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Figure 1: Examples of general polyhedra; the second polyhedron from the right is a 
cube with a hole whose frontside is closed by a plane. 

1 Introduction 

A polyhedron is any subset of three-dimensional Euc1idean space that can be ob­
tained from the open halfspaces by a finite number of set complement and set in­
tersection operations. Figure 1 shows some polyhedra. We give an algorithm to 
compute the intersection of a polyhedron P with a convex polyhedron C. The algo­
rithm runs in time O«IPI + ICI + IPnCl)log(IPI + ICI + IPncl)) where II denotes 
the size of a polyhedron. The algorithm works for all inputs and not only for inputs 
in general position. The only previous algorithm with similar efiiciency of Mehlhom 
and Simon [MS85] applied only to regular! polyhedra in general position, i.e., a face 
of P and a face of C may intersect only if the sum of their affine hulls is the entire 
space. The intersection of two regular polyhedra in general position is a.ga.in regular. 

The standard data structures for three-dim.ensional polyhedra, e.g. the qua.d­
edge-structure of [GS85, EM85], the doubly-connected-edge-list of [MP78, PS85], 
and the half-edge-structure of [Mä.n88] , cannot represent all polyhedra. This implies 
that the class of representable (in any one of these data structures) polyhedra is not 
closed under the basic boolean operations intersection, union, and complement. For 
instance, Figure 2 shows that the intersection of two regular polyhedra can actually 
be non-regular. Given these facts we a.re facing a crucial decision. We can either stick 
to the standard representations and redefine the basic boolean operations (by a.dding 
a regularization step which. is the traditional remedy, cf. [Req80, Mä.n88, Hof89]), 
or stick to the standard definitions of the basic operations and give up the standard 
representation. We believe that the second alternative is cleaner. Besides, the solids 
shown in Figure 1 look perfectly reasonable. We introduce a new data structure 
(called the local-graphs-data-structure) that can represent all three-dimensional 
polyhedra. Our data structure is based on the fundamental work of Nef [Nef78] 
(see also [BN88]) who studied the mathematicaJ. properties of polyhedra. The data 
structure stores a polyhedron as a collection of faces (vertices, edges, and facets); 
each face is described as the set of points comprising the face and its locaJ. graph. 
The locaJ. graph is a planar graph embedded into a sphere that captures the local 

1 All mathema.tica.l terms ud notations are summarized in the appendix A. 
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Figure 2: The intersection of two regular polyhedra is not regular 

properties of the polyhedron in the neighborhood of the fa.ce. The details are given 
in section 2. 

Apart from the aIgorithm given by Mehlhorn Simon [MS85] mentioned above, 
all efficient algorithm for intersecting two polyhedra in space apply only to convex 
polyhedra. The iirst efficient aIgorithm for solving this problem was given by Muller 
and Preparata [MP78]. This aIgorithm takes, for two convex polyhedra Cl and C2, 
time O((lCI I+IC2Dlog(lCI I+IC2D). Alternative algorithms were proposed by Hertel 
et al. [HMMN84] and by Dobkin and Kirkpatrick [DK83]. The former is based on the 
space sweep technique and the latter uses the hierarchicaJ. representation of convex 
polyhedra. Recently, Chazelle [Cha92] presented an algorithm for constructing the 
intersection of two convex polyhedra in linear time O(\CII + IC2D. In section 3, we 
describe a complete aIgorithm for intersecting a general polyhedron P with a convex 
polyhedron C with running time O((lPI + ICI + IP n CDlog(lPI + ICI + IP n CD)· 
This algorithm iirst computes the intersections of all faces of P and all faces of C 
and then builds the 10caJ.-graphs-da.ta-structure for P n C. We employ different 
strategies for intersecting faces depending on the dimensionof the faces involved 
and use for the convex polyhedron also its hierarchical representation. 

