ol

INFORMATTIK

Sum-Multicoloring on Paths

Annamdria Kovacs

MPI-1-2003-1-015 July 2003

N J

FORSCHUNGSBERICHT RESEARCH REPORT

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Stuhlsatzenhausweg 85 66123 Saarbriicken Germany

Author’s Address

Annamaria Kovécs
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

panni@mpi-sb.mpg.de

Abstract

The question, whether the preemptive Sum Multicoloring (pSMC) problem
is hard on paths was raised by Halldérsson et al. in [7]. The pSMC problem
is a scheduling problem where the pairwise conflicting jobs are represented
by a conflict graph, and the time lengths of jobs by integer weights on the
nodes. The goal is to schedule the jobs so that the sum of their finishing
times is minimized. In the paper we give an O(n’p) time algorithm for the
pSMC problem on paths, where n is the number of nodes and p is the largest
time length. The result easily carries over to cycles.

Keywords

Preemptive Scheduling, Sum-Multicoloring

1 Introduction

In scheduling problems, one has a set of jobs, with time length for each job
and pairwise conflicts between certain jobs. The conflicting jobs cannot be
worked on at the same time, due to e.g. some non-sharable resource they
use. Real-life situations of this kind can be found in operating systems, in
areas like traffic intersection control, frequency assignment for mobile phones,
compiler design, VLSI routing etc. (see [6]).

In the mathematical model the jobs are represented as nodes of a simple
undirected graph G' = (V| E), where two nodes representing conflicting jobs
are connected by an edge. The demand of v € V is a positive integer z(v)
modeling the number of time units — ’hours’ — needed to carry out the job of
v. A proper schedule ¥ : V — 2N of the jobs is done by assigning a set ¥ (v)
of positive integers to each v € V s.t. |U(v)| = z(v) and the sets assigned to
adjacent vertices do not intersect (i.e. they are never scheduled at the same
time).

In this way the scheduling problem becomes a graph coloring problem
if z(v) = 1 for each v € V, and graph multicoloring problem in the general
case. (The name stems from regarding the ¥(v) as sets of colors. However,
later in the paper we continue to view the problem as a scheduling problem
and the W(v) as sets of hours as we will use colors for something else.)

A traditional optimization goal is to minimize the overall finishing time,
respectively the number of colors used to color all the vertices. Another
reasonable goal can be to minimize the average finishing time of the jobs.
That is, if f(v) denotes the largest integer assigned to v, we search for a
schedule (multicoloring), such that) ., f(v) is minimum over all proper
schedules. The latter is called the sum multicoloring (SMC) problem.

In the paper we consider preemptive schedulings, where the W¥(v) are
arbitrary sets of positive integers (pSMC problem). There has been much
related work done concerning the non-preemptive SMC (npSMC) problem,
where the assigned W(v) sets must be contiguous, see e.g. [6, 7].

Our result. The question, if the pSMC problem is hard on paths, was
raised as an open problem by Halldérsson et al. in [7]. In this paper we
provide a pseudo-polynomial algorithm for the problem. Let G = (V, E) be
a path, |[V| = n, and p = max,cy z(v). Our algorithm takes O(n’p) time.
It is based on a technique that is interesting in its own right. With minor
modifications the approach can be applied to the pSMC problem on cycles.

Related work. Here we just mention the most relevant results. For a more
comprehensive history of the SMC and related problems see e.g. [2, 7].

1

The sum coloring problem, the special case of SMC with unit time re-
quirements, was first raised by Kubicka in [3], where a polynomial algorithm
was given for trees.

The sum coloring problem is NP-hard even on bipartite graphs [1], interval
graphs [8], planar graphs [2] and line graphs [5]. These results imply the
hardness of the corresponding SMC problems.

The general SMC problem was introduced by Bar-Noy et al. [6]. There a
comprehensive study of the approximability of both the pSMC and npSMC
was presented on different graph classes.

In [7] two efficient algorithms are provided for the non-preemptive (npSMC)
problem on trees. They run in O(n?) and in O(np) time respectively. On
paths the first one runs in O(nlogp/loglogp) time. For the preemptive
(pSMC) problem on trees, a polynomial time approximation scheme is given.

Marx proved the hardness of the pSMC problem on trees in [4]. He
has shown that pSMC is NP-hard even on binary trees, even when p is
polynomially bounded. Thus, the SMC problem on trees turned out to be
one of the few scheduling-type of problems in which the preemptive version
is essentially harder than the non-preemptive version. It is natural to go
on asking, on which graph-classes pSMC is efficiently solvable. In [7] the
question is posed, whether pSMC is hard on paths. For this problem, an
algorithm polynomial in n and p is given in this paper. It can serve as a first
step towards characterizing these graph-classes.

Overview. Section 2 describes the basic notation we use and establishes
a few elementary facts. In Section 3 we give the ingredients of a pseudo-
polynomial algorithm. Section 4 contains the details of an improved algo-
rithm of O(n'p) steps. Unfortunately we could not get rid of the factor p
but Section 5 sketches a further improvement in the exponent of n and the
possible modifications for the case when the graph is not a path but a cycle.

2 Notation, Definitions and Basic Facts

The nodes in the path are numbered from left to right by 1...n. If 7 < 7,
we denote the subpath of starting node ¢ and ending node j, by [i, j]. If i is
a node, then z(i) € N, is the demand of i. Let p = max;<;<, (i) be the
largest demand. W(i) C N is the set of numbers or hours assigned to i in

schedule W; |W(i)| = x(i). fy (i) is the largest number assigned to i. Most of

the time we will simply write f(z). We will also use f (i, j) o max(f(4), f(j)).

We add nodes 0 and n + 1 to the path with demands z(0) = z(n + 1) = 0.

Definition 1 We call ¥ a (proper) schedule, if U(i)NV(i+1)=0 (1<
i <n—1). ¥is an optimal schedule, if > " | fu(i) is minimum over all
schedules. W is a square-optimal schedule, if it is optimal, and the sum
o f(8)? is mazimum over all optimal schedules.

Intuitively, in a square-optimal schedule small f(i) values are as small as
possible and large f(i) are as large as possible.

We will give a pseudo-polynomial algorithm (polynomial in n and p) that
computes an optimal schedule, for given demands on nodes of a path.

Definition 2 Given a schedule ¥, we say that:

i is a local minimum, if f(i—1) > f(i) and f(i) < f(i+1); we will also
regard 0 and n + 1 as local minima.

i is a local maximum, if f(i — 1) < f(i) and f(i) > f(i + 1);

i is a stair-up, if f(i —1) < f(i) < f(i+1) and i is a stair-down, if
f(i—1) > f(i) > f(i +1); When no distinction is needed, we simply call
them stairs.

i is compact, if f(i) = x(i).

