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Abstract

We present ANGIE, a system that can answer user queries by combining knowl-
edge from a local database with knowledge retrieved from Web services. If a user
poses a query that cannot be answered by the local database alone, ANGIE calls
the appropriate Web services to retrieve the missing information. In ANGIE, Web
services act as dynamic components of the knowledge base that deliver knowl-
edge on demand. To the user, this is fully transparent; the dynamically acquired
knowledge is presented as if it were stored in the local knowledge base.

We have developed a RDF based model for declarative definition of functions
embedded in the local knowledge base. The results of available Web services are
cast into RDF subgraphs. Parameter bindings are automatically constructed by
ANGIE, services are invoked, and the semi-structured information returned by
the services are dynamically integrated into the knowledge base

We have developed a query rewriting algorithm that determines one or more
function composition that need to be executed in order to evaluate a SPARQL-
style user query. The key idea is that the local knowledge base can be used to
guide the selection of values used as input parameters of function calls. This is in
contrast to the conventional approaches in the literature which would exhaustively
materialize all values that can be used as binding values for the input parameters.
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1 Introduction
Recent advances on automated information extraction [7] from textual and semistructured Web
sources (e.g., Wikipedia) has enabled large-scale harvesting of entity-relationship-oriented facts
to build large-scale knowledge bases. Projects like DBpedia [3], YAGO [23, 13], Freebase [24],
KnowItAll [4], or Intelligence-in-Wikipedia [29] have successfully created semantic databases
with many millions of facts about entities (e.g., persons, companies, movies, locations) and re-
lationships (e.g., bornOnDate, isCEOof , actedIn, shotAtLocation). A convenient representation
for these knowledge bases is the Semantic-Web data model RDF, and the data can be queried by
SPARQL-like languages and interactively explored with user-friendly GUIs and visualization
tools.

The knowledge stored in these databases is huge, but can never be complete and inevitably
exhibits gaps that may irritate the user during interactive access. Consider for example a user
who is interested in Frank Sinatra. Using the browser of the knowledge base, she has already
found biographic information about Frank Sinatra, such as birthdate and birthplace. But when
she is also looking for the albums of Frank Sinatra or for the movies that feature him, the
information in the database is probably incomplete. Crawling additional Web sites on music
and extracting the missing data is often infeasible because of site restrictions and because the
site’s information is continuously changing. Moreover, some knowledge needs are inherently
ephemeral: for example, asking for the current rating of a movie (by averaging user reviews) or
the chart rank of a song.

Fortunately, there is an increasing number of Web services that could fill the gaps in the
database. There are Web services that deliver information about albums and music, books,
movies and videos, etc. These services make their data available through an online API in a
semi-structured format. The eConsultant lists a total of 122 public Web services1 and Seekda
even provides a search engine for Web services2. Note that it is practically infeasible to materi-
alize all the data provided by these services. However, if the relevant data could be dynamically
retrieved in the current user context, a much larger number of user queries could be answered.
This is our vision of an active knowledge base. An active knowledge base is a dynamic feder-
ation of knowledge sources where some knowledge is maintained locally and other knowledge
is dynamically mapped into the local knowledge base on demand.

An active knowledge base poses several challenges – even if the Web services are known
to the system. First, different Web services may have to be combined in order to retrieve the
desired results. In our example, a specific function of the MusicBrainz service has to be called
first to obtain an identifier for Frank Sinatra, before another service function can be called to
retrieve his albums. In full generality, multiple Web services from multiple Web sites may
have to be combined with data that exists already in the database in order to construct the
desired result. If there are multiple Web services that can deliver a certain piece of information,

1http://webdeveloper.econsultant.com/web-services-api-services/
2http://seekda.com/
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these Web services may have to be prioritized by their response times or other service-quality
properties. Finally, the system has to integrate the results from the Web services into the local
database in a seamless manner. This poses a data cleaning challenge. All of these processes
have to happen behind the scenes, so that the user still has the impression that all answers are
returned by the local knowledge base.
Contribution This paper presents ANGIE, a system that can retrieve data from Web services
on the fly whenever the local knowledge base does not suffice to answer a user query. In
ANGIE, Web services act as dynamic components of the knowledge base that deliver knowledge
transparently on demand.

We propose a model for declarative definition of functions embedded in the local knowledge
base. The functions act as dynamic components of the knowledge base that deliver knowledge
transparently on demand. Our framework helps integrating the semi-structured information re-
turned by Web services dynamically into the knowledge base by combining different paradigms
of data integration and techniques from data warehousing and mediation. Our key contributions
are:

1. A clean model to represent Web services in a knowledge base, including their calling
conditions.

2. An algorithm that determines all possible and valid combinations of Web services that
could satisfy a query.

3. A system that dynamically retrieves requested information either from the knowledge
base or from a composition of Web services, scheduling the calls according to their cost.