In [DMY93] we outlined an intersection aIgorithm based on the symbolic pertur­
bation technique introduced by Edelsbrunner and Mücke [EM90]. We believe that 
the algorithm presented here is simpler. In the other algorithm, we first perturb 
the convex polyhedron C by moving its facets outwards by infinitesimal amounts. 
This brings the two polyhedra into general position. We then apply an extension 
of the intersection aIgorithm of Mehlhorn and Simon [MS85] to P and the pertur­
bation C(e) of C. Finally, we let e go to zero and obtain P n C from P n C(e). 
The limit process is mathematicaJ.ly and aIgorithmicaJly quite involved and so the 
overall aIgorithm is more complex than. the aIgorithm presented here. However, if 
the exact output is not needed and P n C(e) suffices then the other algorithm is to 
be preferred. 

The paper is organized as follows. In Section 2 we introduce a data structure for 
representing polyhedra. Theintersection algorithm is described in Section 3. 
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2 The Local-Graphs-Data-Structure 

We start with a brief review of Nef's theory of polyhedra [Nef78, BN88]. 

Definition 2.1 [Nef78] A polyhedron in m.3 is a set P ~ m.3 generated from a finite 
number of open halfspaces by set complement and set intersection operations. 

Figure 1 shows some polyhedra. A face of a polyhedron is a maximal set of points 
which have the same local view of the polyhedron. The exact definition requires the 
concept of the local pyramid of a point. 

Definition 2.2 A set K ~ m.3 is called a cone tDith apez 0, if K = m.+ K and a 
cone tDith apez z, Z E m.3, if K = z + m.+(K - z). Thus, for a cone K with apex 
z, (K - z) is a cone with apex O. A cone is polyhedral if it is a polyhedron. A set 
Q ~ m.3 is called a pyramid tDith apez z, if it is a a polyhedral cone with apex z. 

Note that m.+ does not include zero and thus a cone K with apex z may or may 
not include z. Forthermore, a cone can have more than one apex and the set of a1l 
apices of a cone is a fiat. 

Definition 2.3 [Nef78] Let P ~ m.3 be a polyhedron and z E m.3 • There is a 
neighborhood Uo(z) of z such that the cone Q := z + m.+«P n U(z» - z) is the 
same for a1l neighborhoods U(z) ~ Uo(z). The cone Q is called the localpyramid of 
the polyhedron P in the point z and is denoted Pyrp(z). 

Indeed, the cone Q is a polyhedron and thus a pyramid with apex z. It describes 
the local characteristics of the polyhedron in the neighborhood of the point z. 

Definition 2.4 [Nef78] Let P ~ m.3 be a polyhedron. A face 8 of Pis a maximal 
(with respect to set inclusion) non-empty subset of m.3 such that a1l of its points 
have the same local pyramid Q, i.e., 8 = {z E m.3 IPyrp(z) = Q}. Q is called the 
pyramid associated with the face and is denoted Pyrp(8) or simply Pyr(s). The 
dimension of S is the dimension of the linear subspace of a1l apices of Q. 

A face SI is incidentto aface 82 if SI ~ cloS(82). Asusual we call a O-dimensional 
face avertu, a 1-dimensional face an edge, and a 2-dimensional face a facet. A face 
of dimension two or less is called low-climensional. In Figure 3 an example in m. 2 is 
given: the polyhedron has one vertex v, two edges el and e2, and two 2-dimensional 
faces f and int( cpl(J». We now!ist some basic properties of faces. 

Fact 2.1 [Nef78] 

a) All faces of a polybedron are polybedra. 

b) Tbe linear subspace of aJ1 apices of tbe pyramid associated witb a face is tbe 
a.fIine buH of tbe face. 

c) Faces are relative1y open sets. 
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Figure 3: Example in ]R2: the edge et belongs to the polyhedron and e2 does not. 

d) z E Pyrp(z) iffz E P. 

e) A polyb.edron P b.as at most two 3-dimensional faces, namely int(P) = {z E 
]R3IPyrp(z) = ]R3} and ext(P) = {z E ]R3IPyrp(z) = 0}. Tb.e boundary 
bd P = {Zj 0 # pnu # U for every neigb.borb.ood U ofz} is equal to tb.e union 
of tb.e low-dimensional faces. 

f) Let s be a face of tb.e polyb.edron P and let t be a fare of s. Tb.en t is tb.e union 
of some faces of P (cf. Figure 3 for an illustration: tb.e face f b.as one edge e 
tb.at is tb.e union offaces et, v, and e2') 

g) A face of Pis eitb.er a subset of P or disjoint from P. 

