(z). If z :/; z this
follows from the observation that the open line segment with endpoints z and z is
contained in P and is disjoint from R, and if z = z this follows from z E P \ R.
Also, z belongs toalow-dimensional fa.ceofeither P or R. Thus rep(P) # rep(R). g)

4

We propose to store 30 polyhedron as the collection of its low-dimensional fa.ces
together with their local pyramids. So we need data structures for local pyramids
a.nd fa.ces.

Let Pyrp(x) be the local pyramid of point x a.nd let Sex) be 30 sphere with
center x. The intersection of Sex) with Pyrp(x) is 30 pla.nar graph embedded into
Sex) that we denote Gp(x). The nodes, arcs, a.nd regions ofthis graph2 correspond
to the edges, facets, a.nd three-dimensional faces of Pyrp(x) respectively. The graph
G p(x) may consist of 30 single arc a.nd no node. In this ca.se we caJl this unique arc
30 seljloop. For each feature (=node, arc, or region) f of the graph we have 30 label
inP(J) indica.ting whether the feature is contained in Pyrp(x). We also have such
30 label for the point x. We ca.ll Gp(x) together with these labels the load graph of
x and also use G p(x) to denote it. The following lemmata chara.cterize local graphs
and give a criterion to determine the dimension of the fa.ce containing its center.
We use the phrase to classify x to mea.n todetermine the dimension of the fa.ce
containing x.

Lemma 2.3 Tbe foHowing properties bold for every 10eaJ. grapb.

30) Every are of Gispart of a great circle.

b) For every a.re a of G tbere is 30 region r incident to a witb inP(a) #: inP(r).

c) For every node t1 of G tbere is an a.re or region f incident to t1 witb inP(t1) #:
inP(J).

d) For every node t1 of G of degree 2 witb two cocireular a.rcs al and a2 incident to
it tbe tbree labels inP(al), inP(t1), and inP(a2) a.re not identicaJ.

Moreover, any grapb G (embedded into 30 spbere) satisfying properties 30) to d) above
is tbe 10eaJ. grapb Gp(x) for some polybedron P and some point x.

Proof: 30) Ea.ch arc correspond to 30 fa.cet of Pyrp(x). The affine huH of this fa.cet
is 30 hyperp1a.ne passing through x. The intersection of this hyperpla.ne with S (x)
is 30 great circle.

b) If for an regions r incident to a.n arc a the label inP(a) equals inP(r), then the
pyramid of the points on a with respect to Pyrp(x) is either 0 or R 3 • This is 30

contradiction since these points belong to 30 fa.cet.

c) AB in b).

d) If the label inP(al), inP(t1), a.nd inP(a2) are identical then t1 a.nd an points on al
a.nd a2 have the same pyramid although they belong to different fa.ces. This is 30

contradiction that fa.ces a.re maximal subsets of points having the same pyramid.

Let x be the center of the sphere a.nd P the cone with apex x intersecting the sphere
along G. According to properties 30) to d) P is 30 polyhedron, a.nd the 10caJ. graph
for P a.nd x is G. ~

2We reserve the words vertex, edge, ud facet for polyhedra.

5

Lemma 2.4 Let G be tbe 1oca1. grapb of some point x witb respect to some poly­
bedroll P.

a) Tbe POillt x belollgB to a 3-climellSiollal fa.ce of P iff G bas 110 llodes alld 110 arcs
alld tbe unique regiOll of G bas tbe same label as x.

b) It bel011gS to a fa.cet of P iff G COllSistS of a silJgle sel:Jloop tbat, ill adclitioll, bas
tbe same label as x.

c) It belollgB to all edge of P iff G bas exa.ctly two llodes alld tbese llodes a.re
alltipodal alld bave tbe same label as x (tbere ca.n also be all arbitrary llumber
of a.rcs collllecting tbe two llodes).

d) 111 a.ll otber cases, x is avertex of P.

Proof: a) According to the definition the point x belongs to a 3-dimensionaJ. fa.ce
of P iff Pyrp(x) = 0 or Pyrp(x) = 1lt3 • Thus G has no nodes and no arcs and
the unique region of G has the same label as x.

b) The point x belongs to a fa.cet of P iff the set of apices of Pyr p(x) is a hyperplane
passing through x. Thus G is selfloop that has the same label as x.

c) The point x belongs to an edge of P iff the set of apices of Pyr p(x) is a line
passing through x. Thus G has exa.ctly two nodes and these nodes are antipodaJ..

d) Since the locaJ. graph is the intersection of a sphere with center x with Pyrp(x) ,
the only possibility left is that x is a vertex of P.

