
A Method and a Tool for Automatic
Verification of Region Stability for Hybrid

Systems

Andreas Podelski Silke Wagner

January 25, 2007

MPI–I–2007–2–001 January 2007

Authors’ Addresses

Andreas Podelski

Universität Freiburg

Georges-Köhler-Allee 52

D-79110 Freiburg

podelski@informatik.uni-freiburg.de

Silke Wagner

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

D-66123 Saarbrücken

swagner@mpi-inf.mpg.de

Abstract

We propose a model checking method and tool that integrates state abstraction
techniques for the automatic proof of a stability property for hybrid systems called
region stability. It is based on a new notion of snapshots which yield characteristic
discretizations of trajectories. We have implemented the tool and applied it to
solve a number of verification problems, including the fully automatic stability
proof for the break curve behavior of a train system.

Keywords

Hybrid Systems, Region Stability, Proof Rule, Tool

1 Introduction
For a large class of correctness properties of hybrid systems, push-button verifica-
tion methods such as model checking have reached a certain degree of practicality.
Those properties have in common that they can be reduced to non-reachability. In
contrast, for the class of stability properties, which is studied intensively in control
theory (see e.g. [4, 5, 6, 26, 27]), practical pushdown verification methods have so
far been out of reach. These properties can not be reduced to non-reachability.

Existing verification methods for stability are based on Lyapunov theory, see
e.g. [4, 5, 6, 26, 27]. They all share the drawback that state abstraction tech-
niques are intrinsically not applicable. Since such abstraction techniques (used
for overapproximation of state spaces and based formally on abstract interpreta-
tion [9, 10]) have been crucial to obtain scalability in existing model checkers for
hybrid systems (see e.g. [18, 19]), it seems useful to investigate new verification
methods for stability.

In this paper, we will propose a model checking method and tool that inte-
grates state abstraction techniques for the automatic proof of a particular stability
property called region stability [28, 33]. We will describe the experiments with
a prototypical implementation of our tool. The experiments yield fully automatic
stability proofs for a number of typical benchmark problems including the the
break curve behavior of a train system, a previously open challenge problem for
the AVACS project (www.avacs.org).

Region stability means that for each trajectory there exists a point of time after
which it never (again) leaves the given region. Before this time point the trajectory
can run either inside or outside of the region and it can reach the region and leave
it again arbitrarily often. Region stability is thus characterized by the finiteness
(NOT boundedness!) of the period of time that a trajectory can spend outside of
the region.

Our model checking method is based on a new notion of snapshots. That is,
we have a new characterization of region stability in terms of the finiteness of
particular (discrete) sequences of states; the states in each sequence form one of
three particular kinds of time divergent snapshots of the trajectory. We can com-

1

pute effective representations of the three corresponding sets of such sequences
by constraints that denote binary relations between states (binary relations repre-
sent sets of sequences in the obvious way: each pair of consecutive elements in
the sequence must lie in the binary relation). The finiteness condition for a set
of sequences is equivalent to the well-foundedness of the corresponding binary
relation, a condition which can be tested efficiently by a tool based on constraint
solving [36].

The algorithm to compute the constraint representations of the three sets of
the individual kinds of snapshot sequences works in two steps. The first step is
the syntactic transformation of the hybrid system into another one such that the
reachability relation of the new hybrid system is the binary reachability relation
between snapshot states of the original hybrid system. The second step is to com-
pute an overapproximation of the unary reachability relation of the new hybrid
system. It is this step that allows us to integrate state abstraction techniques. Our
tools relies on the particular abstraction used in the model checker PHAVer [18].

In summary, the contribution of this paper is the, to our knowledge first,
abstraction-based method and tool for automatically checking a form of stabil-
ity on hybrid systems. The possibility to use well-established state abstraction
techniques gives rise to an interesting potential of practicality, as indicated by the
experiments with a prototypical implementation of our tool.

2

2 Preliminary Definitions
A hybrid system is a tuple (fixed from now on)

A = (L ,V ,(jump`,`′)`,`′∈L ,(f low`)`∈L ,(inv`)`∈L ,(init`)`∈L)

consisting of the following components:

1. a finite set L of locations.

2. a finite set V of real-valued variables, including a variable t that denotes the
time.

3. a family (jump`,`′)`,`′∈L of formulas over V representing the possible
jumps from location ` to location `′.

4. a family (f low`)`∈L of formulas over V and V̇ specifying the continuous
variable update in location `. We use V̇ = {ẋ1, ẋ2, . . .} for the set of dotted
variables. A variable ẋ represents the first derivative of x with respect to
time, i.e. ẋ = dx/dt. Especially the derivative of time t with respect to itself
is always equal to 1, ṫ = 1.

5. a family (inv`)`∈L of formulas over V representing the invariant condition
in location `.

6. a family (init`)`∈L of formulas over V representing the initial states of the
system.

A state s is a pair (`,ν) consisting of a location ` of L and a valuation ν of
all variables over the set V . We write ΣV for the set of all variables valuations ν
and Σ = L ×ΣV for the set of all states. A set of states is also called a region. A
valuation over the set V̇ of dotted variables is denoted by ν̇.

A trajectory τ of a hybrid system A is a function mapping time points t in
� +

to states in Σ such that the following conditions hold:
Let ν be the real-valued component of τ at time point t.

3

1. If τ(0) has location `, then τ(0) must satisfy the initial condition of that
location, formally

τ(0) |= init` .

2. If ν is differentiable at t, and both τ(t) and the left-limit of τ at t,

lim
t ′→t−

τ(t ′) ,

have an equal location `, then the pair (ν, ν̇) of variable valuation and valu-
ation of the first derivatives satisfies the invariant and the flow condition of
location `, formally

(ν, ν̇) |= inv`∧ f low` .

3. If the left-limit of τ at t has location ` and τ(t) has a different location `′,
then the real-valued component of the left-limit of τ at t must satisfy the
jump condition from location ` to location `′,formally The values of the
continuous variables remain unchanged during a jump.

lim
t ′→t−

τ(t ′) |= jump`,`′ .

Intuitively, a trajectory of a hybrid system consists of (finitely or infinitely
many) smooth parts which are connected via jump discontinuities. The smooth
parts follow the continuous flow in one location. Next we consider states on the
same trajectory such that no jump occurs between the states.

Definition 1 (States on the same flow) Given a hybrid system A we say that two
states s and s′ lie on the same flow of a location ` of A,

s ;` s′ ,

if s and s′ are states on the same trajectory τ of the hybrid system A and no jump
occurs between s and s′ on τ; formally

1. s = τ(t) , s′ = τ(t ′) , t < t ′ and

2. ∃` ∀ t ′′ ∈ [t, t ′] : τ(t ′′) = (`,) .

Definition 2 (Region stability [33]) We call a hybrid system stable with respect
to a region ϕ if for every trajectory τ there exists a point of time t0 such that from
then on, the trajectory is always in the region ϕ.

∀τ ∃ t0 ∀ t ≥ t0 : τ(t) ∈ ϕ

4

Region stability is reminiscent to practical stability [28, 20, 40, 41]; for a
comparison we refer to [33].

In the remainder of this paper we restrict ourselves to regions ϕ that are given
by

ϕ ≡ x ∈ [xmin,xmax] ,

where x is a continuous variable in V and xmin and xmax are constants with xmin <
xmax. We call such regions interval regions.

5

3 Benchmarks
The goal of this section is to illustrate the notion of region stability and to show
that stability checking is practically feasible (for several challenging problems).
Therefor we give eight examples of hybrid systems with different particular prop-
erties. For every example our tool can automatically check stability.

3.0.1 Example 1

Our first example (Fig. 3.1) is a hybrid system with one location and one continu-
ous variable x. Initially the value of x is greater than 0; the flow condition is given
by ẋ = −1. The region with respect to which we want to proof stability is given
by x ≤ 0.

x>0 //

�� ��
�� ��`

ẋ = −1

Figure 3.1: Example 1.

Intuitively it is clear that all trajectories of the system must end up in the
region ϕ (since the value of x is strictly monotonically decreasing by −1). For
every single trajectory the amount of time that the trajectory can spend outside of
the region ϕ is finite. However, the time that a trajectory can spend outside of ϕ is
unbounded.