A polyhedron may have an arbitrary number of edges with the same a.ffine hull 
but can have at most six facets with the same a.ffine hull (since the loeal pyramid 
of a facet is either an open or a closed haJfspace or aplane or the complement of a 
plane). A face is not necessarily connected nor bounded and a polyhedron does not 
necessarily have fa.ces of aJl dimensions. We are now ready to define the (abstract) 
representation of a polyhedron. We williater develop a concrete data structure for 
it. 

Definition 2.5 For a polyhedron P let rep( P) be the set {( s, Pyrp( s»j s is a 
low-dimensional face of P}. 

Every polyhedron different from the full spa.ce and the empty set has alow-dimensional 
face. 

Lemma 2.2 Let P and R be distinct polyb.edra. Tb.en rep( P) :/; rep( R) or {P, R} = 
{0,]R3}. 

Proof: Let P and R be distinct polyhedra. We mayassume w.l.o.g. that P\R # 0. 
If P = ]R 3 then there is nothing to show. Otherwise, let z and y be points with 
z E P \ R and y rt P. Let z be the first point on the ray from z to y that belongs 
to the boundary of either P or R. We claim that Pyrp(z) :/; PyrR(z). If z :/; z this 
follows from the observation that the open line segment with endpoints z and z is 
contained in P and is disjoint from R, and if z = z this follows from z E P \ R. 
Also, z belongs toalow-dimensional fa.ceofeither P or R. Thus rep(P) # rep(R). g) 
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We propose to store 30 polyhedron as the collection of its low-dimensional fa.ces 
together with their local pyramids. So we need data structures for local pyramids 
a.nd fa.ces. 

Let Pyrp(x) be the local pyramid of point x a.nd let Sex) be 30 sphere with 
center x. The intersection of Sex) with Pyrp(x) is 30 pla.nar graph embedded into 
Sex) that we denote Gp(x). The nodes, arcs, a.nd regions ofthis graph2 correspond 
to the edges, facets, a.nd three-dimensional faces of Pyrp( x) respectively. The graph 
G p( x) may consist of 30 single arc a.nd no node. In this ca.se we caJl this unique arc 
30 seljloop. For each feature (=node, arc, or region) f of the graph we have 30 label 
inP(J) indica.ting whether the feature is contained in Pyrp(x). We also have such 
30 label for the point x. We ca.ll Gp(x) together with these labels the load graph of 
x and also use G p( x) to denote it. The following lemmata chara.cterize local graphs 
and give a criterion to determine the dimension of the fa.ce containing its center. 
We use the phrase to classify x to mea.n todetermine the dimension of the fa.ce 
containing x. 

Lemma 2.3 Tbe foHowing properties bold for every 10eaJ. grapb. 

30) Every are of Gispart of a great circle. 

b) For every a.re a of G tbere is 30 region r incident to a witb inP( a) #: inP( r). 

c) For every node t1 of G tbere is an a.re or region f incident to t1 witb inP( t1) #: 
inP(J). 

d) For every node t1 of G of degree 2 witb two cocireular a.rcs al and a2 incident to 
it tbe tbree labels inP(al), inP(t1), and inP(a2) a.re not identicaJ. 

Moreover, any grapb G (embedded into 30 spbere) satisfying properties 30) to d) above 
is tbe 10eaJ. grapb Gp(x) for some polybedron P and some point x. 

Proof: 30) Ea.ch arc correspond to 30 fa.cet of Pyrp(x). The affine huH of this fa.cet 
is 30 hyperp1a.ne passing through x. The intersection of this hyperpla.ne with S (x) 
is 30 great circle. 

b) If for an regions r incident to a.n arc a the label inP( a) equals inP( r), then the 
pyramid of the points on a with respect to Pyrp(x) is either 0 or R 3 • This is 30 

contradiction since these points belong to 30 fa.cet. 

c) AB in b). 

d) If the label inP( al), inP( t1), a.nd inP( a2) are identical then t1 a.nd an points on al 
a.nd a2 have the same pyramid although they belong to different fa.ces. This is 30 

contradiction that fa.ces a.re maximal subsets of points having the same pyramid. 