Let us use the following visualizing expressions. We say that i is black
on level a, if a € ¥(i), and i is white on level a if a ¢ (i) (see Fig. 1).
Trivially, if 7 is compact then it is not white on any level under f ().

Sometimes for i < j we also say, that the ordered pair (i, j) is black-white,
black-black,... etc. on level a. Note that (i,i + 1) cannot be black-black on
any level.

Proposition 1 In any optimal schedule, the number of levels where (i, j)
can be black-black, white-black or black-white is bounded from above by p
each. The number of levels under f(i,j) where (i,j) might be white-white is
bounded from above by 2p.

Proof. The first statement is obvious. In order to see the second statement,
suppose, that f(i,7) = f(i). On any level under f(i), where 7 is white, at
least one of ¢ — 1 and ¢ + 1 must be black. Therefore, there are at most 2p
such levels. O

Definition 3 An (i,j) pair is conflicting on level a, if either
i=j (mod2) and (i,j) is black-white, or white-black, or
i Z7j (mod2) and (i,j) is black-black, or white-white.

Proposition 2 If (i,) is conflicting on level a, then 3k € [i, j—1] such that
(k,k + 1) is white-white on level a. O

Definition 4 Suppose that Vk € [i,j], f(k) > max(a,b) in a schedule V. In
this case we will say that we change the levels a and b on [7, j|, if Vk € [i, j]
we make k white (black) on level a if and only if according to V it was white
(black) on level b, and we make k white (black) on level b, if and only if it
was white (black) on level a.

After carrying out this operation, we may have to make corrections to get
a proper schedule again. Note, that we will have to check the pairs (i — 1,7)
and (7,7 + 1) on the levels a and b.

Proposition 3 Ifi is a stair-up in a square-optimal schedule U, then (i—1, 1)
is either white-black or black-white on any level a < f(i). A symmetric
statement holds if © is a stair-down.

Proof. Trivially, (i—1,14) is white-black on the level f(i). We have to show that
it is not white-white on any level below f(i). Suppose that on the contrary,
(i—1,14) is white-white on level a < f(7). Let M be the first local maximum to
the right of 7, and let’s change the levels a and f(7) on [i, M]. This decreases
f(@) by at least one. Also, this is a proper schedule on [i — 1,4], since i — 1
is white on the level a. If it is a proper schedule on [M, M + 1], then we
decreased the optimum sum, contradiction; if it is not a proper schedule on
[M, M + 1], then we make M white either on the level a or on the level
f (@), and make it black on the level f(M) + 1 (increase f(M) by one). Now
we created another optimal schedule, but increased the sum of squares of
finishing times, again a contradiction since ¥ was square-optimal. O

Now, let 7 be a local minimum in a square-optimal schedule and M be
the first local maximum to the right of i. If we know f(i), then for all stair-
ups ¢ < k < M we know f(k) = x(k — 1) + z(k), we know the hours in
U(k)N[f(i), f(k)], and we know how many black and how many white levels
k has under the level f(7). If we even know ¥(7), then we know ¥(k) for all
of the above k.

Proposition 4 If k is a local minimum in an optimal schedule then f(k) <
3z(k).

Proof. Suppose that f(k) > 3z(k). Let M and M’ be the closest local
maximum to the left and right of k, respectively. By changing the first z(k)
levels to those where £ is black, we could make k£ compact, gaining more than
2x(k) at k and losing at most z(k) at both M and M'. O

Y
. -
- @
- - @
- @

60 ~—------------ - ------- - - -
- - e
- - o
- - o
- & e o o
- & & o o
- & & o o
- & & o o
- & & o o
- & & o o
- & ©® oo
- & & o D
- @ - e -
- @ - o -
- & & o oo
- & & & o o
- & & ©® o °o o
- o - - @&

- @® o o o ©®o o o
i= 012 3 456 7 8 910111213 141516

x(i)= 0 1 2 5105099 4 9950125010 5 2 1 O

Figure 1: A square-optimal solution for the given pSMC problem on a path
of length 15. The convex pairs are (0, 16), (0,7), (7,16), (7,10) and (10, 16).
Other examples: pit(7,16) = 10; top(7,10) = 8; £(10) = 7 and r(10) = 13.

3 An Outline of the Algorithm and Further
Definitions

Definition 5 With respect to a given schedule ¥, let + < j be both local
minima with the property that if i < k < j is a local minimum between them,
then f(k) > max(f (i), f(j)). We will say that such an (i, j) pair is a convex
pair.

Definition 6 For a convez pair (i,j), in a schedule U, let pit(i,j) = k if

1.i<k<jy

2. k is a local minimum, and

3. if i < K < j oand k' is a local minimum, then f(k) < f(k') or
(f(k) = f(K) and k < K').

If there is no local minimum between i and j, then let pit(i,j) = 0 and
let top(i, j) denote the unique local mazimum between i and j.

In other words, pit(i,j) is the leftmost local minimum of minimum fin-
ishing time between i and j. Note that if k& = pit(i, j), then both (i, k) and
(k,j) are convex pairs.

The algorithm tests for every pair (i,j), whether it can be a convex pair
in a square-optimal schedule. It proceeds from short distances to long ones
—i.e. first it tests for each pair of the form (i,7 + 2) and at last (0,n + 1).
It proceeds dynamically by testing for each k between i and j, if it can be
pit(i, j), or top(i,j). We will add a computed optimum on [i + 1,k — 1] and

5

on [k+1,j — 1], plus a computed f(k), to obtain a possible sum of finishing
times on [z + 1,7 — 1].

Of course, an optimum that we calculated this way is only realizable if
we can indeed ’glue’ two optimal schedules by the schedule of k. Therefore,
in addition to testing k, we will also have to one by one fix and test some
characteristic of the schedule on 7, j and k.

For the time being, let us suppose that if k = pit(4, j) then f(k) < f(i+1)
and f(k) < f(j—1). That is, we disregard the fact that there might be several
stairs on the two sides of [i, j], having finishing time smaller than f(k), or
stair-ups finishing under f(j) e.g. if f(i) < f(j) (see Fig. 1).

Now, we will need to know in advance the number of black-black, white-
black, black-white and white-white levels concerning the (i,j) pair. As we
just need the number, and not the location of these levels, testing for all
O(p*) possibilities would still result in a pseudo-polynomial algorithm.

Definition 7 For a convex pair [i,j| in a fized schedule ¥, let C(i,j) €
[0, 2p]* be the 4-tuple denoting the number of levels under f(i,7), where (i,)
s black-black, white-black, black-white and white-white, respectively. We will
call C(i,7) the color scheme of (i, 7). For the triple i < k = pit(i,j) < j, we
will talk about the color scheme C(i,k,j) € [0,2p]® under the level f(k), in
the same sense.