3.0.2 Simple Heating System

In our second example we consider a well-known heating system for a room, see
Fig. 3.2.

This system is not stable in the classical sense (wrt. an equilibrium point). We
want to show stability wrt. the region x ∈ [65,82].

6

�� ��
�� ��`1

ẋ = −x
x ≥ 68

x≤70 //
�� ��
�� ��`2
ẋ = 100− x

x ≤ 82x≥80
oo

Figure 3.2: Simple heating system.

3.0.3 More Complex Heating System

Our next example is a modification of the heating system that we have seen before.
The modified heating system (Fig. 3.3) consists of two continuous variables xp

and xe; xp stands for the temperature of the room and xe for the temperature of an
internal engine.�� ��

�� ��
`1

ẋp = −xp
ẋe = −3xe

(xp ≥ 68 ∨ xe ≥ 75)

xp≤70 ∧ xe≤80
//

�� ��
�� ��

`2
ẋp = 100− xp

ẋe = 2(150− xe)
(xp ≤ 82 ∧ xe ≤ 120)xp≥80 ∨ xe≥115

oo

Figure 3.3: Modified heating system.

The internal engine may overheat and switch off the heater temporarily, even
though the desired temperature for the room (again given by x ∈ [65,82]) is not
yet reached. This means that, starting from low, the temperature will not increase
strictly monotonically but it will also decrease during some periods of time. A
side effect of this behavior is that a trajectory can reach the desired region but
leaves it again for some time before it stabilizes.

3.0.4 One-tank Water System

In the following example we consider a one-tank water system with a constant
inflow of water (see Fig. 3.4). The volume of water in the tank is denoted by x.
The tank has a pipe such that water can also flow out of the tank again. The pipe
can be opened for at most 8 seconds; after that the pipe must be closed again for
10 seconds. We want to know whether the tank can be drained, no matter what
the initial volume of water is; i.e. we must check whether the system is stable wrt.
x <= 0.

As in Example 1, the time that a trajectory of this system can spend outside of
the desired region is unbounded. Furthermore we prove in this example stability

7

�� ���� ��`3
ẋ = 0

�� ��
�� ��

`1
ẋ = −12

ẏ = 1
x >= 0 ∧ y ≤ 8

x=0oo

y=8 ∧ y:=0 //

�� ��
�� ��

`2
ẋ = 8
ẏ = 1

x >= 0 ∧ y ≤ 10y=10 ∧ y:=0
oo

Figure 3.4: One-tank water system.

wrt. the equilibrium point x = 0. (Since the invariants of the system assure that
x ≥ 0, stability wrt. x ≤ 0 implies stability wrt. the equilibrium point x = 0.)

3.0.5 Two-tank Water System

Now we consider a two-tank water system consisting of two tanks one upon the
other. The variables x1 and x2 denote the volume of water in the upper tank 1 and
the lower tank 2. Water flows constantly out of the system from the lower tank.
The system can switch on or off the inflow of water into the upper tank, and the
flow of water from the upper to the lower tank; but both tanks must not overflow.
The objective is to keep the water volume of the lower tank above 6, i.e. we are
interested in stability wrt. the region x2 > 6. The hybrid system that models this
scenario consists of two continuous variables and four locations, see Fig. 3.5.

x1>0
X2>5

//

�� ��
�� ��

`1
ẋ1 = 0

ẋ2 = −5
x2 ≥ 5

x1≤50 //

x2≤10

��

�� ��
�� ��

`2
ẋ1 = 10
ẋ2 = −5

x1 ≤ 50 ∧ x2 ≥ 5x1≥45
oo

x2≤10

���� ��
�� ��

`3
ẋ1 = −8
ẋ2 = 3

x1 ≥ 10 ∧ x2 ≤ 50

x1≤20 //

x2≥45

OO

�� ��
�� ��

`4
ẋ1 = 2
ẋ2 = 3

x1 ≤ 50 ∧ x2 ≤ 50x1≥45
oo

x2≥45

OO

Figure 3.5: Two-tank water system

3.0.6 Distance Controller

The next example is a model of a distance controller, see Fig. 3.6. We consider
two cars driving one after another. The leading car has a constant speed v1 > 0.

8

The second car is governed by a controller that continuously senses the distance
between the two cars. If the distance is greater than a given value Dacc the second
car speeds up; if the distance is smaller than Ddec it slows down. The second car
has a maximum speed of vmax and a minimum speed of 0. The goal is to prove that
the distance x between the two cars is always > 0 (this means that the two cars do
not crash). �� ��

�� ��
`max

ẋ = −20
v̇ = 0

x ≥ 801 ∧ v = 70
x≤801

zzttttttttt�� ��
�� ��

`dec

ẋ = 50− v
v̇ = −1

x ≤ 3750 ∧ v ≥ 0

x≥3750 //

v=0 $$JJJJJJJJJ

�� ��
�� ��

`acc

ẋ = 50− v
v̇ = 1

x ≥ 801 ∧ 0 ≤ v ≤ 70
x≤801oo

v=70
eeLLLLLLLLLL

�� ��
�� ��

`min

ẋ = 50
v̇ = 0

x ≤ 3750 ∧ v = 0

x≥3750

99rrrrrrrrrr

Figure 3.6: Distance controller.

3.0.7 Bouncing Ball

This example is a modification of the well-known bouncing ball, see Fig. 3.7.
A ball (thought of as a point-mass) is thrown horizontally against a wall. The
distance between the wall and the thrower is denoted by xt , the distance between
the wall and the ball is denoted by xb. We assume that the ball has a constant
speed and does not lose any energy with a bounce. As soon as the thrower has
thrown the ball he moves towards the wall until the ball returns to him; then he
throws the ball again.

Each execution of the hybrid system in Fig. 3.7 is a Zeno execution, this means
a solution of the system having infinitely many discrete jumps in finite time. Nev-
ertheless we can show that the thrower can come arbitrarily close to the wall, i.e.
we can prove stability of the system wrt. the region xt ≤ ε for every ε > 0.

9

�� ��
�� ��

`1
ẋt = −1
ẋb = −2

xt ≥ xb ∧ xb ≥ 0

xb≤0 //

�� ��
�� ��

`2
ẋt = −1
ẋb = 2

xt ≥ xb ∧ xb ≥ 0xt≤xb

oo

Figure 3.7: Modified bouncing ball.

3.0.8 Train Breaks

In our last example we consider the braking behavior of a train, see Fig. 3.8.
Initially the train is moving with a constant speed v. Eventually it starts braking,
either with one break (if the speed is ≤ 200) or with two brakes (if the speed is
> 200). There is a time delay between ordering the brake application and reaching
the full brake effort. The braking capacity of the train depends on the speed. If the
train is decelerated to a speed between 180 and 200 the second brake is released
again. We want to prove stability of the system with respect to v ≤ 0, i.e. we want
to show that the train can always stop.

v>0
0≤a≤10

//

�� ��
�� ��`1

v̇ = a
ȧ = 0

v≤200

}}

200<v

!!�� ��
�� ��

`2
v̇ = a

ȧ = −2
0 ≤ v ≤ 200

a ≥−10

v≥200 //

a=−10
��

v=0 ∧ a:=0

��

�� ��
�� ��

`3
v̇ = a

ȧ = −4
180 ≤ v
a ≥−25

v≤180 ∧ a>−10oo

v>180 ∧ a=−25
��

v≤180 ∧ a≤−10

∧ a:=−10

uullllllllllllllllllllllllllllll

�� ��
�� ��

`4
v̇ = a
ȧ = 0

0 ≤ v ≤ 200
a = −10

v=0 ∧ a:=0 &&

�� ��
�� ��

`5
v̇ = a
ȧ = 0

180 ≤ v
a = −25

v≤200 ∧ a:=−10oo

�� ��
�� ��`6

v̇ = a
ȧ = 0

Figure 3.8: Train Brakes.

10

Our tool can automatically check stability for all of the examples above. The
run times are listed in Fig. 3.9.

