
'$��'$ Æ
��
I N F O R M A T I K


 	

� �Sum-Multi
oloring on Paths
Annam�aria Kov�a
sMPI{I{2003{1-015 July 2003FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U TF �URI N F O R M A T I KStuhlsatzenhausweg 85 66123 Saarbr�u
ken Germany





Author's AddressAnnam�aria Kov�a
sMax-Plan
k-Institut f�ur InformatikStuhlsatzenhausweg 8566123 Saarbr�u
kenpanni�mpi-sb.mpg.de



Abstra
tThe question, whether the preemptive Sum Multi
oloring (pSMC) problemis hard on paths was raised by Halld�orsson et al. in [7℄. The pSMC problemis a s
heduling problem where the pairwise 
on
i
ting jobs are representedby a 
on
i
t graph, and the time lengths of jobs by integer weights on thenodes. The goal is to s
hedule the jobs so that the sum of their �nishingtimes is minimized. In the paper we give an O(n3p) time algorithm for thepSMC problem on paths, where n is the number of nodes and p is the largesttime length. The result easily 
arries over to 
y
les.
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1 Introdu
tionIn s
heduling problems, one has a set of jobs, with time length for ea
h joband pairwise 
on
i
ts between 
ertain jobs. The 
on
i
ting jobs 
annot beworked on at the same time, due to e.g. some non-sharable resour
e theyuse. Real-life situations of this kind 
an be found in operating systems, inareas like traÆ
 interse
tion 
ontrol, frequen
y assignment for mobile phones,
ompiler design, VLSI routing et
. (see [6℄).In the mathemati
al model the jobs are represented as nodes of a simpleundire
ted graph G = (V;E); where two nodes representing 
on
i
ting jobsare 
onne
ted by an edge. The demand of v 2 V is a positive integer x(v)modeling the number of time units { 'hours' { needed to 
arry out the job ofv: A proper s
hedule 	 : V ! 2N of the jobs is done by assigning a set 	(v)of positive integers to ea
h v 2 V s.t. j	(v)j = x(v) and the sets assigned toadja
ent verti
es do not interse
t (i.e. they are never s
heduled at the sametime).In this way the s
heduling problem be
omes a graph 
oloring problemif x(v) = 1 for ea
h v 2 V; and graph multi
oloring problem in the general
ase. (The name stems from regarding the 	(v) as sets of 
olors. However,later in the paper we 
ontinue to view the problem as a s
heduling problemand the 	(v) as sets of hours as we will use 
olors for something else.)A traditional optimization goal is to minimize the overall �nishing time,respe
tively the number of 
olors used to 
olor all the verti
es. Anotherreasonable goal 
an be to minimize the average �nishing time of the jobs.That is, if f(v) denotes the largest integer assigned to v; we sear
h for as
hedule (multi
oloring), su
h that Pv2V f(v) is minimum over all propers
hedules. The latter is 
alled the sum multi
oloring (SMC) problem.In the paper we 
onsider preemptive s
hedulings, where the 	(v) arearbitrary sets of positive integers (pSMC problem). There has been mu
hrelated work done 
on
erning the non-preemptive SMC (npSMC) problem,where the assigned 	(v) sets must be 
ontiguous, see e.g. [6, 7℄.Our result. The question, if the pSMC problem is hard on paths, wasraised as an open problem by Halld�orsson et al. in [7℄. In this paper weprovide a pseudo-polynomial algorithm for the problem. Let G = (V;E) bea path, jV j = n; and p = maxv2V x(v): Our algorithm takes O(n3p) time.It is based on a te
hnique that is interesting in its own right. With minormodi�
ations the approa
h 
an be applied to the pSMC problem on 
y
les.Related work. Here we just mention the most relevant results. For a more
omprehensive history of the SMC and related problems see e.g. [2, 7℄.1



The sum 
oloring problem, the spe
ial 
ase of SMC with unit time re-quirements, was �rst raised by Kubi
ka in [3℄, where a polynomial algorithmwas given for trees.The sum 
oloring problem is NP-hard even on bipartite graphs [1℄, intervalgraphs [8℄, planar graphs [2℄ and line graphs [5℄. These results imply thehardness of the 
orresponding SMC problems.The general SMC problem was introdu
ed by Bar-Noy et al. [6℄. There a
omprehensive study of the approximability of both the pSMC and npSMCwas presented on di�erent graph 
lasses.In [7℄ two eÆ
ient algorithms are provided for the non-preemptive (npSMC)problem on trees. They run in O(n2) and in O(np) time respe
tively. Onpaths the �rst one runs in O(n log p= log log p) time. For the preemptive(pSMC) problem on trees, a polynomial time approximation s
heme is given.Marx proved the hardness of the pSMC problem on trees in [4℄. Hehas shown that pSMC is NP-hard even on binary trees, even when p ispolynomially bounded. Thus, the SMC problem on trees turned out to beone of the few s
heduling-type of problems in whi
h the preemptive versionis essentially harder than the non-preemptive version. It is natural to goon asking, on whi
h graph-
lasses pSMC is eÆ
iently solvable. In [7℄ thequestion is posed, whether pSMC is hard on paths. For this problem, analgorithm polynomial in n and p is given in this paper. It 
an serve as a �rststep towards 
hara
terizing these graph-
lasses.Overview. Se
tion 2 des
ribes the basi
 notation we use and establishesa few elementary fa
ts. In Se
tion 3 we give the ingredients of a pseudo-polynomial algorithm. Se
tion 4 
ontains the details of an improved algo-rithm of O(n4p) steps. Unfortunately we 
ould not get rid of the fa
tor pbut Se
tion 5 sket
hes a further improvement in the exponent of n and thepossible modi�
ations for the 
ase when the graph is not a path but a 
y
le.2 Notation, De�nitions and Basi
 Fa
tsThe nodes in the path are numbered from left to right by 1 : : : n. If i < j,we denote the subpath of starting node i and ending node j, by [i; j℄. If i isa node, then x(i) 2 N+ , is the demand of i. Let p = max1�i�n x(i) be thelargest demand. 	(i) � N is the set of numbers or hours assigned to i ins
hedule 	; j	(i)j = x(i): f	(i) is the largest number assigned to i. Most ofthe time we will simply write f(i). We will also use f(i; j) def= max(f(i); f(j)):We add nodes 0 and n + 1 to the path with demands x(0) = x(n + 1) = 0.2