The current implementation uses YAGO [23] as local knowledge and has seamless con-
nections to a variety of rich Web services on books (isbndb.org, librarything.com),
movies (api.internetvideoarchive.com), and music (musicbrainz.org, lastfm.
com). ANGIE comes with a light-weight desktop tool for querying, browsing, and visualizing
the active knowledge base. Users can query data from local and dynamic sources in an arbitrary
manner, without having to know where the data actually resides or is constructed.

1.1 Related Work
Recently, the ActiveXML [1] framework was proposed to use embedded function calls in XML
data for data integration. In contrast to the present work, ActiveXML is centered around XML
documents. In ActiveXML, no semantics is defined for the position of a call in the data, and the
result is simply appended to the database.

Other work [22, 12] has centered on a mash-up of RSS and Web pages. In contrast to such
approaches, ANGIE acts like a mediator system, where the query dynamically combines data
from local and external sources on demand.

The approach of the Linking Open Data Project [5] is to connect data from Semantic Web
sources in a global and distributed graph, using URIs and RDF specifications. Our framework
instead aims at integrating dynamic components such as Web services, which have not been
considered in the Linking Open Data Project. This task involves Web service composition [19],
entity resolution on the fly [22] and schema mappings [2]. The authors of [21] have shown how
Web forms can be wrapped into Web services. This work could actually be used to open up the
world of the Deep Web to access by Web services – and thus, ultimately, to our approach.
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There is ample work on data integration systems, but most prior work used an object oriented
representation (e.g., [11]) or XML [30], which are both less adequate for the RDF knowledge
bases that we consider.

Recently, the author of [17] showed how SPARQL queries can be translated to Datalog
queries with negation. In the context of data integration, well known techniques e.g. [15, 18, 8],
have been developed to address the problem of answering queries using views, where the views
and the global schema are defined as Datalog rules. However, the two algorithms BUCKET [15]
and MINICON [18] (an improvement over BUCKET), are not designed to work for views with
limited access patterns. The first step in both algorithms is to identify views that are relevant
to the query. This is not adapted to our need of both managing access-pattern limitations and
allowing sequential chaining of services. These algorithms do not consider sources whose only
role is to provide another service values for one of its bound parameters, even though this
might be the only way to use this second service. Furthermore, recursive query plans are not
considered. Another approach to answering queries using views for data integration purposes is
the inverse rules algorithm [8]. It basically consists of rewriting a LAV (Local As View) system
into a GAV (Global As View) system, by inverting each rule and introducing skolem terms.
Recursive query plans are considered. Although this is an elegant solution for computing the
results, it can not be aplied to our settings. The algorithm first computes the consequences
of the rules (instantiatiates all possible function calls) and then uses a bottom-up algorithm to
compute the answers. Other works (e.g, [20]), addressed query answering with views with
binding patterns where all the sources are complete. They provide a single equivalent rewriting
of the query. However, this solution is not suitable in our context of data integration where the
sources can be incomplete. We are interested in modeling Web services because this seems to
emerge as the standard for publishing information on the Web, in contrast to other works [25]
that consider the case where the source itself has querying capabilities. In those settings the
sources are described by infinite views.
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2 Famework
2.1 Semantic Graph
In tune with recent work [23, 3, 13], we represent our knowledge base in the RDFS standard
[26]. In RDFS, knowledge is modeled as a semantic graph. A semantic graph is a directed
labeled graph, in which the nodes of are entities (such as individuals and literals) and the labeled
edges represent relationships between the entities. We call such a graph a semantic graph. A
fragment of a sample semantic graph is shown in Figure 2.1.

Formally, a semantic graph over a set of relations Rel and a set of entities Ent ⊇ Rel is a set
of edges G ⊂ Ent×Rel×Ent. Thus, a semantic graph is seen as a set of triples. This allows
two entities to be connected by two different relations (e.g., two people can be colleagues and
friends at the same time). A triple of a semantic graph is called a statement.

In RDFS, there is a distinction between individual entities (such as Frank Sinatra) and class
entities (such as the class singer). Individuals are linked by the type relationship to their class.
For example, Frank Sinatra is linked to the class singer by an edge (FrankSinatra, type, singer).
The classes themselves form a hierarchy. More general classes (such as artist) include more
specific classes (such as singer). This hierarchy is expressed in the semantic graph by edges
with the subclassOf relationship: (artist, subclassOf, singer).

For our experiments, we used the semantic graph of YAGO[23]. YAGO is a knowledge base
that has automatically been extracted from Wikipedia and WordNet[10]. It knows 2 million
entities and contains 19 million facts about them. The facts include a class hierarchy of 200,000
classes. There are round 100 relationships. These include for example biographic relationships
such as bornIn and bornOnDate, geographic information such as hasCapital and locatedIn, and
information about movies such as actedIn and hasProductionLanguage. YAGO is also available
in RDFS1.

RDFS allows reifing a statement. That means that a statement itself can be an entity in the
semantic graph. Suppose for example that we would like to reify the statement (FrankSinatra,
marriedTo, AvaGarner). We first choose an identifier for the statement (say, s42), which be-
comes an entity in the semantic graph. Then, each component of the statement is linked to the
identifier as shown in Figure 2.2. This is possible, because relations are also entities in RDFS.
This means that they can be nodes in the semantic graph. Note that even though s42 is part of
the semantic graph, the original statement does not have to be part of the graph.