We now complete the description of the 10caJ.-graphs--data-structure. A vertex
is represented by its coordinates and its 10caJ. graph. An edge is represented by the
equation of its a.:ffine hull, an ordered sequence of open line segments comprising the
points belonging to the edge3 , and the locaJ. graph of the edge. The endpoints of
these line segments are the o-dimensionaJ. faces of the edge. They correspond to
vertices of P.

A facet is represented by the equation of its a.:ffine hull, the set of points belonging
to the facet, its 10caJ. graph, and its set of vertices and edges4 • The set of points of
the fa.cet is stored as a straight-line planar graph. For ea.ch region of this planar
graph there is alabel indica.ting whether the region belongs to the facet or not. The
vertices (o-dimensionaJ. fa.ces) of a fa.cet a.re precisely the nodes of this planar graph.
The edges (l--dimensionaJ. fa.ces) of a facet partition the arcs of the planar graph.
If two arcs belong to the same edge of the fa.cet then the arcs are collinea.r (the
converse is not true). We associate with ea.ch arc the edge containing it and with
ea.ch edge (of the fa.cet) the ordered sequence of arcs contained in the edge.

3Remember tha.t faces are not necessarily connected.
4Keep in mind that according to Fact 2.1.d) an edge of a. fa.cet is the union of some edges and

vertices of P.

6

We also store cross links between the different ·occurrences of the same object.
For exa.mple, with every edge e of a facet f we associate the set of edges and vertices
of P comprising e. If e is an edge or vertex of P contributing to ethen there is
a cross pointer between the item representing e in the set associated to e and the
at most two arcs corresponding to f in the local graph Gp(e). Similarly, there is a
cross pointer between every node x of a local graph Gp(tI) for a vertex tI of P and
the edge segment corresponding to that node,

The size of a polyhedron P is defined as the size of its local-graphs-data­
structure and is denoted IPI. It is proportional tothe number ofincidences between
the faces of P.

Definition 2.6 A convex polyhedron in]R3 is a non-empty intersection of a finite
number of open or closed haJispaces.

It follows that a convex polyhedron is not necessarily closed. For convex poly­
hedra we also use the hierarchical representation introduced by Dob:k:in and Kirk­
patrick [DK83]. An hierarchical representation of a convex polyhedron C is a nested
sequenceCo ~ Cl ~ ... ~ C/C of convex polyhedra, with (i) Co is a tetrahedron
and C/c is the polyhedron C and (ii) the set of vertices Vi of Ci is obtained from
Vi+1 by removing ci subset Ii+1 of pa.irwise non adjacent vertices of Ci+1. We ca.n
find a set IIi+ll of at least IVi+11/7 pairwise non adjacent vertices of degree at most
12, by considering the vertices of Vi+1 in order of non-decreasing degree as shown
in [Ede87]. The element Ci of the sequence is formed from Ci+1 by removing the
subset Ii+1 and forming the convex hull of the remaining vertices. This computation
requires linear time and gives a representation of C of linear space. The hierarchi­
cal representation supports intersection queries with lines and planes in logarithmic
time. An intersection query with a line returns the intersection (a line segment)
and an intersection query with a plane returns an arbitrary point of the boundary
of the intersection (if any). If the plane intersects the polyhedron in a vertex, edge,
or facet then this fact is also reported.

3 The Intersection Algorithm

We show how to compute P n C, where P is an arbitrary polyhedron and C is a
convex polyhedron, in time O«IPI + ICI + IP n cl)log(lPI + ICI + IP n CI)). We
refer to this bound as our target time and use N to denote IPI + ICI + IP n CI, Le.,
the combined input and output size. Our algorithm is based on the following fact .

Fact 3.1 [Nef78] Let P and C be polybedra.. Tben every face of P n Cis tbe union
of intersections of faces of P and C.

If one of the polyhedra is convex then a slightly stronger property holds (d. Figure 4).