De�nition 1 We 
all 	 a (proper) s
hedule, if 	(i) \ 	(i + 1) = ; (1 �i � n � 1). 	 is an optimal s
hedule, if Pni=1 f	(i) is minimum over alls
hedules. 	 is a square-optimal s
hedule, if it is optimal, and the sumPni=1 f(i)2 is maximum over all optimal s
hedules.Intuitively, in a square-optimal s
hedule small f(i) values are as small aspossible and large f(i) are as large as possible.We will give a pseudo-polynomial algorithm (polynomial in n and p) that
omputes an optimal s
hedule, for given demands on nodes of a path.De�nition 2 Given a s
hedule 	, we say that:i is a lo
al minimum, if f(i� 1) > f(i) and f(i) < f(i+1); we will alsoregard 0 and n+ 1 as lo
al minima.i is a lo
al maximum, if f(i� 1) < f(i) and f(i) > f(i+ 1);i is a stair-up, if f(i � 1) < f(i) < f(i + 1) and i is a stair-down, iff(i � 1) > f(i) > f(i + 1); When no distin
tion is needed, we simply 
allthem stairs.i is 
ompa
t, if f(i) = x(i):Let us use the following visualizing expressions. We say that i is bla
kon level a, if a 2 	(i), and i is white on level a if a =2 	(i) (see Fig. 1).Trivially, if i is 
ompa
t then it is not white on any level under f(i):Sometimes for i < j we also say, that the ordered pair (i; j) is bla
k-white,bla
k-bla
k,... et
. on level a. Note that (i; i + 1) 
annot be bla
k-bla
k onany level.Proposition 1 In any optimal s
hedule, the number of levels where (i; j)
an be bla
k-bla
k, white-bla
k or bla
k-white is bounded from above by pea
h. The number of levels under f(i; j) where (i; j) might be white-white isbounded from above by 2p:Proof. The �rst statement is obvious. In order to see the se
ond statement,suppose, that f(i; j) = f(i): On any level under f(i); where i is white, atleast one of i � 1 and i + 1 must be bla
k. Therefore, there are at most 2psu
h levels. 2De�nition 3 An (i; j) pair is 
on
i
ting on level a, if eitheri � j (mod2) and (i; j) is bla
k-white, or white-bla
k, ori 6� j (mod2) and (i; j) is bla
k-bla
k, or white-white.Proposition 2 If (i; j) is 
on
i
ting on level a, then 9k 2 [i; j�1℄ su
h that(k; k + 1) is white-white on level a. 23



De�nition 4 Suppose that 8k 2 [i; j℄, f(k) � max(a; b) in a s
hedule 	. Inthis 
ase we will say that we 
hange the levels a and b on [i; j℄, if 8k 2 [i; j℄we make k white (bla
k) on level a if and only if a

ording to 	 it was white(bla
k) on level b, and we make k white (bla
k) on level b, if and only if itwas white (bla
k) on level a.After 
arrying out this operation, we may have to make 
orre
tions to geta proper s
hedule again. Note, that we will have to 
he
k the pairs (i� 1; i)and (j; j + 1) on the levels a and b:Proposition 3 If i is a stair-up in a square-optimal s
hedule 	, then (i�1; i)is either white-bla
k or bla
k-white on any level a � f(i). A symmetri
statement holds if i is a stair-down.Proof. Trivially, (i�1; i) is white-bla
k on the level f(i):We have to show thatit is not white-white on any level below f(i): Suppose that on the 
ontrary,(i�1; i) is white-white on level a < f(i). LetM be the �rst lo
al maximum tothe right of i, and let's 
hange the levels a and f(i) on [i;M ℄. This de
reasesf(i) by at least one. Also, this is a proper s
hedule on [i � 1; i℄, sin
e i � 1is white on the level a. If it is a proper s
hedule on [M;M + 1℄, then wede
reased the optimum sum, 
ontradi
tion; if it is not a proper s
hedule on[M;M + 1℄, then we make M white either on the level a or on the levelf(i), and make it bla
k on the level f(M) + 1 (in
rease f(M) by one). Nowwe 
reated another optimal s
hedule, but in
reased the sum of squares of�nishing times, again a 
ontradi
tion sin
e 	 was square-optimal. 2Now, let i be a lo
al minimum in a square-optimal s
hedule and M bethe �rst lo
al maximum to the right of i. If we know f(i); then for all stair-ups i < k < M we know f(k) = x(k � 1) + x(k); we know the hours in	(k)\ [f(i); f(k)℄, and we know how many bla
k and how many white levelsk has under the level f(i). If we even know 	(i); then we know 	(k) for allof the above k:Proposition 4 If k is a lo
al minimum in an optimal s
hedule then f(k) �3x(k):Proof. Suppose that f(k) > 3x(k): Let M and M 0 be the 
losest lo
almaximum to the left and right of k; respe
tively. By 
hanging the �rst x(k)levels to those where k is bla
k, we 
ould make k 
ompa
t, gaining more than2x(k) at k and losing at most x(k) at both M and M 0: 2
4
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Figure 1: A square-optimal solution for the given pSMC problem on a pathof length 15. The 
onvex pairs are (0; 16); (0; 7); (7; 16); (7; 10) and (10; 16):Other examples: pit(7; 16) = 10; top(7; 10) = 8; `(10) = 7 and r(10) = 13:3 An Outline of the Algorithm and FurtherDe�nitionsDe�nition 5 With respe
t to a given s
hedule 	, let i < j be both lo
alminima with the property that if i < k < j is a lo
al minimum between them,then f(k) � max(f(i); f(j)): We will say that su
h an (i; j) pair is a 
onvexpair.De�nition 6 For a 
onvex pair (i; j), in a s
hedule 	, let pit(i; j) = k if1. i < k < j2. k is a lo
al minimum, and3. if i < k0 < j and k0 is a lo
al minimum, then f(k) < f(k0) or(f(k) = f(k0) and k � k0):If there is no lo
al minimum between i and j; then let pit(i; j) = ; andlet top(i; j) denote the unique lo
al maximum between i and j:In other words, pit(i; j) is the leftmost lo
al minimum of minimum �n-ishing time between i and j: Note that if k = pit(i; j); then both (i; k) and(k; j) are 
onvex pairs.The algorithm tests for every pair (i; j); whether it 
an be a 
onvex pairin a square-optimal s
hedule. It pro
eeds from short distan
es to long ones{ i.e. �rst it tests for ea
h pair of the form (i; i + 2) and at last (0; n + 1):It pro
eeds dynami
ally by testing for ea
h k between i and j, if it 
an bepit(i; j); or top(i; j): We will add a 
omputed optimum on [i + 1; k � 1℄ and5



