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Abstract

In all recent near-optimal sorting algorithms for meshes,
the packets are sorted with respect to some snake-like in-
dexing. In this paper we present deterministic algorithms
for sorting with respect to the more natural row-major
indexing.

For 1-1 sorting on an n X n mesh, we give an algorithm
that runs in 2 - n + o(n) steps, with maximal queue size
five. It is considerably simpler than earlier algorithms.
Another algorithm performs k-k sorting in k-n/2+40(k-n)
steps.

Furthermore, we present uni-azial algorithms for row-
major sorting. Uni-axial algorithms have clear practical
and theoretical advantages over bi-axial algorithms. We
show that 1-1 sorting can be performed in 22 n + o(n)
steps. Alternatively, this problem is solved in aYa.n steps
for all n. For the practically important values of n, this
algorithm is much faster than any algorithm with good
asymptotical performance.

Keywords: theory of parallel computation,
meshes, sorting, row-major indexing, uni-axial
routing

1 Introduction

Various models for parallel machines have been con-
sidered. One of the best studied machines with a
fixed interconnection network, is the mesh. In this
model the processing units, PUs, form an array of
size n X n and are connected by a two-dimensional
grid of communication links.

Problems. The problems concerning the exchange
of packets among the PUs are called communica-
tion problems. The packets must be sent to their
destinations such that at most one packet passes
through any wire during a single step. The quality of
a communication algorithm is determined by (1) its
run time, the maximum number of steps T' a packet
may need to reach its destination, and (2) its queue
size @, the maximum number of packets any PU may
have to store.

Routing is the basic communication problem. In
this problem the packets have a known destination.
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If all PUs initially hold one packet, and if every PU is
the destination of precisely one packet, than we speak
of permutation routing. The routing problem in
which every PU is source and destination of k packets
is called the k-k routing problem.

Sorting is, next to routing, one of the most consid-
ered communication problems. Several variants of the
problem have been studied. In the 1-1 sorting prob-
lem, each PU initially holds a single packet, where
each packet contains a key drawn from a totally or-
dered set. The packets have to be rearranged such
that the packet with the key of rank 7 is moved to the
PU with index ¢, for all 7. In the k-k sorting problem,
each PU is the source and destination of k& packets.

Scattering is the problem of rearranging packets
holding keys from a totally ordered set such that as
little as possible packets with the same key stand in
the same column. It can be performed by sorting the
packets in row-major order on the keys. But, almost
the same effect can be achieved at lesser expense.
Scattering is not a problem with great independent
importance. However, it is an important subroutine
of deterministic algorithms for other communication
problems: the queue size of such algorithms often lin-
early depends on the number of packets in any column
with destinations in the same row. In this application
the scattering is performed in s x s submeshes, and
the key of a packet is given by its destination row.

Models. Frequently it is assumed that the PUs
can communicate with all their neighbors at the same
time: in a single step they can send and receive at
most four packets. This model is called the MIMD
mesh. Alternatively all PUs may send only pack-
ets in a specific direction during any step, the SIMD
mesh model. Less considered is the model in between
these two, which we call the half~MIMD mesh. In a
half-MIMD all PUs can either send and receive pack-
ets along the horizontal or along the vertical connec-
tions. Algorithms that only use the routing capacity
of a half-MIMD are called uni-axial. Algorithms for
the MIMD will be called bi-axial.

The MIMD may be stronger than realistical. If
MIMD algorithms are directly run on an SIMD, then
they are slowed-down by a factor four. Often spe-
cific SIMD algorithms perform much better. The
half-MIMD has a certain universality: running half-
MIMD algorithms with a slow-down factor two on an



SIMD gives competitive results; on the other hand,
for certain problems, half-MIMD algorithms perform
on an MIMD almost as good as MIMD algorithms.
There are other reasons to consider algorithms for
the half-MIMD: on an MIMD two of these algorithms
can be perfectly overlapped; in MIMD permutation
routing algorithms (see [8, 1]), ‘non-critical’ packets
are uni-axially scattered while ‘critical’ packets are
routed orthogonally without loss of time.

Indexings. Several recent sorting algorithms
[2, 7, 5] were designed for (blocked) snake-like row-
major indexings. This indexing may be good, but in
many cases it is desirable to have the packets in the
more natural row-major (column-major) order. Fur-
thermore, sorting in snake-like order is unsuited as a
subroutine for scattering algorithms.

In the one-packet model considered by Schnorr and
Shamir [12], the lower bound for row-major sorting is
higher than for sorting in snake-like row-major order.
In our model a PU may hold a constant number of
packets and packets may be copied. From the results
of this paper it follows that in this model, sorting in
row-major order is not substantially harder than sort-
ing in snake-like row-major order. Only on the half-
MIMD, where there are no matching lower bounds,
the situation is not yet fully clarified. Proving non-
trivial lower bounds is hard, as such a proof should
at least involve the queue size and the uni-axiality: if
the queue size would not play a role, then the greedy
algorithm (uni-axial!) could be used.

Results. This paper gives numerous improvements
for row-major sorting. They are resumed in Table 1.

Uni-Axial Bi- Axial
k all n large n | large n
1 42-n | 2'h2.n 2.7
2 5%-n 3-n 22-n
E| (@2 k+2%)-n k-n k/2-n

Table 1: Run times for k-k sorting in row-major or-
der. In the results for large n, we left away the lower-
order terms.

The queue sizes in the algorithms for 1-1 and 2-2 sort-
ing range between four and nine, and in the k- sort-
ing the queue sizes are £k + 1 or k£ + 2. Actually the
results for large n are much more general: they do
not just hold for sorting in row-major order, but for
sorting with respect to any indexing that is piecewise-
continuous (see Definition 1 in Section 2).
Theoretically the result for large n are the most ap-
pealing. So far, the fastest bi-axial row-major sorting

algorithm has T = 2%4-n + o(n) and Q = O(1). It

was recently designed by Krizanc and Narayanan [6].
However, this algorithm works only for the subprob-
lem that all the keys are 0 or 1 (though some exten-
sion seems possible). For sorting in blocked snake-like
row-major order 7' = 2-n+o(n) was achieved first by
Kaklamanis and Krizanc [2] with a randomized algo-
rithm, and then also deterministically by Kaufmann,
Sibeyn and Suel [5].
ably more involved then the algorithm of this paper,

These algorithms are consider-

and have queue sizes around 20. The best uni-axial
row-major sorting algorithm so far is a modification
of the algorithm of Schnorr and Shamir. It takes
4-n+ o(n) steps.

Most current communication algorithms strive for
T = a-n+o(n), with « as small as possible. This com-
pletely neglects the fact that actual meshes tend to be
of fairly moderate sizes, for which the o(n) term easily
may dominate. Typically this term gives the number
of steps for several sorting and rearrangement opera-
tions in submeshes of size n2/3 x n2/3 or n3/* x N3/,
Even when this term is just 10 - n2/3, then still it
exceeds n for all n < 1000. This clearly expresses
the utmost importance of algorithms with a routing
time not involving any hidden terms. Therefore, is
our uni-axial 472 - n row-major sorting algorithm of
great practical importance. A sorting or scattering
time which can be expressed as T' < « - n, for all n,
is even relevant in a theoretical setting: in recursive
or divide-and-conquer algorithms, in which these al-
gorithms are used as subroutines, the submeshes on
which they are applied are small.