We denote by C(i,k,j) = C(i,j), when they are consistent with each
other, i.e., the number of black-white-black and the number of black-black-
black levels of (i, k, j) sum up to the number of black-black levels of (i, j), and
so on for the remaining cases. Similarly, we use the notations C(i, k,j) =

C(i, k) and C(i,k,j) = C(k,j).

Remark 1 Note that the four numbers in C(i,) sum up to f(i,j) and the
eight numbers in C (i, k, j) sum up to f(k). Note also, that C(i, k,j) = C(i,j)
implies that the number of white-white-white plus the number of white-black-
white levels in C(i, k, j) equals the number of white-white levels in C(i,7)
plus f(k) — f(i, 7).

Here is where we implicitly exploit that (i,7) is supposed to be a convex
pair, and therefore f(k) > f(i,j). For a fized C(i,7) we will want to test
for all possible C (i, k,j), for which C(i,k,j) = C(i,j) holds. Suppose, we
wanted to calculate the optimum by taking also f(k) < f(i,j) values into
consideration. For this calculation we would need in advance the color scheme
of (i,7) under each possible f(k) level. On the other hand, knowing C(i,j)
under all of the levels, boils down to having V(i) and ¥(j) and that is exactly
what we tried to avoid, as testing all that, would lead beyond polynomial time.

For each pair 0 < 7 < j < n + 1 and each possible color scheme
C(i,j) of a pair, the algorithm computes an optimum sum of finishing times
F(i,j,C(i,7)) = {;ilﬂ (1) supposing that (i,j) is a convex pair. In par-
ticular, we test for each k € [i + 1, j — 1] to be pit(i,j) and we test for each
color scheme C(i, k, j) = C(i, j).

For C(i,k,j) = C(i,k) and C(i,k,j) = C(k,j) we have a previously
computed F(i,k,C(i,k)) and a F(k,j,C(k,j)) value. We obtain the sum of
finishing times for this k and C'(4, k, j) by F(i,k,C(i, k))+ F(k,7,C(k,j)) +
7).

We also test if this & can be top(i, j). In that case the sum of finishing
times is computed easily based on Proposition 3 and on C(i, j). Finally we
choose the smallest sum of finishing times to be F'(4, j, C'(4, j)) and remember
one k = pit(i,j) and one C(i, k, j), or a k = top(i, j) that yielded this value.

In the end of this process we will have all the local minima and maxima
in an optimal schedule and we will know the color scheme of convex pairs of
minima. This is enough information to create such a schedule, starting with
a minimum of smallest finishing time:

Suppose we have the schedule on i and j : ¥(i) and ¥(j), and they imply
a color scheme C(i,7). We take e.g. the best k = pit(i,j) and C(i,k,j)
reported by the algorithm. Then we insert the 'blacks’ and 'whites’ of k£ (give
the schedule of k) according to W¥(i), ¥(j) and C(i, k,). This is possible —
though in general not uniquely determined —, because C(i, k, j) is consistent
with C(i,7). We proceed with the scheduling in this way, until there is a
convex pair where the optimum was yielded by a k = top(i, j), in which case
the scheduling on [4, j] is obvious.

The algorithm is still a bit more complicated than this, because we may
have stairs on the two sides of [i, j] that we did not yet consider. For talking
about this, first we need one more definition:

Definition 8 Let i be a local minimum in a schedule ¥. Let i < r(i) < n+1
be the node with the property f(r(i)) < f(i) and Vk,i < k < r(i) f(k) > f(i).
We define 0 < £(i) < i symmetrically.

Now, with these terms in hand, suppose we are testing the pair (7, j) and
e.g. f(i) > f(j) holds. Then we will need C(i,r(i)) instead of C(i,j) and
if f(k) > f(i), then we will need C(¢(k), k,r(k)) instead of C(i, k,j) (see
Fig. 1). This won’t make so much difference, because [i + 1, ¢(k)] consists of
stair-ups as well as [r(k),j — 1] consists of stair-downs only, and there the
schedule and finishing times easily follow. In particular, the color schemes
C(i,r(i)) and C(€(k), k,r(k)) can be defined like before, and the consistency
C(l(k),k,r(k)) = C(i,r(i)) has a well defined meaning.

7

Remark 2 Note that f(i,j), F(i,j), C(i,7), pit(i,j), r(i) etc. should all
have ¢ as a subscript when they are relative to the schedule V. We will only
use subscripts when needed. We will use the subscript 4 when a value was
yielded by the algorithm and is not necessarily realized by a schedule.

4 An O(n'p) Algorithm

In Section 3 the main idea of the algorithm was presented. Turning to the
exact description we will make use of two technical theorems — Theorems 8
and 12 — which will help us simplify the algorithm. We do so not only in
order to reduce the factor of p” of the previous rough version to p : The two
theorems and the lemmas may as well be helpful during further investigation
of the problem, and on the whole they also simplify our discussion.

In the main part we present an O(n'p) time algorithm. After that we
give a short argument on how it reduces to time O(n?p).

Theorems 8 and 12 are based on the following Lemmas:

Lemma 5 Let ¢ be a local minimum in a square-optimal schedule, such that
it is not compact, and let £(i) < k < r(i). Then the following hold:

The (i, k) pair is not conflicting on the level f(i);

The (i, k) pair is not conflicting on any level where i is white.

Proof. Suppose for example, that i < k < r(i), and (4, k) is conflicting on
the level f(i). Furthermore, let i be white on the level a < f(1).

According to Proposition 2, there is an (s,s + 1) pair of nodes that is
white-white on level f(i), and i < s < k. Let M be the first local maximum
to the left of i. Now all the finishing times on [M, s] are not smaller than
f (@)

Let’s change the levels a and f(i) on [M, s]. Since (s,s + 1) was white-
white, this remains a proper schedule on [s,s + 1] and it reduces f(i) by
at least 1. If it is not a proper schedule on [M — 1, M], we can correct it
by increasing f(M) by 1 (like in the proof of Proposition 3). This remains
an optimal schedule, but improves the former schedule concerning square-
optimality, which is a contradiction.

If (i, k) is conflicting on the level a, then we can make the same changing
of levels and obtain a contradiction. O

Corollary 6 If f(i) > (i) then i # r(i)(mod2), and i # ¢(i)(mod2).

Proof. Otherwise (£(i),4) or (i,7(7)) would be conflicting on the level f(i). O

Lemma 7 Ifi is a non compact local minimum in a square-optimal schedule,
then for any level a < f(i) there is at most one i < k < r(i) and at most one
(i) < k <i such that (k,k + 1) is white-white on the level a.

Proof. Suppose that on the contrary, we have i < k < k' < r(i) such that
(k,k + 1) and (k',k" + 1) are both white-white on level a. Note that by
Lemma 5 7 must be black on the level a.