System Run Time

Example 1 0.191s
Simple heater 0.490s
Complex heater 1.920s
One tank system 1.813s
Two tank system 16.545s
Distance controller 1.186s
Bouncing ball 4.209s
Train brake 2.589s

Figure 3.9: Run times of the eight benchmarks.

11

4 Stability Criterion for Linear,
One-dimensional Hybrid Systems
In this section we will give a criterion for region stability in the most simple case
of linear hybrid systems with only one continuous variable x (other than the default
variable t that denotes the time). In Section 4.1 we consider hybrid systems with
only one location (a degenerated case of a hybrid system) and in Section 4.2 we
consider linear systems with arbitrarily (but finitely) many locations.

The next definition allows us to talk about “snapshots” of the computation of
a hybrid system along one trajectory.

Definition 3 (Sequence of snapshots) Given a hybrid system A and a region ϕ
a sequence of snapshots is a sequence of states such that (i) all states of the
sequence lie on the same trajectory τ of A, (ii) all states are not in the region ϕ
and (iii) all pairs of consecutive states have a minimum time distance δ, where δ
is an arbitrary but fixed constant greater than 0; formally

s0,s1,s2, . . .

such that

(i) ∃τ ∀ i ∃ ti : si = τ(ti) ,

(ii) ∀ i : si 6∈ ϕ ,

(iii) ∃δ > 0 ∀ i : ti+1 − ti ≥ δ .

4.1 Linear, One-dimensional, One Location

We consider a linear hybrid system with one location. The flow condition is given
by

ẋ = ax+b ,

12

where a and b are real constants.
The solution of ẋ = ax+b is always a strictly monotonic function, namely

x(t) = c · eat −b/a ,

where c is a constant depending on the initial value of x. Possible trajectories for
such a system would e.g look like in Fig. 4.1.

a=1.8, b=–18

a=1.3, b=3.9

a=–2, b=0

a=–3, b=–7.5

–2

0

2

4

6

8

10

x

0.5 1 1.5 2 2.5

t

Figure 4.1: Sample trajectories of linear hybrid systems with one location and
flow condition ẋ = ax+b: the trajectories are either strictly monotonic increasing
to infinity or towards an asymptote, or they are strictly monotonic decreasing to
minus infinity or towards an asymptote.

We will now motivate informally the condition for region stability of one-
dimensional hybrid systems with one location, and why it is sufficient. By the
monotonicity of the trajectories it follows that all trajectories of a stable system
can never leave the region ϕ ≡ x ∈ [xmin,xmax] again after they have reached it
once. (Otherwise the trajectory could never return to the region again.) Or the
other way round: if a system is not stable wrt. ϕ then it must have a trajectory τ
that (1) either never reaches the region or (2) reaches the region and leaves it again
for good.

In both cases exists an infinite computation of the system (starting either from
the beginning, i.e. at τ(0), or from the time point t0 when the trajectory has just
left ϕ, i.e. at τ(t0)) such that all states of the computation are not in the region ϕ.

Hence we can reduce stability wrt. an interval region ϕ to the existence of
infinite computations outside of ϕ. To check whether or not such an infinite com-
putation exists we consider sequences of snapshots of the hybrid system.

Condition 1: There is no infinite sequence of snapshots such that
all states of the sequence lie on the same flow.

Or, in other words, if we consider an infinite sequence of snapshots
s0,s1,s2, . . . on the same flow then there must be a state in this sequence, say
sn, that is in the region ϕ.

13

Lemma 1 Condition 1 is sufficient and necessary for region stability of a linear
hybrid system A with one location ` and one continuous variable x wrt. an interval
region ϕ.

Proof: The if-direction is clear from the above. We refer the only if-direction to
Theorem 1. 2

4.2 Linear, One-dimensional, m Locations

Now we consider linear hybrid systems with several locations and one continuous
variable x.

The next example shows that for the more general case Condition 1 is not
sufficient for proving stability when there are several locations. We consider a
hybrid system with two locations. In location `1 the value of x is increasing, in `2

the value of x is decreasing.

0<x<1 //onmlhijk`1
ẋ = 1
x ≤ 1

x≥1
,, onmlhijk`2

ẋ = −1
x ≥ 0

x≤0
kk

Figure 4.2: Example: Linear hybrid system with 2 locations. In location `1 the
value of x is increasing, in `2 the value is decreasing.

We want to know whether this system is stable wrt. the interval region ϕ,

ϕ ≡ x ∈ [0.4,1] ;

one sample trajectory of this system is shown in Fig. 4.3.

0

0.2

0.4

0.6

0.8

1

1.2

x

2 4 6 8

t

Figure 4.3: A sample trajectory of the hybrid system in Fig. 4.2. The system is
not stable wrt. the grey region ϕ ≡ x ∈ [0.4,1] although Condition 1 holds.

If we consider an arbitrary sequence of snapshots on the same flow of this
system and if we choose the time distance δ = 1/2 then Condition 1 holds because

14

either s0 is already in ϕ or (if not) s1 is in ϕ or (if neither) the invariant condition
of the location is violated after a time elapse of 1/2. But the system is obviously
not stable wrt. ϕ.

Thus, for stability of a linear system with several locations we do not only
need to consider the flows in each single location. We also have to take the jumps
into account. We call the states just after a jump entry-points.

Definition 4 (Entry-points) Given a hybrid system A a state s is called an entry-
point if it lies on a trajectory τ of A immediately after a discrete jump; formally

1. s = τ(t) = (`,ν) ,

2. ∃ ′` ∈ L : lim
′t→t

τ(′t) |= jump′`,` .

By Entry` we denote the set of all entry-points of a location ` of A.

With help of the next condition we ensure that a hybrid system can not have
infinitely many entry-points outside of the region ϕ.

Condition 2: There is no infinite sequence of snapshots such that
all states of the sequence are entry-points.

Lemma 2 Condition 1 and Condition 2 together are sufficient and necessary for
region stability of a linear hybrid system A with m locations and one continuous
variable x wrt. an interval region ϕ.

Proof: if-direction: We assume that for the hybrid system A the Conditions 1
and 2 hold but A is not stable wrt. ϕ, i.e. the system has a trajectory τ that
does not stabilize.

The first possibility is that the non-stabilizing trajectory τ will run forever
outside of ϕ from a time point t0 on.

∃ t0 ∀ t > t0 : τ(t) /∈ ϕ

We consider an arbitrary sequence of entry-points on τ after t0,

τ(t1),τ(t2),τ(t3), . . .

such that all pairs of consecutive states have a minimum time distance δ. Ob-
viously, all states of this sequence are not in ϕ. By Condition 2 this sequence
is finite, say up to a state τ(tk), and the computation of the system A pro-
ceeds in one location ` after tk (since no more entry-point and thus no more

15

jump occurs). But then we know by Lemma 1 that an infinite sequence of
snapshots on the flow of location ` must exist, a contradiction to Condition 1.

The second possibility is that the non-stabilizing trajectory τ will reach and
leave the region ϕ infinitely often in an infinite amount of time.

∀ t ∃ t ′, t ′′ , t ′′ > t ′ > t : τ(t ′) ∈ ϕ ∧ τ(t ′′) /∈ ϕ

We will next show that in this case τ must have infinitely many entry-points
outside of the region ϕ, which yields a contradiction to Condition (2).

We assume that from time point t0 on there will be no more entry-points on
τ outside of ϕ, i.e. τ(t0) is the last one. We know that τ will reach the region
ϕ after t0 again, say at t1, and it will leave ϕ again after t1, say at t2. The
flow in each location of A is monotonic (since A is a linear system with one
single continuous variable). Since no more entry-point will occur outside
of ϕ the trajectory τ will move away from ϕ forever after t2. But this is a
contradiction to the assumption that τ reaches and leaves ϕ infinitely often in
an infinite amount of time.

We refer the only if-direction of the proof to Theorem 1. 2

In the sample trajectory (Fig. 4.3) of our former example, the sequence of
entry-points

τ(1.9) = (`1,x = 0),τ(2.9) = (`1,x = 0),τ(3.9) = (`1,x = 0), . . .

is for instance not finite. Hence this system cannot be stable wrt. ϕ.