The first near-optimal algorithm for k-k sorting was
discovered by Kaufmann and Sibeyn [4]. Then in [7]
by Kunde and slightly later also in [5], determinis-
tic versions of this randomized algorithm were de-
scribed. All these algorithms use a blocked snake-like
row-major indexing. In this paper we present the first
near-optimal algorithm for k-k sorting in row-major
order.

The remainder of the paper is organized as follows:
in Section 3 we give the algorithms for uni-axial row-
major sorting for all n. Then we introduce in Sec-
tion 4 the ‘desnakification’ of the k-k sorting algo-
rithm for large n. This powerful technique is then
applied in Section 5 for very fast uni-axial 1-1 sort-
ing, for near-optimal bi-axial 1-1 sorting, and finally
for 2-2 sorting.

2 Preliminaries

Basics of Routing and Sorting. We speak of
edge contention when several packets residing in
a PU have to be routed over the same connection.
Contentions are resolved using a priority scheme. We
apply the farthest-first strategy, which gives pri-



ority to the packets that have to go farthest. For
the analysis of the routing on higher dimensional
meshes we need the ‘routing lemma’ for routing a
distribution of packets on a one dimensional mesh
[3] and the corresponding ‘sorting lemma’ [1]. De-
fine for a given distribution of packets over the PUs
huigne(i,7) = F{packets passing from left to right
through both P; and P;}, where P; denotes the PU
with index 3. Define hesi(J, ¢) analogously.

Lemma 1 Routing a distribution of packets on a lin-
ear array with n PUs, using the farthest-first strategy,
takes max; . j{max{ igne (¢, 5), hiest (4,4)} + 5 — i — 1}
steps. This bound 1s sharp. When the packets
are evenly distributed, then the same bound can be
achieved for sorting.

Because of the distance a packet may have to go
2-n— 2 steps is a lower bound for any general routing
or sorting problem on the two-dimensional mesh.

A 0-1 distribution, is a distribution of packets
that all have key zero or one. In a 0-1 distribution
a row is called dirty, if it contains both zeros and
ones. In our analyses we frequently use the so-called
‘0-1 lemma’ (see [9]), that states that under certain,
in our case satisfied, conditions a sorting algorithm is
correct iff it sorts any 0-1 distribution.

Indexings. The PUs can be indicated by giving
their coordinates within the mesh, the PU at posi-
tion (%,7), 0 < 4,j < n, is denoted P; ;. Here posi-
tion (0,0) lies in the upper-left corner. In the com-
mon row-major indexing P; ; has index ¢:-n+j. In
the column-major indexing F; ; has index ¢ 4 j - n.
In the reversed row-major indexing P;; has index
t-n+ (n—j). In the snake-like row-major indexing,
the indexing of the odd rows is reversed. For a given
indexing we denote the PU with index 4, 0 < i < n?,
by Pz'.

If we consider a k-k sorting, then there are two
natural ways to index the k- n? destination locations.
Our default is a non-layered indexing. In this case,
location rin P;, 0 < r < k, 0 < ¢ < n?, has index & -
i+7. In the case of a non-layered row-major indexing,
this is the index as if we have an n X k-n mesh in row-
major order, see Figure 1 on the left. Alternatively, in
alayered indexing, location r in P; has index r-n%44.
In the case of row-major sorting we use a particular
semi-layered indexing, under which location P,
has index (¢ + r) - n + j. This is the index as if we
have a k-n x n mesh in row-major order, see Figure 1
on the right.

A row i is said to be sorted rightwards if
the packets stand in increasing order from P;q to
P; ,_1. Analogously, rows can be sorted leftwards
and columns downwards and upwards.

An indexing is called continuous if for all 7, 1 <
1 <mn—2, P,_y and P;y, are adjacent to P; in the
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Figure 1: Non-layered indexing (left), and semi-
layered indexing (right), for k = 2, n = 4.

mesh. Snake-like indexings are continuous.

Definition 1 An indezing 1s called piecewise-con-
tinuous with parameter s if for every i, 0 < i < n?,
there is an interval T; C [0,n% — 1], with i € T; and
#I; > s, such that for all j € I;, P; 1is adjacent to
P;j_1 and Pjyq, whenever j — 1,7+ 1€ ;.

The row-major indexing is piecewise-continuous with
parameter n. One of the achievements of this paper
is to show that for efficient sorting it is sufficient to
have precewise-continuous indexings.

Subdivisions. In our algorithms the mesh is di-
vided in regular s x s submeshes. Let m = n/s.
The submeshes are indexed as the PUs: starting
with (0,0) in the upper-left corner. We refer to sub-
mesh (¢,j) by B; ;. Define row-bundle ¢ to consist
of the PUs in U;n:_ol B; ;. Likewise, column-bundle j
consists of U;’;Ble'. Additionally the mesh is sub-
divided in sections. A section is a subset of the PUs
with consecutive indices. In Section 4 and Section 5,

)
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<«+— m submeshes —»
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Figure 2: Subdivisions for the case s = n/6, m = 6.

we use sections of length s, and there section [, de-
noted S;, 0 <! < m-n, consists of the PUs with index
s-l,...,8-(l4+ 1) — 1. Under a row-major indexing
the sections regularly subdivide the rows and the sub-
meshes. All subdivisions are depicted in Figure 2.

Definition 2 An m-way merge s a procedure that
turns @ mesh that 1s divided in m? sorted s X s sub-
meshes into a sorted n X n mesh.



3 Uni-Axial Sort for Small n
3.1

Lemma 2 Unt-azial sorting in arbitrary order can
be performed on 2 x 2 meshes in 8 steps, with queue
size two.

Powers of Two

Proof: Perform gossiping (all-to-all routing) along
rows and then along columns. This takes three steps.
A PU that finally should hold the packet with rank 0
or 1, needs to conserve only the two smallest packets,
the other PUs only the two largest packets. a

For n = 2!, | > 1, we use an optimized merge-
sort algorithm combining several recent techniques
and adding some new ideas. Initially we assume that
we have four sorted n/2 x n/2 submeshes: those in
the left half in row-major order; those in the right
half in reversed row-major order. The first merge
sort algorithm with the optimal time order was given
by Thompson and Kung [13]. Our merging consists
of five easy steps:

Algorithm MERGE
1. In the left half, shift the packets n/4 steps to
the right. In the right half, shift the packets n/4
steps to the left.

2. In the central n/2 columns, sort the packets
downwards.

3. Copy the smallest packet in every P; ;, 0 <7 <
n—1,n/4 < j <3/4-n-1, to P,_y,;. Copy
the largest packet in every P;;, 0 < ¢ < n—1,
n/4<j<3/4-n—1,to Py,

4. In every row, sort the section of the row that
lies in the central n/2 columns. If this submesh is
going to be the right half of a larger mesh in the
next merge, then the sorting is leftwards, otherwise
rightwards.