Let ¢ be white on the level b. If i = k£ (mod2) then £ is white on the
level b (see Lemma 5). Then we change the levels @ and b on [k + 1, k'];
If i # k (mod2) then k is white on the level f(i). Then we change the
levels a and f(i) on [k +1,£].

In both cases we obtained a proper square-optimal schedule (note that
finishing times did not change), that contradicts Lemma 5, because (i, k + 1)
is conflicting on level f(i) or on level b. O

Now, Theorem 8 shows that we don’t have to test for all O(p*) possible
tuples of C(i,r(i)) (resp. C(¢(j),7)), because it is uniquely determined by

(i,).
Definition 9 Let (i,j) be a conver pair. According to f(i) > f(j), f(i) <

f(4) or f(i) = f(j) we will use the name relevant scheme of (i,j) for the
color scheme C(i,r(i)), C(£(j),7) or C(i,j), respectively.

Theorem 8 Let (i,j) be a conver pair in a square-optimal schedule. Either

having f(i,j) # max(z(i),z(j)), or having f(i,j) = max(z(i),z(j)), and
k = top(i, j), the relevant scheme of (i,j) can be computed in O(n) time.

The proof will make use of the following lemmas:

Lemma 9 Let (i,j) be a convex pair in a square-optimal schedule. If f(i) =
f(j) then i and j are compact and f(i) = x(i) = z(j) = f(J).

Proof. We show that if f(i) = f(j) then ¢ and j are compact. Were i
or j non-compact, then according to Lemma 5, i = j(mod2) must hold,
otherwise they would be conflicting on the level f(i). Therefore, i and j
must be white on exactly the same levels, again by Lemma 5. Now, if there
is a level a < f(i), where both of them are white, then let’s change the levels
a and f(i) on [M, M'], where the latter are the first local max to the left
of i and to the right of j, respectively. If necessary, let’s increase f(M) and
f(M') by one each. f(i) and f(j) were decreased, so what we get is still an
optimal solution, but we could increase the sum of squares of finishing times,
a contradiction. O

In the following two lemmas f(i,j) = f(i) > f(j). Symmetric counter-
parts of the lemmas can be stated when f(i) < f(j).

9

Lemma 10 Let (i,7) be a convex pair and f(i) > f(j). Then there is a node
i < s < j with the property that x(s — 1) + z(s) > f(i) > z(s) + z(s + 1) >
> a(f—1) + (7).
If f(i) > x(i) then r(i) = s.
If f(i) = x(i) and k = top(i,j), then r(i) = max(k + 1, s).

Proof. First let f(i,j) = f(i) > x(¢) that is, ¢ is non-compact.

Note that r(i) < j and r(i)...(j — 1) is a (possibly empty) series of step-
downs. Let r = r(i). We show that z(r—1)+x(r) > f(i) > z(r)+z(r+1) >

. > x(j—1)4z(j). Since there is at most one node with this property, this
proves the first part of the lemma.

If r — 1 is also a step-down, then the statement trivially holds due to the
greedy schedule on the stairs.

Let 7 — 1 be a local maximum. We claim that under the level f(i),
r — 1 is colored as if it were still a step-down. Suppose that on the contrary,
(r—1,r) is white-white on the level a < f(i). But that would imply that (i, r)
is conflicting on this level (see Lemmas 5 and 7). Recall however, that i and
r = r(i) have opposite parity, and therefore (i,) might only be conflicting on
a level where it is black-black, so r cannot be white on level a, contradiction.
From this the inequality x(r — 1) + 2(r) > f(i) follows.

Second, let f(i) = x(i). Now we can’t say anything about the parity of
r(i). Let s be a node, for which z(s — 1) + z(s) > f(i) > z(s) + z(s+ 1) >

. > x(j — 1) + z(j) holds. If r(i) — 1 is a step-down, then r(i) = s must

hold, like before. If r(i) — 1 is a local maximum, then r(i) — 1 = k. Therefore,
r(i) = max(k 4+ 1,s), or r(i) = k + 1 if s does not exist. O

Note that there is at most one such s as in the statement of Lemma 10,
and it can be found in O(n) steps.

Lemma 11 Let (i,7) be a convex pair and f(i) > f(j). If we have f(i) and
r(i) then C(i,7()) can be computed in O(1) time.

Proof. We prove that if 4, f(i)(= f(i,7)) and r(i) are given, then in O(1)
time C'(i,7(4)) can be calculated.

Let first 4 # r(i)(mod2). Now, Lemma 5 implies that (¢,7(¢)) is not
white-white on any level. We get that the number of white-black levels is
f(i) = z(i), the number of black-white levels is f (i) — 2(r(i)) and the number
of black-black levels is z(r (7)) + z(i) — f(i).

Second, let i = r(i)(mod2). By Corollary 6 this can only happen when
i is compact. Consequently, the number of black-black levels is x(r(i)) and
the number of black-white levels is z(i) — z(r(i)). O

10

Proof of Theorem 8. Note that knowing if f(i) or f(j) is larger, is not
a condition in the theorem. Namely, it is either obvious or irrelevant: If
(i) +x(i + 1) < f(i,7) then f(i,5) = f(j) > f(i). Otherwise for i as
a local minimum f(i) > (i) + (¢ + 1) would hold, and there would be
white-white conflicts between (7,7 + 1), contradicting Lemma 5. Similarly,
if 2(j) +x(j —1) < f(i,j) then f(i,7) = f(i) > f(j). In the first case we
compute £(j) (Lemma 10) and then C(¢(j),j) (Lemma 11), respectively in
the second we compute (i) and C(i,r(7)).

Finally, if max(x (i), z(5)) < f(4,7) < min(z(i) +z(i +1),2(j) +z(j — 1))
then exactly one of f(i) = f(j), £(j) = i or r(i) = j holds. So in any case
we compute C(7,j) (Lemma 9 or Lemma 11) independently of which case we
are in. O

From the next theorem it follows that f(k), ¢(k), r(k) and C'(¢(k), k, r(k))
are in 'most’ cases uniquely determined by f(i,7) and k, and in just one
remaining case possible values of f(k) must be tested for as well.

Theorem 12 Let (i,j) be a convex pair, k = pit(i, j) and k be non-compact
in a square-optimal schedule.

If f(i,j) > max(x(i),x(j)) then (£(k),k,r(k)) can only be black-white-
black, black-black-white, white-black-black or white-black-white.

If f(i,7) = max(x(i),z(j)) then in addition to the previous four, a black-
black-black triple is also possible.

Proof. Let k be a non-compact local minimum. By Corollary 6 then ¢(k) #
k#r(k) (mod2).

It follows directly from Lemma 5 that £ is black on the levels where at
least one of (k) and r(k) is white.