Lemma 3.2 Let P be a polybedron and let C be a convex polybedron. Tben every
face of P n C is tbe intersection of one face of C witb tbe union of some faces of P.

7

cpl(int(P»

Figure 4: illustration of Lemma 3.2: the facet f of P n C is the union of the
intersection of a facet of C with int(P), an edge of P a.nd two vertices of P

We use different strategies far intersecting faces depending on the dimension of
the faces. In sections 3.2 to 3.4 we discuss how to intersect the vertices, edges, a.nd
facets of P with the faces (of aJl dimensions) of C. All three sections rely on a
subroutine to intersect two Ioca.1. graphs that we introduce in section 3.1. In section
3.5 we show how to intersect the full-dimensional faces of P with the faces (of aJl
dimensions) of C a.nd finaJly in section 3.6 the information gained previously is put
together to construct the Ioca.1.-graphs-data-structure for P n C.

3.1 Intersecting Two Local Pyramids

We show how to compute Gpnc(z) from Gp(z) a.nd Gc(z) for a point z a.nd how to
classify z with respect to pnC in time O((lGp(z)I+IGc(z)I)·Iog(lGp(z)I+IGc(z)l)).
First sweep · a p1a.ne through the sphere centered at z and intersect the two graphs
Gp(z) and Gc(z). Let G(z) be the resulting graph. We also compute the label
inP for each feature of G(z) and for z. Since Gc(z) is äther trivial (if z is not
a vertex of C) or corresponds to a convex cone, any arc of Gp(z) ca.n intersect
at most two arcs of Gc(z). Thus IG(z)1 = O(IGp(z)1 + IGc(z)1) a.nd hence G(z)
can be computed within the time bound stated above. An alternative strategy for
computing G(z) is to intersect any pair of features of the two Iocal graphs. This
takes time O(IGp(z)I'IGc(z)l) and is to be preferred if one ofthe two Iocal graphs
has constant size.

The graph G(z) determines the Iocal pyramid of z with respect to P n C but
it may contain spurious features, i.e., features violating one of the conditions (b) to
(d) of Lemma 2.3. SimpIy remove an these features (ensure condition (b) first, then
(c) a.nd fi.nally (d)) and obtain GPnc(z). Lemma 2.4 ca.n then be used to classify
the point z. Simplification and classification take time O(IG(z)l).

3.2 Vertices

Let v be a vertex of P. Locate v with respect to C in time O(Iog ICI). This decides
whether tJ belongs to C and determines the local graph Gc(v). Next compute
GPnc(v) as described in section 3.1 and classify v.

8

All of this takes time O(IGp(v)1 + log IGI) except if v is also a vertex of G in
which case it takes time O«IGp(v)1 + IGe(v)!) ·logN). Since a vertex of G can
coinclde with at most one vertex of P, summation over aJl vertices of P shows that
this step stays within the target time.

3.3 Edges

Let e be an edge of P. First intersect aJJ(e) with G in time Orlog IGI) and obtain
either an empty intersection or a line segment üV (11. = v is possible) contained in
aJJ(e). Intersect lI.V with e and obtain a number of subsegments of lI.v. All endpoints
of these subsegments except maybe 1L and v are vertices of P and hence were aJready
treated in section 3.2. Next determine the 10caJ. graphs Ge(u),Ge(v), and Ge(z)
where z is an arbitrary point between 1L and v5 , and from this and the local graph
of e compute GPne(u) , Gpne(v), and Gpne(z).

The computation ofthe local graphs takes time O(IGp(e)1) except if either 11. or v
is a vertex of either P or G. The vertices of P were a.1ready accounted for in section
3.2. For vertices 11. (or v) of G that are not also vertices of P the time required is
O«IGp(e)1 + IGe(u) I) . log(IGp(e) I + IGe(u)I)). Since any vertex of G can He on at
most one edge of P (recaJl that edges are re1ative1y open . sets) we conelude that the
total cost of treating the edges of P is within our target.

3.4 Facets

Let / be a facet of P. It is given as a polygonal subset of aJJ(f) and by its 10caJ.
graph Gp(f). Our goal is to intersect / with aJl faces of G.