5. Throw away the packets in P;; with j €
[n/4,3/8-n—1U[5/8-n,3/4-n — 1]. For any
P; ;, with 3/8-n < j <5/8-n—1, send the packet
with rank r, 0 < r < 3, to P 4.(j—3/8.n)4r

We analyze the routing time and the correctness
of MERGE. Step 1 takes n/4 steps, Step 2 can be
performed in n steps, and Step 3 takes a single step.
This step can easily be made to coincide with the last
step of the sorting. Its purpose is expressed by

Lemma 3 After Step 2 all packets that actually
should be in a row can be found either in the row ut-
self, or among the smallest packets of the row below,
or among the largest packets of the row above.

Proof: First we consider a modified problem. Sup-
pose that initially four n/2 X n/2 submeshes stand
above each other in an 2 -n X n/2 mesh. Two of

these submeshes are sorted in row-major order, the
other two in reversed row-major order. Consider a
0-1 distribution. It is easy to check that after sorting
the columns of this mesh, there are at most two dirty
These dirty rows can be resolved as follows:
copy every row to the row above and the row below;
sort the rows; spread the packets from the central n/3
columns. In the real problem every two rows of the
high and narrow mesh are compressed in one row in
which every PU in the center holds two packets. O

TOWS.

Lemma 4 Step 4 can be performed in 3/4 - n steps.

Proof: For the number of required steps we ana-
lyze the worst possible 0-1 distributions after Step 2.
These are of the following form:

<—n/4 —
row 7 — 1 g
Tow 1 1 0
1 0
row 7+ 1 i
n/2

After Step 3, we have the following distribution in
TOW i

<—n/4 —>
0
Tow 1 1 0
1 0
1
n/2

According to Lemma 1, sorting this row takes 3/4-n
steps. O

Finally, Step 5 takes 3/8 - n steps. Hence,

Lemma 5 MERGE takes less than 27/s-n steps. The
queue size 15 at most four.

The algorithm might be further improved by perform-
ing Step 4 and Step 5 together more efficiently. After
n/2 — 1 steps we are sure that the packets with the
largest and with smallest keys have reached their des-
tination. From that moment on we can kill on both
sides one packet every further step. It is not clear
how this can be exploited.

Starting with sorted 2 x 2 meshes, MERGE can be
used repeatedly for sorting on an n X n mesh. Call
this algorithm sorT. We have

Theorem 1 For all n = 2!, SORT performs row-
major sorting on an n X n mesh in 4%4-n steps. SORT
1s uni-azial, and the queue size 1s four.

Proof: Summing the number of steps required for

all merges, we find that the sorting takes less than
34278 (4+48+4---+n) <2%-n-Y,_, 27" steps. O



3.2 Powers of Two, Three, ...

We derived an efficient 1-1 sorting algorithm for n =
2!, However, in practice processor networks may not
have such beautiful side lengths. Furthermore, some
algorithms in which sorting is used as a subroutine,
e.g., the algorithms of [1, 15] specifically require that
n = 5' or 6%, In principle we could use SORT by round-
ing n up to the nearest power of 2. But, this might
give sorting times that are almost twice as large as
necessary. In this section we present m-way merge
algorithms, which perform good for m < 5. By com-
bining them, we can efficiently sort n x n meshes for
arbitrary n.

m X m Meshes. Consider an m X m mesh. Suppose
that we want to sort this mesh in (reversed) row-

major order. A simple algorithm performs well:

1. In all rows 2, concentrate the packets in
Pi,\my2)-

2. Sort the packets in column |m/2| downwards.
3. In all rows ¢, spread the packets over the row.
Lemma 6 Uni-aztal sorting on m X m meshes can

be performed in m2/2 + m steps, for m even, and
m-(m+1)/2 steps, for m odd, with queue size m.

Proof: The steps take |m/2|, m- |m/2] and [m/2]
steps, respectively. m]

The algorithm for uni-axial sorting in
!is anal-

Larger n.
row-major order on n X n meshes for n = m
ogous to the algorithm for n = 21 n/m x n/m sub-
meshes are appropriately sorted, and the submeshes
are merged. For this merging, we can proceed as in
MERGE: wiping all submeshes together, sorting the
columns, etc. However, algorithms of this type are
not very suited for an m-way merge with m > 3:
the number of dirty rows equals [m?/2], which leads
to long queues, and rapidly growing time to resolve
them. It is better first to sort the rows-bundles, then
to merge the sorted row-bundles. In this way the
number of dirty rows is limited to [m/2]. For m = 2,
this approach is slower, but for larger m it is faster.

The algorithm, for sorting m! x m!, I > 1, meshes
in row-major order starts by sorting recursively all
m'~1 x m!~! submeshes. For even m, in every row-
bundle m/2 submeshes are sorted in row-major order,
and m/2 in reversed row-major order. For odd m, in
the highest [m/2] row-bundles, [m/2] submeshes are
sorted in row-major order, and in the lowest |m/2]
row-bundles, |m/2]|. The other submeshes are sorted
in reversed row-major order. In Figure 3 we give an
example for m = 5. Then we perform the following
merge algorithm. The central column-bundle, de-
notes the subset of columns 7, with (m—1)/(2-m)-n <
j < (m+1)/(2-m)n.

IBNE
INRAE
KB
P
aRDAE

Figure 3: For sorting in row-major order the right-
ward (leftward) arrows indicate submeshes that are
sorted in (reversed) row-major order.

Algorithm MERGE-m
1. Shift the packets in the column-bundles as
blocks to central column-bundle.

2. In the central column-bundle, sort the sections
of the columns that lie within the row-bundles
downwards.

3. Let ¢ = [m/2] — 1. In the central column-
bundle, for all ¢, 0 < i< mn, i# 0,n/m,...,(m—
1)/m - n, copy the smallest ¢ packets in P; ;, to
Py ;foralli#n/m—-1,2/m-n—1,...,n—1,
copy the largest ¢ packets in P; ;, to P;y1 ;.

4. In the central column-bundle, for all 7, 0 < i <
n, sort the section of row i. If ¢ < [m/2]/m - n,
then sort rightwards, else sort leftwards.

5. In every row, throw away the q - n/m packets
with the smallest and with the largest keys. The
remaining n packets stand in the central [n/(m +
2-q)] PUs. Spread these packets over the central
[n/2] PUs, such that they come to stand in semi-
layered order. If m is odd, then one packet with
key oo should be added on the right.

6. In the central [n/2] columns, sort the packets
downwards.

7. In the central [n/2] columns, for all 0 < ¢ <
n—1, copy the smallest ¢ packets in P; ;, to P;_1 j;
for all 0 <7 < n— 1, copy the largest g packets in
PL]', to Pz'_|_17]'.

8. In the central [n/2] columns, sort all rows
rightwards.

9. In every row ¢, 0 < ¢ < n, throw away the
q - [n/2] packets with the smallest and with the
largest keys. If m is odd, then throw away one
more packet with a large key. The remaining n
packets stand in the central [n/(2 4+ 2 - ¢)] PUs.
Send the packet with rank j to P; ;.