16

5 Stability Criterion for Nonlinear,
One-dimensional Hybrid Systems
Having found a criterion for region stability of linear hybrid systems we will next
consider nonlinear systems. Again we first consider systems with one location
and one continuous variable before we consider systems with several locations.

5.1 Nonlinear, One-dimensional, One Location

We consider a hybrid system where the flow condition is given by

ẋ = cos(x)

and the region ϕ is given by

ϕ ≡ x ∈ [−0.5,1.1] .

A sample trajectory of this system is given below.

–1

–0.5

0

0.5

1

x

5 10 15 20 25

t

Figure 5.1: Sample trajectory of a hybrid system with one location that satisfies
Condition 1. The trajectory violates stability wrt. the grey region ϕ ≡ x ∈
[−0.5,1.1].

Trajectories of nonlinear system can oscillate, i.e. they can change their direc-
tions during continuous flows, whereas a trajectory of a linear system can change

17

its direction only by taking a discrete jump (as long as the systems have only
one continuous variable). We call states where the trajectory changes its direction
extremal-points.

Definition 5 (Extremal-points) An extremal-point s wrt. a continuous variable
x ∈ V is a state on a trajectory τ at time t,

s = (`,ν) = τ(t) ,

such that the x-component of the first derivative ν̇ changes its sign at time t.

lim
′t→t−

(sgn(τ(′t))x) 6= lim
t ′→t+

(sgn(τ(t ′))x)

By Extremx we denote the set of all extremal-points wrt. x.

We shortly write
(τ(t))x

for the x-component of the first derivative ν̇ at time t. The signum function sgn
assigns to each real number r its sign.

sgn(r) =







−1 if r < 0
0 if r = 0

+1 if r > 0

We must adapt Condition 1 to the more general case where extremal-points
wrt. x can occur during flows.

Condition 1: There is no infinite sequence of snapshots such that
(i) all states of the sequence lie on the same flow and
(ii) no extremal-point wrt. x lies between two states of the sequence.

In the linear case the condition “no extremal-point wrt. x lies on the sequence
or between two states of the sequence” is always true for all sequences of snap-
shots that lie on the same flow (because no extremal-points wrt. x do exist during
continuous flows of one-dimensional linear hybrid systems). Hence we can use
the new form of Condition 1 in Section 4 without changing the results that we
have archived there.

Since the argumentation in the linear case (Section 4.1) is based on the mono-
tonicity of the trajectories we can suspect that Condition 1 will not be sufficient
for stability in the nonlinear case. Indeed, if we choose for the system above the
time distance δ small enough (e.g. δ = 1) then Condition 1 holds but the system
is not stable wrt. ϕ (see Fig. 5.1).

18

This means that, to find a stabilization criterion for nonlinear systems, we
additionally have to consider sequences of extremal-points wrt. x.

Condition 3: There is no infinite sequence of snapshots such that
all states of the sequence are extremal-points wrt. x.

The idea is as follows: We assume that, for all trajectories τ, all sequences
of extremal-points wrt. x are finite outside of ϕ (i.e. there are only finitely many
extremal-points wrt. x that are not in ϕ). This can be either because only finitely
many extremal-points wrt. x do exist; or there are infinitely many extremal-points
wrt. x and from a certain time point on all of them are in the region ϕ. In the
second case we are done with the stability proof because with two extremal-points
wrt. x all states of the trajectory in between are also in ϕ (because ϕ is an interval
region). In the first case we must additionally consider all computations after
the last extremal-point wrt. x. But if no more extremal-point wrt. x occurs the
trajectory is monotonic and we can reduce stability to Condition 1.

Lemma 3 Condition 1 and Condition 3 together are sufficient and necessary for
region stability of a nonlinear hybrid system A with one location ` and one con-
tinuous variable x wrt. an interval region ϕ.

Proof: The if-direction is clear from the above. We refer the only if-direction to
Theorem 1. 2

5.2 Nonlinear, One-dimensional, m Locations

Comparing the two examples from Section 4.2 and 5.1 (see Fig. 4.3 and Fig. 5.1)
there is a significant difference: the reason why the trajectories are not monotone,
namely because of the discrete jumps in the linear case and because of the oscilla-
tions in the nonlinear case. One could ask why we distinguish between entry- and
extremal-points wrt. x although we could also have formulated Lemma 2 using
Condition 3 instead of Condition 2.

The reason becomes clear if we look at an example of a nonlinear hybrid
systems with more than one location, see Fig 5.2.

0<x<1// wvutpqrs`1
ẋ = 1

sin(x) ≥ 0

sin(x)≤0
-- wvutpqrs`2

ẋ = 2
sin(x) ≤ 0

sin(x)≥0
mm

Figure 5.2: Example of a nonlinear system with 2 locations. All trajectories are
strictly monotonic increasing towards infinity. Hence the system is not stable wrt.
ϕ ≡ x ∈ [0,50].

19

We want to know whether this hybrid system is stable wrt. the region

ϕ ≡ x ∈ [0,50] .

The system above does not have any extremal-points wrt. x since the derivative
of x is always greater than 0; this means that all sequences of extremal-points wrt.
x are finite and hence Condition 3 holds. Condition 1 also holds because of the
invariant conditions of the locations. But the system is obviously not stable wrt.
the region ϕ since all trajectories are strictly monotonically increasing towards
infinity.

This example shows that we can not replace Condition 2 by Condition 3, but
we need to consider both sequences of entry-points and sequences of extremal-
points.

Lemma 4 Condition 1, Condition 2 and Condition 3 together are sufficient and
necessary for region stability of a nonlinear hybrid system A with m locations and
one continuous variable x wrt. an interval region ϕ.

Proof: (Sketch of the if-direction) We assume that the Conditions 1-3 hold but
the system has a non-stabilizing trajectory τ.

By Condition 2 all sequences of snapshots that consist of entry-points are
finite outside of ϕ. Because τ is non-stabilizing there must either be infinitely
many oscillations in an infinite amount of time, i.e. infinitely many extremal-
points wrt. x, that bring the trajectory out of the region again, a contradiction
to Condition 3.

Or, if all sequences of snapshots that consist of extremal-points wrt. x are
also finite, the computation of the system must end up in a flow outside of ϕ
without extremal-points in between. But this yields a contradiction to Con-
dition 1. 2

20

6 The general case: A Stability
Criterion for Linear or Nonlinear,
n-dimensional Hybrid Systems with
m Locations
In a final step we give the complete criterion for stability of a general (linear or
nonlinear) hybrid system wrt. an interval region ϕ in terms of three conditions.
We will prove that the three conditions together are not only sufficient but also
necessary for region stability.

Theorem 1 Condition 1, Condition 2 and Condition 3 together are sufficient and
necessary for region stability of a hybrid system A wrt. an interval region ϕ.

Proof: It follows from Lemma 4 that the Conditions 1-3 are sufficient for stability
since the proof of Lemma 4 does not make use of the fact that x is the only
continuous variable.

It remains to show that the Conditions 1-3 are necessary for stability. There-
for we prove that “stability with respect to ϕ” implies that all possible se-
quences of snapshots are finite. From this implication it follows immediately
that the Conditions 1-3 must hold for stable systems.

By definition, stability wrt. a region ϕ means

∀τ ∃ t0 ∀ t ≥ t0 : τ(t) ∈ ϕ .

We consider a sequence of snapshots

τ(t1),τ(t2),τ(t3),

For a proof by contradiction we assume that this sequence is infinite. Since
the system A is stable there must exist a time point t0 such that all states on

21

A : hybrid system
ϕ : interval region

Condition 1 There is no infinite sequence of snapshots such that
(i) all states of the sequence lie on the same flow and
(ii) no extremal-point wrt. x lies between two states of the se-
quence.

Condition 2 There is no infinite sequence of snapshots such that
all states of the sequence are entry-points.

Condition 3 There is no infinite sequence of snapshots such that
all states of the sequence are extremal-points wrt. x.