There is a simple but inefficient way to do so. AJJ(f) intersects G in a convex
polygonal region whose relative interior we caJl R. We could expHcitly compute R,
then use plane sweep to intersect / and R, and finaJly compute the local graphs
of all features of the intersection by the method of section 3.1. Unfortunately, this
approach exceeds our target time (see Figure 5 for an example).

We now describe an alternative approach that only looks at those parts of R
that actually contribute to the output. First test first aJJ(f) and G for intersection
and determine an arbitrary point Z of R (if any). This has cost Orlog IGI) per facet
of P and hence total cost O(IPI·logN). H R is empty then we are done. Assume
from now on that R is non-empty. Depending on the dimension of R we proceed
differently.

Gase 1: R is a vertex of G, say v. In this case, determine whether v belongs to
/ in time 0(1/1). H v E / then compute GPne(v) and elassify v in time O(Ge(v)):
either v E ezt(P n G) or visa vertex of P n G. Since any vertex of G can He in at
most one facet of P the total cost of this case is O(IGI).

Gase 2: R is an edge of G, say e. We tau compute e n / as follows. Sort
intersection points of e with bd /. This divides the edge into subsegments. The
endpoints ofthese subsegments except maybe e's endpoints are vertices of P or the
intersection with edges of P. The number of subsegments is 0(1/1). The total cost

5GC(Z) does not depend on the choke of z.

9

c p
./

./

./

./

Figure 5: G is a polygonal. cylinder with n fa.cets and P consists of m disjoint
rectangles contained in paraJ.lel planes orthogonal. to the a.xis of G. Then the naive
approach takes time G(m . n) al.though P and G are disjoint.

of computing aJ.l the e n f's is therefore O(IPllogN). We next compute the locaJ.
graphs of an points in the point set e n I andon ~ts boundary. Consider first a point
xE en/. ThelocaJ. graph GPnc(x) does not depend on x and ca.n. be computed from
Gp(f) and Gc(e) in constant time (since Gp(f) and Gc(e) both have constant size).
Thus, the loca.l graphs of aJ.l the e n f's ca.n. be computed in time O(IPI). Consider
next a point x in the boundary of e n I. If x is either avertex of P or be1.ongs to an
edge of P then G Pnc(x) is aJ.rea.dy known. Otherwise, x is also avertex of G and
Gpnc(x) ca.n be computed from Gc(x) in time O(lGc(x)l). Since every vertex of G
is contained in at most one fa.cet of P, the total. cost for computing the locaJ. graphs
of boundary points is O(IGI).

Gase 9: R is a fa.cet of C, say 9. The boundary of I consists of one or more
polygons (not necessa.rily simple). The information gained in the previous sections
permits to cl.assify these polygons into three cla.sses: those that intersect bd 9, those
that are contained in bd 9, and those that either contain bd 9 or are disjoint from
bd 9 and do not contain it. The last dass ca.n. be split by loca.ting an arbitrary point
of 9, e.g., the point z determined above, with respect to ea.ch polygon in the dass.
The dassifica.tion process takes time O(1og IGI + 1/1) for the fa.cet I and hence total.
time O(IPllogN).

We a.re now in a position to compute 8 = In 9. Note that aJ.l intersections
between bd I and 9 are known at this point, and if bd 9 does not intersect bd I it
is also known whether bd 9 contributes to bd 8 at aJ.l. Sort for ea.ch edge of 9 (that
is intersected at least once) its intersection points with bd I (this divides the edge
into segments) in time 0«1/1 + 181) ·log(l/l + 181)). Then explore bd 8 starting at the
intersection points between bd I and bd 9 in time linear to the size of 8. Since the
fa.cet 9 is contained in aff(f) for at most six fa.cets I of p6 and 181 = 0(1/1 + 191)1,
the total. cost of computing aJ.l the 8'S is O«IPI + IGI) ·logN).

At this point we have computed the point set s. We next compute the locaJ.

'Note that 9 ~ off(l) n Off(8') implies off(l) = off(8').
7 since 9 is convex

10

graphs of an points in this set and on its boundary. Consider first a point z E 8.