The correctness of MERGE-m is obvious: after Step 2
and Step 6, there are ¢ + 1 dirty rows in a 0-1 distri-
bution. These are resolved by the steps that follow.
For m > 6, in Step 7, packets from more than one row
below and one row above every row should be copied



into it. The steps required for Step 3 and Step 7 can
be saved by modifying the final g steps of the preced-
ing steps. The queue size equals @ = m + 2-¢. That
is, @ = 2-m — 2, for m even, and Q@ = 2-m — 1, for
m odd. The time consumption of the steps are listed

Step Time Consumption
1 (m-1)/(2-m)-n
2 [n/4]
3 0
4 max{n/m, |E2=2 - n|}
5 max{[n/4], 355 -7}
6 n
7 0
8 max{|n/2], |m/6-n|}
9 (m = 1)/(2-m) -
odd m
1 (m-1)/(2-m)-n
2 [(1—1/m?) - n/4]
3 0
4 max{n/m, L% “nl}
5 iyl
6 n
7 0
8 | max{|n/2), | 3255 - [n/21)}
9 m/(2-m+2)-n

Table 2:
MERGE-mM.

The time consumptions of the steps of

in Table 2. These results either equal the maximal
distance packets may have to go, or the number of
packets that may have to move through a single con-
nection. We analyze the most difficult steps. In order
not to get an excessive amount of notation, we con-
sider the case m = 5. For other odd m the analysis
is analogous; for even m, the analysis is simpler.

Lemma 7 For m = 5, Step 2 can be performed in
|6/25 - n| steps.

Proof: As an example for other proofs, which are
handled quite sketchy, we give a detailed proof here.
Consider the sorting in the section of column j in
row-bundle 0. We refer to the PUs in this section by
P;, 0 < i< n/5. Five sorted submeshes, By, ..., By,
contribute their packets to this section. Suppose that
all packets have key zero or ome, and let my;, 0 <
a; < n/5, be the number of ones contributed by B;.
We apply the analogue of Lemma 1 for sorting in
columns, and determine the distribution for which
T(%i,%2) = Rdown(?1,%2) + i2 — 41 — 1 is maximal. For
ap = a1 = a3 = 0, and a3 = a4 = n/5, we have
T(3/25-n—1,3/25-n) = 6/25 - n.

In the remainder of the proof, we show that there
are no distributions that give larger T'(41,42). The
reader may want to skip this. 7'(i1,42) is not de-
creased when ones are moved upwards. Hence, we
may assume that the packets in a section are ar-
ranged as if they were sorted in column-major or-
der: we have a distribution as in Figure 4 on the

row 0

10
steps

o|Co|C|(o|o|o|(o|o|O
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01
column j

11
column 7

row n/5 —1

Figure 4: A (bad) 0-1 distribution in a section of a
column: on the left before Step 2, on the right after
Step 2.

left. Let a = ag + -+ + a4, be the total number
of ones in the section. If n/5 — a mod (n/5) > 41,
then we can remove a mod (n/5) ones without de-
creasing Rdown(?1,%2): no ones in a row 3 with ¢ < 4y
are removed. If n/5 — a mod (n/5) < 41, then we
can add n/5 — a mod (n/5) ones without decreasing
hdown(%1,%2): the number of ones that has to move
from a row %, with ¢+ < ¢; to a row ¢ with 7/ > 1,,
is at least as large as before. Thus, we may assume
that a = - n/5, for some 0 < | < 5. The cases
Il = 0 and I = 5 are trivial, so we suppose that
1 <1 < 4. Denote by zerog, the number of zeros
in rows ¢, with ¢ < 4y, by zero;, the number of ze-
ros in rows ¢, with 43 < ¢ < i3, and by zeros, the
number of zeros in rows i, with 73 < 7. Define oneg,
one; and oney analogously. Clearly hgown(i1,%2) <
min{zeros — oney, oneg — zeror }. It follows, because
oney, zero; > i2—i; — 1 (here we need that 0 < ! < 5),
that taking 23 > 73 + 1, does not have a positive ef-
fect on T'(i1,42). For i3 = i1 + 1, we get T(41,12) <
min{zeroz, oneg} = min{(n/5 — i3) - (5 — 1),42 - I}.
Solving gives i3 = (1 —1/5) - n/5. O

Lemma 8 For m = 5, Step 4 can be performed in
|18/55 - n| steps.

Proof: Consider a 0-1 distribution. There are at
most three dirty rows after Step 2. However, by the
special way the submeshes are sorted it is not pos-
sible that after Step 3 one row holds three layers of
packets that are sorted falsely. The worst possible
distributions in some row ¢ with ¢ < 3/5-n, are of the

following form:
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1 0
1
. 1
TOW 1 1
1
1
1
1

n/5
The sorting time is maximal for & = 9/11. i

The analysis of Step 8 is analogous.

Lemma 9 For m = 5, Step 5 can be performed in
|7/18 - n] steps.

Proof: At the beginning of Step 5, the n packets
stand sorted rightwards in the central [n/9] PUs of a
row. 2/9-n packets stay there, |7/18-n] packets have
to move out of this section leftwards and rightwards.
The maximal distance any packet has to go, is |n/4]:
consider a packet p with rank r < n/2. p comes in
the ‘lower layer’. The packet with » = n/2 — 1 has
to move farthest: |n/4] steps, from column |[n/2| to
column [3/4-n|. O

Substituting in Table 2, we obtain for 2 < m < 6
the following time consumptions (omiting the factor

n):

Step Time Consumption
m 2 3 4 5 6
1 | 1/4] 1/3 |3/8 | 4/10 | 5/12
2 |1/4| 2/9 | 1/4 | 6/25 | 1/4
4 |1/2| 1/3 | 3/8 | 18/55 | 5/13
5 |1/4|3/10|1/3 | 7/18 | 2/5
6 1 1 1 1 1
8 |1/2] 1/2 |2/3]| 3/4 | 1
9 |1/4| 3/8 | 3/8| 5/12 | 5/12
total | 3 | 3.07 | 3% | 3.53 | 3.87

Starting with sorted m xm meshes and then repeat-
ing [ — 1 times MERGE-m, meshes of size m! x m! can

be sorted. Call this algorithm SORT-m. In Table 3,

m| 2 3 4 5 6
T |6-n|461-n|4Y2-n|442-n | 4.65-n
Q| 2 5 6 9 10

Table 3: Run times and queue sizes of uni-axial row-

major sorting algorithms for n = m!.

we give an overview of its performance for 2 < m < 6.
For m = 6, the performance starts to deteriorate. We
check the result for m = 5:

Theorem 2 For all n = 5', SORT-5 performs row-
major sorting on an n X n mesh in 4.41 - n steps.
SORT-5 15 unt-aztal, and the queue size 1s nine.