Let x be the center of the sphere a.nd P the cone with apex x intersecting the sphere 
along G. According to properties 30) to d) P is 30 polyhedron, a.nd the 10caJ. graph 
for P a.nd x is G. ~ 

2We reserve the words vertex, edge, ud facet for polyhedra. 
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Lemma 2.4 Let G be tbe 1oca1. grapb of some point x witb respect to some poly­
bedroll P. 

a) Tbe POillt x belollgB to a 3-climellSiollal fa.ce of P iff G bas 110 llodes alld 110 arcs 
alld tbe unique regiOll of G bas tbe same label as x. 

b) It bel011gS to a fa.cet of P iff G COllSistS of a silJgle sel:Jloop tbat, ill adclitioll, bas 
tbe same label as x. 

c) It belollgB to all edge of P iff G bas exa.ctly two llodes alld tbese llodes a.re 
alltipodal alld bave tbe same label as x (tbere ca.n also be all arbitrary llumber 
of a.rcs collllecting tbe two llodes). 

d) 111 a.ll otber cases, x is avertex of P. 

Proof: a) According to the definition the point x belongs to a 3-dimensionaJ. fa.ce 
of P iff Pyrp(x) = 0 or Pyrp(x) = 1lt3 • Thus G has no nodes and no arcs and 
the unique region of G has the same label as x. 

b) The point x belongs to a fa.cet of P iff the set of apices of Pyr p( x) is a hyperplane 
passing through x. Thus G is selfloop that has the same label as x. 

c) The point x belongs to an edge of P iff the set of apices of Pyr p( x) is a line 
passing through x. Thus G has exa.ctly two nodes and these nodes are antipodaJ.. 

d) Since the locaJ. graph is the intersection of a sphere with center x with Pyrp(x) , 
the only possibility left is that x is a vertex of P. 

We now complete the description of the 10caJ.-graphs--data-structure. A vertex 
is represented by its coordinates and its 10caJ. graph. An edge is represented by the 
equation of its a.:ffine hull, an ordered sequence of open line segments comprising the 
points belonging to the edge3 , and the locaJ. graph of the edge. The endpoints of 
these line segments are the o-dimensionaJ. faces of the edge. They correspond to 
vertices of P. 

A facet is represented by the equation of its a.:ffine hull, the set of points belonging 
to the facet, its 10caJ. graph, and its set of vertices and edges4 • The set of points of 
the fa.cet is stored as a straight-line planar graph. For ea.ch region of this planar 
graph there is alabel indica.ting whether the region belongs to the facet or not. The 
vertices (o-dimensionaJ. fa.ces) of a fa.cet a.re precisely the nodes of this planar graph. 
The edges (l--dimensionaJ. fa.ces) of a facet partition the arcs of the planar graph. 
If two arcs belong to the same edge of the fa.cet then the arcs are collinea.r (the 
converse is not true). We associate with ea.ch arc the edge containing it and with 
ea.ch edge (of the fa.cet) the ordered sequence of arcs contained in the edge. 

3Remember tha.t faces are not necessarily connected. 
4Keep in mind that according to Fact 2.1.d) an edge of a. fa.cet is the union of some edges and 

vertices of P. 
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We also store cross links between the different ·occurrences of the same object. 
For exa.mple, with every edge e of a facet f we associate the set of edges and vertices 
of P comprising e. If e is an edge or vertex of P contributing to ethen there is 
a cross pointer between the item representing e in the set associated to e and the 
at most two arcs corresponding to f in the local graph Gp(e). Similarly, there is a 
cross pointer between every node x of a local graph Gp( tI) for a vertex tI of P and 
the edge segment corresponding to that node, .... 

The size of a polyhedron P is defined as the size of its local-graphs-data­
structure and is denoted IPI. It is proportional tothe number ofincidences between 
the faces of P. 