The local graph GPne(z) does not depend on z and can be computed from Gp(J)
and Ge(g) (since Gp(J) and Ge'{g) both have constant size). The computation of
the local graphs of an the 8'S takes time O(IPI). Consider next a point z in the
boundary of 8. If z is either a vertex of P or belongs to an edge of P then Gpne(z)
is a1ready known. Otherwise, z E f n bd 9 and Gpne(z) can be computed from
Ge(z) in time O(IGe(z)1). For the computation of the local graphs of the boundary
points observe first that z E f n bd 9 implies that z is either a vertex of C or belongs
to an edge of C. For the vertices we argue as in the previous paragraph. For a point
z on an edge of C the local graph GPne(z) can be computed in constant time and
hence time 0(181) suffices for an edges of C contributing to the boundary of 8. The
total cost computing the local graphs of boundary points is therefore O(IPI + ICI).

Case 4: R is a cross section of C. The classi:6.cation of the polygons that con­
tribute to the boundary of f is the same as in Case 3. To compute s = f n R we
use the procedure described in Case 3. The exploration of bd 8 is, however, different
since we have no explicit representation of R. During the exploration we assume
that bd C is triangulated which can be done in time O(ICI). Now, explore bd s
starting at the intersection points between bd f and bd R as fol1ows. Let z be such
an intersection point. We want to construct the at most two edges of f n bd R inci­
dent to z. We use the information of the local pyramid Gpne(z) (which is already
known) to get the directions of edges f n bd R incident to z in constant time and
from this the vertices adjacent to z. AB we go we may encounter vertices that a.re
not yet known, i.e. O-dimensional intersections of f n bd R. Finding the incident
edges for such a vertex y takes in total at most O(IGe(y)1) time. Note that only
those parts of bd R are inspected that actuany contribute to bd s. Fnrthermore,
since R is a convex polygon, we visit a vertex of f n bd R at most twice.

The local pyramids of s and bd s are computed as in Case 3. We still need to
a.rgue that we stay within our target time. If R is a cross section of C then an edges
and vertices of bd 8 a.re also edges and vertices of PnC. The total cost of computing
all the s's and their local graphs is therefore O((lPI + ICI + IP n CI) . log N). For
the local graphs of the boundary points z E f n bd R observe that G pne(z) can
be computed in constant time if z is not a vertex of C and in time O(lGe(z)1)
if z is a vertex of C, and that any vertex of C can be contained in at most one
facet of P. The total cost of computing local graphs of boundary points is thus
O(IPI + ICI + IP n CI).

3.5 Full-dimensional Faces

We show how to compute the intersections between int(P) (the other thr~ensiona1
face of P is not important) and the faces of C. We already know bd P n bd C (and
bd P n int C) at this point and also the local graph for each point in bd P n bd C.

Superimpose bd P n bd C on bd C and obtain a planar graph embedded into the
boundary of C. A traversal of the graph yields all points in int P n bd C. The local
graphs of the points in int P n bd C are just their local graphs with respect to C.

11

3.6 Puttmg It All Together

At this point we have computed aJl intersection between faces of P a.n.d C involving
at least one low~ensiona.l facea.n.d hence know bd(pnC). We also know the loca.l
gra.phs of aJl points on the bounda.ry. We now have to build the low~ensional
faces of pnC. According to Lemma 3.2 each face of pnC is the union of intersections
of faces of P a.n.d faces of C. We still have to perform the unions.

Let us consider the vertices :first. For some vertices of P it may be the case that
the new loca.l graph indicates that the vertex now belongs to a.n. edge or facet. If
the vertex now belongs to a.n. edge we join the two edge segments incident to the
vertex8. If the vertex now belongs to a facet then we remove it from the description
of the facet.

Consider the edges next. Edges that become part of a facet are removed from the
description of the fatet. We also have to determine whether several edges have to be
merged into one9 • Describe each edge by its affine hull a.n.d by a suitable encoding
of its loca.l graph (e.g., a !ist consisting of the arcs a.n.d the regions) a.n.d determine
aJl edges with the same description (e.g., by building a trie [Meh84, section m.1.l]
for the descriptions). The nodes of this trie are dictionaries a.n.d therefore it takes
time O(llogN) to insert a description oflength I into the trie). Then unite an edges
with the same description.

FinaJly, consider the facets. Determine aJl facets with the same affine hull a.n.d
the same loca.l graph (use a dictiona.ry) a.n.d unite these facets (e.g., by sweeping
them).

The loca.l-graphs-data-structure of P n C is now available. The assembly phase
stays within our target time since it essentiaJly boils down to a consta.n.t number of
dictiona.ry operations for each feature of P, C, a.n.d P n C.