Proof: Summing the number of steps required for
all merges, we find that the sorting takes less than
154+ 3.53-(25+ 125+ ---+n) <3.53-mn -3, (57"
steps. The queue size was analyzed before. a
Powers of Two. Using MERGE 4, we obtain an
alternative algorithm for sorting n x n meshes with
n = 2! if [ is odd, then we start by sorting the 2 x 2
submeshes; if [ is even, then first the 4 x 4 submeshes
are sorted. Hereafter MERGE-4 is applied repeatedly.
This gives

Theorem 3 Row-major sorting on an n X n mesh
withn = 2!, 1 > 0, can be performed in 4% . n steps

by a uni-azral algorithm, with queue size siz.

Proof: The total time for the sorting is less than
3+3%.- (8+32+---+ n), for odd I; and less than
12+33/8-(16—|—64+---+n),for even [. a

We already have three algorithms for the case n =
2!, one more will be presented in Section 3.4. They

T Q@ | Section

6-n | 2 3.2
5%3-n | 3 3.4
4%1-n | 4 3.1
4Y2.n | 6 3.2

Table 4: Run times and queue sizes of uni-axial row-
major sorting algorithms for n = 2.

show a trade-off between run time and queue size, see
Table 4.

3.3 Mixed Powers

Sorting on n x n meshes for arbitrary n, can be per-
formed by approximating n by the closest number of
the form 2%z - 3's . 5% and then using the basic three-
way, four-way and five-way merges:

Algorithm SORT-ALL(n)
Determine the minimal n' = 2!z . 3% . 5l > p;
{ Assume that I3 >0 }
if 5 is odd then sort the 6 x 6 submeshes
else sort the 3 x 3 submeshes;
repeat [3 — 1 timesMERGE-3;
repeat |l2/2] timesMERGE-4;
repeat /5 timesMERGE-5.

If i3 = 0, then first the 2 x 2 or the 5 x5 submeshes are
sorted. MERGE-3 is performed first, when the meshes
are still small, because it is the least efficient. SORT-
ALL is sophisticated enough to achieve the following
interesting result:



Theorem 4 SORT-ALL performs uni-aztal row-ma-
jor sorting on n X n meshes in 4.90 - n steps, for all
n. The queue size 1s at most nine.

Proof: For n < 90, the proof can be given by check-
ing the n one-by-one. For n € [90, 180], we find the
following numbers of the correct form: ./\/‘907180 = {90,
96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162,
180}. The worst performance gives n = 163 with
n' = 180 = 5 -4 - 3%, Hence, its sorting time can be
estimated on (3.53 + 3.375/5+ 3.07/20- (1 + 1/3)) -
180 < 4.41-180 < 4.87-163. If n’ € N90,180, then
2-n' € Niso,360, 41’ € N360,720, and so on. This im-
plies, that the ratios between the n and the n’ do not
further increase (on the contrary). Also, if Tyopt(n') <
a-n/, for some constant «, then Tyort(2-n') < «-2-n'.
Hence, we may conclude that for any n, the sorting
can be performed in 180/162-4.41 - n. i

For larger n it may be advantageous not to round
up to the minimal n’ = 2'2.3%.5!  when I3 is large. It
is always possible to get I3 < 5, by replacing 3° = 243
by 3° -2 = 250. This gives a considerable reduction
of the sorting time.

3.4 k-k Sorting

We present an algorithm for uni-axial k-k sorting in
row-major order. We assume that n = 2!, for some
I > 0. For large n better performance is achieved
by the uni-axial version of the algorithm of Section 4
which requires max{4 - n, k- n} + O((k - n)*/°). But,
the here presented algorithm is far better for small n.

The merging is almost the same as MERGE of Sec-
tion 3.1. We assume that the four submeshes are
sorted in semi-layered row-major order on the left,
and semi-layered reversed row-major order on the
right.

Algorithm KKMERGE

1. P;;, 0 <1, < n, sends its packet with rank r,

0 <7<k, to P;(jsn/2)modn if odd(k -i+r+ 7).

2. In all columns, sort the packets downwards.

. Inevery P, 0 <1 <n—-10<7<n-1,

copy the smallest packet to P;_; ;. In every P ;,

0<zi<n-—1,0<j < n-—1, copy the largest

packet to P;1q ;.

4. Sort the rows. If this submesh is going to be

the left half of a larger mesh in the next merge,
then the sorting is rightwards, otherwise leftwards.

5. In every row, throw away the n packets with
the smallest and the n packets with the largest in-
dices. If this is the final merge step, then spread
the remaining k- n packets that stand in every row.
Else route the packets to the destinations as given
by Step 1 of the next merge, and continue with
Step 2.

For the correctness of KKMERGE it is important that,
by the semi layered indexing, our merging corre-
sponds to a 1-1 merge on a k£ -n x n mesh. It is
easy to see that if we have a 0-1 distribution, that
then after Step 2 there are at most two dirty rows.
For k£ = 1 the algorithm is correct but less efficient
than the algorithm of Section 3.1. It can be shown

that 1-1 sorting takes 5%3.n steps. We further assume
that k > 1. Step 1 takes k - n/4 steps. However, it
only has to be performed during the merge of 2 x 2
meshes. So, for determining the time order we can
concentrate on the other steps. Step 2, takes k- n/2.
Step 3 can be overlapped with the last step of Step 2.

Lemma 10 Step 4 takes at most k-n/4+n/2 steps.

Proof: It is easy to check that, by the semi-layered
indexing and by the way the packets are selected in
Step 1, there are no 0-1 distributions that after Step 3
result in such homogeneous blocks of zeros on one
side and ones on the other side as in the worst-case
example of the proof of Lemma 4. For example, for
k = 4, a worst-case distribution in row ¢ is like

00000000000000000000000000000000
00000000000000000000000000000000
01010101010101010101010101010101
01010101010101010101010101010101
11111111111111111111111111111111
11111111111111111111111111111111

Tow 1

For this example Step 4 takes 3/2 - n steps. a

In the final merge, Step 5 takes k/(k + 2) - n steps,
otherwise % % -n steps. This step is that expensive
because that many packets have to move out of the
central k/(k+2)-n PUs through a single connection.

Lemma 11 An  intermediate application  of
KKMERGE can be performed in (5-k%+14-k+4)/(4-
k +8) - n steps, the final application 1n (3 - k? + 12
k+4)/(4-k+8)-n steps.

Let KKSORT1 be the k-k sorting algorithm based on
KKMERGE.

Theorem 5 For all k > 2, KKSORT1 performs uni-
azial k-k sorting in row-major order on n X n meshes
in (4-k%+13-k+4)/(2-k+4)-n steps, with queue
size k4 2.

Proof: We start with sorted PUs. It takes k/2 steps
to obtain the situation at the beginning of Step 2 of
the merge in 2 X 2 meshes. Thus, the general estimate
for k-k sorting on n x n meshes is k/2+ (5- k% + 14 -
k+4)/(4-k+8)-(2+4+---+n/2)+(3-k>+12-k+
4)/(4-k+8)-n<(4-k*+13-k+4)/(2-k+4)-n O

From Theorem 5 we computed the results in Table 5.
For small n they are extremely competitive, even
though asymptotically k-k sorting can be performed
twice as fast with the algorithm of Section 4.



k T Q
2 5%-n| 4
3 ho-n| 5
4 10-n| 6
E| (@2 k+2%)-n|k+2

Table 5: Run times and queue sizes for uni-axial k-k
sorting in row-major order.