Definition 2.6 A convex polyhedron in ]R3 is a non-empty intersection of a finite 
number of open or closed haJispaces. 

It follows that a convex polyhedron is not necessarily closed. For convex poly­
hedra we also use the hierarchical representation introduced by Dob:k:in and Kirk­
patrick [DK83]. An hierarchical representation of a convex polyhedron C is a nested 
sequenceCo ~ Cl ~ ... ~ C/C of convex polyhedra, with (i) Co is a tetrahedron 
and C/c is the polyhedron C and (ii) the set of vertices Vi of Ci is obtained from 
Vi+1 by removing ci subset Ii+1 of pa.irwise non adjacent vertices of Ci+1. We ca.n 
find a set IIi+ll of at least IVi+11/7 pairwise non adjacent vertices of degree at most 
12, by considering the vertices of Vi+1 in order of non-decreasing degree as shown 
in [Ede87]. The element Ci of the sequence is formed from Ci+1 by removing the 
subset Ii+1 and forming the convex hull of the remaining vertices. This computation 
requires linear time and gives a representation of C of linear space. The hierarchi­
cal representation supports intersection queries with lines and planes in logarithmic 
time. An intersection query with a line returns the intersection (a line segment) 
and an intersection query with a plane returns an arbitrary point of the boundary 
of the intersection (if any). If the plane intersects the polyhedron in a vertex, edge, 
or facet then this fact is also reported. 

3 The Intersection Algorithm 

We show how to compute P n C, where P is an arbitrary polyhedron and C is a 
convex polyhedron, in time O«IPI + ICI + IP n cl)log(lPI + ICI + IP n CI)). We 
refer to this bound as our target time and use N to denote IPI + ICI + IP n CI, Le., 
the combined input and output size. Our algorithm is based on the following fact . 

Fact 3.1 [Nef78] Let P and C be polybedra.. Tben every face of P n Cis tbe union 
of intersections of faces of P and C. 

If one of the polyhedra is convex then a slightly stronger property holds (d. Figure 4). 

Lemma 3.2 Let P be a polybedron and let C be a convex polybedron. Tben every 
face of P n C is tbe intersection of one face of C witb tbe union of some faces of P. 
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cpl(int(P» 

Figure 4: illustration of Lemma 3.2: the facet f of P n C is the union of the 
intersection of a facet of C with int(P), an edge of P a.nd two vertices of P 

We use different strategies far intersecting faces depending on the dimension of 
the faces. In sections 3.2 to 3.4 we discuss how to intersect the vertices, edges, a.nd 
facets of P with the faces (of aJl dimensions) of C. All three sections rely on a 
subroutine to intersect two Ioca.1. graphs that we introduce in section 3.1. In section 
3.5 we show how to intersect the full-dimensional faces of P with the faces (of aJl 
dimensions) of C a.nd finaJly in section 3.6 the information gained previously is put 
together to construct the Ioca.1.-graphs-data-structure for P n C. 

3.1 Intersecting Two Local Pyramids 

We show how to compute Gpnc(z) from Gp(z) a.nd Gc(z) for a point z a.nd how to 
classify z with respect to pnC in time O((lGp(z)I+IGc(z)I)·Iog(lGp(z)I+IGc(z)l)). 
First sweep · a p1a.ne through the sphere centered at z and intersect the two graphs 
Gp(z) and Gc(z). Let G(z) be the resulting graph. We also compute the label 
inP for each feature of G(z) and for z. Since Gc(z) is äther trivial (if z is not 
a vertex of C) or corresponds to a convex cone, any arc of Gp(z) ca.n intersect 
at most two arcs of Gc(z). Thus IG(z)1 = O(IGp(z)1 + IGc(z)1) a.nd hence G(z) 
can be computed within the time bound stated above. An alternative strategy for 
computing G( z) is to intersect any pair of features of the two Iocal graphs. This 
takes time O(IGp(z)I'IGc(z)l) and is to be preferred if one ofthe two Iocal graphs 
has constant size. 