2.2 Query language and semantics
We consider a subset of the SPARQL standard query language [28].

1at http://mpii.de/yago
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subclassOf
subclassOf

subclassOf
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Figure 2.1: A semantic graph

  

Frank Sinatra Ava GarnermarriedTo

s42

statement

objectsubject
predicate

type

Figure 2.2: Reification

Definition 1 A query over a set of variables V ar for a semantic graph G ⊂ Ent×Rel×Ent
is a semantic graph Q ⊂ (Ent ∪ V ar)× (Rel ∪ V ar)× (Ent ∪ V ar).

Figure 2.3 shows two example queries. The first one asks for albums released by Frank
Sinatra. The album is represented by a variable. The second query asks for Frank Sinatra’s
relationship to Ava Garner. In this case, the relation itself is a variable.

Definition 2 An answer for a query q on a semantic graph G is a substitution σ for the variables
of q, such that σ(q) ⊆ G.

For instance, consider again the semantic graph shown in Figure 2.1. The query Q2 has an
answer in the semantic graph because there is the substitution σ($r)=marriedTo. σ(Q2)=(FrankSinatra,
marriedTo, AvaGarner) is a sub-graph of the semantic graph. There is, however, no answer to
Q1 in the current database. Therefore, a Web service has to be called.

2.3 Functions
In our ANGIE framework, the user can query for data that is not yet in the knowledge base.
Rather, this knowledge is retrieved on the fly by calling Web services. Technically, we see a
Web service as a function, which, given input parameters, returns output values. While the
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Frank Sinatra

released

$x type Album

Frank Sinatra

$r

Mia Farrow

Q1 ) Q2 )

Figure 2.3: Two sample queries

local knowledge base is given extensionally, the knowledge provided by the functions is given
intensionally. That is, the functions definitions do not provide the data itself, but they define
a way to obtain it. Conceptually, the extensional data and the intensional data form one large
knowledge base. The user can browse this knowledge base transparently, without noticing the
difference between intensional and extensional knowledge.

Definition 3 A function definition is a query f ⊂ (Ent ∪ V ar) × Rel × (Ent ∪ V ar), where
the edges are partitioned into pre-conditions and post-conditions.

Intuitively speaking, a function definition specifies certain pre-conditions (i.e. edges) that
have to be fulfilled before the function can be called. For example, one function may ac-
cept as input parameter the name of a pop star. Consequently, a pre-condition would be
($X,type,popStar). After the function has been called, new conditions are added. For exam-
ple, the function may return an album of that pop star. Consequently, a post-condition would be
($X,hasAlbum,$Y), where $Y is instantiated by the function call. This way, the partition of edges
implicitly determines a partition of the variables in V into input variables (those that appear in
some pre-condition) and output variables (those that appear exclusively in post-conditions).

In practice, Web services define also optional input parameters. When the service is called,
these parameters may be specified or omitted. In our representation, this can be modeled by
providing multiple function definitions for the same Web service. Each function definition
specifies a different set of preconditions. Graphical interfaces may allow defining functions
with optional parameters and then compile them down to multiple function definitions.

Graph representation In our ANGIE model, the function definitions themselves are part of
the local knowledge base. Every function definition is identified by an entity representing the
function. The edges of the function definition are reified. In this process, the variables names
themselves become nodes in the semantic graph. Each reified edge is connected to the function
identifier by an edge with preconditionOf or postconditionOf . Figure 2.4 a) shows an example.
The function getAlbums has the pre-condition that $X be a singer. It has as post-conditions
that $X released the album $Y . To simplify our illustrations, we use blue color for reified pre-
conditions and red color for reified post-conditions, as shown in Figure 2.4 b).

This way, the function definitions are integrated completely into the semantic graph. Thereby,
function definitions become first class citizens of the knowledge base. Thus, it is possible to
query the knowledge base for functions that have certain properties.

Intensional Rules In Datalog, predicates can be defined extensionally (by declaring instan-
tiated atoms) or intensionally (by declaring a rule). This principle carries over naturally to the
ANGIE model. The role of extensionally defined predicates in Datalog is taken over by concrete
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Singer

getAlbums

Function

Album$y$x

type

preconditionOf

postconditionOf

postconditionOf

type typereleased

s1 s2 s3

Singer Album$y$xtype typereleased

getAlbums

a)

b)

Figure 2.4: A function definition

edges in the semantic graph in ANGIE. The role of intensionally defined predicates is taken over
by intenstional rules. An intensional rule is given by an ordinary function definition, but it lacks
an underlying Web service. Furthermore, all variables that occur in post-conditions must occur
in pre-conditions. If such a function-composition rule gets called, the post-conditions are added
to the knowledge graph without reference to any Web service. Since the pre-conditions act as
conjunctive conditions, intensional rules have the same expressive power as domain-restricted
Horn clauses with binary predicates in Datalog.