4 k-k Sorting for Large n

Earlier algorithms for k-k sorting [4, 7, 5] work ac-
cording to the following basic scheme:

1. Route all packets to random destinations.

2. Estimate the ranks of the packets by local com-
parisons.

3. Route all packets to their preliminary destina-
tions.

4. Rearrange the packets locally to bring them to
their final destinations.

In the version of [5], the mesh is divided in s x s
submeshes with s = n?/3/k'/3, and the randomiza-
tion of Step 1 is replaced by sorting the packets in
the submeshes and unshuffling them regularly over
the submeshes. Step 2 is performed by sorting within
the submeshes. Step 4 is performed by sorting pairs
of adjacent submeshes. On an MIMD the total sort-
ing time is k - n/2 + O(k?/3 . n?/3). As the algorithm
is given, Step 4 requires that the indexing is contin-
uous. In this section we introduce a novel technique,
we call it desnakification, to handle the final local
sorting such that piecewise-continuous indexings are
allowed.

The continuity of the indexing is required only for
sorting together pairs of submeshes with consecutive
indices. Sorting such pairs of submeshes is neces-
sary and sufficient because the estimate of the rank
in Step 2 is accurate up to one submesh. So it may
happen that after Step 3, a packet is not present in
its destination submesh B;, but resides in the preced-
ing submesh B;_; or the succeeding submesh B;;.
However, this is easy to overcome: send for all packets
p, of which the destination submesh is not uniquely
determined, a copy to both submeshes in which its
destination may lie. Now it is sufficient to sort within
the submeshes. If for B; the numbers ¢/, of packets
that actually belong in B;_1, and ch, of packets that
belong in B;;1, are exactly known, then the small-
est ¢l and largest ch packets in B; are thrown away,
and the remaining packets are redistributed within
B;. All this is very similar to (and was inspired by)

the way dirty rows are resolved in the algorithms of
Section 3. The only possible problem is, that routing
the copies might slow-down the algorithm.

We work the desnakification out in detail for bi-
axial sorting. In order to bound the number of copies,
we take the submeshes larger than in [5]: in our case
s =n®%/kY% and m = n/s = k% . nl/%. We sup-
pose that the indexing is piecewise-continuous with
parameter s. For the sake of a simple exposition
we assume that the mesh is divided in sections of
length s, each of which is fully contained in a single
submesh. The algorithm proceeds as follows:

Algorithm KKSORT2
1. In each submesh, sort the packets. The in-
termediate destination of a packet p with rank 7,
0 < r < k- 52, lies in submesh r mod m?. If
7 mod (2-m?) < m?, then color p white, else black.

2. In each submesh rearrange the white (black)
packets such that those with intermediate destina-
tions in column-bundle ! (row-bundle {), 0 < I < m,
stand in the columns (rows) [I-s/m, (I+1)-s/m—1]
of the submesh.

3. From column-bundle 7, 0 < j < m, route
the white packets with intermediate destinations
in column-bundle I, 0 < ! < m, as a block to the
columns [j-s/m, (j+1)-s/m—1] of column-bundle [.
Route the black packets analogously.

4. In each submesh rearrange the white (black)
packets such that those with intermediate destina-
tions in row-bundle ! (column-bundle {), 0 < I < m,
stand in the rows (columns) [I-s/m, (I+1)-s/m—1]
of the submesh.

5. From row-bundle 7, 0 < 7 < m, route the
white packets with intermediate destinations in
row-bundle I, 0 < ! < m, as a block to the rows
[¢-s/m,(:+ 1) - s/m — 1] of row-bundle . Route
the black packets analogously.

6. In each submesh, sort the packets. The prelimi-
nary destination of a packet p with rank r, 0 < r <
k- 5%, lies in section S, with [ = |r-m?/(s - k)].
If |[(r-m?—m*)/(s-k)] = 1— 1, then create a
copy p’ of p with preliminary destination in Sj_;.
If [(r-m%+m*)/(s-k)] = [+1, then create a copy
p’ of p with preliminary destination in S;11. If r is
even, then color p (and p') white, else black.

7. Like Step 2 for the preliminary destinations.
8. Like Step 3 for the preliminary destinations.
9. Like Step 4 for the preliminary destinations.
10. Like Step 5 for the preliminary destinations.

11. Route the packets within the submeshes to the
sections of their preliminary destinations.

12. In each section, sort the packets.



13. In each section S;, 0 < [ < m -n — 1, throw
away the m* packets with the smallest keys (except
for Sp), and the m* packets with the largest keys
(except for Spm.n—1). Redistribute the remaining
k - s packets within 5.

If packets have the same key, then special care should
be taken not to throw away both copies of a packet,
while keeping both packets of another packet. Most
practical is to take the index of the PU where a packet
started as an additional comparison criterion, to as-
sure that all packets have different keys. The algo-
rithm can be made uni-axial by leaving out the col-
oring, and applying only uni-axial local operations.

Theorem 6 Let s = n°/®/k'/®. KKSORT2 per-
forms bi-aztal k-k sorting with respect to a precewse-
continuous indexing with parameter s itn max{4-n, k-
n/2} + O(k - s) steps. The queue size 1s k + 2. Uni-
azial k-k sorting takes max{4-n,k-n}+O(k-s) steps,
with queue size k + 1.

Proof: We analyze the presented bi-axial algorithm,
KKSORT2. Its uni-axial version can be analyzed anal-
ogously. For the case that the sections are not en-
tirely contained within the submeshes, the algorithm
should be modified slightly (packets with preliminary
destination in some section, must be sent to the (at
most four) submeshes that intersect their sections, in
proportion to the length of the intersection).

The following facts imply the correctness of
KKSORT2. In Step 6, the estimate of the global rank
of a packet p with rank r within its submesh, r - m?,
is accurate up to m*. Hence, the index of the desti-
nation PU of p is accurate up to m*/k. Thus after
Step 11, a (copy) of a packet resides in its destina-
tion section. After Step 11 there are m* packets in Sj,
0 < I < m-n—1, that belong in S;_;, because from ev-
ery of the m? submeshes precisely m? copies of pack-
ets with estimated destination in S;_; are sent to S;.
Likewise there are m* packetsin S;, 0 <1 < m-n—1,
that belong in S74;.

For the time analysis, only the four main steps,
Steps 3, 5, 8 and 10, are of importance. The other
steps can be performed in O(k - s) = (’)(k5/6 . n5/6)
steps. Step 3 and Step 5 are very regular. It is
easy to check that no connection has to transfer more
than k - n/8 packets, and that packets travel less
than n steps. At the beginning of Step 8, there
are in every submesh exactly m3 packets and 2 - m?2
copies of packets with destination in any section Sj,
0<!<m-n—1(m?copiesforl=0o0r!=m-n—1).
Because the sections are fully contained in the sub-
meshes, this implies that every submesh holds m? - n
packets and 2 - m? - n copies of packets with des-
tination in any column-bundle. This means that
Step 7 can be performed such that the PUs in the
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columns [I-s/m,(l+2-k/m)-s/m—1] all hold k+ 1
packets and the PUs in all other columns exactly k
packets. Clearly Step 8 now takes (14+2/m)-k-n/8 =
k-n/8 + s/4. Performing Step 9 appropriately, the
same bound can be shown for Step 10.