Region stability of A with respect to ϕ

Figure 6.1: Proof rule for region stability of hybrid systems wrt. interval regions.
A sequence of snapshots is a sequence of states such that (i) all states of the
sequence lie on the same trajectory τ of A, (ii) all states are not in the region ϕ
and (iii) all pairs of consecutive states have a minimum time distance δ, where δ
is an arbitrary but fixed constant greater than 0. The notion is formally defined in
Definition 3.

the trajectory τ are in ϕ after t0. We look at the state τ(tk) of the sequence
above where k is given by

k = 1+ dt0/δe .

Since δ is a positive constant the index k is positive and finite. It follows for
the time point tk:

tk ≥ k ·δ
≥ t0 +δ .

But this implies that τ(tk) is in the region ϕ, a contradiction. 2

In Fig. 6.1 we give a proof rule for region stability of hybrid systems. By
Theorem 1 the three conditions of the proof rule together are both sufficient and
necessary for region stability.

22

7 Stability with Respect to
Multi-dimensional Regions
We can extend all our previous results to n-dimensional regions, i.e. to regions ϕ
that can be expressed as cartesian products of intervals.

ϕ ≡ (x1, . . . ,xn) ∈ [xmin
1 ,xmax

1]× . . .× [xmin
n ,xmax

n] ,

We call such regions box regions. The idea is to prove that the hybrid system is
stable wrt. each single one-dimensional component ϕi of the cartesian product,

ϕi ≡ xi ∈ [xmin
i ,xmax

i] , i = 1 . . .n .

The following lemma shows that this yields stability wrt. the n-dimensional region
ϕ.

Lemma 5 A hybrid system A is stable wrt. an n-dimensional box region ϕ if and
only if A is stable wrt. each interval region ϕi.

Proof: if-direction: Assume A is stable wrt. to each one-dimensional region ϕi,
formally

∀τ ∃ t1
0 ∀ t ≥ t1

0 : τ(t) ∈ ϕ1 ,

. . .

∀τ ∃ tn
0 ∀ t ≥ tn

0 : τ(t) ∈ ϕn

We take the maximum over all time points t i
0 and call it t0.

t0 = max
i=1...n

t i
0

This means that from time point t0 on the trajectory τ is in all one-
dimensional regions ϕi,

x1 ∈ [xmin
1 ,xmax

1] ∧ . . . ∧ xn ∈ [xmin
n ,xmax

n] ,

23

A : hybrid system
ϕ : box region

ϕi : interval regions

• ϕ ≡ ϕ1 × . . .×ϕn

• A stable wrt. ϕ1

• . . .

• A stable wrt. ϕn

Region stability of A with respect to ϕ

Figure 7.1: Proof rule for region stability of hybrid systems wrt. box regions.

and hence in the n-dimensional box region ϕ which implies that A is stable
wrt. ϕ.

only if-direction: Assume A is stable wrt. n-dimensional box region ϕ, i.e.

∀τ ∃ t0 ∀ t ≥ t0 : τ(t) ∈ ϕ .

Especially this means that from t0 on the trajectory τ is in all one-dimensional
interval regions ϕi.

∀τ ∃ t0 ∀ t ≥ t0 : τ(t) ∈ ϕ1 ∧ . . . τ(t) ∈ ϕn .

Thus A is stable wrt. each interval region ϕi. 2

The proof rule for stability of hybrid systems wrt. box regions is given below.
The conditions of the proof rule together are sufficient and necessary for region
stability.

24

8 Implementation
The goal of this section is to show how one can compute an effective represen-
tation of the set of sequences of snapshots for each kind of snapshot. In order
to check finiteness of sequences of snapshots we give an implicit representation
of the set of these sequences by constraints that denote binary relations. (A bi-
nary relation represents the set of all sequences such that each pair of consecutive
elements lies in the relation).

We distinguish three different kinds of snapshots; for each kind of snapshot
we compute the constraint that implicitly represents the corresponding set of se-
quences. For each of the three cases the algorithm to compute the constraints is
based on the syntactic transformation of the original hybrid system into another
one such that the reachability relation of the transformed hybrid system is the
binary reachability relation between snapshots of the original system; an overap-
proximation of the unary reachability relation of the transformed hybrid system is
computed by using dedicated abstraction techniques that have been developed for
safety proofs of hybrid systems (see e.g. [18]).

Fig. 8.1 shows the control flow graph of the overall algorithm. The input is
a hybrid system and a region ϕ. In the first step the algorithm computes a trans-
formed hybrid system such that the reachability relation of the transformed hy-
brid system is the binary reachability relation between snapshots of the original
system. In the second step the algorithm uses PHAVer, a tool for (unary) reach-
ability analysis, to compute the reachability relation of the transformed hybrid
system. The last step is to check whether all relations in the output of PHAVer
are well-founded. (Well-founded means that there is no infinite sequence of states
s1,s2,s3, . . . such that each pair of consecutive states (si,si+1) satisfies the rela-

Transformed

Relations Hybrid System

Reachability
Set of Binary

Yes / Don’t knowSystem

INPUT OUTPUT

 Region

System

Transformation

Reachability
Analysis

(PHAVer) (RankFinder)

Tests
Well−foundedness

Figure 8.1: Control flow graph of the overall algorithm.

25

tion.) Our algorithm uses RankFinder ([36]) for the well-foundedness tests. The
output of the algorithm is a Yes / Don’t know answer.

8.1 System transformation

To find an effective representation of the set of sequences of snapshots for each
kind of snapshot, we first consider the representation that is directly given by the
original hybrid system. Approaches to verification methods for stability that are
based on this representation use Lyapunov theory. But this representation suffers
from the non-applicability of suitable abstraction techniques.

Therefore we use an implicit representation of the set of sequences of snap-
shots by constraints that denote binary relations (such that all sequences are or-
dered by the relations). That means a binary relation represents the set of all
sequences of snapshots s0,s1,s2, . . . such that all pairs of snapshots (si,si+1) lie in
the relation.

We will now show by means of examples how one can compute the constraints
in each of the three cases. Afterwards we will give the formal account of the
system transformation.

8.1.1 Sequences of snapshots on the same flow of a trajectory.

First we describe how one can compute the representation for all sequences of
snapshots on the same flow of a trajectory without extremal-points in between.

We consider the hybrid system with one location and one continuous variable
in Fig. 8.2. We want to know whether the system is stable wrt. the region ϕ ≡
x ∈ [−1,1].

//

�� ��
�� ��

`
ẋ = sin(x)

Figure 8.2: Hybrid system with one location and one continuous variable

Fig. 8.3 shows the system transformation for the computation of sequences
of snapshots on monotonically increasing parts of a trajectory. (The transformed
system for the decreasing parts is quite similar; it differs from this system only in
the guards of the locations `0 and `1 that are given by sin(x) < 0 and sin(x′) < 0
respectively.)

26

x′=x //

�� ��
�� ��

`0

ẋ = sin(x)
ẋ′ = sin(x′)

sin(x)>0

x /∈ ϕ
//

�� ��
�� ��

`1

ẋ = 0
ẋ′ = sin(x′)
sin(x′) > 0

x′ /∈ ϕ

∆t=δ
//

�� ��
�� ��

`end

ẋ = 0
ẋ′ = 0

Figure 8.3: Transformed system for the computation of sequences of snapshots
on monotonic parts of a trajectory.

The transformed system has two continuous variables, namely the original
variable x and its copy x′. Initially the values of x and x′ are the same. In the
location `0 the continuous flows of the two variables are identical, each of which
corresponding to the flow of the original system. This means that one can view
a state (s,s′) of the transformed system in `0 as a pair of identical states of the
original system. The guard of the location `0 means that the values of x (and
thus also the values of x′) are monotonically increasing since the first derivative
ẋ = sin(x) must be > 0.

The transformed system can jump from the location `0 to the location `1 only
if the value of x is not in the region ϕ (i.e. either if x > 1 or if x < −1). Until the
discrete jump the values of x and x′ are identical. After the jump only x′ continues
evolving as before whereas x is fixed from now on (since in the location `1 the
flow of x is constantly 0). The values of x′ are still increasing according to the
guard of `1. This means that in `1 one can view a state (s,s′) of the transformed
system as a pair of states on a monotonically increasing part of a trajectory of the
original system, where the first state s is not in the region ϕ.