on [k+ 1; j � 1℄; plus a 
omputed f(k); to obtain a possible sum of �nishingtimes on [i+ 1; j � 1℄:Of 
ourse, an optimum that we 
al
ulated this way is only realizable ifwe 
an indeed 'glue' two optimal s
hedules by the s
hedule of k: Therefore,in addition to testing k; we will also have to one by one �x and test some
hara
teristi
 of the s
hedule on i; j and k:For the time being, let us suppose that if k = pit(i; j) then f(k) < f(i+1)and f(k) < f(j�1): That is, we disregard the fa
t that there might be severalstairs on the two sides of [i; j℄; having �nishing time smaller than f(k); orstair-ups �nishing under f(j) e.g. if f(i) < f(j) (see Fig. 1).Now, we will need to know in advan
e the number of bla
k-bla
k, white-bla
k, bla
k-white and white-white levels 
on
erning the (i; j) pair. As wejust need the number, and not the lo
ation of these levels, testing for allO(p4) possibilities would still result in a pseudo-polynomial algorithm.De�nition 7 For a 
onvex pair [i; j℄ in a �xed s
hedule 	; let C(i; j) 2[0; 2p℄4 be the 4-tuple denoting the number of levels under f(i; j), where (i; j)is bla
k-bla
k, white-bla
k, bla
k-white and white-white, respe
tively. We will
all C(i; j) the 
olor s
heme of (i; j): For the triple i < k = pit(i; j) < j; wewill talk about the 
olor s
heme C(i; k; j) 2 [0; 2p℄8 under the level f(k); inthe same sense.We denote by C(i; k; j) ) C(i; j); when they are 
onsistent with ea
hother, i.e., the number of bla
k-white-bla
k and the number of bla
k-bla
k-bla
k levels of (i; k; j) sum up to the number of bla
k-bla
k levels of (i; j); andso on for the remaining 
ases. Similarly, we use the notations C(i; k; j) )C(i; k) and C(i; k; j)) C(k; j):Remark 1 Note that the four numbers in C(i; j) sum up to f(i; j) and theeight numbers in C(i; k; j) sum up to f(k): Note also, that C(i; k; j)) C(i; j)implies that the number of white-white-white plus the number of white-bla
k-white levels in C(i; k; j) equals the number of white-white levels in C(i; j)plus f(k)� f(i; j):Here is where we impli
itly exploit that (i; j) is supposed to be a 
onvexpair, and therefore f(k) � f(i; j): For a �xed C(i; j) we will want to testfor all possible C(i; k; j); for whi
h C(i; k; j) ) C(i; j) holds. Suppose, wewanted to 
al
ulate the optimum by taking also f(k) < f(i; j) values into
onsideration. For this 
al
ulation we would need in advan
e the 
olor s
hemeof (i; j) under ea
h possible f(k) level. On the other hand, knowing C(i; j)under all of the levels, boils down to having 	(i) and 	(j) and that is exa
tlywhat we tried to avoid, as testing all that, would lead beyond polynomial time.6



For ea
h pair 0 < i < j < n + 1 and ea
h possible 
olor s
hemeC(i; j) of a pair, the algorithm 
omputes an optimum sum of �nishing timesF (i; j; C(i; j)) = Pj�1l=i+1 f(l) supposing that (i; j) is a 
onvex pair. In par-ti
ular, we test for ea
h k 2 [i + 1; j � 1℄ to be pit(i; j) and we test for ea
h
olor s
heme C(i; k; j)) C(i; j):For C(i; k; j) ) C(i; k) and C(i; k; j) ) C(k; j) we have a previously
omputed F (i; k; C(i; k)) and a F (k; j; C(k; j)) value. We obtain the sum of�nishing times for this k and C(i; k; j) by F (i; k; C(i; k))+F (k; j; C(k; j))+f(k):We also test if this k 
an be top(i; j): In that 
ase the sum of �nishingtimes is 
omputed easily based on Proposition 3 and on C(i; j): Finally we
hoose the smallest sum of �nishing times to be F (i; j; C(i; j)) and rememberone k = pit(i; j) and one C(i; k; j); or a k = top(i; j) that yielded this value.In the end of this pro
ess we will have all the lo
al minima and maximain an optimal s
hedule and we will know the 
olor s
heme of 
onvex pairs ofminima. This is enough information to 
reate su
h a s
hedule, starting witha minimum of smallest �nishing time:Suppose we have the s
hedule on i and j : 	(i) and 	(j); and they implya 
olor s
heme C(i; j): We take e.g. the best k = pit(i; j) and C(i; k; j)reported by the algorithm. Then we insert the 'bla
ks' and 'whites' of k (givethe s
hedule of k) a

ording to 	(i); 	(j) and C(i; k; j): This is possible {though in general not uniquely determined {, be
ause C(i; k; j) is 
onsistentwith C(i; j): We pro
eed with the s
heduling in this way, until there is a
onvex pair where the optimum was yielded by a k = top(i; j); in whi
h 
asethe s
heduling on [i; j℄ is obvious.The algorithm is still a bit more 
ompli
ated than this, be
ause we mayhave stairs on the two sides of [i; j℄ that we did not yet 
onsider. For talkingabout this, �rst we need one more de�nition:De�nition 8 Let i be a lo
al minimum in a s
hedule 	: Let i < r(i) � n+1be the node with the property f(r(i)) < f(i) and 8k; i < k < r(i) f(k) � f(i):We de�ne 0 � `(i) < i symmetri
ally.Now, with these terms in hand, suppose we are testing the pair (i; j) ande.g. f(i) > f(j) holds. Then we will need C(i; r(i)) instead of C(i; j) andif f(k) 
 f(i); then we will need C(`(k); k; r(k)) instead of C(i; k; j) (seeFig. 1). This won't make so mu
h di�eren
e, be
ause [i+ 1; `(k)℄ 
onsists ofstair-ups as well as [r(k); j � 1℄ 
onsists of stair-downs only, and there thes
hedule and �nishing times easily follow. In parti
ular, the 
olor s
hemesC(i; r(i)) and C(`(k); k; r(k)) 
an be de�ned like before, and the 
onsisten
yC(`(k); k; r(k))) C(i; r(i)) has a well de�ned meaning.7