A PU never holds more than k/2 packets and one
copy of both colors, and thus @ < k + 2. a

5

We start with a uni-axial algorithm for 1-1 sorting

1-1 Sorting for Large n

in row-major order. It runs in 2%2-n + o(n) steps.
Asymptotically this is much faster then the algo-
rithms of Section 3. This algorithm is obtained by
combining our new insight in merge sorting and the
desnakification technique, with old knowledge about
sorting with splitters. In Section 5.2 it is turned into
a near-optimal bi-axial algorithm. Without loss of
generality, we assume that all packets have different
keys.

5.1

The mesh is divided in s X s submeshes. In the algo-
rithm of this section s = n®/¢, and m = n/s = n'/®.
We distinguish packets and splitters. The splitters
are copies of a small subset of the packets. They
are broadcast and the packets estimate their ranks
by comparison with the splitters. This widely known
idea (going back on work of Reischuck [10], and Reif
and Valiant [11]) has been used for randomized [3, 2]
and deterministic [5] sorting on meshes. In the k-k
sorting algorithm of Section 4 we do not need split-
ters because the packets are fully distributed over the
mesh, and thus reliable estimates of the ranks of the
packets can be obtained by local comparison among
the packets themselves. In the case of 1-1 sorting this
does not lead to efficient algorithms. The splitters
allow us to spread the necessary information rapidly,
while the packets are involved in more useful opera-
tions.

First we give the algorithm for selecting and rout-
ing the splitters:

Uni-Axial Sorting

Algorithm SPLITTER-ROUTE
1. In every submesh, sort the packets. Copy the
packets with ranks - m?, 0 < i < s%/m? — 1: the
splitters.

2. In every submesh B;;, 0 < ¢,7 < m, rear-
range the splitters such that they stand in the posi-
tions (¢', j') of B; j, with i-s/m < ¢ < (i+1)-s/m,
and j-s/m <37 <(j+1) s/m.

3. Send the splitters along the rows. A splitter
starting in position (7',j') of B, ; drops copies in
the positions (', j') of B;;, for all 0 <! < m.



4. Send the splitters along the columns. A splitter
starting in position (7',j') of B, ; drops copies in
the positions (¢, j') of By ;, for all 0 <1 < m.

Lemma 12 SPLITTER-ROUTE takes 2-n+O(s) steps
to complete. No connection has to transfer more than
O(s) packets. Finally, each PU holds precisely one
splitter, and all splitters are available in every s X s
submesh.

Proof: Step 1 and Step 2 take O(s) steps, Step 3
and Step 4 take less than n steps. The rearrange-
ment is such that the splitters in B; ; stand in ‘sub-
submesh’ (7,7). After the broadcast these splitters
occupy the subsubmeshes (2, 7) in all submeshes: the
splitters from different submeshes perfectly fit next to
each other. This arrangement also assures that dur-
ing Step 3 and Step 4 a connection has to transfer at
most m/2 - s/m = s/2 splitters. O

When splitters and packets want to use the same
connection, priority is given to the splitters. By the
lemma this delays the packets by at most O(s).

For the packets we perform a kind of m-way merge
algorithm. We give the first part of the algorithm.

Algorithm 11sorT
1. In every submesh, sort the packets in row-major
order.

2. In every submesh B;;, 0 < 4,j
shift the packets in row [, 0 < [ <
row | of B; (j11ymod(m/2), and copies to row [ of

< m,
s to

B; (j+1)mod(m/2)+m/2-

3. In all columns, sort the packets downwards.

After Step 3, there are in a 0-1 distribution at most
m? dirty rows. For a general distribution this means
that a packet resides at most m? — 1 rows away from
its destination row. These three steps take 2-n+O(s)
steps, just as SPLITTER-ROUTE. So, we may assume
that after Step 3 the splitters are available in the
submeshes. The final steps of 11SORT resemble the
final steps of KKSORT2 for k = 1:

4. In every submesh, determine for every packet
its ‘rank’, the number r, 0 < 7 < s% of splitters
that are smaller. The preliminary destination of
a packet p with rank r, lies in section S;, with
I=1|r-m?/s]. If |(r-m? —m?*)/s| =1—1, then
create a copy p’ of p with preliminary destination
in S;_1. If [(r-m? +m*)/s| =1+ 1, then create a
copy p’ of p with preliminary destination in Sjy.
Discard the splitters, and the (copies of) packets
that have preliminary destination in the other half
of the mesh.

5. In every submesh, sort the packets in column-
major order on their preliminary destination
column-bundles.
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6. In every row, route the packets to the first PUs
in their preliminary destination column-bundles
that hold less than two packets.

7. In each submesh, sort the packets in row-major
order on their preliminary destination section.

8. In every column, route the packets to the sec-
tions of their preliminary destinations.

9. In every section, sort the packets.

10. In every section S;, 0 < { < m-n — 1, throw
away the m* packets with the smallest keys, and
in each S, 0 <! < m-n — 1, throw away the
m* packets with the largest keys. Redistribute the
remaining k - s packets within Sj.

As the algorithm is given, it is not entirely cor-
rect. It is not true that, as in KKSORT2, exactly m*
packets must be thrown away on both sides of ev-
ery section: SPLITTER-ROUTE orders the packets, but
the sections do not necessarily hold exactly s pack-
ets. Fortunately, the numbers of packets that must
be thrown away in a section on the low and high side,
respectively, can be determined in an elegant way.

We give a detailed description. Consider some sec-
tion S and the sections from which it may receive
packets after Step 3:

§ §

n/2

(2 - m? — 1) - n packets are stored in these sections,
among which the s packets with destination in S. Af-
ter Step 8, these s packets all reside in S, but also
some packets that do not belong in S. How can we
figure out which packets to keep, and which pack-
ets to throw away? Suppose that S is the [-th sec-
tion, (m? — 1) -n/s <1 < m? - n/s, in the involved
(whole) rows. Then finally S should hold the packets
with ranks 7, [-s < r < (I + 1) - s from among the
(2-m? — 1) - n packets. Analogously to the merge
algorithms of Section 3, we could copy all packets
to S, sort them, and throw away the smallest [ - s
packets and the largest (2-m? —1)-n— (I +1)-s
packets. This gives a correct but very inefficient algo-
rithm. However, it is not necessary to copy all pack-
ets to S. It is sufficient if for each contributing sec-
tion ¢ the counters, the numbers unders; and overs;
of packets that are not sent to S because they are def-
initely too small or definitely too large, respectively,
are known in S. The counters can easily be deter-
mined in Step 4. They can be transferred to .S during
the subsequent steps, in parallel with the packets. As



every section sends and receives only O(m?) counters
in total, they can be routed without causing substan-
tial delay. The numbers Unders = ), unders, and
Overs = Y, overs,; can be computed in Step 9. Fi-
nally, in Step 10, the smallest /- s — Unders packets
and the largest (2-m? —1)-n— (I +1) s — Overs
packets in S are thrown away, leaving exactly the s
packets belonging in S. Now we get

Theorem 7 Uni-azzal 1-1 sorting in row-major or-

der can be performed in 2Y2m O(n®/) steps. The
queue size 15 five.

