
Desnaki�cation of Mesh Sorting Algorithms

Jop F� Sibeyn�

Abstract

In all recent near�optimal sorting algorithms for meshes�
the packets are sorted with respect to some snake�like in�
dexing� In this paper we present deterministic algorithms
for sorting with respect to the more natural row�major
indexing�

For ��� sorting on an n�n mesh� we give an algorithm
that runs in � � n � o�n	 steps� with maximal queue size

ve� It is considerably simpler than earlier algorithms�
Another algorithm performs k�k sorting in k �n���o�k �n	
steps�

Furthermore� we present uni�axial algorithms for row�

major sorting� Uni�axial algorithms have clear practical

and theoretical advantages over bi�axial algorithms� We

show that ��� sorting can be performed in ���� � n� o�n	

steps� Alternatively� this problem is solved in �
����n steps

for all n� For the practically important values of n� this

algorithm is much faster than any algorithm with good

asymptotical performance�

Keywords� theory of parallel computation�

meshes� sorting� row�major indexing� uni�axial

routing

� Introduction

Various models for parallel machines have been con�
sidered� One of the best studied machines with a
�xed interconnection network� is the mesh� In this
model the processing units� PUs� form an array of
size n � n and are connected by a two�dimensional
grid of communication links�

Problems� The problems concerning the exchange
of packets among the PUs are called communica�

tion problems� The packets must be sent to their
destinations such that at most one packet passes
through any wire during a single step� The quality of
a communication algorithm is determined by ��� its
run time� the maximum number of steps T a packet
may need to reach its destination� and �	� its queue
size Q� the maximum number of packets any PU may
have to store�
Routing is the basic communication problem� In

this problem the packets have a known destination�

�Max�Planck�Institut f�ur Informatik� Im Stadtwald� �����
Saarbr�ucken� Germany	 E�mail
 jopsi�mpi�sb	mpg	de	 This
researchwas partially supportedby EC CooperativeAction IC�
���� 
Project ALTEC
 Algorithms for Future Technologies�	

If all PUs initially hold one packet� and if every PU is
the destination of precisely one packet� than we speak
of permutation routing� The routing problem in
which every PU is source and destination of k packets
is called the k�k routing problem�

Sorting is� next to routing� one of the most consid�
ered communication problems� Several variants of the
problem have been studied� In the ��� sorting prob�
lem� each PU initially holds a single packet� where
each packet contains a key drawn from a totally or�
dered set� The packets have to be rearranged such
that the packet with the key of rank i is moved to the
PU with index i� for all i� In the k�k sorting problem�
each PU is the source and destination of k packets�

Scattering is the problem of rearranging packets
holding keys from a totally ordered set such that as
little as possible packets with the same key stand in
the same column� It can be performed by sorting the
packets in row�major order on the keys� But� almost
the same e
ect can be achieved at lesser expense�
Scattering is not a problem with great independent
importance� However� it is an important subroutine
of deterministic algorithms for other communication
problems� the queue size of such algorithms often lin�
early depends on the number of packets in any column
with destinations in the same row� In this application
the scattering is performed in s � s submeshes� and
the key of a packet is given by its destination row�

Models� Frequently it is assumed that the PUs
can communicate with all their neighbors at the same
time� in a single step they can send and receive at
most four packets� This model is called the MIMD

mesh� Alternatively all PUs may send only pack�
ets in a speci�c direction during any step� the SIMD

meshmodel� Less considered is the model in between
these two� which we call the half�MIMDmesh� In a
half�MIMD all PUs can either send and receive pack�
ets along the horizontal or along the vertical connec�
tions� Algorithms that only use the routing capacity
of a half�MIMD are called uni�axial� Algorithms for
the MIMD will be called bi�axial�

The MIMD may be stronger than realistical� If
MIMD algorithms are directly run on an SIMD� then
they are slowed�down by a factor four� Often spe�
ci�c SIMD algorithms perform much better� The
half�MIMD has a certain universality� running half�
MIMD algorithms with a slow�down factor two on an

�



SIMD gives competitive results� on the other hand�
for certain problems� half�MIMD algorithms perform
on an MIMD almost as good as MIMD algorithms�
There are other reasons to consider algorithms for
the half�MIMD� on an MIMD two of these algorithms
can be perfectly overlapped� in MIMD permutation
routing algorithms �see 
�� ���� �non�critical� packets
are uni�axially scattered while �critical� packets are
routed orthogonally without loss of time�

Indexings� Several recent sorting algorithms

	� �� �� were designed for �blocked� snake�like row�
major indexings� This indexing may be good� but in
many cases it is desirable to have the packets in the
more natural row�major �column�major� order� Fur�
thermore� sorting in snake�like order is unsuited as a
subroutine for scattering algorithms�

In the one�packet model considered by Schnorr and
Shamir 
�	�� the lower bound for row�major sorting is
higher than for sorting in snake�like row�major order�
In our model a PU may hold a constant number of
packets and packets may be copied� From the results
of this paper it follows that in this model� sorting in
row�major order is not substantially harder than sort�
ing in snake�like row�major order� Only on the half�
MIMD� where there are no matching lower bounds�
the situation is not yet fully clari�ed� Proving non�
trivial lower bounds is hard� as such a proof should
at least involve the queue size and the uni�axiality� if
the queue size would not play a role� then the greedy
algorithm �uni�axial�� could be used�

Results� This paper gives numerous improvements
for row�major sorting� They are resumed in Table ��

Uni�Axial Bi�Axial

k all n large n large n

� ���� � n 	��� � n 	 � n

	 ���� � n � � n 	��� � n

k �	 � k � 	���� � n k � n k�	 � n

Table �� Run times for k�k sorting in row�major or�
der� In the results for large n� we left away the lower�
order terms�

The queue sizes in the algorithms for ��� and 	�	 sort�
ing range between four and nine� and in the k�k sort�
ing the queue sizes are k � � or k � 	� Actually the
results for large n are much more general� they do
not just hold for sorting in row�major order� but for
sorting with respect to any indexing that is piecewise�
continuous �see De�nition � in Section 	��

Theoretically the result for large n are the most ap�
pealing� So far� the fastest bi�axial row�major sorting

algorithm has T � 	��� � n � o�n� and Q � O���� It

was recently designed by Krizanc and Narayanan 
���
However� this algorithm works only for the subprob�
lem that all the keys are � or � �though some exten�
sion seems possible�� For sorting in blocked snake�like
row�major order T � 	 �n�o�n� was achieved �rst by
Kaklamanis and Krizanc 
	� with a randomized algo�
rithm� and then also deterministically by Kaufmann�
Sibeyn and Suel 
��� These algorithms are consider�
ably more involved then the algorithm of this paper�
and have queue sizes around 	�� The best uni�axial
row�major sorting algorithm so far is a modi�cation
of the algorithm of Schnorr and Shamir� It takes
� � n � o�n� steps�

Most current communication algorithms strive for
T � ��n�o�n�� with � as small as possible� This com�
pletely neglects the fact that actual meshes tend to be
of fairly moderate sizes� for which the o�n� term easily
may dominate� Typically this term gives the number
of steps for several sorting and rearrangement opera�
tions in submeshes of size n���� n��� or n���� n����
Even when this term is just �� � n���� then still it
exceeds n for all n � ����� This clearly expresses
the utmost importance of algorithms with a routing
time not involving any hidden terms� Therefore� is

our uni�axial ���� � n row�major sorting algorithm of
great practical importance� A sorting or scattering
time which can be expressed as T � � � n� for all n�
is even relevant in a theoretical setting� in recursive
or divide�and�conquer algorithms� in which these al�
gorithms are used as subroutines� the submeshes on
which they are applied are small�

The �rst near�optimal algorithm for k�k sorting was
discovered by Kaufmann and Sibeyn 
��� Then in 
��
by Kunde and slightly later also in 
��� determinis�
tic versions of this randomized algorithm were de�
scribed� All these algorithms use a blocked snake�like
row�major indexing� In this paper we present the �rst
near�optimal algorithm for k�k sorting in row�major
order�

The remainder of the paper is organized as follows�
in Section � we give the algorithms for uni�axial row�
major sorting for all n� Then we introduce in Sec�
tion � the �desnaki�cation� of the k�k sorting algo�
rithm for large n� This powerful technique is then
applied in Section � for very fast uni�axial ��� sort�
ing� for near�optimal bi�axial ��� sorting� and �nally
for 	�	 sorting�

� Preliminaries

Basics of Routing and Sorting� We speak of
edge contention when several packets residing in
a PU have to be routed over the same connection�
Contentions are resolved using a priority scheme� We
apply the farthest��rst strategy� which gives pri�

	



ority to the packets that have to go farthest� For
the analysis of the routing on higher dimensional
meshes we need the �routing lemma� for routing a
distribution of packets on a one dimensional mesh

�� and the corresponding �sorting lemma� 
��� De�
�ne for a given distribution of packets over the PUs
hright�i� j� � �fpackets passing from left to right

through both Pi and Pjg� where Pi denotes the PU
with index i� De�ne hleft�j� i� analogously�

Lemma � Routing a distribution of packets on a lin�

ear array with n PUs� using the farthest��rst strategy�

takes maxi�jfmaxfhright�i� j�� hleft�j� i�g� j � i � �g
steps� This bound is sharp� When the packets

are evenly distributed� then the same bound can be

achieved for sorting�

Because of the distance a packet may have to go
	 �n�	 steps is a lower bound for any general routing
or sorting problem on the two�dimensional mesh�

A ��� distribution� is a distribution of packets
that all have key zero or one� In a ��� distribution
a row is called dirty� if it contains both zeros and
ones� In our analyses we frequently use the so�called
���� lemma� �see 
���� that states that under certain�
in our case satis�ed� conditions a sorting algorithm is
correct i
 it sorts any ��� distribution�

Indexings� The PUs can be indicated by giving
their coordinates within the mesh� the PU at posi�
tion �i� j�� � � i� j � n� is denoted Pi�j� Here posi�
tion ��� �� lies in the upper�left corner� In the com�
mon row�major indexing Pi�j has index i � n � j� In
the column�major indexing Pi�j has index i � j � n�
In the reversed row�major indexing Pi�j has index
i � n� �n� j�� In the snake�like row�major indexing�
the indexing of the odd rows is reversed� For a given
indexing we denote the PU with index i� � � i � n��
by Pi�

If we consider a k�k sorting� then there are two
natural ways to index the k �n� destination locations�
Our default is a non�layered indexing� In this case�
location r in Pi� � � r � k� � � i � n�� has index k �
i�r� In the case of a non�layered row�major indexing�
this is the index as if we have an n�k �nmesh in row�
major order� see Figure � on the left� Alternatively� in
a layered indexing� location r in Pi has index r�n��i�
In the case of row�major sorting we use a particular
semi�layered indexing� under which location Pi�j�
has index �i � r� � n � j� This is the index as if we
have a k �n�n mesh in row�major order� see Figure �
on the right�

A row i is said to be sorted rightwards if
the packets stand in increasing order from Pi�� to
Pi�n��� Analogously� rows can be sorted leftwards

and columns downwards and upwards�
An indexing is called continuous if for all i� � �

i � n � 	� Pi�� and Pi�� are adjacent to Pi in the

� � � � � � � 	


 � �� �� �� �� �� ��

�� �	 �
 �� �� �� �� ��

�� �� �� �	 �
 �� �� ��

� � � �

� � � 	


 � �� ��

�� �� �� ��

�� �	 �
 ��

�� �� �� ��

�� �� �� �	

�
 �� �� ��

Figure �� Non�layered indexing �left�� and semi�
layered indexing �right�� for k � 	� n � ��

mesh� Snake�like indexings are continuous�

De�nition � An indexing is called piecewise�con�

tinuous with parameter s if for every i� � � i � n��
there is an interval Ii � 
�� n� � ��� with i � Ii and
�Ii � s� such that for all j � Ii� Pj is adjacent to

Pj�� and Pj��� whenever j � �� j � � � Ii�

The row�major indexing is piecewise�continuous with
parameter n� One of the achievements of this paper
is to show that for e�cient sorting it is su�cient to
have piecewise�continuous indexings�

Subdivisions� In our algorithms the mesh is di�
vided in regular s � s submeshes� Let m � n�s�
The submeshes are indexed as the PUs� starting
with ��� �� in the upper�left corner� We refer to sub�
mesh �i� j� by Bi�j � De�ne row�bundle i to consist
of the PUs in �m��

j�� Bi�j� Likewise� column�bundle j

consists of �m��
i�� Bi�j� Additionally the mesh is sub�

divided in sections� A section is a subset of the PUs
with consecutive indices� In Section � and Section ��

row
bundle

� m submeshes �

� m sections �

n

s

s

�s

s

Figure 	� Subdivisions for the case s � n��� m � ��

we use sections of length s� and there section l� de�
noted Sl� � � l � m�n� consists of the PUs with index
s � l� � � � � s � �l � �� � �� Under a row�major indexing
the sections regularly subdivide the rows and the sub�
meshes� All subdivisions are depicted in Figure 	�

De�nition 	 An m�way merge is a procedure that

turns a mesh that is divided in m� sorted s � s sub�

meshes into a sorted n� n mesh�

�



� Uni�Axial Sort for Small n

��� Powers of Two

Lemma 	 Uni�axial sorting in arbitrary order can

be performed on 	 � 	 meshes in � steps� with queue

size two�

Proof� Perform gossiping �all�to�all routing� along
rows and then along columns� This takes three steps�
A PU that �nally should hold the packet with rank �
or �� needs to conserve only the two smallest packets�
the other PUs only the two largest packets� �

For n � 	l� l � �� we use an optimized merge�
sort algorithm combining several recent techniques
and adding some new ideas� Initially we assume that
we have four sorted n�	 � n�	 submeshes� those in
the left half in row�major order� those in the right
half in reversed row�major order� The �rst merge
sort algorithm with the optimal time order was given
by Thompson and Kung 
���� Our merging consists
of �ve easy steps�

Algorithm merge

�� In the left half� shift the packets n�� steps to
the right� In the right half� shift the packets n��
steps to the left�

	� In the central n�	 columns� sort the packets
downwards�


� Copy the smallest packet in every Pi�j� � � i �
n � �� n�� � j � ��� � n � �� to Pi���j� Copy
the largest packet in every Pi�j� � � i � n � ��
n�� � j � ��� � n� �� to Pi���j�

�� In every row� sort the section of the row that
lies in the central n�	 columns� If this submesh is
going to be the right half of a larger mesh in the
next merge� then the sorting is leftwards� otherwise
rightwards�

�� Throw away the packets in Pi�j with j �

n��� ��� � n � �� � 
��� � n� ��� � n � ��� For any
Pi�j� with ��� �n � j � ��� �n� �� send the packet
with rank r� � � r � �� to Pi����j���
�n��r�

We analyze the routing time and the correctness
of merge� Step � takes n�� steps� Step 	 can be
performed in n steps� and Step � takes a single step�
This step can easily be made to coincide with the last
step of the sorting� Its purpose is expressed by

Lemma 
 After Step � all packets that actually

should be in a row can be found either in the row it�

self� or among the smallest packets of the row below�

or among the largest packets of the row above�

Proof� First we consider a modi�ed problem� Sup�
pose that initially four n�	 � n�	 submeshes stand
above each other in an 	 � n � n�	 mesh� Two of

these submeshes are sorted in row�major order� the
other two in reversed row�major order� Consider a
��� distribution� It is easy to check that after sorting
the columns of this mesh� there are at most two dirty
rows� These dirty rows can be resolved as follows�
copy every row to the row above and the row below�
sort the rows� spread the packets from the central n��
columns� In the real problem every two rows of the
high and narrow mesh are compressed in one row in
which every PU in the center holds two packets� �

Lemma � Step � can be performed in ��� � n steps�

Proof� For the number of required steps we ana�
lyze the worst possible ��� distributions after Step 	�
These are of the following form�

�
�

� �
� �

�
�

�
n�� �

� n�� �

row i� �

row i

row i� �

After Step �� we have the following distribution in
row i�

�
� �
� �

�

�
n�� �

� n�� �

row i

According to Lemma �� sorting this row takes ��� �n
steps� �

Finally� Step � takes ��� � n steps� Hence�

Lemma � merge takes less than 	��
 � n steps� The

queue size is at most four�

The algorithm might be further improved by perform�
ing Step � and Step � together more e�ciently� After
n�	 � � steps we are sure that the packets with the
largest and with smallest keys have reached their des�
tination� From that moment on we can kill on both
sides one packet every further step� It is not clear
how this can be exploited�

Starting with sorted 	 � 	 meshes� merge can be
used repeatedly for sorting on an n � n mesh� Call
this algorithm sort� We have

Theorem � For all n � 	l� sort performs row�

major sorting on an n�n mesh in �����n steps� sort

is uni�axial� and the queue size is four�

Proof� Summing the number of steps required for
all merges� we �nd that the sorting takes less than

��	��
 � ����� � � ��n� � 	��
 �n �
P

i�� 	
�i steps� �

�



��� Powers of Two� Three� � � �

We derived an e�cient ��� sorting algorithm for n �
	l� However� in practice processor networks may not
have such beautiful side lengths� Furthermore� some
algorithms in which sorting is used as a subroutine�
e�g�� the algorithms of 
�� ��� speci�cally require that
n � �l or �l� In principle we could use sort by round�
ing n up to the nearest power of 	� But� this might
give sorting times that are almost twice as large as
necessary� In this section we present m�way merge
algorithms� which perform good for m � �� By com�
bining them� we can e�ciently sort n� n meshes for
arbitrary n�

m�m Meshes� Consider an m�m mesh� Suppose
that we want to sort this mesh in �reversed� row�
major order� A simple algorithm performs well�

�� In all rows i� concentrate the packets in
Pi�bm��c�

	� Sort the packets in column bm�	c downwards�


� In all rows i� spread the packets over the row�

Lemma 
 Uni�axial sorting on m � m meshes can

be performed in m��	 � m steps� for m even� and

m � �m � ���	 steps� for m odd� with queue size m�

Proof� The steps take bm�	c� m � bm�	c and bm�	c
steps� respectively� �

Larger n� The algorithm for uni�axial sorting in
row�major order on n� n meshes for n � ml is anal�
ogous to the algorithm for n � 	l� n�m � n�m sub�
meshes are appropriately sorted� and the submeshes
are merged� For this merging� we can proceed as in
merge� wiping all submeshes together� sorting the
columns� etc� However� algorithms of this type are
not very suited for an m�way merge with m � ��
the number of dirty rows equals dm��	e� which leads
to long queues� and rapidly growing time to resolve
them� It is better �rst to sort the rows�bundles� then
to merge the sorted row�bundles� In this way the
number of dirty rows is limited to dm�	e� For m � 	�
this approach is slower� but for larger m it is faster�

The algorithm� for sorting ml � ml� l � �� meshes
in row�major order starts by sorting recursively all
ml�� � ml�� submeshes� For even m� in every row�
bundle m�	 submeshes are sorted in row�major order�
and m�	 in reversed row�major order� For odd m� in
the highest dm�	e row�bundles� dm�	e submeshes are
sorted in row�major order� and in the lowest bm�	c
row�bundles� bm�	c� The other submeshes are sorted
in reversed row�major order� In Figure � we give an
example for m � �� Then we perform the following
merge algorithm� The central column�bundle� de�
notes the subset of columns j� with �m�����	�m��n �
j � �m� ����	 �m� � n�

�
�
�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

Figure �� For sorting in row�major order the right�
ward �leftward� arrows indicate submeshes that are
sorted in �reversed� row�major order�

Algorithm merge�m

�� Shift the packets in the column�bundles as
blocks to central column�bundle�

	� In the central column�bundle� sort the sections
of the columns that lie within the row�bundles
downwards�


� Let q � dm�	e � �� In the central column�
bundle� for all i� � � i � n� i 	� �� n�m� � � � � �m �
���m � n� copy the smallest q packets in Pi�j� to
Pi���j� for all i 	� n�m � �� 	�m � n� �� � � � � n� ��
copy the largest q packets in Pi�j� to Pi���j�

�� In the central column�bundle� for all i� � � i �
n� sort the section of row i� If i � dm�	e�m � n�
then sort rightwards� else sort leftwards�

�� In every row� throw away the q � n�m packets
with the smallest and with the largest keys� The
remaining n packets stand in the central dn��m �
	 � q�e PUs� Spread these packets over the central
dn�	e PUs� such that they come to stand in semi�
layered order� If m is odd� then one packet with
key 
 should be added on the right�


� In the central dn�	e columns� sort the packets
downwards�

�� In the central dn�	e columns� for all � � i �
n��� copy the smallest q packets in Pi�j� to Pi���j�
for all � � i � n� �� copy the largest q packets in
Pi�j� to Pi���j�

�� In the central dn�	e columns� sort all rows
rightwards�

�� In every row i� � � i � n� throw away the
q � dn�	e packets with the smallest and with the
largest keys� If m is odd� then throw away one
more packet with a large key� The remaining n
packets stand in the central dn��	 � 	 � q�e PUs�
Send the packet with rank j to Pi�j�

The correctness of merge�m is obvious� after Step 	
and Step �� there are q � � dirty rows in a ��� distri�
bution� These are resolved by the steps that follow�
Form � �� in Step �� packets from more than one row
below and one row above every row should be copied

�



into it� The steps required for Step � and Step � can
be saved by modifying the �nal q steps of the preced�
ing steps� The queue size equals Q � m� 	 � q� That
is� Q � 	 �m � 	� for m even� and Q � 	 �m � �� for
m odd� The time consumption of the steps are listed