If moreover k = pit(i,j) then i < £(k) and r(k) < j because k is non-
compact and therefore f(i,j) < f(k) (see Lemma 9). Let f(i) = f(i,7) >
z(7), let i be white on the level b, and suppose that (¢(k), k,r(k)) is black-
black-black on the level a < f(k). Then Js, s’ such that (k) < s <k < s <
r(k) and (s,s + 1) and (s',s" + 1) are white-white on the level a. Now we
can change the levels a and f(i) or a and b on [s + 1, §] like in the proof of
Lemma 7 and obtain a square-optimal schedule that contradicts Lemma 5.
O

For examples of Theorem 12 see Fig. 1. The first case is valid if e.g.
(i,k,7) = (7,10,16), and the second, if (i,k,j) = (0,7,16). Compare the
levels 2 and 3 of (¢(k), k,r(k)) = (2,7,14).

Now we describe two basic steps of the algorithm by the following simple
lemmas.

11

Lemma 13 Let (i,) be a convez pair of minima in a square-optimal solution
U, and let k = topy(i,j). It is possible to compute fy(k) in O(n) steps if
fu(i, j) is known.

Proof. If k = top(i,j), then the — possibly empty - subpaths [i + 1,k —
1] and [k + 1,j — 1] consist of stair-ups and stair-downs, respectively. By
Proposition 3, the schedule on these stairs is determined by ¥(i) and ¥(j)
in a kind of ’greedy’ way. Finally, ¥(k) is also greedy, in that k is black on
a level if and only if (k — 1,k + 1) is white-white.

Lete.g. f(i) > f(j). Now i < r(i) < j. According to Theorem 8, C'(i, r(i))
can be computed in O(n) time. We proceed along the levels from the bottom
up, and sum up the number of levels, where k is black. Under the level f (i, j)
we calculate this number from C(i, (7)), above the level f(i,7) it is easy to
exactly calculate the schedule on [i 4+ 1, j — 1].

Suppose e.g. that i = k # r(i) (mod2). Now we have the number of
levels under f(i) = f(i,j) where (i,7(i)) is black-white, and these are the
same levels where (k—1, %+ 1) is white-white. We start with this value, and
go on summing as follows.

Above the level f(i), the coloring of levels changes at finishing times of
the stairs on the two sides, so we will have to merge the increasing number
series

z(i) +x(i+1), z@+1)+2z26G+2), ... ,z(k—2)+x(k—-1)

and
z(r(i)) +x(r@@) — 1), x(r@) —1)+x(r@) —2),

cw(k+2) +a(k+1)

and sum up the number of levels when we passed — the finishing time of —
a stair of opposite parity to k£ on both sides and did not yet finish the next
stair on either of the sides. These are the levels where k is black. Merging
and summing takes O(n) time

In the end the remaining demand — z(k) lessened by the resulting sum —
is added to max(xz(k — 1)+ x(k —2),2(k + 1) + z(k + 2)) and this yields the
finishing time of k. O

Lemma 14 Let (i,j) be a convez pair of minima in a square-optimal solution
U, and let k = pity(i, 7). If fu(i,j) is known and fy(i,j) > max(z(i), z(j)),
then it is possible to compute fy (k) in O(n) steps.

Proof. The argument of the proof is much the same as in the proof of
Lemma 13.

12

Let e.g. fu(i) > fu(j) and let fy(i) > x(i). Now we can also suppose
f(k) > f(i) because the case f(k) = f(i) would imply that i is compact.
Now i < l(k) < k < r(k) < r(i) < j. Also, since k = pit(i, j), it is easy to
see that [i + 1, ¢(k)] consists of zero or more stair-ups as well as [r(k),j — 1]
consists of zero or more stair-downs.

We proceed from the bottom and sum up the levels where £ is black, until
the sum reaches z(k). Under f(i,j) we calculate from C(i,r (7)), above that
we know the schedule on [i 4+ 1, (k)] and on [r(k), 7 — 1].

According to Theorem 8, C'(i,7(7)) can be computed in O(n) steps. Now,
if e.g. @ = k # r(i)(mod2), then the levels under f(i) = f(i,j) where k
is black, are those where (i,7(i)) is black-white, black-black or white-white
(compare Theorem 12). The number of these levels is the starting value in
the summation. Note again, here is where we used that (i, j) is a convex pair
and f() > £(i,]).

Above the level f(i) we go on summing as follows. As before, we merge
the increasing series of finishing times on the two sides:

(i) +x(i+1), x(@+1)+x(+2),

and

x(r(i)) +z(r(i) —1), =z(r@@) —1)+x(r@i) —2),
Here we don’t include in the sum those levels when we passed a stair of the
same parity as of k on both sides and did not yet finish the next stair on either
of the sides. These are the levels where k is not black because (¢(k),r(k)) is
black-black (compare Theorem 12).

All the other levels we sum up until we get x(k) and there we stop.
The level where we stopped is fy (k). The stair-up on the left and the stair-
down on the right whose finishing time we passed for last, are ¢(k) and r(k),
respectively. Merging and summing takes O(n) time. O

We will run the algorithms of Lemma 13 and Lemma 14 on all possi-
ble inputs 7, j, k and f = f(i,j) to test what f(k) it would result if (i, j)
were a convex pair and k were top(i,j) or pit(i,j). The potential finish-
ing time of k£, computed this way will be denoted by fmaxa(i,j, f, k) and
fmina(i,j, f, k) = fmina(k), respectively. It may happen that we don’t get
any numeric result, if e.g. the s of Lemma 10 does not exist or the merged
series are not increasing, etc. This means that the tested setting is impos-
sible and this we denote by fmaxa(i,j, f, k) = oo or fmina(i, j, f, k) = oc,
respectively.

Now an exact description of the algorithm can follow. The algorithm has
two phases.

13

ford=2...n+1do
for0<i<j<n+1,75—i=ddo
for f = max(z(i),z(j)) ... 3max(z(i),z(j)) do
fork=i+1...7—1do
compute fmaz(i, 7, f, k) in time O(n) (Lemma 13)
end for
Fmaz := min; . (C07)) (2(s — 1) + 2(s)) + fmaz(i, j, f,k)+
+ 30 (@(s + 1) + 2(s)))
top(i, j, f) := the k providing the minimum value
for k=i+2...5—2do
if f = max(z(i),z(j)) then
compute ming)< rr<so(k) (F (i, &, fk) + fk+ F(k, j, fk))
fmin(i,j, f, k) := the fk providing the minimum
else
compute fmin(i, 7, f, k) in time O(n) (Lemma 14)
end if
end for
Fmin = min;c<;(F (i, k, fmin(i, j, f, k) + fmin(i, j, f, k)+
+F(k, j, fmin(i, j, f. k)))
pit(i, 7, f) := the k providing the minimum value
if Fmaz < Fmin then
F(i,j, f) :== Fmax and pit(i,], f) :
else
F(i,j, f) :== Fmin and top(i, j, f) :
end if
end for
end for
end for

)

0

Figure 2: First phase of the O(n'p) algorithm.