The graph G( z) determines the Iocal pyramid of z with respect to P n C but 
it may contain spurious features, i.e., features violating one of the conditions (b) to 
(d) of Lemma 2.3. SimpIy remove an these features (ensure condition (b) first, then 
(c) a.nd fi.nally (d)) and obtain GPnc(z). Lemma 2.4 ca.n then be used to classify 
the point z. Simplification and classification take time O(IG(z)l). 

3.2 Vertices 

Let v be a vertex of P. Locate v with respect to C in time O(Iog ICI). This decides 
whether tJ belongs to C and determines the local graph Gc(v). Next compute 
GPnc(v) as described in section 3.1 and classify v. 
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All of this takes time O(IGp( v)1 + log IGI) except if v is also a vertex of G in 
which case it takes time O«IGp(v)1 + IGe(v)!) ·logN). Since a vertex of G can 
coinclde with at most one vertex of P, summation over aJl vertices of P shows that 
this step stays within the target time. 

3.3 Edges 

Let e be an edge of P. First intersect aJJ(e) with G in time Orlog IGI) and obtain 
either an empty intersection or a line segment üV (11. = v is possible) contained in 
aJJ( e). Intersect lI.V with e and obtain a number of subsegments of lI.v. All endpoints 
of these subsegments except maybe 1L and v are vertices of P and hence were aJready 
treated in section 3.2. Next determine the 10caJ. graphs Ge(u),Ge(v), and Ge(z) 
where z is an arbitrary point between 1L and v5 , and from this and the local graph 
of e compute GPne(u) , Gpne(v), and Gpne(z). 

The computation ofthe local graphs takes time O(IGp(e)1) except if either 11. or v 
is a vertex of either P or G. The vertices of P were a.1ready accounted for in section 
3.2. For vertices 11. (or v) of G that are not also vertices of P the time required is 
O«IGp(e)1 + IGe(u) I) . log(IGp(e) I + IGe(u)I)). Since any vertex of G can He on at 
most one edge of P (recaJl that edges are re1ative1y open . sets ) we conelude that the 
total cost of treating the edges of P is within our target. 

3.4 Facets 

Let / be a facet of P. It is given as a polygonal subset of aJJ(f) and by its 10caJ. 
graph Gp(f). Our goal is to intersect / with aJl faces of G. 

There is a simple but inefficient way to do so. AJJ(f) intersects G in a convex 
polygonal region whose relative interior we caJl R. We could expHcitly compute R, 
then use plane sweep to intersect / and R, and finaJly compute the local graphs 
of all features of the intersection by the method of section 3.1. Unfortunately, this 
approach exceeds our target time (see Figure 5 for an example). 

We now describe an alternative approach that only looks at those parts of R 
that actually contribute to the output. First test first aJJ(f) and G for intersection 
and determine an arbitrary point Z of R (if any). This has cost Orlog IGI) per facet 
of P and hence total cost O(IPI·logN). H R is empty then we are done. Assume 
from now on that R is non-empty. Depending on the dimension of R we proceed 
differently. 

Gase 1: R is a vertex of G, say v. In this case, determine whether v belongs to 
/ in time 0(1/1). H v E / then compute GPne(v) and elassify v in time O(Ge(v)): 
either v E ezt( P n G) or visa vertex of P n G. Since any vertex of G can He in at 
most one facet of P the total cost of this case is O(IGI). 

Gase 2: R is an edge of G, say e. We tau compute e n / as follows. Sort 
intersection points of e with bd /. This divides the edge into subsegments. The 
endpoints ofthese subsegments except maybe e's endpoints are vertices of P or the 
intersection with edges of P. The number of subsegments is 0(1/1). The total cost 

5GC(Z) does not depend on the choke of z. 
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Figure 5: G is a polygonal. cylinder with n fa.cets and P consists of m disjoint 
rectangles contained in paraJ.lel planes orthogonal. to the a.xis of G. Then the naive 
approach takes time G( m . n) al.though P and G are disjoint. 