To make sure that the value of x′ is also not in ϕ the transformed system can
jump to the third location `end only if x′ > 1 or if x′ < −1. Additionally the jump
condition ensures that the transformed system must take time δ in the location
`1. In `end the values of both variables x and x′ are fixed. A state (s,s′) of the
transformed system in `end can be viewed as a pair of states on a monotonically
increasing part of a trajectory of the original system where both states are not in ϕ
and have a time distance δ. (The constant δ > 0 is the discretization width of the
trajectory.)

Altogether this means that the reachability relation of the transformed hybrid
system in `end is the binary reachability relation between snapshots of the orig-
inal system that lie on the same flow of a trajectory without extremal-points in
between.

27

8.1.2 Sequences of extremal points

Next we describe the system transformation for the computation of sequences of
extremal-points. We consider again the system in Fig. 8.2 and the transformed
system in Fig. 8.4.

x′=x //

�� ��
�� ��

`0

ẋ = sin(x)
ẋ′ = sin(x′)

sin(x)=0

x /∈ ϕ
//

�� ��
�� ��

`3

ẋ = 0
ẋ′ = sin(x′) x /∈ ϕ ,∆t≥δ

sin(x′)=0 //

�� ��
�� ��

`end

ẋ = 0
ẋ′ = 0

Figure 8.4: Transformed system for the computation of sequences of extremal-
points.

The basic idea for the system transformation is the same as before: we make
a copy x′ of the continuous variable x, we eventually fix the value of x and let
x′ continue evolving, and then we also fix the value of x′. But there are two
differences to the transformed system in Fig. 8.3.

First, the guards of the locations of the transformed system in Fig. 8.4 are
given by the guard of the original system (that is true in this example). Second,
we must add the condition sin(x) = 0 to both jump conditions (from `0 to `3

and from `3 to `end) to ensure that a state (s,s′) of the transformed system in `end

corresponds to a pair of extremal-points (that are states where the first derivative
of x is 0) of the original system. Again both states lie outside of the region ϕ.

8.1.3 Sequences of entry-points

Now we consider the simple heating system in Fig. 3.2 to describe the system
transformation for the computation of sequences of entry-points. The region ϕ
is given by x ∈ [65,82] . For simplicity we only consider entry-points of the
location `1. (An entry-point of `1 is a state just after a discrete jump from `2 to `1,
i.e. the jump condition x ≥ 80 must hold.)

In this case it does not suffice to make a copy of the continuous variable x only
but we must duplicate the whole hybrid system, see Fig. 8.5.

The intuition is that a state (s,s′) of the transformed system in `end corresponds
to a pair of entry-points of the location `1 of the original system. To ensure that
s is an entry-point of `1 (of the original system) we fix the value of x just after
a discrete jump (of the transformed system) from `0

2 to `4
1. The jump condition

x > 82 ensures both that the jump condition from `0
2 to `0

1 (i.e. x ≥ 80) holds
and that x is not in the region ϕ (i.e. (x < 65 ∨ x > 82)). For the same reason the

28

x′=x //

�� ��
�� ��

`0
1

ẋ = −x
ẋ′ = −x′
x ≥ 68

x≤70 //

�� ��
�� ��

`0
2

ẋ = 100− x
ẋ′ = 100− x′

x ≤ 82x≥80
oo

x>82
zzvvvvvvvvvvvv

�� ��
�� ��

`4
1

ẋ = 0
ẋ′ = −x′

x′ ≥ 68

x′≤70 //

�� ��
�� ��

`4
2

ẋ = 0
ẋ′ = 100− x′

x′ ≤ 82x′≥80
oo

x′>82

∆t≥δ
//

�� ��
�� ��`end

ẋ = 0
ẋ′ = 0

Figure 8.5: Transformed system for the computation of sequences of entry-points.

jump condition from `4
2 to `end ensures that s′ is an entry-point of the location `1 of

the original system that does not lie in ϕ.

8.1.4 Formal Description of the System Transformation

Given a hybrid system

A =
(

L ,V ,(flow`),(jump`,`′),(inv`),(init`)
)

for which we want to prove stability wrt. the interval region

ϕ ≡ x ∈ [xmin,xmax] ;

the transformed system AT is given by:

1. Locations: Each location `i of the original system corresponds to five loca-
tions `0

i , . . . , `
4
i in the transformed system. We refer to the set of all locations

from `k
1 to `k

m as Lk,

Lk = {`k
1, . . . , `

k
m} , k ∈ {0,1,2,3,4} .

In addition, the transformed system has two locations `init and `end. Al-
together, the set L T of locations of the transformed system consists of the
following components:

LT = {`init} ∪ L0 ∪ L1 ∪ L2 ∪ L3 ∪ L4 ∪ {`end}

2. Variables: The set V T of variables of the transformed system contains all
variables of V , their primed versions, and an additional variable called flag.

V T = V ∪ {flag} ∪ V ′

29

3. Flow constraints: First, in the locations `init and `end the flow of all contin-
uous variables is 0.

flowT
`init

(x1, . . . , t
′, ẋ1, . . . , ṫ

′) ≡
∧

x∈V T

ẋ = 0

flowT
`end

(x1, . . . , t
′, ẋ1, . . . , ṫ

′) ≡
∧

x∈V T

ẋ = 0

In each location `0
i of L0, the flow of the variables x1, . . . , t in the trans-

formed system is the same as the flow of x1, . . . , t in the original system;
each variable x′1, . . . , t

′ behaves exactly like its unprimed version, that is the
flow of x′1, . . . , t

′ is equal to the flow of the original system after replacing
the variables x1, . . . , t by their primed versions x′1, . . . , t

′.

flowT
`0

i
(x1, . . . , t

′, ẋ1, . . . , ṫ
′) ≡ flow`i(x1, . . . , ṫ) ∧ ˙flag = 0

∧ flow`i(x
′
1, . . . , ṫ

′)

In each location of L 1 ∪ . . .∪ L4 the values of the variables x1, . . . , t are
fixed, i.e. the flow of them is constantly 0. The variables x′1, . . . , t

′ keep on
evolving as before.

flowT
`k

i
(x1, . . . , t

′, ẋ1, . . . , ṫ
′) ≡ (

∧

x∈V ∪{flag}

ẋ = 0) ∧ flow`i(x
′
1, . . . , ṫ

′) ,

k ∈ {1, . . . ,4}

4. Jump constraints: A jump is possible from the location `init to any location
`0

i of L0 if the initial condition of the location `i of the original system A is
fulfilled for the variables (x1, . . . , t).

jumpT
`init,`

0
i
(x1, . . . , t

′) ≡ init`i(x1, . . . , t)

The second kind of jumps are jumps between between two locations of
L0 and between two locations of L 4, respectively. The condition for
a jump between the location `0

i and the location `0
j for the variables

(x1, . . . , t,x′1, . . . , t
′) corresponds to the jump condition between the locations

`i and ` j of the original system A for the variables (x1, . . . , t). Similarly a
jump condition between the locations `4

i and `4
j of the transformed system

corresponds to the jump condition from location `i to ` j of the original sys-
tem after replacing the variables x1, . . . , t by their primed versions.

jumpT
`0

i ,`
0
j
(x1, . . . , t

′) ≡ jump`i,` j
(x1, . . . , t)

jumpT
`4

i ,`
4
j
(x1, . . . , t

′) ≡ jump`i,` j
(x′1, . . . , t

′)

30

To compute sequences on monotonic flows we allow jumps from `0
i ∈ L0

to `1
i ∈ L1 (and to `2

i ∈ L2, respectively) if the first derivative of x is greater
than 0 (and less than 0, respectively) and if x does not lie in ϕ.

jumpT
`0

i ,`
1
i
(x1, . . . , t

′) ≡ ẋ > 0 ∧ ¬ϕ

jumpT
`0

i ,`
2
i
(x1, . . . , t

′) ≡ ẋ < 0 ∧ ¬ϕ

Similarly the transformed system can take a jump from a location `0
i ∈ L0

to a location `3
i ∈ L3 if the first derivative of x is 0 and if x does not lie in ϕ.