14

First phase. In this phase we compute an optimal structure: locations and
finishing times of local minima, and locations of local maxima. We won'’t do
the scheduling here, but we will get the optimum sum of finishing times as a
result.

Forall0 <i < j < n+1wherei+2 < j and all f where max(z(7),z(j)) <
[< 3max(z(i), z(j)), we will compute F4(i,j, f) with the following mean-
ing: if in a ¥ square-optimal solution (7,) is a convex pair of minima, and
fu(i,j) = f, then Zi;zlJrl fu(s) = Fali,j, f)-

We proceed from short [i, j] subpaths to longer ones, using a dynamic
programming strategy.

First compute

k—1
Fmax = ke[iril}gl}(s;l(x(s — 1)+ x(s)) + fmazxa(i, j, f, k)+
j-1
+ > (z(s+ 1) +2(5)))
s=k+1

in O(n?) time (see Lemma 13).
Second, if f > max(z(i), z(j)) then compute

Fmin = min (FA(ZakafmznA(la]a fak))+fmZnA(Zajafa k)+
kE[i-I—Q,j—?}

+FA(kaja fmZnA(Za]a fa k)))

in O(n?) time (see Lemma 14).

If f = max(x(i),2(j)), then we have to test for the possible values of the
finishing time of k = pit(i, j); we will denote the values put to test by fk.
Thus, we compute

Fmin = min (Fa(i, k, fk)+ fk+ Fa(k,j, fk))

keli+2,j—2],fke[z(k),3z(k)]

in O(n?p) time. If k and fk provided the minimum sum, then we assign the
[k value to fmina(i,j, f, k).
We obtain
Fu(i,j, f) = min(Fmax, Fmin).

Again, Fy4(i,j, f) = oo means that (i,j) has lost the chance to be a con-
vex pair of minima with f(i,j) = f in any square-optimal schedule. If
Fu(i, 7, f) # oo then together with the value F4(i, j, f) we also store which
k € [i + 1,7 — 1] resulted the minimum. If it was a unique local maximum

15

(that is if Fmaz < Fmin) then we record it by topa(i, j, f) = k. Otherwise
we record pit4 (i, j, f) = k.

The computation for one (i, j) pair takes O(n?p) time. Overall computa-
tion of the First phase takes O(n*p) time.

Theorem 15 If @ is a valid schedule of the given demands on the path [1,n],
then >0 fo(s) > Fa(0,n+1,0).

Proof. Suppose that on the contrary, the optimum sum of finishing times is
strictly smaller than F4(0,n + 1,0). Then there exists a WU square-optimal
schedule such that >"._, fu(s) < Fa(0,n+ 1,0).

Let’s consider all the convex pairs (i,7) in W, such that Zi;}ﬂ fu(s) <
Fu(i,j, fu(iyj)), e.g. (0,n+ 1) is one of them. We proceed by induction on
the length of subpaths, and suppose (i,) is one of minimum distance j — i
among all these pairs. Let f = fy (7,).

First let pity(i,j) = 0, that is, we have a k = topy(i,j). The algorithm
also tested this k to be top(i, 7).

Now, according to Proposition 3, the finishing times on [i + 1,k — 1] and
k+1,j—1] are fe(i+1) =z(i)+z(i+1),..., fo(k—1) =2x(k—2)+z(k—1)
and fy(k+1)=2(k+2)+z(k+1),....,fu(j—1)=2() +z(y —1).

Also, above the level fy(i,j) the scheduling is uniquely determined and
obviously, k£ will be black where (k — 1,k + 1) is white-white. Under fy (i, j)
Cy(i,7) (or Cy(i,r(i)) or Cy(€(j),7)) must be as determined by Theorem 8,
and this again determines the number of levels where (k — 1,k + 1) is white-
white. This implies that fy (k) is uniquely determined by fy (7, j) and equals

fmal'A(i;j: f\I’(Z;j): k)

But then i
> fals) =
s=i+1
k—1 k+1
= Z (x(s — 1)+ x(s)) + fmaz (i, j, f, k) + Z (x(s+ 1)+ x(s)) >
s=i+1 s=j—1
> FA(ia ja f)a

a contradiction.

Second, let pity (i, j) = k. Now again Cy(i, 7) (or Cy (i, r(i)) or Cy(£(j), j))
are as determined by Theorem 8. This either uniquely determines fyg (k) ac-
cording to Theorem 12 and consequently fy (k) = fmina(i, 7, fu(i,7), k).
this case, since j — 7 was minimum,

> fu wa)+ fa(k)+ D fals) >

s=i+1 s=i+1 s=k+1

16

= Fa(i, k, fmina(i, j, f, k) + fmina(i, j, f. k) + Fa(k, j, fmina(i, j, f, k)) >
Z FA(i;j; f)a

a contradiction.

Or, we tested this k = pit(i,j) with all possible fk finishing times, so

with fk = fy(k) as well. Then

j—1

> fuls) > Falisk, fa(k)) + fa(k) + Fa(k,j, fa(k)) =

s=i+1

— FA(Zakafk) +fk+FA(k’.]a fk) 2 FA(Za.]a f\I’(Zaj))a

a contradiction. O

procedure greedy(i,j)
if + < 5 then
for k:=i+1...5do
if £ is not scheduled then
assign k the smallest z(k) hours
that are not assigned to k — 1
end if
end for
end if
if 7 < i then
fork:=i—1...5do
if k is not scheduled then
assign k the smallest z(k) hours
that are not assigned to k£ + 1
end if
end for
end if

procedure greedy(k)
assign k the smallest z(k) hours nei-
ther assigned to k — 1 nor to k + 1

procedure minschedule(i, j, k, fk)

L(k) := min{s > ilz(s + 1) + z(s) > fk}
r(k) == max{s < jlz(s — 1) + z(s) > fk}
greedy(i, £(k))

greedy(j,r(k))

assign k the hours below fk that don’t con-
flict with at least one of ¥ (4(k)) or U(r(k));
the missing hours from z(k) should be the
smallest possible, not yet assigned hours

procedure schedule(i, j, f)
if top(i, j, f) # 0 then
k:=top(i, 4, f)
greedy(i, k — 1)
greedy(j, k + 1)

greedy(k)
else
k= pit(i, j, f)

fk = fmin(i, j, f, k)
minschedule(i, j, f, fk)
schedule(i, k, fk)
schedule(k, g, fk)

end if

procedure main()
schedule(0,n + 1,0)

Figure 3: Second phase.