'These segments may belong to the same edge 01 to düferent edges.
tThese edges do not necessa.rily share an endpoint.

12

References

[BN88] H. Bieri and W. Nef. Elementary set operations with d-dimensional polyhedra.
In Computational Geometry and its Applieations, volume 333 of Lecture N otes
in Computer Seience, pages 97-112. Springer-Verlag, 1988.

[Cha92] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex
polyhedra. SIAM J. Comput., 21(4):671-696,1992.

[DK83] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoret. Comput. Sei., 27:241-253, 1983.

[DMY93J K. Dobrindt, K. Mehlhorn, and M. Yvinee. Manuscript, 1993.

[Dob90] K. Dobrindt. Algorithmen für Polyeder. Master's thesis, Fachbereich Informatik,
Universität Saarbrücken, June 1990.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
Heidelberg, West Germany, 1987.

[EM85] H. Edelsbrunner and H. A. Maurer. Finding extreme points in three dimensions
and solving the post-offiee problem in the plane. In/orm. Proeess. Lett., 21:39-
47, 1985.

[EM90J H. Edelsbrunner and E.P. Mücke. Simulation of simplicity: a technique to eope
with degenerate eases in geometrie algorithms. ACM 1rans. Graph., 9:66-104,
1990.

[GS85] L. J. Guibas and J. StoUL Primitives for the manipulation of general subdivi­
sions and the eomputation ofVoronoi diagrams. ACM 1rans. Graph., 4:74-123,
1985.

(HMMN84] S. Hertel, M. Mäntylä, K. Mehlhorn, and J. Nievergelt. Space sweep solves
interseetion of eonvex polyhedra. Acta In/orm., 21:501-519,1984.

(Hof89]

[Män88]

[Meh84]

(MP78]

[MS85J

[Nef78]

[PS85]

[Req80]

C. Hoffmann. Geometrie and Solid Modeling. Morgan Kaufmann, San Mateo,
California, 1989.

M. Mäntylä. An introduetion to solid modeling. Computer Scienee Press,
Rockville, Md., 1988.

K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and AIgo­
rithms. Springer-Verlag, Heidelberg, West Germany, 1984.

D. E. Muller and F. P. Preparata. Finding the interseetion of two eonvex
polyhedra. Theoret. Comput. Sei., 7:217-236, 1978.

K. Mehlhorn and K. Simon. Interseeting two polyhedra one of which is eonvex.
In L. Budach, editor, Proe. Found. Comput. Theory, volume 199 of Leeture
Notes in Computer Science, pages 534-542. Springer-Verlag, 1985.

W. Nef. Beiträge zur Theorie der Polyeder. Herbert Lang, Beln, 1978.

F. P. Preparata and M. 1. Shamos. Computational Geometry: an Introduetion.
Springer-Verlag, New York, NY, 1985.

A. A. G. Requicha. Representations of rigid solids: theory, methods, and sys­
tems. ACM Comput. Surv., 12:437-464,1980.

13

A Appendix

Let M a subset of ma. We will denote the complement of M by cpl(M).

Definition A.l The affine hull aJJ(M) of M is the intersection of all flats N ~ IRa, which
contain M. The closure clos(M) of M is the intersection of an closed supersets of M. The
interior int(M) of M is the union of all open subsets of M. The erterior ert(M) of M is
defined as int(cpl(M)). The relative interior rel int(M) of a point set M is the union of all
relatively open subsets of M, i.e., open with respect to the affine hull of M.

Definition A.2 M is regular, if M = clos(int(M)) and if for each element x E M, there is
a neighborhood U of x in Ra such that int(U n M) and ert(U n M) are connected.

In other words, a set M in IR aisregular, if M is closed, does not contain dangling or
isolated parts of dimension < d, and the interior and the exterior of M are connected in a
neighborhood of each element of M.

14

	93-1400001
	93-1400002
	93-1400003
	93-1400004
	93-1400005
	93-1400006
	93-1400007
	93-1400008
	93-1400009
	93-1400010
	93-1400011
	93-1400012
	93-1400013
	93-1400014
	93-1400015
	93-1400016
	93-1400017
	cover-hinten_2099-2897-300dpi