Remark 2 Note that f(i; j); F (i; j); C(i; j); pit(i; j); r(i) et
. should allhave 	 as a subs
ript when they are relative to the s
hedule 	: We will onlyuse subs
ripts when needed. We will use the subs
ript A when a value wasyielded by the algorithm and is not ne
essarily realized by a s
hedule.4 An O(n4p) AlgorithmIn Se
tion 3 the main idea of the algorithm was presented. Turning to theexa
t des
ription we will make use of two te
hni
al theorems { Theorems 8and 12 { whi
h will help us simplify the algorithm. We do so not only inorder to redu
e the fa
tor of p7 of the previous rough version to p : The twotheorems and the lemmas may as well be helpful during further investigationof the problem, and on the whole they also simplify our dis
ussion.In the main part we present an O(n4p) time algorithm. After that wegive a short argument on how it redu
es to time O(n3p):Theorems 8 and 12 are based on the following Lemmas:Lemma 5 Let i be a lo
al minimum in a square-optimal s
hedule, su
h thatit is not 
ompa
t, and let `(i) � k � r(i): Then the following hold:The (i; k) pair is not 
on
i
ting on the level f(i);The (i; k) pair is not 
on
i
ting on any level where i is white.Proof. Suppose for example, that i < k � r(i), and (i; k) is 
on
i
ting onthe level f(i): Furthermore, let i be white on the level a < f(i):A

ording to Proposition 2, there is an (s; s + 1) pair of nodes that iswhite-white on level f(i), and i � s < k: Let M be the �rst lo
al maximumto the left of i. Now all the �nishing times on [M; s℄ are not smaller thanf(i):Let's 
hange the levels a and f(i) on [M; s℄. Sin
e (s; s + 1) was white-white, this remains a proper s
hedule on [s; s + 1℄ and it redu
es f(i) byat least 1. If it is not a proper s
hedule on [M � 1;M ℄, we 
an 
orre
t itby in
reasing f(M) by 1 (like in the proof of Proposition 3). This remainsan optimal s
hedule, but improves the former s
hedule 
on
erning square-optimality, whi
h is a 
ontradi
tion.If (i; k) is 
on
i
ting on the level a, then we 
an make the same 
hangingof levels and obtain a 
ontradi
tion. 2Corollary 6 If f(i) > x(i) then i 6� r(i)(mod2); and i 6� `(i)(mod2):Proof. Otherwise (`(i); i) or (i; r(i)) would be 
on
i
ting on the level f(i): 28



Lemma 7 If i is a non 
ompa
t lo
al minimum in a square-optimal s
hedule,then for any level a � f(i) there is at most one i � k < r(i) and at most one`(i) � k < i su
h that (k; k + 1) is white-white on the level a:Proof. Suppose that on the 
ontrary, we have i � k < k0 < r(i) su
h that(k; k + 1) and (k0; k0 + 1) are both white-white on level a: Note that byLemma 5 i must be bla
k on the level a:Let i be white on the level b: If i � k (mod2) then k is white on thelevel b (see Lemma 5). Then we 
hange the levels a and b on [k + 1; k0℄;If i 6� k (mod2) then k is white on the level f(i): Then we 
hange thelevels a and f(i) on [k + 1; k0℄:In both 
ases we obtained a proper square-optimal s
hedule (note that�nishing times did not 
hange), that 
ontradi
ts Lemma 5, be
ause (i; k+1)is 
on
i
ting on level f(i) or on level b: 2Now, Theorem 8 shows that we don't have to test for all O(p4) possibletuples of C(i; r(i)) (resp. C(`(j); j)), be
ause it is uniquely determined byf(i; j):De�nition 9 Let (i; j) be a 
onvex pair. A

ording to f(i) > f(j); f(i) <f(j) or f(i) = f(j) we will use the name relevant s
heme of (i; j) for the
olor s
heme C(i; r(i)); C(`(j); j) or C(i; j); respe
tively.Theorem 8 Let (i; j) be a 
onvex pair in a square-optimal s
hedule. Eitherhaving f(i; j) 6= max(x(i); x(j)); or having f(i; j) = max(x(i); x(j)); andk = top(i; j); the relevant s
heme of (i; j) 
an be 
omputed in O(n) time.The proof will make use of the following lemmas:Lemma 9 Let (i; j) be a 
onvex pair in a square-optimal s
hedule. If f(i) =f(j) then i and j are 
ompa
t and f(i) = x(i) = x(j) = f(j):Proof. We show that if f(i) = f(j) then i and j are 
ompa
t. Were ior j non-
ompa
t, then a

ording to Lemma 5, i � j(mod2) must hold,otherwise they would be 
on
i
ting on the level f(i): Therefore, i and jmust be white on exa
tly the same levels, again by Lemma 5. Now, if thereis a level a < f(i), where both of them are white, then let's 
hange the levelsa and f(i) on [M;M 0℄, where the latter are the �rst lo
al max to the leftof i and to the right of j, respe
tively. If ne
essary, let's in
rease f(M) andf(M 0) by one ea
h. f(i) and f(j) were de
reased, so what we get is still anoptimal solution, but we 
ould in
rease the sum of squares of �nishing times,a 
ontradi
tion. 2In the following two lemmas f(i; j) = f(i) > f(j): Symmetri
 
ounter-parts of the lemmas 
an be stated when f(i) < f(j):9



Lemma 10 Let (i; j) be a 
onvex pair and f(i) > f(j): Then there is a nodei < s � j with the property that x(s � 1) + x(s) � f(i) > x(s) + x(s + 1) >: : : > x(j � 1) + x(j):If f(i) > x(i) then r(i) = s:If f(i) = x(i) and k = top(i; j); then r(i) = max(k + 1; s):Proof. First let f(i; j) = f(i) > x(i) that is, i is non-
ompa
t.Note that r(i) � j and r(i) : : : (j� 1) is a (possibly empty) series of step-downs. Let r = r(i):We show that x(r�1)+x(r) � f(i) > x(r)+x(r+1) >: : : > x(j�1)+x(j): Sin
e there is at most one node with this property, thisproves the �rst part of the lemma.If r� 1 is also a step-down, then the statement trivially holds due to thegreedy s
hedule on the stairs.Let r � 1 be a lo
al maximum. We 
laim that under the level f(i);r� 1 is 
olored as if it were still a step-down. Suppose that on the 
ontrary,(r�1; r) is white-white on the level a � f(i): But that would imply that (i; r)is 
on
i
ting on this level (see Lemmas 5 and 7). Re
all however, that i andr = r(i) have opposite parity, and therefore (i; r) might only be 
on
i
ting ona level where it is bla
k-bla
k, so r 
annot be white on level a; 
ontradi
tion.From this the inequality x(r � 1) + x(r) � f(i) follows.Se
ond, let f(i) = x(i): Now we 
an't say anything about the parity ofr(i): Let s be a node, for whi
h x(s � 1) + x(s) � f(i) > x(s) + x(s + 1) >: : : > x(j � 1) + x(j) holds. If r(i) � 1 is a step-down, then r(i) = s musthold, like before. If r(i)�1 is a lo
al maximum, then r(i)�1 = k: Therefore,r(i) = max(k + 1; s); or r(i) = k + 1 if s does not exist. 2Note that there is at most one su
h s as in the statement of Lemma 10,and it 
an be found in O(n) steps.Lemma 11 Let (i; j) be a 
onvex pair and f(i) > f(j): If we have f(i) andr(i) then C(i; r(i)) 
an be 
omputed in O(1) time.Proof. We prove that if i; f(i)(= f(i; j)) and r(i) are given, then in O(1)time C(i; r(i)) 
an be 
al
ulated.Let �rst i 6� r(i)(mod2): Now, Lemma 5 implies that (i; r(i)) is notwhite-white on any level. We get that the number of white-bla
k levels isf(i)�x(i), the number of bla
k-white levels is f(i)�x(r(i)) and the numberof bla
k-bla
k levels is x(r(i)) + x(i)� f(i):Se
ond, let i � r(i)(mod2): By Corollary 6 this 
an only happen wheni is 
ompa
t. Consequently, the number of bla
k-bla
k levels is x(r(i)) andthe number of bla
k-white levels is x(i)� x(r(i)): 210



Proof of Theorem 8. Note that knowing if f(i) or f(j) is larger, is nota 
ondition in the theorem. Namely, it is either obvious or irrelevant: Ifx(i) + x(i + 1) < f(i; j) then f(i; j) = f(j) > f(i): Otherwise for i asa lo
al minimum f(i) > x(i) + x(i + 1) would hold, and there would bewhite-white 
on
i
ts between (i; i + 1); 
ontradi
ting Lemma 5. Similarly,if x(j) + x(j � 1) < f(i; j) then f(i; j) = f(i) > f(j): In the �rst 
ase we
ompute `(j) (Lemma 10) and then C(`(j); j) (Lemma 11), respe
tively inthe se
ond we 
ompute r(i) and C(i; r(i)):Finally, if max(x(i); x(j)) � f(i; j) � min(x(i)+x(i+1); x(j)+x(j � 1))then exa
tly one of f(i) = f(j); `(j) = i or r(i) = j holds. So in any 
asewe 
ompute C(i; j) (Lemma 9 or Lemma 11) independently of whi
h 
ase weare in. 2From the next theorem it follows that f(k); `(k); r(k) and C(`(k); k; r(k))are in 'most' 
ases uniquely determined by f(i; j) and k; and in just oneremaining 
ase possible values of f(k) must be tested for as well.Theorem 12 Let (i; j) be a 
onvex pair, k = pit(i; j) and k be non-
ompa
tin a square-optimal s
hedule.If f(i; j) > max(x(i); x(j)) then (`(k); k; r(k)) 
an only be bla
k-white-bla
k, bla
k-bla
k-white, white-bla
k-bla
k or white-bla
k-white.If f(i; j) = max(x(i); x(j)) then in addition to the previous four, a bla
k-bla
k-bla
k triple is also possible.Proof. Let k be a non-
ompa
t lo
al minimum. By Corollary 6 then `(k) 6�k 6� r(k) (mod2):It follows dire
tly from Lemma 5 that k is bla
k on the levels where atleast one of `(k) and r(k) is white.If moreover k = pit(i; j) then i � `(k) and r(k) � j be
ause k is non-
ompa
t and therefore f(i; j) < f(k) (see Lemma 9). Let f(i) = f(i; j) >x(i); let i be white on the level b; and suppose that (`(k); k; r(k)) is bla
k-bla
k-bla
k on the level a < f(k): Then 9s; s0 su
h that `(k) < s < k < s0 <r(k) and (s; s + 1) and (s0; s0 + 1) are white-white on the level a: Now we
an 
hange the levels a and f(i) or a and b on [s + 1; s0℄ like in the proof ofLemma 7 and obtain a square-optimal s
hedule that 
ontradi
ts Lemma 5.2 For examples of Theorem 12 see Fig. 1. The �rst 
ase is valid if e.g.(i; k; j) = (7; 10; 16); and the se
ond, if (i; k; j) = (0; 7; 16): Compare thelevels 2 and 3 of (`(k); k; r(k)) = (2; 7; 14):Now we des
ribe two basi
 steps of the algorithm by the following simplelemmas. 11