of computing aJ.l the e n f's is therefore O(IPllogN). We next compute the locaJ. 
graphs of an points in the point set e n I andon ~ts boundary. Consider first a point 
xE en/. ThelocaJ. graph GPnc(x) does not depend on x and ca.n. be computed from 
Gp(f) and Gc(e) in constant time (since Gp(f) and Gc(e) both have constant size). 
Thus, the loca.l graphs of aJ.l the e n f's ca.n. be computed in time O(IPI). Consider 
next a point x in the boundary of e n I. If x is either avertex of P or be1.ongs to an 
edge of P then G Pnc( x) is aJ.rea.dy known. Otherwise, x is also avertex of G and 
Gpnc(x) ca.n be computed from Gc(x) in time O(lGc(x)l). Since every vertex of G 
is contained in at most one fa.cet of P, the total. cost for computing the locaJ. graphs 
of boundary points is O(IGI). 

Gase 9: R is a fa.cet of C, say 9. The boundary of I consists of one or more 
polygons (not necessa.rily simple). The information gained in the previous sections 
permits to cl.assify these polygons into three cla.sses: those that intersect bd 9, those 
that are contained in bd 9, and those that either contain bd 9 or are disjoint from 
bd 9 and do not contain it. The last dass ca.n. be split by loca.ting an arbitrary point 
of 9, e.g., the point z determined above, with respect to ea.ch polygon in the dass. 
The dassifica.tion process takes time O(1og IGI + 1/1) for the fa.cet I and hence total. 
time O(IPllogN). 

We a.re now in a position to compute 8 = In 9. Note that aJ.l intersections 
between bd I and 9 are known at this point, and if bd 9 does not intersect bd I it 
is also known whether bd 9 contributes to bd 8 at aJ.l. Sort for ea.ch edge of 9 (that 
is intersected at least once) its intersection points with bd I (this divides the edge 
into segments) in time 0«1/1 + 181) ·log(l/l + 181)). Then explore bd 8 starting at the 
intersection points between bd I and bd 9 in time linear to the size of 8. Since the 
fa.cet 9 is contained in aff(f) for at most six fa.cets I of p6 and 181 = 0(1/1 + 191)1, 
the total. cost of computing aJ.l the 8'S is O«IPI + IGI) ·logN). 

At this point we have computed the point set s. We next compute the locaJ. 

'Note that 9 ~ off(l) n Off(8') implies off(l) = off(8'). 
7 since 9 is convex 
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graphs of an points in this set and on its boundary. Consider first a point z E 8. 

The local graph GPne(z) does not depend on z and can be computed from Gp(J) 
and Ge(g) (since Gp(J) and Ge'{g) both have constant size). The computation of 
the local graphs of an the 8'S takes time O(IPI). Consider next a point z in the 
boundary of 8. If z is either a vertex of P or belongs to an edge of P then Gpne(z) 
is a1ready known. Otherwise, z E f n bd 9 and Gpne(z) can be computed from 
Ge( z) in time O( IGe( z )1). For the computation of the local graphs of the boundary 
points observe first that z E f n bd 9 implies that z is either a vertex of C or belongs 
to an edge of C. For the vertices we argue as in the previous paragraph. For a point 
z on an edge of C the local graph GPne(z) can be computed in constant time and 
hence time 0(181) suffices for an edges of C contributing to the boundary of 8. The 
total cost computing the local graphs of boundary points is therefore O(IPI + ICI). 

Case 4: R is a cross section of C. The classi:6.cation of the polygons that con­
tribute to the boundary of f is the same as in Case 3. To compute s = f n R we 
use the procedure described in Case 3. The exploration of bd 8 is, however, different 
since we have no explicit representation of R. During the exploration we assume 
that bd C is triangulated which can be done in time O(ICI). Now, explore bd s 
starting at the intersection points between bd f and bd R as fol1ows. Let z be such 
an intersection point. We want to construct the at most two edges of f n bd R inci­
dent to z. We use the information of the local pyramid Gpne(z) (which is already 
known) to get the directions of edges f n bd R incident to z in constant time and 
from this the vertices adjacent to z. AB we go we may encounter vertices that a.re 
not yet known, i.e. O-dimensional intersections of f n bd R. Finding the incident 
edges for such a vertex y takes in total at most O(IGe(y)1) time. Note that only 
those parts of bd R are inspected that actuany contribute to bd s. Fnrthermore, 
since R is a convex polygon, we visit a vertex of f n bd R at most twice. 