17

Second phase. In this phase we give an optimal schedule ®. Now we
proceed from long subpaths — starting with [0,n + 1] — to shorter ones. The
First phase provided the local minima in the form of pit4() values and their
finishing times as fmin4() and the local maxima in the form of top4() values.
While computing the schedule of these nodes we will basically follow the same
algorithm as in Lemma 13 and 14 when we calculated their finishing times.
Along the way we will also prove that ® is valid schedule and optimal, because
S fa(s) = Fa(0,n+1,0).

First we take pit4(0,n+1,0) or topa(0,n+1,0). One of them must exist,
because there exist valid schedules on the path.

If we have a k = topa(0,n + 1,0) that means that there is just one local
maximum in our optimal schedule. Then we do the scheduling in the greedy
way — see Proposition 3 — on the stair-ups of [1, £ — 1] and on the stair-downs
of [k + 1,n]. Finally we do the greedy scheduling on k, that is, we assign the
hours where (k — 1,k + 1) is white-white. Now we are ready with all the
nodes, and the finishing times are the same as those resulting F4(0,n+1,0),
because only then is k = top4(0,n + 1,0) possible. Obviously, ® is a valid
schedule.

If on the other hand we have k = pit4(0,n + 1,0), that means that k is
the (leftmost) smallest local minimum in our schedule. We have the finishing
time fo(k) := fmina(0,n+1,0, k) as well. If k is compact then the schedule
on k is trivial.

If k is not compact, then we recompute ¢(k) and r(k), while we are doing
the greedy scheduling on the stairs [1,¢(k)] and [Right(k),n]. In the mean-
time we schedule £ : if it is not compact then ¢(k) # k # r(k) (mod2),
and we assign the hours to k where (¢(k),r(k)) is white-white, white-black
or black-white. If z(k) is not completely used up till we reach fmin(0,n +
1,0, k), then we are free to assign the rest of hours to any of the levels under
fmins(0,n + 1,0, k) where (£(k),r(k)) is black-black. In particular, we will
fill the empty hours from the bottom up (see node 7 on Fig. 1).

Now it is easy to see that if Y2571 fo(s) = Fa(0, k, fmina(k)) and
> Jo(s) = Fa(k,n+ 1, fmina(k)) then Y77, fo(s) = Fa(0,n +1,0).

Now we proceed recursively, first make the schedule on [0, %] then on
[k, n + 1]. Exactly one of
topa(0, k, fmina(k)) or pit4(0, k, fmina(k)), exists, in the first case we make
the schedule on the whole subpath, in the latter case on k' = pit(0, k), on
[0(k) + 1,¢(K")] and on [r(k"), k —1]. And so on...

The way we computed the pita(), fmina() and topa() etc. values in
the First phase, corresponds to creating the schedule in the Second phase.
This guarantees that we will make ends meet, that is the fmin() values are
neither smaller than the demand, nor too high for the stairs on both sides,

18

and all these details.

Analysis. We will call a a preemption level, if there is a node i € [0, n+1],
such that ¢ is black on a and white on a + 1, or the other way round. The
way we did the scheduling, any preemption level is either the finishing time
of a node, or the last of the extra black levels in a local minimum (e.g. level
2 of node 7 on Fig. 1). Therefore, there are O(n) preemption levels.

We could make the schedule of any node through fixing its preemption
levels, by way of merging or revisiting preemption levels of at most two other
nodes. Thus, the Second phase requires O(n?) time.

5 The O(n’p) Algorithm

Let us fix an (4,7) pair and an f = f(i,j) > max(z(i),z(j)) and sup-
pose we are just testing this (7, j, f) triple. We claim that we can compute
fmazxa(i,j, f, k) and fmina(i,j, f, k) overall for all k € [i + 1,7 — 1] in O(n)
time. This is enough to reduce the time to O(n?p) (compare Fig. 2).

First note that in the computations of Theorem 8, the part that takes
O(n) time is finding s in Lemma 10 and this is independent of &, therefore
it can be done once for (i, j, f).

Second, in the algorithms of Lemma 13 and Lemma 14, the merging and
summing procedure is exactly the same for k # k' if £ = k'(mod2). Suppose
that the z(k) demands of e.g. all even k € [i + 1,7 — 1] values are ordered
in non-decreasing order. Now, parallel to the merging of the two sides and
summing the black levels, we just need to record the fmax/fmin(i,j, f,.)
finishing times of the k& values by the given order of demands.

Let’s do the ordering of the z() values separately for the odd and even
nodes at the beginning of the First phase, and for an (7, j) pair let’s restrict
the ordered series to the nodes between 7 and j.

The O(n’p) Algorithm on Rings. We start the First phase like before:
we compute the F4(i, 7, f) values for all (4, j) paths not longer than n nodes
and each possible f. Instead of computing F4(0,n+1,0) in the end, we do the
following: On a cycle, a node of minimum finishing time is a compact local
minimum. We can test for each node to be such a node: the optimum sum
will be miny<;<n(Fa(i, i, x(i)) + x(i)), where F4(i,i,2(i)) is the computed
optimum on i+ 1,i 4+ 2,...,i+n — 1 =i — 1(modn). Finally, we can start
the scheduling with the compact local minimum.

19

6 Future work

It remains to be a challenging question, whether the pSMC on paths can be
solved in time polynomial in n. We firmly believe that the answer to this
question is yes. There doesn’t seem to be an obvious way to exploit our idea
on any graph class with maximum node degree A > 3. It might be interesting
to examine graph-classes with just a small number of nodes of degree > 3.

Acknowledgements

I would like to thank Déaniel Marx for the idea of searching for square-optimal
schedules. Special thanks to Katalin Friedl, for turning my attention to the
problem, and for her advice and plenty of help during the writing of this
paper.

References

[1] A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs.
Journal of Algorithms, 28:339-365, 1998.

[2] M. M. Halldérsson and G. Kortsarz. Tools for multicoloring with ap-
plications to planar graphs and partial k-trees. Journal of Algorithms,
42(2):334-366, 2002.

(3] E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michi-
gan University, 1989.

[4] D. Marx. The complexity of tree multicolorings. In Proc. 27th Intl. Symp.
Math. Found. Comput. Sci. (MFCS), LNCS. Springer, 2002.

[5] A. Bar-Noy M. Bellare M. M. Halld6rsson H. Shachnai and T. Tamir.
On chromatic sums and distributed resource allocation. Information and
Computation, 140:183-202, 1998.

6] A. Bar-Noy M. M. Halldérsson G. Kortsarz H. Shachnai and R. Salman.
Sum multicoloring of graphs. Journal of Algorithms, 37:422-450, 2000.

[7] M. M. Halldérsson G. Kortsarz A. Proskurowski R. Salman H. Shachnai
and J. A. Telle. Multi-coloring trees. Information and Computation,
180(2):113-129, 2002.