Lemma 13 Let (i; j) be a 
onvex pair of minima in a square-optimal solution	, and let k = top	(i; j): It is possible to 
ompute f	(k) in O(n) steps iff	(i; j) is known.Proof. If k = top(i; j); then the { possibly empty { subpaths [i + 1; k �1℄ and [k + 1; j � 1℄ 
onsist of stair-ups and stair-downs, respe
tively. ByProposition 3, the s
hedule on these stairs is determined by 	(i) and 	(j)in a kind of 'greedy' way. Finally, 	(k) is also greedy, in that k is bla
k ona level if and only if (k � 1; k + 1) is white-white.Let e.g. f(i) > f(j): Now i < r(i) � j: A

ording to Theorem 8, C(i; r(i))
an be 
omputed in O(n) time. We pro
eed along the levels from the bottomup, and sum up the number of levels, where k is bla
k. Under the level f(i; j)we 
al
ulate this number from C(i; r(i)); above the level f(i; j) it is easy toexa
tly 
al
ulate the s
hedule on [i + 1; j � 1℄:Suppose e.g. that i � k 6� r(i) (mod2): Now we have the number oflevels under f(i) = f(i; j) where (i; r(i)) is bla
k-white, and these are thesame levels where (k� 1; k+1) is white-white. We start with this value, andgo on summing as follows.Above the level f(i); the 
oloring of levels 
hanges at �nishing times ofthe stairs on the two sides, so we will have to merge the in
reasing numberseriesx(i) + x(i + 1); x(i+ 1) + x(i + 2); : : : ; x(k � 2) + x(k � 1)and x(r(i)) + x(r(i)� 1); x(r(i)� 1) + x(r(i)� 2);: : : ; x(k + 2) + x(k + 1)and sum up the number of levels when we passed { the �nishing time of {a stair of opposite parity to k on both sides and did not yet �nish the nextstair on either of the sides. These are the levels where k is bla
k. Mergingand summing takes O(n) timeIn the end the remaining demand { x(k) lessened by the resulting sum {is added to max(x(k� 1) + x(k� 2); x(k+ 1)+ x(k+ 2)) and this yields the�nishing time of k: 2Lemma 14 Let (i; j) be a 
onvex pair of minima in a square-optimal solution	, and let k = pit	(i; j): If f	(i; j) is known and f	(i; j) > max(x(i); x(j)),then it is possible to 
ompute f	(k) in O(n) steps.Proof. The argument of the proof is mu
h the same as in the proof ofLemma 13. 12



Let e.g. f	(i) > f	(j) and let f	(i) > x(i): Now we 
an also supposef(k) 
 f(i) be
ause the 
ase f(k) = f(i) would imply that i is 
ompa
t.Now i � `(k) < k < r(k) � r(i) � j: Also, sin
e k = pit(i; j); it is easy tosee that [i+ 1; `(k)℄ 
onsists of zero or more stair-ups as well as [r(k); j � 1℄
onsists of zero or more stair-downs.We pro
eed from the bottom and sum up the levels where k is bla
k, untilthe sum rea
hes x(k): Under f(i; j) we 
al
ulate from C(i; r(i)); above thatwe know the s
hedule on [i + 1; `(k)℄ and on [r(k); j � 1℄:A

ording to Theorem 8, C(i; r(i)) 
an be 
omputed in O(n) steps. Now,if e.g. i � k 6� r(i)(mod2); then the levels under f(i) = f(i; j) where kis bla
k, are those where (i; r(i)) is bla
k-white, bla
k-bla
k or white-white(
ompare Theorem 12). The number of these levels is the starting value inthe summation. Note again, here is where we used that (i; j) is a 
onvex pairand f(k) � f(i; j):Above the level f(i) we go on summing as follows. As before, we mergethe in
reasing series of �nishing times on the two sides:x(i) + x(i + 1); x(i+ 1) + x(i + 2); : : :and x(r(i)) + x(r(i)� 1); x(r(i)� 1) + x(r(i)� 2); : : :Here we don't in
lude in the sum those levels when we passed a stair of thesame parity as of k on both sides and did not yet �nish the next stair on eitherof the sides. These are the levels where k is not bla
k be
ause (`(k); r(k)) isbla
k-bla
k (
ompare Theorem 12).All the other levels we sum up until we get x(k) and there we stop.The level where we stopped is f	(k): The stair-up on the left and the stair-down on the right whose �nishing time we passed for last, are `(k) and r(k),respe
tively. Merging and summing takes O(n) time. 2We will run the algorithms of Lemma 13 and Lemma 14 on all possi-ble inputs i; j; k and f = f(i; j) to test what f(k) it would result if (i; j)were a 
onvex pair and k were top(i; j) or pit(i; j): The potential �nish-ing time of k; 
omputed this way will be denoted by fmaxA(i; j; f; k) andfminA(i; j; f; k) = fminA(k); respe
tively. It may happen that we don't getany numeri
 result, if e.g. the s of Lemma 10 does not exist or the mergedseries are not in
reasing, et
. This means that the tested setting is impos-sible and this we denote by fmaxA(i; j; f; k) =1 or fminA(i; j; f; k) = 1;respe
tively.Now an exa
t des
ription of the algorithm 
an follow. The algorithm hastwo phases. 13



for d = 2 : : : n+ 1 dofor 0 � i < j � n+ 1, j � i = d dofor f = max(x(i); x(j)) : : : 3max(x(i); x(j)) dofor k = i+ 1 : : : j � 1 do
ompute fmax(i; j; f; k) in time O(n) (Lemma 13)end forFmax := mini<k<j(Pk�1s=i+1(x(s� 1) + x(s)) + fmax(i; j; f; k)++Pj�1s=k+1(x(s+ 1) + x(s)))top(i; j; f) := the k providing the minimum valuefor k = i+ 2 : : : j � 2 doif f = max(x(i); x(j)) then
ompute minx(k)�fk�3x(k)(F (i; k; fk) + fk + F (k; j; fk))fmin(i; j; f; k) := the fk providing the minimumelse
ompute fmin(i; j; f; k) in time O(n) (Lemma 14)end ifend forFmin := mini<k<j(F (i; k; fmin(i; j; f; k)) + fmin(i; j; f; k)++F (k; j; fmin(i; j; f; k)))pit(i; j; f) := the k providing the minimum valueif Fmax � Fmin thenF (i; j; f) := Fmax and pit(i; j; f) := ;elseF (i; j; f) := Fmin and top(i; j; f) := ;end ifend forend forend for Figure 2: First phase of the O(n4p) algorithm.
14