The local pyramids of s and bd s are computed as in Case 3. We still need to 
a.rgue that we stay within our target time. If R is a cross section of C then an edges 
and vertices of bd 8 a.re also edges and vertices of PnC. The total cost of computing 
all the s's and their local graphs is therefore O((lPI + ICI + IP n CI) . log N). For 
the local graphs of the boundary points z E f n bd R observe that G pne( z) can 
be computed in constant time if z is not a vertex of C and in time O(lGe(z)1) 
if z is a vertex of C, and that any vertex of C can be contained in at most one 
facet of P. The total cost of computing local graphs of boundary points is thus 
O(IPI + ICI + IP n CI). 

3.5 Full-dimensional Faces 

We show how to compute the intersections between int(P) (the other thr~ensiona1 
face of P is not important) and the faces of C. We already know bd P n bd C (and 
bd P n int C) at this point and also the local graph for each point in bd P n bd C. 

Superimpose bd P n bd C on bd C and obtain a planar graph embedded into the 
boundary of C. A traversal of the graph yields all points in int P n bd C. The local 
graphs of the points in int P n bd C are just their local graphs with respect to C. 
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3.6 Puttmg It All Together 

At this point we have computed aJl intersection between faces of P a.n.d C involving 
at least one low~ensiona.l facea.n.d hence know bd(pnC). We also know the loca.l 
gra.phs of aJl points on the bounda.ry. We now have to build the low~ensional 
faces of pnC. According to Lemma 3.2 each face of pnC is the union of intersections 
of faces of P a.n.d faces of C. We still have to perform the unions. 

Let us consider the vertices :first. For some vertices of P it may be the case that 
the new loca.l graph indicates that the vertex now belongs to a.n. edge or facet. If 
the vertex now belongs to a.n. edge we join the two edge segments incident to the 
vertex8. If the vertex now belongs to a facet then we remove it from the description 
of the facet. 

Consider the edges next. Edges that become part of a facet are removed from the 
description of the fatet. We also have to determine whether several edges have to be 
merged into one9 • Describe each edge by its affine hull a.n.d by a suitable encoding 
of its loca.l graph (e.g., a !ist consisting of the arcs a.n.d the regions) a.n.d determine 
aJl edges with the same description (e.g., by building a trie [Meh84, section m.1.l] 
for the descriptions). The nodes of this trie are dictionaries a.n.d therefore it takes 
time O(llogN) to insert a description oflength I into the trie). Then unite an edges 
with the same description. 

FinaJly, consider the facets. Determine aJl facets with the same affine hull a.n.d 
the same loca.l graph (use a dictiona.ry) a.n.d unite these facets (e.g., by sweeping 
them). 

The loca.l-graphs-data-structure of P n C is now available. The assembly phase 
stays within our target time since it essentiaJly boils down to a consta.n.t number of 
dictiona.ry operations for each feature of P, C, a.n.d P n C. 

'These segments may belong to the same edge 01 to düferent edges. 
tThese edges do not necessa.rily share an endpoint. 
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A Appendix 

Let M a subset of ma. We will denote the complement of M by cpl(M). 

Definition A.l The affine hull aJJ(M) of M is the intersection of all flats N ~ IRa, which 
contain M. The closure clos(M) of M is the intersection of an closed supersets of M. The 
interior int(M) of M is the union of all open subsets of M. The erterior ert(M) of M is 
defined as int( cpl(M)). The relative interior rel int(M) of a point set M is the union of all 
relatively open subsets of M, i.e., open with respect to the affine hull of M. 

Definition A.2 M is regular, if M = clos( int(M)) and if for each element x E M, there is 
a neighborhood U of x in Ra such that int(U n M) and ert(U n M) are connected. 

In other words, a set M in IR aisregular, if M is closed, does not contain dangling or 
isolated parts of dimension < d, and the interior and the exterior of M are connected in a 
neighborhood of each element of M. 
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