20

[8] T. Szkaliczki. Routing with minimum wire length in the dogleg-free Man-
hattan model is NP-complete. STAM Journal on Computing, 29(1):274—
287, 1999.

21

o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbriicken
GERMANY

e-mail:

library@mpi-sb.mpg.de

MPI-1-2003-NWG2-002 F. Eisenbrand
MPI-1-2003-NWG2-001 L.S. Chandran, C.R. Subramanian

Fast integer programming in fixed dimension

Girth and Treewidth

MPI-1-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces
MPI-1-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-1-2003-4-007

I. Ivrissimtzis, W. Jeong, H. Seidel

Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-1-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger, Visualization of Volume Data with Quadratic Super
H. Seidel Splines
MPI-1-2003-4-005 T. Hangelbroek, G. Nrnberger, The Dimension of C'! Splines of Arbitrary Degree on a
C. Roessl, H.S. Seidel, F. Zeilfelder Tetrahedral Partition
MPI-1-2003-4-004 P. Bekaert, P. Slusallek, R. Cools, A custom designed density estimation method for light
V. Havran, H. Seidel transport
MPI-1-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening
MPI-1-2003-4-002 C. Theobalt, M. Li, M. Magnor, A Flexible and Versatile Studio for Synchronized
H. Seidel Multi-view Video Recording
MPI-1-2003-4-001 M. Tarini, H.P.A. Lensch, M. Goesele, 3D Acquisition of Mirroring Objects
H. Seidel
MPI-1-2003-2-003 Y. Kazakov, H. Nivelle Subsumption of concepts in DL FLq for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete
MPI-1-2003-2-002 M. Jaeger A Representation Theorem and Applications to
Measure Selection and Noninformative Priors
MPI-1-2003-2-001 P. Maier Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete
MPI-1-2003-1-014 G. Schfer Average Case and Smoothed Competitive Analysis of

MPI-1-2003-1-013

MPI-1-2003-1-012

MPI-1-2003-1-011

I. Katriel, S. Thiel

D.

P.
P.

Fotakis, R. Pagh, P. Sanders,
Spirakis

Krysta, A. Czumaj, B. Voecking

the Multi-Level Feedback Algorithm

Fast Bound Consistency for the Global Cardinality
Constraint

Space Efficient Hash Tables with Worst Case Constant
Access Time

Selfish Traffic Allocation for Server Farms

MPI-1-2003-1-010 H. Tamaki A linear time heuristic for the branch-decomposition of
planar graphs
MPI-1-2003-1-009 B. Csaba On the Bollobéds — Eldridge conjecture for bipartite

graphs

MPI-1-2003-1-008
MPI-1-2003-1-007

MPI-1-2003-1-006
MPI-1-2003-1-005
MPI-1-2003-1-004

MPI-1-2003-1-003
MPI-1-2003-1-002

MPI-1-2003-1-001
MPI-1-2002-4-002

MPI-1-2002-4-001

MPI-1-2002-2-008

MPI-1-2002-2-007

MPI-1-2002-1-008

MPI-1-2002-1-005

MPI-1-2002-1-004

MPI-1-2002-1-003

MPI-1-2002-1-002
MPI-1-2002-1-001

MPI-1-2001-4-005

MPI-1-2001-4-004

MPI-1-2001-4-003

MPI-1-2001-4-002

MPI-1-2001-4-001

MPI-1-2001-2-006

MPI-1-2001-2-005

MPI-1-2001-2-004

MPI-1-2001-2-003

MPI-1-2001-2-002

MPI-1-2001-2-001

MPI-1-2001-1-007

MPI-1-2001-1-006

P. Sanders
H. Tamaki

M. Dietzfelbinger, H. Tamaki
M. Dietzfelbinger, P. Woelfel

E. Althaus, T. Polzin,
S.V. Daneshmand

R. Beier, B. Vcking
P. Krysta, P. Sanders, B. Vcking

P. Sanders, R. Dementiev

F. Drago, W. Martens,
K. Myszkowski, H. Seidel

M. Goesele, J. Kautz, J. Lang,
H.P.A. Lensch, H. Seidel

W. Charatonik, J. Talbot
W. Charatonik, H. Ganzinger

P. Sanders, J.L. Trff

M. Hoefer

S. Hert, T. Polzin, L. Kettner,
G. Schfer

I. Katriel, P. Sanders, J.L. Trff

F. Grandoni
T. Polzin, S. Vahdati

H.P.A. Lensch, M. Goesele, H. Seidel

S.W. Choi, H. Seidel

K. Daubert, W. Heidrich, J. Kautz,

J. Dischler, H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,

H. Seidel

H.P.A. Lensch, J. Kautz, M. Goesele,

W. Heidrich, H. Seidel
H. Nivelle, S. Schulz

V. Sofronie-Stokkermans

H. de Nivelle

wn

. Vorobyov

P. Maier

U. Waldmann

T. Polzin, S. Vahdati

T. Polzin, S. Vahdati

Soon to be published

Alternating cycles contribution: a strategy of
tour-merging for the traveling salesman problem

On the probability of rendezvous in graphs
Almost Random Graphs with Simple Hash Functions

Improving Linear Programming Approaches for the
Steiner Tree Problem

Random Knapsack in Expected Polynomial Time

Scheduling and Traffic Allocation for Tasks with
Bounded Splittability

Asynchronous Parallel Disk Sorting

Perceptual Evaluation of Tone Mapping Operators with
Regard to Similarity and Preference

Tutorial Notes ACM SM 02 A Framework for the
Acquisition, Processing and Interactive Display of High
Quality 3D Models

Atomic Set Constraints with Projection

Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi

The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

Performance of heuristic and approximation algorithms
for the uncapacitated facility location problem

Exp Lab A Tool Set for Computational Experiments

A Practical Minimum Scanning Tree Algorithm Using
the Cycle Property

Incrementally maintaining the number of l-cliques

Using (sub)graphs of small width for solving the Steiner
problem

A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models
Linear One-sided Stability of MAT for Weakly Injective

Domain

Efficient Light Transport Using Precomputed Visibility

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

Image-Based Reconstruction of Spatially Varying
Materials

Proceeding of the Second International Workshop of the
Implementation of Logics

Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

A Set-Theoretic Framework for Assume-Guarantee
Reasoning

Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

Partitioning Techniques for the Steiner Problem

MPI-1-2001-1-005

MPI-1-2001-1-004

MPI-1-2001-1-003
MPI-1-2001-1-002

T. Polzin, S. Vahdati

S. Hert, M. Hoffmann, L. Kettner,
S. Pion, M. Seel

M. Seel
U. Meyer

On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

An Adaptable and Extensible Geometry Kernel

Implementation of Planar Nef Polyhedra

Directed Single-Source Shortest-Paths in Linear
Average-Case Time