First phase. In this phase we 
ompute an optimal stru
ture: lo
ations and�nishing times of lo
al minima, and lo
ations of lo
al maxima. We won't dothe s
heduling here, but we will get the optimum sum of �nishing times as aresult.For all 0 � i < j � n+1 where i+2 � j and all f where max(x(i); x(j)) �f � 3max(x(i); x(j)); we will 
ompute FA(i; j; f) with the following mean-ing: if in a 	 square-optimal solution (i; j) is a 
onvex pair of minima, andf	(i; j) = f; then Pj�1s=i+1 f	(s) = FA(i; j; f):We pro
eed from short [i; j℄ subpaths to longer ones, using a dynami
programming strategy.First 
omputeFmax = mink2[i+1;j�1℄( k�1Xs=i+1(x(s� 1) + x(s)) + fmaxA(i; j; f; k)++ j�1Xs=k+1(x(s+ 1) + x(s)))in O(n2) time (see Lemma 13).Se
ond, if f > max(x(i); x(j)) then 
omputeFmin = mink2[i+2;j�2℄(FA(i; k; fminA(i; j; f; k)) + fminA(i; j; f; k)++FA(k; j; fminA(i; j; f; k)))in O(n2) time (see Lemma 14).If f = max(x(i); x(j)); then we have to test for the possible values of the�nishing time of k = pit(i; j); we will denote the values put to test by fk:Thus, we 
omputeFmin = mink2[i+2;j�2℄;fk2[x(k);3x(k)℄(FA(i; k; fk) + fk + FA(k; j; fk))in O(n2p) time. If k and fk provided the minimum sum, then we assign thefk value to fminA(i; j; f; k):We obtain FA(i; j; f) = min(Fmax; Fmin):Again, FA(i; j; f) = 1 means that (i; j) has lost the 
han
e to be a 
on-vex pair of minima with f(i; j) = f in any square-optimal s
hedule. IfFA(i; j; f) 6= 1 then together with the value FA(i; j; f) we also store whi
hk 2 [i + 1; j � 1℄ resulted the minimum. If it was a unique lo
al maximum15



(that is if Fmax � Fmin) then we re
ord it by topA(i; j; f) = k: Otherwisewe re
ord pitA(i; j; f) = k:The 
omputation for one (i; j) pair takes O(n2p) time. Overall 
omputa-tion of the First phase takes O(n4p) time.Theorem 15 If � is a valid s
hedule of the given demands on the path [1; n℄;then Pns=1 f�(s) � FA(0; n+ 1; 0):Proof. Suppose that on the 
ontrary, the optimum sum of �nishing times isstri
tly smaller than FA(0; n + 1; 0): Then there exists a 	 square-optimals
hedule su
h that Pns=1 f	(s) < FA(0; n+ 1; 0):Let's 
onsider all the 
onvex pairs (i; j) in 	; su
h that Pj�1s=i+1 f	(s) <FA(i; j; f	(i; j)); e.g. (0; n + 1) is one of them. We pro
eed by indu
tion onthe length of subpaths, and suppose (i; j) is one of minimum distan
e j � iamong all these pairs. Let f = f	(i; j):First let pit	(i; j) = ;, that is, we have a k = top	(i; j): The algorithmalso tested this k to be top(i; j):Now, a

ording to Proposition 3, the �nishing times on [i+ 1; k� 1℄ and[k+1; j�1℄ are f	(i+1) = x(i)+x(i+1); : : : ; f	(k�1) = x(k�2)+x(k�1)and f	(k + 1) = x(k + 2) + x(k + 1); : : : ; f	(j � 1) = x(j) + x(j � 1):Also, above the level f	(i; j) the s
heduling is uniquely determined andobviously, k will be bla
k where (k� 1; k+ 1) is white-white. Under f	(i; j)C	(i; j) (or C	(i; r(i)) or C	(`(j); j)) must be as determined by Theorem 8,and this again determines the number of levels where (k� 1; k+1) is white-white. This implies that f	(k) is uniquely determined by f	(i; j) and equalsfmaxA(i; j; f	(i; j); k):But then j�1Xs=i+1 f	(s) == k�1Xs=i+1(x(s� 1) + x(s)) + fmaxA(i; j; f; k) + k+1Xs=j�1(x(s + 1) + x(s)) �� FA(i; j; f);a 
ontradi
tion.Se
ond, let pit	(i; j) = k: Now againC	(i; j) (orC	(i; r(i)) orC	(`(j); j))are as determined by Theorem 8. This either uniquely determines f	(k) a
-
ording to Theorem 12 and 
onsequently f	(k) = fminA(i; j; f	(i; j); k): Inthis 
ase, sin
e j � i was minimum,j�1Xs=i+1 f	(s) = k�1Xs=i+1 f	(s) + f	(k) + j�1Xs=k+1 f	(s) �16



� FA(i; k; f	(k)) + f	(k) + FA(k; j; f	(k)) == FA(i; k; fminA(i; j; f; k)) + fminA(i; j; f; k) + FA(k; j; fminA(i; j; f; k)) �� FA(i; j; f);a 
ontradi
tion.Or, we tested this k = pit(i; j) with all possible fk �nishing times, sowith fk = f	(k) as well. Thenj�1Xs=i+1 f	(s) � FA(i; k; f	(k)) + f	(k) + FA(k; j; f	(k)) == FA(i; k; fk) + fk + FA(k; j; fk) � FA(i; j; f	(i; j));a 
ontradi
tion. 2pro
edure greedy(i; j)if i < j thenfor k := i+ 1 : : : j doif k is not s
heduled thenassign k the smallest x(k) hoursthat are not assigned to k � 1end ifend forend ifif j < i thenfor k := i� 1 : : : j doif k is not s
heduled thenassign k the smallest x(k) hoursthat are not assigned to k + 1end ifend forend ifpro
edure greedy(k)assign k the smallest x(k) hours nei-ther assigned to k � 1 nor to k + 1

pro
edure mins
hedule(i; j; k; fk)`(k) := minfs � ijx(s+ 1) + x(s) � fkgr(k) := maxfs � jjx(s� 1) + x(s) � fkggreedy(i; `(k))greedy(j; r(k))assign k the hours below fk that don't 
on-
i
t with at least one of 	(`(k)) or 	(r(k));the missing hours from x(k) should be thesmallest possible, not yet assigned hourspro
edure s
hedule(i; j; f)if top(i; j; f) 6= ; thenk := top(i; j; f)greedy(i; k � 1)greedy(j; k + 1)greedy(k)elsek := pit(i; j; f)fk := fmin(i; j; f; k)mins
hedule(i; j; f; fk)s
hedule(i; k; fk)s
hedule(k; j; fk)end ifpro
edure main()s
hedule(0; n + 1; 0)Figure 3: Se
ond phase.17