Proof: Let s = n®/. For the routing time and cor-
rectness, we only have to prove that Step 6 can be
performed in n/2 4+ O(s) steps. All other steps can
be performed in O(s) steps.

The estimate of the rank of a packet, r-m=, is accu-
rate up to m*. This means that for some section Sj,
only a packet (or its copy) with actual destination in
some PU Py, with k € [[-s—2-m* (I+1)-5+2-m?,
may get preliminary destination in S;. Hence, at most
s? +4.m*. s packets have preliminary destination in
any submesh B; ;. By the sorting in Step 5, they are
distributed almost optimally over the rows of row-
bundle i: at most s + O(m?*) packets stand in any
row. The m? . s packets with destination in Bi_1;
and B;y1;, that may stand in row-bundle ¢ have no
serious influence. This shows that Step 6 can be per-
formed as specified: no PU in B; ; has to receive more
than two packets.

We consider the routing time of Step 6. For a right-
wards moving packet p, residing in some PU P; ; and
moving to column [, with 7,1 < n/2, we are interested
in the number h; of packets within row ¢ that have to
go to some column &, with & > [. By the above analy-
sis, we know that iy < n/2—1+0O((n/2-1)/s-m?*) <
n/2 — 14+ O(s). pis delayed at most k; times, and
hence p finishes Step 6 within n/2 + O(s) steps.

A PU may hold up to four (copies of) packets dur-
ing Step 4 and Step 5. In addition Step 4 can be
organized such that a PU holds at most one splitter
or counter. Hence, @ < 5. a

2

The algorithm is not suited for sorting with respect
to any piecewise-continuous indexing with parameter
s > n®/%: it is essential that after Step 3 the pack-
ets do not have to make another long vertical move.
However, the algorithm s correct for any piecewise
indexing in which the pieces are scrambled within the
Tows.

5.2 Bi-Axial Sorting

Essentially 11SORT consists of three main routing
phases: horizontal, vertical and horizontal (Step 2,
Step 3 and Step 6). These phases take n, n and n/2
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steps, respectively. The connections between the left
and right half are not used anymore after step n/2.
Thus it may happen that a packet p; that stands in
column 0 after Phase 1 is routed to a preliminary
destination in column n/2 — 1 in Phase 3. This is
unnecessary: a copy of p; stands in column n/2. In
a uni-axial algorithm this observation does not lead
to a faster algorithm: there may be a packet ps, after
Phase 1 in column n/2 — 1 and with preliminary des-
tination in column 0, which has to travel n/2 steps in
Phase 3. On the other hand, in a bi-axial algorithm,
it is possible to coalesce the phases. Then ps can start
Phase 3 after 3/2 - n + O(s) steps, and will reach its
preliminary destination after 2 - n + O(s) steps.

We work out the ideas. Only Step 4 is changed:
instead of discarding the packets that have their des-
tinations in the other half, we now perform

In all columns j, 0 < j < n/2, discard the (copies
of) packets that have preliminary destination in
some column j', with 7 > 2-j. For n/2 < j < n,
discard the packets with 7' < 2.7 —n.

Notice that by this rule again exactly one of the copies
of a packet reaches every possible destination section.

The steps are coalesced. Most importantly, this
means that Step 3 begins in column j after n/2 +
|n/2 — j| steps, and Step 6 after 3/2-n + |n/2 — j|
steps.

Theorem 8 Bi-azial 1-1 sorting in row-major order
can be performed in 2 -n + O(n®/®) steps. The queue
size 15 five.

Proof: A packet that starts Step 6 after 2-n — d +
O(s) steps, has to travel at most d steps to reach
the column-bundle of its preliminary destination. We
check this for a packet p that is routed in Step 2 to
some column j, with j < n/2. p starts Step 6 after
2-n—j+ O(s) steps. In Step 4 the preliminary
destination of p is determined. p survives only when
it goes to some column I, with ! < 2-7: p has to travel
at most j steps. By a refinement of the analysis in
the proof of Theorem 7, it can be shown that p is not
delayed more than 2-j — [ times. Hence, Step 7 can
start in all submeshes after 2 - n 4+ O(s) steps. a

In fact this algorithm 1is still locally uni-axial: every
PU uses only horizontal or vertical connections.

5.3 2-2 Sorting

For efficient 2-2 sorting, we modify the uni-axial ver-
sion of 11sORT. We still select s*/m? splitters in
every submesh.

For uni-axial 2-2 sorting, the sorting in Step 1 is
performed in (semi-) layered row-mayor order. Step 2
is replaced by



2. In every submesh B, ;, 0 < ¢,5 < m, shift the
packets in tow [, 0 < I < s to row [ of B; (j41)ymodm-

The estimate of the rank of a packet is accurate only
up to 2 - m?*, but the accuracy of the estimate of the
preliminary destination of a packet is unchanged. In
Step 4, no (copies of) packets are thrown away. In
Step 6, the PUs receive up to three packets.

Theorem 9 Uni-azial 2-2 sorting in row-major or-
der can be performed in 3 - n + O(n®/®) steps. The
queue size 15 five.

Proof: Step 2 and Step 3 are 2-2 routing and sorting
operations on a linear array, and can be performed in
n steps each. Step 6 now takes n + O(s) steps. This
can be proven with Lemma 1, by observing that at
most O(m*) copies go to any section: the distribution
of source/destination pairs within a row is close to
forming a 2-2 routing problem. ad

For bi-axial 2-2 sorting, we essentially apply two or-
thogonal versions of 11SORT. For the necessary col-
oring, the packets should first be sorted within the
submeshes. Then the packets with even rank are col-
ored white, the others black. The white packets per-
form Step 1 through 8 of 11sorT, the black packets
perform orthogonal steps. Then all packets perform
Step 9 and 10 together. We need only one set of
splitters.

Theorem 10 Bi-azial 2-2 sorting in row-major or-

der can be performed in 2'/2-n + O(n®/) steps. The
queue size 15 nine.
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6 Conclusion

We presented novel uni-axial and bi-axial row-major
algorithms for sorting on two-dimensional meshes.
They are considerably faster than existing algorithms.
A tremendous improvement is our near-optimal algo-
rithm for 1-1 sorting: it is much simpler than the
earlier algorithm, it is suited for more useful index-
ings, it is locally uni-axial, and it has queue size five.

Future research could address (1) the optimality

of the uni-axial sorting algorithm with run time 22
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n+o(n) steps; (2) a further improvement of the merge
sort algorithm, in order to obtain even faster sorting
for all n.
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