For instance, consider the semantic graph G in Figure 2.5. It is known that Frank Sinatra is
a singer and it is known that singer is a subclass of person. Intuitively, this means that Frank
Sinatra is also a person. However, this implicit information has not yet been materialized in the
database. To do so, it suffices to specify the intensional rule f . f has as pre-conditions that
$individual is an instance of some class $sub and that $sub is a subclass of some other class
$super. Its postcondition is that $individual is an instance of $super. (Note that this is a typical
Horn clause.) When f gets “called” (i.e. evaluated), the variables in the pre-conditions get
instantiated and the post-condition is added to the database.
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G:

Frank Sinatra

singer

person
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subclassOf

f: f(G):

$individual

$sub

$super

type

subclassOf

Frank Sinatra

singer

person

type

subclassOf

type type

Figure 2.5: An intensional rule
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3 Query Rewriting Problem
The ANGIE knowledge base consists of an extensional part, stored locally, and an intensional
part, accessible by function calls. Given an user query, the problem is to evaluate the query
using the local knowledgebase and the set of functions defined in ANGIE.

Note that the functions have limited access patterns: values for the input parameters must be
provided in order to obtain bindings for the output parameters. This makes the problem difficult
because, in order to obtain the desired values for the output, one should provied the meaningful
input values. For instance, the function call f1 can be used to retrieve the albums created by
Frank Sinatra only if the id of Frank Sinatra is provided as input. One solution is to enumerate
all the values that can be provided as input to a function, and to compute all the consequences of
a function. This solution does not work in practice due to the large volumes of data generated by
all the calls, which can not be transferred using the limited bandwith connections in the Internet.

Our approach is to treat the functions as intensional components of the ontology and rep-
resent them within the ontology as described in Section 2.3. We see the functions as active
components of the ontology: a call to a function provides, on demand and when executed, bind-
ings for the output parameters. Furthermore, the output of the already executed calls enrich
the ontology and can be directly read from the local ontology later, for evaluating other user
queries. For a given user query expressed in a subset of the SPARQL query language (see Sec-
tion 2.2) one must compute the set of functions whose results might be used in order to answer
the query. We may see the initial query plus the set of function calls as a new query defined in
an extended SPARQL language that allows for declarations of function calls. This is similar to
the classical approach in data integration frameworks where the initial user query is translated
into a new query denoted the rewriting query. Specific to our rewriting problem, we encounter
the following difficulties:

Access Limitations The great challenge in this context is to determine the set of functions
that must to be called in order to answer a user query and more difficult, to determine the actual
values that must be provided in the input of the calls.

Function composition Note that the process of computing the rewriting may be dynamic, as
the result of one call may produce data that can be used as input for other calls.

Incompleteness of Web sources We may see ANGIE as a data integration system where the
global mediated schema consists of the classes and the relations defined in it. The functions (de-
fined as parameterized queries over the global mediated schema) can be seen as views (named
queries) over external data sources (Web services). In this respect, the functions are similar to
the views with limited access patterns described in [20, 8]. The data sources on the Web are
usually incomplete, as they do not cover the entire domain of a class. In such settings, one can
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compute only maximal contained query rewritings. A query Q1 is said to be contained in a
query Q2, denoted by Q1 v Q2, if for all databases the D, the set of tuples for Q1 is a subset
of those computed for Q2 i.e. Q1(D) ⊆ Q2(D). A contained query rewriting provides a part,
but not all the answers of a query. A maximal contained rewriting for a query, with respect to a
language, is a query so that no other rewriting contains it. As shown in [9], there are several im-
portant cases in which a maximal contained rewriting of a query can only be found if recursive
Datalog rewritings are considered. In [14], the authors show that for views with limited access
patterns there might be no bound on the size of the rewriting. However, as shown in [9], a finite
rewriting of the query, albeit a recursive one can be computed.

Our rewriting problem As opposed to other query rewriting algorithms that aim at com-
puting the complete set of answers, our goal is to produce the first answers quickly. We are
interested to determine first which calls are more likely to return useful data for the query. The
solution must scale to a large number of functions defined in our system.

Usually, expensive query rewritings must be executed in order to guarantee that the complete
set of answers is computed. For practical reasons, in order to limit the resource consumption
(bandwidth consumption caused by a large number of remote Web calls), we limit the process-
ing of the query using a timeout for the query processing. For an infinite value of the timeout,
the algorithm must produce the complete answers with respect to the data sources and to the
query language used to define the functions (views) and the query.
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4 General Answer Model
This section explains how the query engine can answer a query from the user. For this purpose,
we first explain how the query can be translated into function calls. This translation is called a
rewriting. Then, we explain how the function calls can be scheduled and executed.

4.1 Rewritings
Formally, a family of calls to a function with certain parameters is defined as a function instan-
tiation:

Definition 4 A function instantiation for a function definition f ⊂ (Ent∪V ar)×Rel×(Ent∪
V ar) is a complete substitution σ : V ar → Ent∪ V ar′, where V ar′ is a fresh set of variables.