Se
ond phase. In this phase we give an optimal s
hedule �. Now wepro
eed from long subpaths { starting with [0; n+ 1℄ { to shorter ones. TheFirst phase provided the lo
al minima in the form of pitA() values and their�nishing times as fminA() and the lo
al maxima in the form of topA() values.While 
omputing the s
hedule of these nodes we will basi
ally follow the samealgorithm as in Lemma 13 and 14 when we 
al
ulated their �nishing times.Along the way we will also prove that � is valid s
hedule and optimal, be
ausePns=1 f�(s) = FA(0; n+ 1; 0):First we take pitA(0; n+1; 0) or topA(0; n+1; 0): One of them must exist,be
ause there exist valid s
hedules on the path.If we have a k = topA(0; n+ 1; 0) that means that there is just one lo
almaximum in our optimal s
hedule. Then we do the s
heduling in the greedyway { see Proposition 3 { on the stair-ups of [1; k�1℄ and on the stair-downsof [k+1; n℄: Finally we do the greedy s
heduling on k; that is, we assign thehours where (k � 1; k + 1) is white-white. Now we are ready with all thenodes, and the �nishing times are the same as those resulting FA(0; n+1; 0);be
ause only then is k = topA(0; n + 1; 0) possible. Obviously, � is a valids
hedule.If on the other hand we have k = pitA(0; n + 1; 0); that means that k isthe (leftmost) smallest lo
al minimum in our s
hedule. We have the �nishingtime f�(k) := fminA(0; n+1; 0; k) as well. If k is 
ompa
t then the s
heduleon k is trivial.If k is not 
ompa
t, then we re
ompute `(k) and r(k); while we are doingthe greedy s
heduling on the stairs [1; `(k)℄ and [Right(k); n℄: In the mean-time we s
hedule k : if it is not 
ompa
t then `(k) 6� k 6� r(k) (mod2);and we assign the hours to k where (`(k); r(k)) is white-white, white-bla
kor bla
k-white. If x(k) is not 
ompletely used up till we rea
h fminA(0; n+1; 0; k); then we are free to assign the rest of hours to any of the levels underfminA(0; n+ 1; 0; k) where (`(k); r(k)) is bla
k-bla
k. In parti
ular, we will�ll the empty hours from the bottom up (see node 7 on Fig. 1).Now it is easy to see that if Pk�1s=1 f�(s) = FA(0; k; fminA(k)) andPns=k+1 f�(s) = FA(k; n+ 1; fminA(k)) then Pns=1 f�(s) = FA(0; n+ 1; 0):Now we pro
eed re
ursively, �rst make the s
hedule on [0; k℄ then on[k; n + 1℄: Exa
tly one oftopA(0; k; fminA(k)) or pitA(0; k; fminA(k)); exists, in the �rst 
ase we makethe s
hedule on the whole subpath, in the latter 
ase on k0 = pit(0; k); on[`(k) + 1; `(k0)℄ and on [r(k0); k � 1℄: And so on...The way we 
omputed the pitA(); fminA() and topA() et
. values inthe First phase, 
orresponds to 
reating the s
hedule in the Se
ond phase.This guarantees that we will make ends meet, that is the fminA() values areneither smaller than the demand, nor too high for the stairs on both sides,18



and all these details.Analysis. We will 
all a a preemption level, if there is a node i 2 [0; n+1℄;su
h that i is bla
k on a and white on a + 1; or the other way round. Theway we did the s
heduling, any preemption level is either the �nishing timeof a node, or the last of the extra bla
k levels in a lo
al minimum (e.g. level2 of node 7 on Fig. 1). Therefore, there are O(n) preemption levels.We 
ould make the s
hedule of any node through �xing its preemptionlevels, by way of merging or revisiting preemption levels of at most two othernodes. Thus, the Se
ond phase requires O(n2) time.5 The O(n3p) AlgorithmLet us �x an (i; j) pair and an f = f(i; j) > max(x(i); x(j)) and sup-pose we are just testing this (i; j; f) triple. We 
laim that we 
an 
omputefmaxA(i; j; f; k) and fminA(i; j; f; k) overall for all k 2 [i+1; j� 1℄ in O(n)time. This is enough to redu
e the time to O(n3p) (
ompare Fig. 2).First note that in the 
omputations of Theorem 8, the part that takesO(n) time is �nding s in Lemma 10 and this is independent of k, thereforeit 
an be done on
e for (i; j; f):Se
ond, in the algorithms of Lemma 13 and Lemma 14, the merging andsumming pro
edure is exa
tly the same for k 6= k0 if k � k0(mod2): Supposethat the x(k) demands of e.g. all even k 2 [i + 1; j � 1℄ values are orderedin non-de
reasing order. Now, parallel to the merging of the two sides andsumming the bla
k levels, we just need to re
ord the fmax=fmin(i; j; f; :)�nishing times of the k values by the given order of demands.Let's do the ordering of the x() values separately for the odd and evennodes at the beginning of the First phase, and for an (i; j) pair let's restri
tthe ordered series to the nodes between i and j:The O(n3p) Algorithm on Rings. We start the First phase like before:we 
ompute the FA(i; j; f) values for all (i; j) paths not longer than n nodesand ea
h possible f: Instead of 
omputing FA(0; n+1; 0) in the end, we do thefollowing: On a 
y
le, a node of minimum �nishing time is a 
ompa
t lo
alminimum. We 
an test for ea
h node to be su
h a node: the optimum sumwill be min1�i�n(FA(i; i; x(i)) + x(i)); where FA(i; i; x(i)) is the 
omputedoptimum on i + 1; i + 2; : : : ; i + n � 1 = i � 1(modn): Finally, we 
an startthe s
heduling with the 
ompa
t lo
al minimum.
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6 Future workIt remains to be a 
hallenging question, whether the pSMC on paths 
an besolved in time polynomial in n: We �rmly believe that the answer to thisquestion is yes. There doesn't seem to be an obvious way to exploit our ideaon any graph 
lass with maximum node degree � � 3: It might be interestingto examine graph-
lasses with just a small number of nodes of degree � 3:A
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