jumpT
`0

i ,`
3
i
(x1, . . . , t

′) ≡ ẋ = 0 ∧ ¬ϕ

A jump from `1
i to `end (and from `2

i to `end, respectively) is possible if the
first derivative of x′ is greater than 0 (and less than 0, respectively), if x′ does
not lie in ϕ, and if if the system has spend time δ in the location `1

i (and in
`2

i , respectively).

jumpT
`1

i ,`end

(x1, . . . , t
′) ≡ ẋ′ > 0 ∧ ¬ϕ ∧ t ′− t = δ

jumpT
`2

i ,`end

(x1, . . . , t
′) ≡ ẋ′ < 0 ∧ ¬ϕ ∧ t ′− t = δ

Similarly the transformed system can jump from from `3
i to `end if the sys-

tem has spend time δ in the location `3
i , if the first derivative of x′ is 0, and

if x′ is not in ϕ.

jumpT
`3

i ,`end

(x1, . . . , t
′) ≡ ẋ′ = 0 ∧ ¬ϕ ∧ t ′− t ≥ δ

For the computation of pairs of entry-points of the original system we need
a jump from a location `0

i ∈ L0 to a location `4
j ∈ L4 whenever the jump

condition between the locations `i and ` j of the original system A is possible
but only if x is not in the region ϕ. During the jump the value of flag is set
to the index j of the target location.

jumpT
`0

i ,`
4
j
(x1, . . . , t

′) ≡ jump`i,` j
(x1, . . . , t) ∧ ¬ϕ ∧ flag := j

The transformed system can jump from `4
i ∈ L4 to `end if x is not in ϕ,

the value of flag is j, and the jump condition from `i to ` j of the original
system A holds for the primed variables. Additionally we must guarantee
the discretization width δ (for δ > 0 constant).

jumpT
`4

i ,`end

(x1, . . . , t
′) ≡

∨

` j∈L

(

jump`i,` j
(x′1, . . . , t

′) ∧ ¬ϕ

∧ flag = j ∧ t ′− t ≥ δ
)

31

5. Invariant conditions: For the locations `init and `end the invariant condition
is true.

invT
`init

(x1, . . . , t
′) ≡ true

invT
`end

(x1, . . . , t
′) ≡ true

For a location `0
i in L0 the invariant condition over x1, . . . , t,x′1, . . . , t

′ is the
same as the invariant condition of the original system A for `i over x1, . . . , t.

invT
`0

i
(x1, . . . , t

′) ≡ inv`i(x1, . . . , t)

For a location `1
i ∈ L1 (and `2

i ∈ L2, respectively) the invariant condition
over x1, . . . , t,x′1, . . . , t

′ corresponds to the invariant condition of the original
system A for `i over x′1, . . . , t

′ in addition to the condition ẋ > 0 (and ẋ < 0,
respectively).

invT
`1(x1, . . . , t

′) ≡ inv`(x
′
1, . . . , t

′) ∧ ẋ > 0

invT
`2(x1, . . . , t

′) ≡ inv`(x
′
1, . . . , t

′) ∧ ẋ < 0

For a location `3
i ∈ L3 or `4

i ∈ L4 the invariant condition over
x1, . . . , t,x′1, . . . , t

′ is the same as the invariant condition of the original sys-
tem A for `i over x′1, . . . , t

′

invT
`3

i
(x1, . . . , t

′) ≡ inv`i(x
′
1, . . . , t

′)

invT
`4

i
(x1, . . . , t

′) ≡ inv`i(x
′
1, . . . , t

′)

6. Initial conditions: Initially, each variable xi has the same value as x′i, the
value of t is equal to the value of t ′, and the value of flag is set to 0; the
system starts at time point t = 0 in the location `init.

initT
`init

≡
∧

x∈V

x = x′ ∧ t = 0 ∧ flag = 0

initT
` ≡ false ∀ ` 6= `init

8.2 Reachability Analysis and Well-foundedness
Tests

Now we are given a transformed hybrid system such that the reachability relation
of the transformed hybrid system is the binary reachability relation between snap-
shots of the original system. We use PHAVer [18] for the reachability analysis of

32

the transformed system. The output of PHAVer is a set of constraints, given by a
disjunction of conjunctions of linear inequalities. The constraints denote binary
relations of the original hybrid system.

We check for each single relation that it is well-founded. For the well-
foundedness tests we use RankFinder [36]. If every relation is well-founded then
all sequences of snapshots (for each kind of snapshot) are finite outside of the
region ϕ, which means that the original hybrid system is stable wrt. the region ϕ.

8.3 Experimental Comparisons

In an old version of our tool (see [33]) we check that a given region ϕ is a “strong
attractor” of a given hybrid system which implies that the hybrid system is stable
wrt. ϕ. However, strong attraction is a sufficient but not a necessary condition
for stability. We compare the feasibility and the run times of the old version of
our tool with the new version that is described in this paper. The new version is
based on a new characterization of region stability (described in Sections 4-6) that
is both sufficient and necessary.

System Old version [33] New version

Example 1 0.234s 0.219s
Simple heater 0.202s 0.575s
Complex heater stability not known 2.206s
One tank system 0.428s 1.915s
Two tank system stability not known 20.602s
Distance controller 0.384s 0.692s
Bouncing ball 2.821s 4.843s
Train brake stability not known 4.669s

Figure 8.6: Run time comparison between an old and the new version of our tool.

The new version of our tool is compatible with the current version of PHAVer
(v. 0.37) (that we use for the reachability analysis) whereas we have to use an older
version of PHAVer (v. 0.2.7) with the old version of the tool [33]. The following
table gives information about the run times when we use the new version of our
tool with the different versions of PHAVer.

33

System PHAVer 0.2.7 PHAVer 0.37

Example 1 0.219s 0.191s
Simple heater 0.575s 0.490s
Complex heater 2.206s 1.920s
One tank system 1.915s 1.813s
Two tank system 20.602s 16.545s
Distance controller 0.692s 1.186s
Bouncing ball 4.843s 4.209s
Train brake 4.669s 2.589s

Figure 8.7: Run time comparison between PHAVer versions 0.2.7 and 0.37.

34

9 Related Work
Proof rules for many well-known notions of stability (e.g. asymptotical or ex-
ponential stability) are based on Lyapunov functions. There is a large body
of work on Lyapunov theory, especially in the community of control the-
ory [3, 4, 26, 27, 28]. However the synthesis of Lyapunov functions is viewed
as a hard problem for which manual intervention is necessary. Until now there
has been no high expectation in automation.

Tools that synthesize Lyapunov functions are successful only in application of
hybrid systems with a small number of locations [5, 6]. Such methods suffer from
the fact that no appropriate abstraction technique is known for the synthesis of
Lyapunov functions. The reason why this is the case is essentially that we know
very good overapproximation techniques but no underapproximation techniques.

We can classify existing tools for verifying region stability into two
classes: (1) tools that abstract hybrid systems into finite state models and apply
model checkers to this abstraction [16]; and (2) tools that use unary reachability
to check that after a given time point t all states outside of the stable region are
unreachable [19]. The first class suffers from the fact that abstraction to finite state
models is intrinsically inappropriate for systems with finite but unboundedly long
trajectories outside of the region (in a finite state system where all executions have
finite length, the executions must have bounded length); the second class also only
works if all computations have bounded length outside of the region. They fail to
prove stability e.g. for the first example in Section 3 (a system with one location
where the flow condition is given by ẋ = −1 and the region ϕ is given by x ≤ 0).

In [33] the authors give a method for automatically verifying region stability
by checking that the region is a “strong attractor” of the hybrid system. This
method is sound but not complete, i.e. it works well for hybrid systems whose
trajectories never leave the stable region after they have reached it once. But for
more general cases (e.g. Example 3 or Example 5 in Section 3) the method fails
to prove stability.

35

10 Conclusion
We have given a model checking method and tool that integrates state abstraction
techniques for the automatic proof of a stability property for hybrid systems, to our
knowledge for the first time. It is based on a new notion of snapshots which yield
characteristic discretizations of trajectories. We have described the experiments
with a prototypical implementation of our tool. The experiments yield fully auto-
matic stability proofs for a number of typical benchmark problems including the
the break curve behavior of a train system, a previously open challenge problem
for the AVACS project (www.avacs.org).

