MPI-INF/SWS Research Reports 1991-2021

# MPI-I-93-146

## A lower bound for linear approximate compaction

### Chaudhuri, Shiva

#### October 1993, 12 pages.

.
##### Status: available - back from printing

The {\em $\lambda$-approximate compaction} problem is: given an input array of $n$ values, each either 0 or 1, place each value in an output array so that all the 1's are in the first $(1+\lambda)k$ array locations, where $k$ is the number of 1's in the input. $\lambda$ is an accuracy parameter. This problem is of fundamental importance in parallel computation because of its applications to processor allocation and approximate counting. When $\lambda$ is a constant, the problem is called {\em Linear Approximate Compaction} (LAC). On the CRCW PRAM model, %there is an algorithm that solves approximate compaction in $\order{(\log\log n)^3}$ time for $\lambda = \frac{1}{\log\log n}$, using $\frac{n}{(\log\log n)^3}$ processors. Our main result shows that this is close to the best possible. Specifically, we prove that LAC requires %$\Omega(\log\log n)$ time using $\order{n}$ processors. We also give a tradeoff between $\lambda$ and the processing time. For $\epsilon < 1$, and $\lambda = n^{\epsilon}$, the time required is $\Omega(\log \frac{1}{\epsilon})$.

URL to this document: https://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1993-146

BibTeX
@TECHREPORT{Chaudhuri93b,
AUTHOR = {Chaudhuri, Shiva},
TITLE = {A lower bound for linear approximate compaction},
TYPE = {Research Report},
INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik},
ADDRESS = {Im Stadtwald, D-66123 Saarbr{\"u}cken, Germany},
NUMBER = {MPI-I-93-146},
MONTH = {October},
YEAR = {1993},
ISSN = {0946-011X},
}