The function instantiation will instantiate some variables of the function definition with
entities. Other variables of the function definition are simply given new names. It is necessary
to give them new names, because the same function definition may be instantiated multiple
times and naming conflicts have to be avoided.

We will now explain how a query can be rewritten to a knowledge base query and a set of
function instantiations. For uniformity, let us also consider the triples in the database as given
by a function. For this purpose, we introduce an artificial function fdb. fdb is the function
definition that consists of no pre-conditions and one single post-condition edge, in which all
three components are variables. Whenever this function is ”called” it issues an SPARQL query
to the knowledge base.

Definition 5 A rewriting for a query Q with a set of function definitions F is a set of function
instantiations σf1 , ...σfn for the functions f1, ..., fn ∈ F ∪ {fdb} on a common set V ar′ of fresh
variables, so that

1. for each precondition edge pre of any function fi,

∃fj, post postcondition of fj : σfj
(post) = σfi

(pre)

2. ∀q ∈ Q∃fi, post postcondition of fi : σfi
(post) = q

A rewriting is a set of function instantiations such that each edge in the query and each
pre-condition of a function instantiation is satisfied as post-conditions of another function in-
stantiation. The rewriting specifies which functions have to be called with which parameters in
order to find bindings for the variables in the query. A call to fdb corresponds to a query to the
local knowledge base. The simplest rewriting uses only function instantiations of fdb. In this
case, the rewriting is identical to the query (with the variables renamed).

12



Algorithm 1 DF(F , Q, R)
Input: F : the set of function definitions
Input: Q: a list of query edges
Input: R: the current function composition

1: if Q = ∅ then
2: Output R
3: return
4: end if
5: q := Q.poll()
6: for all f ∈ {fdb} ∪ F do
7: for all post-conditions p ∈ f do
8: if ∃ σ : σ(p) = q then
9: σ′ := a substitution for the free variables in f

10: σ′′ := σ′ o σ
11: DF(F, Q ∪ σ′′(pre(f)) \ {q}, R ∪ {(f, σ′′)})
12: end if
13: end for
14: end for

Algorithm 1 computes and outputs the rewritings for a query in the spirit of the chrono-
logical backtracking strategy used in Prolog. The algorithm takes as input a set F of function
definitions, a list Q of query edges and the current rewriting R. In the initial call, R = ∅. The
algorithm implements a recursive deep-first search on all possible rewritings. In each recursion
step, one edge is removed from Q and one function instantiation is added to R.

Let us look at the algorithm in more detail. Suppose for example that the query Q asks for
the albums released by Frank Sinatra. Suppose that we have 3 function definitions: f1 maps an
artist to its id in the MusicBrainz world. f2 maps the id to the albums released by the artist. f3
is the function-composition rule from Figure 2.5. Figure 4.1 depicts this situation.

The algorithm first checks whether there are any more query edges left. If no more edges
are left, the rewriting is output and the algorithm returns. In our case, there is one query edge
left. The algorithm picks this query edge (q). The algorithm considers all possible function
definitions. For each function definition f , it checks all post-conditions p. It tries to find a
substitution that satisfies q, i.e. a substitution σ such that σ(p) = q). In our case, f3 can satisfy q
with σ($artist)=FrankSinatra and σ($album)=$x. The algorithm expands σ to a proper function
instantiation σ′′ that renames also the remaining free variables in f . In our case, σ′′($id)=$id/0.
Then, the algorithm calls itself recursively. For the next recursion step, q is removed from Q,
because q is satisfied. However, the preconditions of f become new members of Q. Figure 4.2
shows the removed edges in blue and the added edges in red. In the next steps, the algorithm
tries to satisfy the edges marked with hasMBID and idReleased. In the figure, the algorithm
chooses fdb to satisfy the edge marked with hasMBID. This does not add any pre-conditions to
the query. Note that the algorithm could have chosen f1 as well for this edge. We will discuss
the selection policy in the next section. In the next step, the algorithm chooses f2 to satisfy the
edge marked with idReleased. This adds one pre-condition, which can be satisfied by fdb. The
result is a rewriting that “covers” the initial query completely.

The algorithm implements a shortcut for function definitions that have more than one post-
condition: If a post-condition of a function definition matches a query edge and if the function

13



  

Frank Sinatra $x
released

$artist

$idhasMBID

$album

 idReleased

released
f3:

Q:

$artist $id
hasMBID

f1:
Artist MBID

type type

$x $y$r
f

db
:

$id $album
idReleased

f2:

MBID Album

type type

Figure 4.1: Function definitions and query

definition already appears in the rewriting, then no new function instantiation is needed.

4.2 Cost model
The operation that has the largest impact on the total execution time is the execution of calls to
Web services.

Hence, the cost of executing a user query depends of the quality of σ instantiations. The
algorithm should prioritize the execution of σ instantiations so that the instantiations that lead
to a solution with a smaller cost are executed first. We consider the response time as the cost of
executing a query.

The quality of a σf instantiation depends in turn of (i) the Quality Of Service f, and of (ii)
the selectivity of the values used as binding values for the input parameters.

Definition 6 The quality of a service f is a vector (p, t) where the parameter p represents the
probability with which f returns a non empty answer for an arbitrary call that satisfies the
pre-conditions, and t is the response time divided by the number of post-conditions returned in
response.

p is a measure of the incompleteness of the source implementing f . For the database function
fdb we assign the the quality of service (1, 0). This corresponds to the optimistic approach
which considers that the local knowledge is complete. Furthermore, indeed the response time
can be approximated with 0, as the response time for a the database access is orders magnitude
smaller than that of a service call. For the other functions in the systems, the two values are
learned from the the history log of the calls.

The other factor that characterizes the quality of a function instantiation is the selectivity of
input values.
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Figure 4.2: Rewriting the Query

We introduce a cost function c, which maps a function instantiation σf to a real value that
reflects the expected cost of using the σf in the evaluation. If an instantiation σf uses as pre-
conditions the post-conditions of another function instantiation σf ′ , then one must have an esti-
mation of the number of post-conditions produced by the evaluation of σf ′ in order to determine
the number of calls corresponding to σf . Similarly, if f ′ is a database function, then the values
returned as postconditions of σf ′ can be computed directly from the database. If f ′ is a Web
function, then one can only estimate the number of results. Such statistics can be computed and
maintained for each function, based on the history of the calls.

Because the sources in the Internet are incomplete, not all the calls yield answers for valid
input parameters. A call that produces no result just consumes resources. As a measure of the
incompleteness of a source, every function has associated the parameter pf representing the
probability with which a call to that function returns an answer.

Definition 7 The cardinality of the result generated by all the calls corresponding to σf is given
by the expression:

|Output(σf |post)| = pf∗ | Input(σf ) | ∗ | Outputf |post|

where |Output(σf |post)| denotes the cardinality of postconditions post produced by the instan-
tiations of σf , | Outputf |post| is an estimation of the average postconditions post produced by
calls to f , | Input(σf ) | denotes the number of calls corresponding to σf .

Definition 8 The total cost of executing the instantiation σf is:

c(σf ) =| Input(σf ) | ∗t + (
∑

post |Output(σf |post)|) ∗ tu

where | Inputσf
| denotes the number of binding values for the input parameters defined in σf

and t stands for the time to execute one call and tu is cost per transferred unit of data.
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t represents the time necessary for establishing the connection with the remote Web service
(which is inherent to each call), while tu represents the cost necessary to transfer a unit of data
(one post-condition).

A issue here is that function results may have have a power-law nature, i.e. lots of result
sets have a single entry, many two entries and there are very few result set that are very large.
Such power law distributed cardinality will influence the quality of the expected value for pre-
dictions. The quality of the prediction increases, if for equivalence classes i.e., they have similar
properties.

Domain aware function definitions There are some cases where one knows precisely the set
of values that can be used as input parameters for some Web function. For instance, consider
a Web site that publishes all the authors for which it contains informations, and makes them
available in the Internet. Consider also that the Web site provides a Web service that returns the
books published by a given author. Note that for all the authors in the published list of authors,
the probability to obtain a valid answer is pf = 1. In order to discriminate between the case
in which the function is executed for an author in the retrieved set of authors and the case in
which the function is executed for an arbitrary entity, we can procede as follows. We introduce
a new class grouping all the authors in the retrieved list of exact authors, and we specify in
the definition of the function (from the ontology) that the input should have as type the newly
introduced class, and we let pf = 1.

4.3 Analysis of the algorithms
In this section we study the query rewriting solution in ANGIE. In [14], the authors show that
for views with limited access patterns there might be no bound on the size of the rewriting.
As an example, consider the following two function f1, and f2 and the query Q defined in an
equivalent datalog program:

f bf
1 (X,Y) :- Similar(X,Y), Artist(X), Artist(Y)

f bf
2 (X,Y) :- Artist(X), Album(Y), created(X,Y)

Q(X) :- Artist(X), Created(X,’My Way’)

The function f2 returns the albums released by an artist provided as input. Hence, one can
use the function f2 for all the artists in the ANGIE database, and filter out those who created no
album labeled ’My Way’. Furthermore, many more artists could be discovered if the function f1

is called subsequently for artists in the ANGIE database and recursively for artists returned in
the answer of f2. Note that the chain of recursive calls to f2, necessary to discover new artists,
depends of the configuration of the data and is not bound by the size of the query. Furthermore,
some of Web services in the Internet implement functions that generate domains consisting of
infinite number of values. For instance, consider a function that given a year, returns the next
year when a total eclipse of the sun is produced.

A issue is the number of function instantiations that should be considered for computing the
complete set of answers. The following theorems shows that the complexity is exponential.

Theorem 1 Determining all sets function instantiations that satisfy the pre-conditions of a
function f , is EXPTIME-hard.
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As a direct consequence, we can conclude that determining all function instantiation that must
be generated in order to obtain all query answers, is EXPTIME-hard. One can see the query as
a function where all the edges are marked as pre-conditions.
Proof: The proof is by reduction from 2-Player Corridor Tiling game [6]. The setting of the
game is given by a tuple (T, Cv, Ch, t̂, b̂, n). T is a set of domino tiles. Cv, Ch ⊆ T×T represent
vertical and horizontal constraints respectively, n is an even natural number, and t̂ = (t̂1, ..., t̂n)
and b̂ = (b̂1, ..., b̂n) are n-tuples of tiles.

A Corridor Tiling is a mapping λ : {1, ...,m} × {1, ..., n} → T , where m is again a natural
number. Furthermore, it must hold that (λ(1, 1), ..., λ(1, n)) = t̂, and (λ(m, 1), ..., λ(m, n)) =
b̂. A Corridor Tiling is correct iff for every i = 1, ...,m and every j = 1, ..., n−1, (λ(i, j), λ(i, j+
1)) ∈ H and for every i = 1, ...,m− 1 and every j = 1, ..., n, (λ(i, j), λ(i + 1, j)) ∈ V .

The 2-Player Corridor Tiling game is played by two players who place tiles in turn on a
N × N board. The second player starts the game. While the first player tries to construct a
correct Corridor Tiling, the second player tries to prevent it, by working against the strategy of
the first player. The first player wins, when he manages to construct a correct Corridor tiling,
or when the second player has no other possibility than placing a tile which violates the rules in
Cv or Ch.

It is known that the problem whether there exists a winning strategy for the first player is
EXPTIME-hard. We call this problem the 2PCT problem.

Now consider the tree representing all possible instantiations of a function f . At the root of
this tree there is a dummy node. The children of the dummy node are all postconditions of the
function f . Each postcondition node has as children all preconditions that need to be fulfilled,
in order to fulfill the postcondition. Each precondition node has as children all postcondition of
the functions that can fulfill the precondition, and so on. If there exists an instantiation of the
function f that binds all its postconditions, then every path in the tree has to represent a chain
of function calls that binds the second node of that path when starting from the root (note that
this node is one of the postconditions of f ). For now, we call this tree the instantiation tree.

We show in the following that any 2PCT problem can be reduced to our problem of deter-
mining whether there exists a binding instantiation for f in polynomial time.

Consider a 2PCT problem represented by (T, Cv, Ch, t̂, b̂, n).
For each t̂i, ˆti+1 and each b̂i, ˆbi+1, for an odd i < n, we introduce the postconditions postt̂i

and postb̂i
as well as the preconditions pre ˆti+1

and pre ˆbi+1
, such that pre ˆti+1

has to be fulfilled in
order to fulfill postt̂i and pre ˆbi+1

has to be fulfilled in order to fulfill postb̂i
. For all constraints of

the form (c, cji
) ∈ Ch and (c′, cji

) ∈ Cv, 1 ≤ ji ≤ k ∈ N, we introduce the postcondition postc,
and the preconditions precji

such that there is only one precji
that can lead to the fulfillment of

postc. Furthermore, we introduce the precondition prec, and the postconditions postcji
such that

any postcji
that can lead to the fulfillment of prec. For every constraint (c, cji

) ∈ Cv such that
there is no constraint of the form (c′, cji

) ∈ Ch, we introduce the dummy precondition #c and
the post conditions postcji

, such that all postcji
can fulfill #c. Finally, we turn the precondition

preb̂n
into an fdb, a simple function call that can be answered directly from the local database.

Our function f is given by all the postconditions that fulfill the dummy precondition #t̂1
.

It is obvious that the above construction of preconditions and postconditions can only lead to
an instantiation tree that indirectly represents the strategy of the first player in the 2PCT game.
Hence, there exists a winning strategy if and only if there is a binding instantiation that fulfills
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all postconditions of f .
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5 System architecture
The overall architecture of the ANGIE system is illustrated in Figure 5.1. The system uses the
existing YAGO ontology [23], which consists of 2 million entities and 20 million facts extracted
from various encyclopedic Web sources. In addition, ANGIE includes a built-in collection
of function definitions for the following Web services: MusicBrainz, LastFM, Library Thing,
ISBNdb, and IVA (Internet Video Archive). In our envisioned long-term usage, the function
definitions would either be automatically acquired from a Web-service broker/repository or
they could be semi-automatically generated by a tool, e.g., [2].
Query Translation Module. This is the core component of the ANGIE project. The module
takes as input a user query, and translates it into a sequence of function compositions. Each
function composition takes the form of an extended SPARQL query. In such a query, calls to
the database function fdb are simple triples. Calls to other functions are embedded function-call
declarations. The following sample query retrieves the id of Frank Sinatra from the knowledge
base and his albums from Music Brainz:

PREFIX y : <http://mpii.de/yago/resource/>
SELECT ?album WHERE {

y:Frank Sinatra y:hasMBId ?id
FUNCTION(getMBAlbums, ?id, ?album)

}

RDF-3X processor. The generated SPARQL queries are sent to the RDF-3X processor [16].
The processor has been modified to accommodate the Web service calls. It is also responsible
for scheduling the execution of the function calls. The calls are executed via the Mapping Tool
(discussed below), which is in charge of remote invocation of the Web services. The Mapping
Tool responds to the processor with the list of triples representing the answers of the calls.
The RDF-3X processor combines the triples from the local knowledge base and the triples
received from the mapping tool to produce a uniform output. The query translation and the
query execution are interleaved. The translation module continuously sends SPARQL queries
to the RDF-3X processor, which responds with new results.
The Mapping Tool. This component executes the Web service calls. It mediates between the
function declarations in the knowledge base and the schema of the XML documents that the
function call returns. For this purpose, every function has two mappings associated with it: The
lowering mapping defines how the pre-conditions of a function are translated to the parameters
of a REST (or SOAP) call. The call is sent to the remote site that provides the Web service.
ANGIE supports the parallel execution of multiple calls. A call will yield values for the output
variables in an XML fragment. The lifting mapping defines how the XML nodes in the answer
are mapped to entities in the knowledge base. We use the XSLT standard [27] for this purpose.
The entities can then be handled by the RDF-3X processor.
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Figure 5.1: System architecture of ANGIE

User Interface. The user interface allows the user to query the knowledge base in the language
described in Section 2.2. Queries are sent to the query translator module and answers are re-
trieved from there. Furthermore, the user can also display the knowledge base as a hyperbolic
graph. One exploration step in this GUI retrieves and visualizes the neighborhood around a
given entity. Such a browsing step translates into a simple query that retrieves the neighbors of
that entity.
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6 Conclusions
This work presents the advancement in the project ANGIE. The ANGIE project aims at building
a system that can retrieve data from Web services on the fly whenever the local knowledge base
does not suffice to answer a user query. In ANGIE, Web services act as dynamic components
of the knowledge base that deliver knowledge on demand. To the user, this is fully transparent;
the dynamically acquired knowledge is presented as if it were stored in the local knowledge
base. We have developed a model for declarative definition of functions embedded in the local
knowledge base. The (REST or WSDL) interfaces of available Web services are cast into such
functions. Parameter bindings are automatically constructed by ANGIE, services are invoked,
and the semi-structured information returned by the services are dynamically integrated into the
knowledge base. Our approach is to treat the functions as intensional components of the knowl-
edge base and represent them within the knowledge base itself. Executing a function provides
bindings for its output parameters, filled in on demand by the invoked Web services. These
output are added to the knowledge base and can be directly read later, for evaluating other user
queries. A function definition is a parametrized query, represented in the form of a semantic
graph (edges are relationship names and the nodes are variables or entities). Furthermore, the
edges are partitioned into input pre-conditions and output post-conditions. The pre-conditions
have to be fulfilled before the function can be called (by appropriate parameters filled in by
ANGIE before external services are invoked). The post-conditions correspond to output param-
eters of the invoked services. This representation naturally extends the model of the Semantic
knowledge.

Given a user query that cannot be directly or not completely answered by the local knowl-
edge base alone, the challenge is to determine the set of functions that must to be called in order
to provide answers. This in turn entails determining the actual values that must be provided as
inputs. Moreover, a big difficulty that often arises is the need for composing functions. This
may result from the specifics of a services interface or from the limitations regarding result
sizes or other forms of incompleteness. For example, one service method may take a book title
as input parameter and return an ISBN as its output, and there may be a second method for
providing the author, publisher, etc. based on the ISBN as input, and a third method may have
to be used to return the sales rank for a given pair of book and publisher names. Thus, many
information requests can be satisfied only by composing several of these functions, and ANGIE
needs to construct the appropriate parameter bindings. This rewriting a knowledge-base query
into a function composition is dynamically performed step by step, as the result of one call may
produce data used as input for subsequent calls. In contrast to more traditional query rewriting
algorithms that aim at computing a complete set of answers, our goal is to produce the first
answers quickly. Therefore, we need to estimate which calls are more likely to return useful
data for the query, and at which execution costs.

We have developed a query rewriting algorithm that determines one or more function com-
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position that need to be executed in order to evaluate a SPARQL-style user query. The key
idea is that the local knowledge base can be used to guide the selection of values used as input
parameters of function calls. This is in contrast to the conventional approaches in the literature
which would exhaustively materialize all values that can be used as binding values for the input
parameters.

A prototype system has been built, and we are conducting an experimental evaluation. Our
system consists of several components: (i) a rewriting module implementing the algorithm out-
lined above, (ii) the existing RDF-3X engine [16] that carries out the execution of the rewritings
and uniformly integrates the data from the local knowledge base and the data returned by the
Web service calls, (iii)a mapping tool that maps the XML schemas of the XML data returned
as service results onto the RDF model of the knowledge base.
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