In the present version, the implementation of our tool applies a linear con-
straint solver [36] to check the well-foundedness of the binary relation between
snapshots; this is appropriate since the PHAVer tool computes an overapproxi-
mation of the binary relation in the form of linear constraints. For future work,
we plan to investigate the usefulness of well-foundedness checks by non-linear
constraint solvers [11] in a different version of our tool.

36

Bibliography
[1] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid Automata.

An Algorithmic Approach to the Specification and Verification of Hybrid
Systems. In HSCC’93.

[2] R. Alur, T. Dang, and F. Ivancic. Reachability Analysis of Hybrid Systems
via Predicate Abstraction. In ACM transactions on embedded computing
systems, 2004.

[3] M.S. Branicky. Stability of Hybrid Systems: State of the Art. In CDC’97.

[4] M.S. Branicky. Multiple Lyapunov Functions and Other Analysis Tools for
Switched and Hybrid Systems. In Trans. on Automatic Control, 1998.

[5] H. Burchardt, J. Oehlerking, and O. Theel. The Role of State-space Par-
titioning in Automated Verification of Affine Hybrid System Stability. In
CCCT’05.

[6] H. Burchardt, J. Oehlerking, and O. Theel. Towards Push-of-a-Button Sta-
bility Verification for Discrete-Time Hybrid Systems. In PRDC’05.

[7] A.R. Bradley, H. Sipma, and Z. Manna, Termination of Polynomial Pro-
grams. In VMCAI’05.

[8] P. Cousot. Proving Program Invariance and Termination by Parametric Ab-
straction, Lagrangian Relaxation and Semidefinite Programming. In VM-
CAI’05.

[9] P. Cousot, and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In POPL’77.

[10] P. Cousot, and R. Cousot. Abstract Interpretation Frameworks. In Journal
of Logic and Computation, 1992.

37

[11] P. Cousot. Proving Program Invariance and Termination by Parametric Ab-
straction, Lagrangian Relaxation and Semidefinite Programming. In VM-
CAI’05.

[12] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction Refinement for
Termination. In SAS’05.

[13] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems
Code. In PLDI’06.

[14] M. Colon, and H. Sipma. Synthesis of Linear Ranking Functions. In
TACAS’01.

[15] M. Colon, and H. Sipma. Practical Methods for Proving Program Termina-
tion. In CAV’02.

[16] W. Damm, G. Pinto, and S. Ratschan. Guaranteed Termination in the Veri-
fication of LTL Properties of Non-linear Robust Discrete Time Hybrid Sys-
tems. In ATVA’05.

[17] F. Delmotte, M. Egerstedt, and E. Verriest. Hybrid Function Approxima-
tion: A Variational Approach. In CDC’05.

[18] G. Frehse. PHAVer , http://www.cs.ru.nl/˜goranf.

[19] G. Frehse, B.H. Krogh, R.A. Rutenbar. Verifying Analog Oscillator Cir-
cuits Using Forward/Backward Abstraction Refinement. In DATE’06.

[20] Z.-S. Feng, Y.-Q. Liu, F.-W. Guo. Criteria for Practical Stability in the pth
Mean of Nonlinear Stochastic Systems. In Applied Mathematics and Com-
putation, 1992.

[21] Z.-S. Feng. Lyapunov Stability and Practical Stability of Nonlinear De-
laystochastic Systems: a Unified Approach. In IEEE Conference on Deci-
sion and Control, 1993.

[22] A. Gotsman, B. Cook, A. Podelski, A. Rybalchenko, and M. Vardi. Proving
that Software Eventually Does Something Good. In POPL’07.

[23] T.A. Henzinger. The Theory of Hybrid Automata. In Logic in Computer
Science, 1996.

[24] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic Analysis of Non-
linear Hybrid Systems. In Automatic Control, 1998.

38

[25] M. Kloetzer, and C. Belta. Reachability Analysis of Multi-affine Systems.
In HSCC’06.

[26] D. Liberzon. Switching in Systems and Control. Birkhäuser, 2003.

[27] D. Liberzon, J.P. Hespanha, and A.S. Morse. Stability of Switched Sys-
tems: a Lie-algebraic Condition. In Systems and Control Letters, 1999.

[28] V. Lakshmikantham, S. Leela, and A.A. Martynyuk. Practical Stability of
Nonliear Systems. World Scientific Pub Co Inc, 1990.

[29] S. Pettersson. Analysis and Design of Hybrid Systems. Ph.D. Thesis,
Chalmers University of Technology, Göteborg, Sweden, 1999.

[30] A. Podelski, and A. Rybalchenko. Transition Invariants. In LICS’04.

[31] A. Podelski, and A. Rybalchenko. A Complete Method for the Synthesis of
Linear Ranking Functions. In VMCAI’04.

[32] A. Podelski, and A. Rybalchenko. Transition Predicate Abstraction and Fair
Termination. In POPL’05.

[33] A. Podelski, and S. Wagner. Model Checking of Hybrid Systems: From
Reachability towards Stability. In HSCC’06.

[34] S. Ratschan, and Z. She. Safety Verification of Hybrid Systems by Con-
straint Propagation Based Abstraction Refinement. In HSCC’05.

[35] S. Ratschan and Z. She Constraints for Continuous Reachability in the Ver-
ification of Hybrid Systems. In Proc. International Conference on Artificial
Intelligence and Symbolic Computation, 2006.

[36] A. Rybalchenko. RankFinder, http://www.mpi-
inf.mpg.de/˜rybal/rankfinder.

[37] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-Based Linear-
Relations Analysis. In SAS’04.

[38] A. Tiwari. Termination of Linear Programs. In CAV’04.

[39] H. Ye, A.N. Michel, and L. Hou. Stability Analysis of discontinuous Dy-
namical Systems with Applications. In Proc. International Federation of
Automatic Control, 1996.

[40] G. Zhai, and A.N. Michel. On Practical Stability of Switched Systems. In
CDC’02.

39

[41] G. Zhai, and A.N. Michel. Generalized Practical Stability Analysis of Dis-
continuous Dynamical Systems. In CDC’03.

40

Below you find a list of the most recent technical reports of the Max-Planck-Institut f ür Informatik. They are
available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the
reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions
concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily
free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f ür Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbr ücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-5-006 G. Kasnec, F.M. Suchanek, G. Weikum Yago - A Core of Semantic Knowledge

MPI-I-2006-5-005 R. Angelova, S. Siersdorfer A Neighborhood-Based Approach for Clustering of Linked
Document Collections

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to Extract
Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video Sequences based
on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed Information
Retrieval Systems

MPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean Value Coordinates for Arbitrary Spherical Polygons and
Polyhedra in R3

MPI-I-2006-4-009 J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

Interacting and Annealing Particle Filters: Mathematics and a
Recipe for Applications

MPI-I-2006-4-008 I. Albrecht, M. Kipp, M. Neff, H. Seidel Gesture Modeling and Animation by Imitation

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven Laplacian Mesh Deformations

MPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On Fast Construction of Spatial Hierarchies for Ray Tracing

MPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized Models

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt, H. Seidel GPU Point List Generation through Histogram Pyramids

MPI-I-2006-4-001 A. Efremov, R. Mantiuk, K. Myszkowski,
H. Seidel

Design and Evaluation of Backward Compatible High Dynamic
Range Video Compression

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee, A. Podelski,
M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-Sensitive Autocompletion Search

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using Bezout
Matrices

MPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap Rounding of Bzier Curves

MPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power Assignment Problems in Wireless Communication

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document Classification and
their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen, H. Seidel An Emperical Model for Heterogeneous Translucent Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating Relightable
3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch, H. Seidel Reflectance from Images: A Model-Based Approach for Human
Faces

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi, K. Mehlhorn,
D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate Shortest Paths
in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of Bipolar
Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for Document
Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee, Y.a. Lee,
H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster, H. Seidel Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety and
Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded Fragment with
Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring Cartoon
Faces