Step Time Consumption

even m
� �m � ����	 �m� � n
	 bn��c
� �
� maxfn�m� b��m��

��m�� � ncg
� maxfbn��c� b m��

��m�� � ncg
� n
� �
� maxfbn�	c� bm�� � ncg
� �m � ����	 �m� � n

odd m

� �m � ����	 �m� � n
	 b��� ��m�� � n��c
� �

� maxfn�m� b��m
����m��

��m����m
� ncg

� b��m��
��m�� � nc

� n
� �

� maxfbn�	c� b m
���

��m�� � dn�	ecg
� m��	 �m � 	� � n

Table 	� The time consumptions of the steps of
merge�m�

in Table 	� These results either equal the maximal
distance packets may have to go� or the number of
packets that may have to move through a single con�
nection� We analyze the most di�cult steps� In order
not to get an excessive amount of notation� we con�
sider the case m � �� For other odd m the analysis
is analogous� for even m� the analysis is simpler�

Lemma � For m � �� Step � can be performed in

b��	� � nc steps�

Proof� As an example for other proofs� which are
handled quite sketchy� we give a detailed proof here�
Consider the sorting in the section of column j in
row�bundle �� We refer to the PUs in this section by
Pi� � � i � n��� Five sorted submeshes� B�� � � � � B��
contribute their packets to this section� Suppose that
all packets have key zero or one� and let ml� � �
al � n��� be the number of ones contributed by Bl�
We apply the analogue of Lemma � for sorting in
columns� and determine the distribution for which
T �ii� i�� � hdown�i�� i�� � i� � i� � � is maximal� For
a� � a� � a� � �� and a� � a� � n��� we have
T ���	� � n� �� ��	� � n� � ��	� � n�

In the remainder of the proof� we show that there
are no distributions that give larger T �i�� i��� The
reader may want to skip this� T �i�� i�� is not de�
creased when ones are moved upwards� Hence� we
may assume that the packets in a section are ar�
ranged as if they were sorted in column�major or�
der� we have a distribution as in Figure � on the

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�row �

row n�
� �
column j

�

��
steps

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

column j

Figure �� A �bad� ��� distribution in a section of a
column� on the left before Step 	� on the right after
Step 	�

left� Let a � a� � � � � � a�� be the total number
of ones in the section� If n�� � a mod �n��� � i��
then we can remove a mod �n��� ones without de�
creasing hdown�i�� i��� no ones in a row i with i � i�
are removed� If n�� � a mod �n��� � i�� then we
can add n�� � a mod �n��� ones without decreasing
hdown�i�� i��� the number of ones that has to move
from a row i� with i � i� to a row i� with i� � i��
is at least as large as before� Thus� we may assume
that a � l � n��� for some � � l � �� The cases
l � � and l � � are trivial� so we suppose that
� � l � �� Denote by zero�� the number of zeros
in rows i� with i � i�� by zero�� the number of ze�
ros in rows i� with i� � i � i�� and by zero�� the
number of zeros in rows i� with i� � i� De�ne one��
one� and one� analogously� Clearly hdown�i�� i�� �
minfzero� � one�� one� � zero�g� It follows� because
one�� zero� � i��i��� �here we need that � � l � ���
that taking i� � i� � �� does not have a positive ef�
fect on T �i�� i��� For i� � i� � �� we get T �i�� i�� �
minfzero�� one�g � minf�n�� � i�� � �� � l�� i� � lg�
Solving gives i� � ��� l��� � n��� �

Lemma � For m � �� Step � can be performed in

b����� � nc steps�

Proof� Consider a ��� distribution� There are at
most three dirty rows after Step 	� However� by the
special way the submeshes are sorted it is not pos�
sible that after Step � one row holds three layers of
packets that are sorted falsely� The worst possible
distributions in some row i with i � ��� �n� are of the
following form�

�



�

�

�

�

�

�

�

� �

� �

�
n�


�

� � � n�
 �

row i

The sorting time is maximal for � � ����� �

The analysis of Step � is analogous�

Lemma � For m � �� Step 	 can be performed in

b���� � nc steps�

Proof� At the beginning of Step �� the n packets
stand sorted rightwards in the central dn��e PUs of a
row� 	�� �n packets stay there� b���� �nc packets have
to move out of this section leftwards and rightwards�
The maximal distance any packet has to go� is bn��c�
consider a packet p with rank r � n�	� p comes in
the �lower layer�� The packet with r � n�	 � � has
to move farthest� bn��c steps� from column bn�	c to
column b��� � nc� �

Substituting in Table 	� we obtain for 	 � m � �
the following time consumptions �omiting the factor
n��

Step Time Consumption

m 	 � � � �
� ��� ��� ��� ���� ���	
	 ��� 	�� ��� ��	� ���
� ��	 ��� ��� ����� ����
� ��� ���� ��� ���� 	��
� � � � � �
� ��	 ��	 	�� ��� �
� ��� ��� ��� ���	 ���	

total � ���� ���
 ���� ����

Starting with sortedm�mmeshes and then repeat�
ing l� � times merge�m� meshes of size ml �ml can
be sorted� Call this algorithm sort�m� In Table ��

m 	 � � � �

T � � n ���� � n ���� � n ���	 � n ���� � n
Q 	 � � � ��

Table �� Run times and queue sizes of uni�axial row�
major sorting algorithms for n � ml�

we give an overview of its performance for 	 � m � ��
For m � �� the performance starts to deteriorate� We
check the result for m � ��

Theorem 	 For all n � �l� sort�� performs row�

major sorting on an n � n mesh in ���� � n steps�

sort�� is uni�axial� and the queue size is nine�

Proof� Summing the number of steps required for
all merges� we �nd that the sorting takes less than
�� � ���� � �	� � �	� � � � �� n� � ���� � n �

P
i�� �

�i

steps� The queue size was analyzed before� �

Powers of Two� Using merge �� we obtain an
alternative algorithm for sorting n � n meshes with
n � 	l� if l is odd� then we start by sorting the 	� 	
submeshes� if l is even� then �rst the ��� submeshes
are sorted� Hereafter merge�� is applied repeatedly�
This gives

Theorem 
 Row�major sorting on an n � n mesh

with n � 	l� l � �� can be performed in ���� � n steps

by a uni�axial algorithm� with queue size six�

Proof� The total time for the sorting is less than

� � ���
 � �� � �	 � � � �� n�� for odd l� and less than

�	 � ���
 � ��� � ��� � � �� n�� for even l� �

We already have three algorithms for the case n �
	l� one more will be presented in Section ���� They

T Q Section
� � n 	 ��	

�
��� � n � ���

���� � n � ���

���� � n � ��	

Table �� Run times and queue sizes of uni�axial row�
major sorting algorithms for n � 	l�

show a trade�o
 between run time and queue size� see
Table ��

��� Mixed Powers

Sorting on n� n meshes for arbitrary n� can be per�
formed by approximating n by the closest number of
the form 	l� � �l� � �l� � and then using the basic three�
way� four�way and �ve�way merges�

Algorithm sort�all�n�
Determine the minimal n� � 	l� � �l� � �l� � n�
f Assume that l� � � g
if l� is odd then sort the �� � submeshes
else sort the �� � submeshes�
repeat l� � � timesmerge���
repeat bl��	c timesmerge���
repeat l� timesmerge���

If l� � �� then �rst the 	�	 or the ��� submeshes are
sorted� merge�� is performed �rst� when the meshes
are still small� because it is the least e�cient� sort�
all is sophisticated enough to achieve the following
interesting result�

�



Theorem � sort�all performs uni�axial row�ma�

jor sorting on n � n meshes in ���� � n steps� for all

n� The queue size is at most nine�

Proof� For n � ��� the proof can be given by check�
ing the n one�by�one� For n � 
��� ����� we �nd the
following numbers of the correct form� N����
� � f���
��� ���� ���� �	�� �	�� �	�� ���� ���� ���� ���� ��	�
���g� The worst performance gives n � ��� with
n� � ��� � � � � � ��� Hence� its sorting time can be
estimated on ����� � ������� � �����	� � �� � ����� �
��� � ���� � ��� � ���� � ���� If n� � N����
�� then
	 �n� � N�
������ � �n� � N����	��� and so on� This im�
plies� that the ratios between the n and the n� do not
further increase �on the contrary�� Also� if Tsort�n�� �
� �n�� for some constant �� then Tsort�	 �n�� � � �	 �n��
Hence� we may conclude that for any n� the sorting
can be performed in ������	 � ���� � n� �

For larger n it may be advantageous not to round
up to the minimal n� � 	l� ��l� ��l� � when l� is large� It
is always possible to get l� � �� by replacing �� � 	��
by �� � 	 � 	��� This gives a considerable reduction
of the sorting time�

��� k�k Sorting

We present an algorithm for uni�axial k�k sorting in
row�major order� We assume that n � 	l� for some
l � �� For large n better performance is achieved
by the uni�axial version of the algorithm of Section �
which requires maxf� � n� k � ng� O��k � n������ But�
the here presented algorithm is far better for small n�

The merging is almost the same as merge of Sec�
tion ���� We assume that the four submeshes are
sorted in semi�layered row�major order on the left�
and semi�layered reversed row�major order on the
right�

Algorithm kkmerge

�� Pi�j� � � i� j � n� sends its packet with rank r�
� � r � k� to Pi��j�n���modn if odd�k � i � r � j��

	� In all columns� sort the packets downwards�


� In every Pi�j� � � i � n � �� � � j � n � ��
copy the smallest packet to Pi���j� In every Pi�j�
� � i � n � �� � � j � n � �� copy the largest
packet to Pi���j�

�� Sort the rows� If this submesh is going to be
the left half of a larger mesh in the next merge�
then the sorting is rightwards� otherwise leftwards�

�� In every row� throw away the n packets with
the smallest and the n packets with the largest in�
dices� If this is the �nal merge step� then spread
the remaining k �n packets that stand in every row�
Else route the packets to the destinations as given
by Step � of the next merge� and continue with
Step 	�

For the correctness of kkmerge it is important that�
by the semi layered indexing� our merging corre�
sponds to a ��� merge on a k � n � n mesh� It is
easy to see that if we have a ��� distribution� that
then after Step 	 there are at most two dirty rows�

For k � � the algorithm is correct but less e�cient
than the algorithm of Section ���� It can be shown

that ��� sorting takes �����n steps� We further assume
that k � �� Step � takes k � n�� steps� However� it
only has to be performed during the merge of 	 � 	
meshes� So� for determining the time order we can
concentrate on the other steps� Step 	� takes k � n�	�
Step � can be overlapped with the last step of Step 	�

Lemma �� Step � takes at most k �n���n�	 steps�

Proof� It is easy to check that� by the semi�layered
indexing and by the way the packets are selected in
Step �� there are no ��� distributions that after Step �
result in such homogeneous blocks of zeros on one
side and ones on the other side as in the worst�case
example of the proof of Lemma �� For example� for
k � �� a worst�case distribution in row i is like

��������������������������������

��������������������������������

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

��������������������������������

��������������������������������

row i

For this example Step � takes ��	 � n steps� �

In the �nal merge� Step � takes k��k � 	� � n steps�
otherwise k

� �
k��
k�� �n steps� This step is that expensive

because that many packets have to move out of the
central k��k�	� �n PUs through a single connection�

Lemma �� An intermediate application of

kkmerge can be performed in �� �k���� �k������ �
k � �� � n steps� the �nal application in �� � k� � �	 �
k � ����� � k � �� � n steps�

Let kksort� be the k�k sorting algorithm based on
kkmerge�

Theorem � For all k � 	� kksort� performs uni�

axial k�k sorting in row�major order on n�n meshes

in �� � k� � �� � k� ����	 � k � �� � n steps� with queue

size k � 	�

Proof� We start with sorted PUs� It takes k�	 steps
to obtain the situation at the beginning of Step 	 of
the merge in 	�	 meshes� Thus� the general estimate
for k�k sorting on n� n meshes is k�	 � �� � k� � �� �
k������ �k��� � �	��� � � ��n�	���� �k���	 �k�
����� � k� �� � n � �� � k�� �� � k� ����	 � k� �� �n �

From Theorem � we computed the results in Table ��
For small n they are extremely competitive� even
though asymptotically k�k sorting can be performed
twice as fast with the algorithm of Section ��

�



k T Q

	 ���� � n �

� ����� � n �
� �� � n �

k �	 � k � 	���� � n k � 	

Table �� Run times and queue sizes for uni�axial k�k
sorting in row�major order�

� k�k Sorting for Large n

Earlier algorithms for k�k sorting 
�� �� �� work ac�
cording to the following basic scheme�

�� Route all packets to random destinations�

	� Estimate the ranks of the packets by local com�
parisons�


� Route all packets to their preliminary destina�
tions�

�� Rearrange the packets locally to bring them to
their �nal destinations�

In the version of 
��� the mesh is divided in s � s
submeshes with s � n����k���� and the randomiza�
tion of Step � is replaced by sorting the packets in
the submeshes and unshu�ing them regularly over
the submeshes� Step 	 is performed by sorting within
the submeshes� Step � is performed by sorting pairs
of adjacent submeshes� On an MIMD the total sort�
ing time is k � n�	 �O�k��� � n����� As the algorithm
is given� Step � requires that the indexing is contin�
uous� In this section we introduce a novel technique�
we call it desnaki�cation� to handle the �nal local
sorting such that piecewise�continuous indexings are
allowed�

The continuity of the indexing is required only for
sorting together pairs of submeshes with consecutive
indices� Sorting such pairs of submeshes is neces�
sary and su�cient because the estimate of the rank
in Step 	 is accurate up to one submesh� So it may
happen that after Step �� a packet is not present in
its destination submesh Bi� but resides in the preced�
ing submesh Bi�� or the succeeding submesh Bi���
However� this is easy to overcome� send for all packets
p� of which the destination submesh is not uniquely
determined� a copy to both submeshes in which its
destination may lie� Now it is su�cient to sort within
the submeshes� If for Bi the numbers cl� of packets
that actually belong in Bi��� and ch� of packets that
belong in Bi��� are exactly known� then the small�
est cl and largest ch packets in Bi are thrown away�
and the remaining packets are redistributed within
Bi� All this is very similar to �and was inspired by�

the way dirty rows are resolved in the algorithms of
Section �� The only possible problem is� that routing
the copies might slow�down the algorithm�

We work the desnaki�cation out in detail for bi�
axial sorting� In order to bound the number of copies�
we take the submeshes larger than in 
��� in our case
s � n����k���� and m � n�s � k��� � n���� We sup�
pose that the indexing is piecewise�continuous with
parameter s� For the sake of a simple exposition
we assume that the mesh is divided in sections of
length s� each of which is fully contained in a single
submesh� The algorithm proceeds as follows�

Algorithm kksort�

�� In each submesh� sort the packets� The in�
termediate destination of a packet p with rank r�
� � r � k � s�� lies in submesh r mod m�� If
r mod �	 �m�� � m�� then color p white� else black�

	� In each submesh rearrange the white �black�
packets such that those with intermediate destina�
tions in column�bundle l �row�bundle l�� � � l � m�
stand in the columns �rows� 
l �s�m� �l����s�m���
of the submesh�


� From column�bundle j� � � j � m� route
the white packets with intermediate destinations
in column�bundle l� � � l � m� as a block to the
columns 
j�s�m� �j����s�m��� of column�bundle l�
Route the black packets analogously�

�� In each submesh rearrange the white �black�
packets such that those with intermediate destina�
tions in row�bundle l �column�bundle l�� � � l � m�
stand in the rows �columns� 
l �s�m� �l����s�m���
of the submesh�

�� From row�bundle i� � � i � m� route the
white packets with intermediate destinations in
row�bundle l� � � l � m� as a block to the rows

i � s�m� �i � �� � s�m � �� of row�bundle l� Route
the black packets analogously�


� In each submesh� sort the packets� The prelimi�
nary destination of a packet p with rank r� � � r �
k � s�� lies in section Sl� with l � br �m���s � k�c�
If b�r � m� � m����s � k�c � l � �� then create a
copy p� of p with preliminary destination in Sl���
If b�r �m��m����s �k�c � l��� then create a copy
p� of p with preliminary destination in Sl��� If r is
even� then color p �and p�� white� else black�

�� Like Step 	 for the preliminary destinations�

�� Like Step � for the preliminary destinations�

�� Like Step � for the preliminary destinations�

��� Like Step � for the preliminary destinations�

��� Route the packets within the submeshes to the
sections of their preliminary destinations�

�	� In each section� sort the packets�

�



�
� In each section Sl � � � l � m � n � �� throw
away them� packets with the smallest keys �except
for S��� and the m� packets with the largest keys
�except for Sm�n���� Redistribute the remaining
k � s packets within Sl �

If packets have the same key� then special care should
be taken not to throw away both copies of a packet�
while keeping both packets of another packet� Most
practical is to take the index of the PU where a packet
started as an additional comparison criterion� to as�
sure that all packets have di
erent keys� The algo�
rithm can be made uni�axial by leaving out the col�
oring� and applying only uni�axial local operations�

Theorem 
 Let s � n����k���� kksort� per�

forms bi�axial k�k sorting with respect to a piecewise�

continuous indexing with parameter s in maxf� �n� k �
n�	g� O�k � s� steps� The queue size is k � 	� Uni�

axial k�k sorting takes maxf��n� k �ng�O�k �s� steps�
with queue size k � ��

Proof� We analyze the presented bi�axial algorithm�
kksort�� Its uni�axial version can be analyzed anal�
ogously� For the case that the sections are not en�
tirely contained within the submeshes� the algorithm
should be modi�ed slightly �packets with preliminary
destination in some section� must be sent to the �at
most four� submeshes that intersect their sections� in
proportion to the length of the intersection��

The following facts imply the correctness of
kksort�� In Step �� the estimate of the global rank
of a packet p with rank r within its submesh� r �m��
is accurate up to m�� Hence� the index of the desti�
nation PU of p is accurate up to m��k� Thus after
Step ��� a �copy� of a packet resides in its destina�
tion section� After Step �� there are m� packets in Sl�
� � l � m�n��� that belong in Sl��� because from ev�
ery of the m� submeshes precisely m� copies of pack�
ets with estimated destination in Sl�� are sent to Sl�
Likewise there are m� packets in Sl� � � l � m �n���
that belong in Sl���

For the time analysis� only the four main steps�
Steps �� �� � and ��� are of importance� The other
steps can be performed in O�k � s� � O�k��� � n����
steps� Step � and Step � are very regular� It is
easy to check that no connection has to transfer more
than k � n�� packets� and that packets travel less
than n steps� At the beginning of Step �� there
are in every submesh exactly m� packets and 	 �m�

copies of packets with destination in any section Sl�
� � l � m �n�� �m� copies for l � � or l � m �n����
Because the sections are fully contained in the sub�
meshes� this implies that every submesh holds m� � n
packets and 	 � m� � n copies of packets with des�
tination in any column�bundle� This means that
Step � can be performed such that the PUs in the

columns 
l � s�m� �l� 	 �k�m� � s�m� �� all hold k� �
packets and the PUs in all other columns exactly k
packets� Clearly Step � now takes ���	�m� �k �n�� �
k � n�� � s��� Performing Step � appropriately� the
same bound can be shown for Step ���

A PU never holds more than k�	 packets and one
copy of both colors� and thus Q � k � 	� �

� ��� Sorting for Large n

We start with a uni�axial algorithm for ��� sorting

in row�major order� It runs in 	
��� � n � o�n� steps�

Asymptotically this is much faster then the algo�
rithms of Section �� This algorithm is obtained by
combining our new insight in merge sorting and the
desnaki�cation technique� with old knowledge about
sorting with splitters� In Section ��	 it is turned into
a near�optimal bi�axial algorithm� Without loss of
generality� we assume that all packets have di
erent
keys�

��� Uni�Axial Sorting

The mesh is divided in s� s submeshes� In the algo�
rithm of this section s � n���� and m � n�s � n����
We distinguish packets and splitters� The splitters
are copies of a small subset of the packets� They
are broadcast and the packets estimate their ranks
by comparison with the splitters� This widely known
idea �going back on work of Reischuck 
���� and Reif
and Valiant 
���� has been used for randomized 
�� 	�
and deterministic 
�� sorting on meshes� In the k�k
sorting algorithm of Section � we do not need split�
ters because the packets are fully distributed over the
mesh� and thus reliable estimates of the ranks of the
packets can be obtained by local comparison among
the packets themselves� In the case of ��� sorting this
does not lead to e�cient algorithms� The splitters
allow us to spread the necessary information rapidly�
while the packets are involved in more useful opera�
tions�

First we give the algorithm for selecting and rout�
ing the splitters�

Algorithm splitter�route

�� In every submesh� sort the packets� Copy the
packets with ranks i �m�� � � i � s��m� � �� the
splitters�

	� In every submesh Bi�j� � � i� j � m� rear�
range the splitters such that they stand in the posi�
tions �i�� j�� of Bi�j � with i �s�m � i� � �i��� �s�m�
and j � s�m � j� � �j � �� � s�m�


� Send the splitters along the rows� A splitter
starting in position �i�� j�� of Bi�j drops copies in
the positions �i�� j�� of Bi�l� for all � � l � m�

��



�� Send the splitters along the columns� A splitter
starting in position �i�� j�� of Bi�j drops copies in
the positions �i�� j�� of Bl�j � for all � � l � m�

Lemma �	 splitter�route takes 	 �n�O�s� steps
to complete� No connection has to transfer more than

O�s� packets� Finally� each PU holds precisely one

splitter� and all splitters are available in every s � s
submesh�

Proof� Step � and Step 	 take O�s� steps� Step �
and Step � take less than n steps� The rearrange�
ment is such that the splitters in Bi�j stand in �sub�
submesh� �i� j�� After the broadcast these splitters
occupy the subsubmeshes �i� j� in all submeshes� the
splitters from di
erent submeshes perfectly �t next to
each other� This arrangement also assures that dur�
ing Step � and Step � a connection has to transfer at
most m�	 � s�m � s�	 splitters� �

When splitters and packets want to use the same
connection� priority is given to the splitters� By the
lemma this delays the packets by at most O�s��

For the packets we perform a kind of m�way merge
algorithm� We give the �rst part of the algorithm�

Algorithm ��sort

�� In every submesh� sort the packets in row�major
order�

	� In every submesh Bi�j � � � i� j � m�
shift the packets in row l� � � l � s to
row l of Bi��j�l�mod�m���� and copies to row l of
Bi��j�l�mod�m����m���


� In all columns� sort the packets downwards�

After Step �� there are in a ��� distribution at most
m� dirty rows� For a general distribution this means
that a packet resides at most m� � � rows away from
its destination row� These three steps take 	�n�O�s�
steps� just as splitter�route� So� we may assume
that after Step � the splitters are available in the
submeshes� The �nal steps of ��sort resemble the
�nal steps of kksort� for k � ��

�� In every submesh� determine for every packet
its �rank�� the number r� � � r � s� of splitters
that are smaller� The preliminary destination of
a packet p with rank r� lies in section Sl� with
l � br �m��sc� If b�r �m� � m���sc � l � �� then
create a copy p� of p with preliminary destination
in Sl��� If b�r �m� �m���sc � l� �� then create a
copy p� of p with preliminary destination in Sl���
Discard the splitters� and the �copies of� packets
that have preliminary destination in the other half
of the mesh�

�� In every submesh� sort the packets in column�
major order on their preliminary destination
column�bundles�


� In every row� route the packets to the �rst PUs
in their preliminary destination column�bundles
that hold less than two packets�

�� In each submesh� sort the packets in row�major
order on their preliminary destination section�

�� In every column� route the packets to the sec�
tions of their preliminary destinations�

�� In every section� sort the packets�

��� In every section Sl � � � l � m � n � �� throw
away the m� packets with the smallest keys� and
in each Sl� � � l � m � n � �� throw away the
m� packets with the largest keys� Redistribute the
remaining k � s packets within Sl�

As the algorithm is given� it is not entirely cor�
rect� It is not true that� as in kksort�� exactly m�

packets must be thrown away on both sides of ev�
ery section� splitter�route orders the packets� but
the sections do not necessarily hold exactly s pack�
ets� Fortunately� the numbers of packets that must
be thrown away in a section on the low and high side�
respectively� can be determined in an elegant way�

We give a detailed description� Consider some sec�
tion S and the sections from which it may receive
packets after Step ��

s s s s s

�
m� � �

�

�
m� � �

�

�
n��

�

S

�	 � m� � �� � n packets are stored in these sections�
among which the s packets with destination in S� Af�
ter Step �� these s packets all reside in S� but also
some packets that do not belong in S� How can we
�gure out which packets to keep� and which pack�
ets to throw away Suppose that S is the l�th sec�
tion� �m� � �� � n�s � l � m� � n�s� in the involved
�whole� rows� Then �nally S should hold the packets
with ranks r� l � s � r � �l � �� � s from among the
�	 � m� � �� � n packets� Analogously to the merge
algorithms of Section �� we could copy all packets
to S� sort them� and throw away the smallest l � s
packets and the largest �	 � m� � �� � n � �l � �� � s
packets� This gives a correct but very ine�cient algo�
rithm� However� it is not necessary to copy all pack�
ets to S� It is su�cient if for each contributing sec�
tion i the counters� the numbers underS�i and overS�i
of packets that are not sent to S because they are def�
initely too small or de�nitely too large� respectively�
are known in S� The counters can easily be deter�
mined in Step �� They can be transferred to S during
the subsequent steps� in parallel with the packets� As

��



every section sends and receives only O�m�� counters
in total� they can be routed without causing substan�
tial delay� The numbers UnderS �

P
i underS�i and

OverS �
P

i overS�i can be computed in Step �� Fi�
nally� in Step ��� the smallest l � s � UnderS packets
and the largest �	 �m� � �� � n � �l � �� � s � OverS
packets in S are thrown away� leaving exactly the s
packets belonging in S� Now we get

Theorem � Uni�axial ��� sorting in row�major or�

der can be performed in 	
��� � n�O�n���� steps� The

queue size is �ve�

Proof� Let s � n���� For the routing time and cor�
rectness� we only have to prove that Step � can be
performed in n�	 � O�s� steps� All other steps can
be performed in O�s� steps�

The estimate of the rank of a packet� r �m�� is accu�
rate up to m�� This means that for some section Sl�
only a packet �or its copy� with actual destination in
some PU Pk� with k � 
l � s�	 �m�� �l��� � s�	 �m���
may get preliminary destination in Sl� Hence� at most
s�� � �m� � s packets have preliminary destination in
any submesh Bi�j � By the sorting in Step �� they are
distributed almost optimally over the rows of row�
bundle i� at most s � O�m�� packets stand in any
row� The m� � s packets with destination in Bi���j

and Bi���j� that may stand in row�bundle i have no
serious in!uence� This shows that Step � can be per�
formed as speci�ed� no PU in Bi�j has to receive more
than two packets�

We consider the routing time of Step �� For a right�
wards moving packet p� residing in some PU Pi�j and
moving to column l� with j� l � n�	� we are interested
in the number hl of packets within row i that have to
go to some column k� with k � l� By the above analy�
sis� we know that hl � n�	� l�O��n�	� l��s �m�� �
n�	 � l � O�s�� p is delayed at most hl times� and
hence p �nishes Step � within n�	 � O�s� steps�

A PU may hold up to four �copies of� packets dur�
ing Step � and Step �� In addition Step � can be
organized such that a PU holds at most one splitter
or counter� Hence� Q � �� �

The algorithm is not suited for sorting with respect
to any piecewise�continuous indexing with parameter
s � n���� it is essential that after Step � the pack�
ets do not have to make another long vertical move�
However� the algorithm is correct for any piecewise
indexing in which the pieces are scrambled within the
rows�

��� Bi�Axial Sorting

Essentially ��sort consists of three main routing
phases� horizontal� vertical and horizontal �Step 	�
Step � and Step ��� These phases take n� n and n�	

steps� respectively� The connections between the left
and right half are not used anymore after step n�	�
Thus it may happen that a packet p� that stands in
column � after Phase � is routed to a preliminary
destination in column n�	 � � in Phase �� This is
unnecessary� a copy of p� stands in column n�	� In
a uni�axial algorithm this observation does not lead
to a faster algorithm� there may be a packet p�� after
Phase � in column n�	� � and with preliminary des�
tination in column �� which has to travel n�	 steps in
Phase �� On the other hand� in a bi�axial algorithm�
it is possible to coalesce the phases� Then p� can start
Phase � after ��	 � n � O�s� steps� and will reach its
preliminary destination after 	 � n� O�s� steps�

We work out the ideas� Only Step � is changed�
instead of discarding the packets that have their des�
tinations in the other half� we now perform

In all columns j� � � j � n�	� discard the �copies
of� packets that have preliminary destination in
some column j�� with j� � 	 � j� For n�	 � j � n�
discard the packets with j� � 	 � j � n�

Notice that by this rule again exactly one of the copies
of a packet reaches every possible destination section�

The steps are coalesced� Most importantly� this
means that Step � begins in column j after n�	 �
jn�	 � jj steps� and Step � after ��	 � n � jn�	 � jj
steps�

Theorem � Bi�axial ��� sorting in row�major order

can be performed in 	 � n�O�n���� steps� The queue
size is �ve�

Proof� A packet that starts Step � after 	 � n � d�
O�s� steps� has to travel at most d steps to reach
the column�bundle of its preliminary destination� We
check this for a packet p that is routed in Step 	 to
some column j� with j � n�	� p starts Step � after
	 � n � j � O�s� steps� In Step � the preliminary
destination of p is determined� p survives only when
it goes to some column l� with l � 	 �j� p has to travel
at most j steps� By a re�nement of the analysis in
the proof of Theorem �� it can be shown that p is not
delayed more than 	 � j � l times� Hence� Step � can
start in all submeshes after 	 � n�O�s� steps� �

In fact this algorithm is still locally uni�axial� every
PU uses only horizontal or vertical connections�

��� ��� Sorting

For e�cient 	�	 sorting� we modify the uni�axial ver�
sion of ��sort� We still select s��m� splitters in
every submesh�

For uni�axial 	�	 sorting� the sorting in Step � is
performed in �semi�� layered row�mayor order� Step 	
is replaced by

�	



	� In every submesh Bi�j� � � i� j � m� shift the
packets in row l� � � l � s to row l of Bi��j�l�modm�

The estimate of the rank of a packet is accurate only
up to 	 �m�� but the accuracy of the estimate of the
preliminary destination of a packet is unchanged� In
Step �� no �copies of� packets are thrown away� In
Step �� the PUs receive up to three packets�

Theorem � Uni�axial 	�	 sorting in row�major or�

der can be performed in � � n � O�n���� steps� The

queue size is �ve�

Proof� Step 	 and Step � are 	�	 routing and sorting
operations on a linear array� and can be performed in
n steps each� Step � now takes n� O�s� steps� This
can be proven with Lemma �� by observing that at
most O�m�� copies go to any section� the distribution
of source�destination pairs within a row is close to
forming a 	�	 routing problem� �

For bi�axial 	�	 sorting� we essentially apply two or�
thogonal versions of ��sort� For the necessary col�
oring� the packets should �rst be sorted within the
submeshes� Then the packets with even rank are col�
ored white� the others black� The white packets per�
form Step � through � of ��sort� the black packets
perform orthogonal steps� Then all packets perform
Step � and �� together� We need only one set of
splitters�

Theorem �� Bi�axial 	�	 sorting in row�major or�

der can be performed in 	��� � n�O�n���� steps� The
queue size is nine�

Acknowledgement

The questions of Uli Meyer� concerning the precise
implementation of the algorithm of 
��� urged me to
investigate the subject of row�major order sorting for
all n� All other results were born out of this research�
Michael Kaufmann pointed out some improvements
in the analysis and the presentation� Torsten Suel
noticed that the original algorithms of Section � did
not result in an even distribution of the packets�

� Conclusion

We presented novel uni�axial and bi�axial row�major
algorithms for sorting on two�dimensional meshes�
They are considerably faster than existing algorithms�
A tremendous improvement is our near�optimal algo�
rithm for ��� sorting� it is much simpler than the
earlier algorithm� it is suited for more useful index�
ings� it is locally uni�axial� and it has queue size �ve�

Future research could address ��� the optimality

of the uni�axial sorting algorithm with run time 	��� �

n�o�n� steps� �	� a further improvement of the merge
sort algorithm� in order to obtain even faster sorting
for all n�

References


�� Chlebus� B�S�� M� Kaufmann� J�F� Sibeyn� �De�
terministic Permutation Routing on Meshes��
Proc� 	th Symposium on Parallel and Dis�

tributed� IEEE� pp� �����	�� �����


	� Kaklamanis� C�� D� Krizanc� �Optimal Sorting
on Mesh�Connected Processor Arrays�� Proc� �th
Symposium on Parallel Algorithms and Architec�

tures� pp� ������ ACM� ���	�


�� Kaufmann� M�� S� Rajasekaran� J�F� Sibeyn�
�Matching the Bisection Bound for Routing and
Sorting on the Mesh�� Proc� �th Symposium on

Parallel Algorithms and Architectures� pp� ������
ACM� ���	�


�� Kaufmann� M�� J�F� Sibeyn� �Randomized k�k
Sorting on Meshes and Tori�� manuscript� ���	�


�� Kaufmann� M�� J�F� Sibeyn� T� Suel� �Deran�
domizing Algorithms for Routing and Sorting on
Meshes�� Proc� 	th Symposium on Discrete Algo�

rithms� ACM�SIAM� ����� to appear�


�� Krizanc� D�� L� Narayanan� �Zero�One Sorting
on the Mesh�� Proc�A	th Symposium on Parallel

and Distributed Processing� IEEE� pp� ��������
�����


�� Kunde� M�� �Block Gossiping on Grids and Tori�
Deterministic Sorting and Routing Match the
Bisection Bound�� Proc� European Symposium on

Algorithms� LNCS �	�� pp� 	�	�	��� Springer�
Verlag� �����


�� Leighton� T�� F� Makedon� Y� Tollis� �A 	n � 	
Step Algorithm for Routing in an n � n Ar�
ray with Constant Size Queues�� Proc� Sympo�

sium on Parallel Algorithms and Architectures�
pp� �	������ ACM� �����


�� Leighton� T�� Introduction to Parallel Algorithms

and Architectures
 Arrays�Trees�Hypercubes�
Morgan�Kaufmann Publishers� San Mateo� Cal�
ifornia� ���	�


��� Reischuk� R�� �Probabilistic Parallel Algorithms
for Sorting and Selection�� SIAM Journal of

Computing� ��� pp� �������� �����


��� Reif� J�� L�G� Valiant� �A logarithmic time sort
for linear size networks�� Journal of the ACM�
��� pp� ������ �����

��




�	� Schnorr� C�P�� A� Shamir� �An Optimal Sort�
ing Algorithm for Mesh Connected Computers��
Proc� ��th Symposium on Theory of Computing�
pp� 	���	��� ACM� �����


��� Thompson� C�D�� H�T� Kung� �Sorting on a
Mesh�Connected Parallel Computer�� Communi�

cations of the ACM� 	�� pp� 	���	��� �����


��� Sibeyn� J�F�� M� Kaufmann� �Deterministic ��k
Routing on Meshes� with Applications to Worm�
Hole Routing�� Proc� ��th Symposium on The�

oretical Aspects of Computer Science� Springer
Verlag� �����


��� Sibeyn� J�F�� B�S� Chlebus� M� Kaufmann�
�Permutation Routing on Meshes with Small
Queues�� submitted to MFCS 
�� �����

��


