
Finite Domain and Cutting Plane
Techniques in CLP(PB)

Peter Barth Alexander Bockmayr

MPI–I–94–261 November 1994

Authors’ Addresses

Peter Barth, Alexander Bockmayr

Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany

{barth,bockmayr}@mpi-sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be copyrighted if

accepted.

Acknowledgements

This work was supported by the German Ministry for Research and Technology (BMFT) (contract

ITS 9103), the ESPRIT Basic Research Project ACCLAIM (contract EP 7195) and the ESPRIT

Working Group CCL (contract EP 6028).

Abstract

Finite domain constraints are one of the most important constraint domains

in constraint logic programming. Usually, they are solved by local consistency

techniques combined with enumeration. We argue that, in many cases, the

concept of local consistency is too weak for both theoretical and practical rea-

sons. We show how to obtain more information from a given constraint set by

computing cutting planes and how to use this information in constraint solving

and constrained optimization. Focusing on the pseudo-Boolean case CLP(PB),
where all domains are equal to the two-element set {0, 1}, we present specialized
cutting plane techniques and illustrate them on a number of examples.

Contents

1 Introduction 3

2 Local Consistency 3

3 Cutting Planes 4

4 Cutting Planes in CLP(PB) 6

5 Pruning the Enumeration Tree 8

6 Global Consistency 9

7 Computational Experience 10

7.1 Integer Programming . 10

7.2 Propositional Satisfiability . 11

A Lift-and-Project Cutting Planes 15

B Generalized Resolution 15

2

1 Introduction

Constraint Logic Programming (CLP) combines the declarativity of logic programming with the

computational power of constraint solving over specific domains. Given a constraint solver over

a computational domain X , able to decide incrementally the consistency of a constraint set, the

CLP(X)-scheme [16] provides a semantic base for the corresponding CLP-language. Solving com-

binatorial optimization problems is one of the main application areas of CLP. Here, the computa-

tional domain X is instantiated to finite domains FD. Since solving finite domain constraints is,

in general, an NP-complete problem, the “most important operation on constraints . . . a test for

consistency” [17] has been relaxed in most systems to local consistency [12, 1, 13, 20, 11, 6]. Global

consistency has to be ensured by the programmer, using an extra enumeration predicate. A typical

finite domain program has the form

problem(<Vars>) :- <state constraints over Vars>,

<enumerate domain of Vars>.

The search for a feasible solution of the collected constraints is performed by the PROLOG back-

tracking mechanism, while the finite domain solver is responsible for pruning the search tree.

In this paper, we argue that in many cases the inferences obtained by achieving local consistency

are too weak for both theoretical and practical reasons. We propose to use a more powerful inference

system, cutting planes, which originally have been developed in operations research, but which also

have very interesting proof-theoretic properties. The organization of this paper is as follows. We

start in Sect. 2 with some semantic problems related to local consistency. In Sect. 3, we introduce

cutting planes in a very general way as a complete inference system for linear inequalities in integer

variables. In Sect. 4, we present two concrete cutting plane approaches for the pseudo-Boolean case

CLP(PB), where all variables are restricted to the domain {0, 1}. In Sect. 5, we explain how cutting

planes can improve branch-and-bound algorithms for solving constrained optimization problems.

Sect. 6 discusses some advantages of the cutting plane approach from the viewpoint of constraint

programming. Finally, Sect. 7 illustrates the effect of cutting planes by a number of empirical

results.

2 Local Consistency

We begin our discussion with some semantic problems related to local consistency. One of the

most important tasks of any constraint solver is to compute a simplified and concise solved form

of a given constraint set. Using only local consistency, this is in general not possible. Consider the

query

?-A+B ≥ 1, A+ (1−B) ≥ 1.

and assume that all variables are restricted to the domain {0, 1}. The answer of a CLP-system

based on local consistency techniques without extra enumeration predicate is, for example,

Delayed goals: A+B ≥ 1, A−B ≥ 0 yes.

This is correct, since the constraint set is satisfiable, but this is not a simplified and concise solved

form.

3

If we add an extra enumeration predicate enum([A,B]), then we can enumerate via backtracking

the complete solution set A = 1, B = 0 and A = 1, B = 1. In general, however, there may be an

exponential number of solutions, so this enumeration can be done only for very small examples.

What we would like to have, is a simple and concise description of the solution set. In this example,

the variable A has to be 1 in all solutions, and the variable B is arbitrary. So a good answer of a

CLP-system to the query ?-A+B ≥ 1, A+ (1−B) ≥ 1 would be

A = 1 yes.

If the set of collected constraints is unsatisfiable, new problems arise. Assume again that the

variables are restricted to the domain {0, 1}, and consider the query

?-A+B ≥ 1, A+ (1−B) ≥ 1, (1−A) +B ≥ 1, (1−A) + (1−B) ≥ 1.

The answer of a CLP-system based on local consistency techniques is

Delayed goals: A+B ≥ 1, A−B ≥ 0, B −A ≥ 0, 1−A−B ≥ 0 yes.

Especially the answer yes is misleading, since adding an extra enumeration predicate enum([A,B])

would yield the answer no. But, even adding an extra enumeration predicate cannot guarantee

that we detect inconsistency in practice. Consider the schematic program

f([A,B]) :- A+B ≥ 1, A+ (1−B) ≥ 1,

(1−A) +B ≥ 1, (1−A) + (1−B) ≥ 1, f([A,B]).

The query ?-f([A,B]),enum([A,B]). will go into an infinite loop. Note that a CLP(FD)-system in

the sense of [16] would have to answer no, since it has to ensure global consistency.

3 Cutting Planes

Finite domain constraint solvers are based on local consistency and constraint propagation. Local

consistency can be achieved very quickly. However, it is a rather weak principle. If we want to

extract more information from a given constraint set, more powerful techniques are needed. To get

an idea of what information can be hidden in a single constraint, consider the inequality

4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 7, (1)

in the 0-1 variables x1, . . . , x5 ∈ {0, 1}. From (1) we can deduce for example the inequalities

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1,

x2 + x3 + x4 ≥ 1, x2 + x3 + x5 ≥ 1, x2 + x4 + x5 ≥ 1,
(2)

but also
x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1,

x1 + x2 + x3 + x4 ≥ 2,

x1 + x2 + x3 + x5 ≥ 2, x1 + x2 + x4 + x5 ≥ 2.

(3)

Each of the systems (2) and (3) has the same set of 0-1 solutions as the original inequality (1).

The inequalities in (2) correspond to clauses in propositional logic. For example, x2 + x3 + x4 ≥ 1

4

can be written as x2 ∨ x3 ∨ x4. The inequalities in (3) are extended clauses, i.e. clauses with a

right-hand side greater than 1. They contain more information. For example, x1+x2+x3+x4 ≥ 2

states that at least 2 of the four variables x1, . . . , x4 must take the value 1. Therefore, it implies

x2 + x3 + x4 ≥ 1. The converse does not hold. The inequalities in (3) form the set Π of all

prime extended clauses of (1), i.e. each extended clause implied by (1) is implied by some extended

clause in (3) (see Sect. 4). Still another system, which corresponds to the set Γ of facet-defining

inequalities for the 0-1 polytope generated by the solutions of (1) (see Sect. 4), is

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1,

2x1 + 2x2 + x3 + x4 + x5 ≥ 4, 2x1 + x2 + x3 + x4 ≥ 3,

x1 + x2 + x3 + x5 ≥ 2, x1 + x2 + x4 + x5 ≥ 2.

(4)

How can we derive all these constraints from the original inequality (1)? Achieving local consistency

is not sufficient. The only thing local consistency allows us to do is to fix some variables to the

value 0 or 1. If for each variable xi there exist one solution with xi = 0 and another one with xi = 1,

like in the above example, nothing can be inferred, although there are many dependencies between

the variables, as illustrated by the inequalities in (2), (3), and (4). To find out these dependencies

we need a more powerful inference mechanism.

A general inference system to derive new inequalities from a given set of finite domain con-

straints, is the Chvátal-Gomory rounding procedure [19]. Consider a linear constraint system

Ax ≥ b, with an integer matrix A ∈ ZZm×n, and an integer vector b ∈ ZZm. A new constraint

⌈uTA⌉x ≥ ⌈uT b⌉ that is satisfied by all non-negative integer solutions of Ax ≥ b can be deduced in

two steps:

Non-negative linear combination. uTAx ≥ uT b, with u ∈ IRm
+ .

Rounding. ⌈uTA⌉x ≥ ⌈uT b⌉, where ⌈z⌉ is obtained from z by rounding up each component zi to

the smallest integer number greater or equal zi.

The first step is obvious. Even all real solutions of Ax ≥ b satisfy uTAx ≥ uT b. To justify the

second step, note that for x ≥ 0 rounding up the left-hand side of uTAx ≥ uT b gives the weaker

inequality ⌈uTA⌉x ≥ uT b. For all integer vectors x ∈ ZZn, the left-hand side of this inequality is

integer. Therefore, we can round up also the right-hand side and obtain ⌈uTA⌉x ≥ ⌈uT b⌉, for all

non-negative integer solutions of Ax ≥ b.

The Chvátal-Gomory procedure has the following geometric interpretation. Each inequality

aTx ≥ β in the system Ax ≥ b defines a closed half space in n-dimensional real space. The

system Ax ≥ b defines a finite intersection of such half spaces, which is called a polyhedron P . The

inequality uTAx ≥ uT b is valid for P , that is P is contained in the associated half space. If we

assume that uTA consists of relatively prime integer numbers, then rounding up the right-hand

side uT b means that we push the hyperplane uTAx = uT b into P until it meets an integer point,

which however may lie outside P (see Fig. 1). Since ⌈uTA⌉x ≥ ⌈uT b⌉ may cut off a part of the

polyhedron P , it is called a cutting plane.

The Chvátal-Gomory Procedure is a complete inference systems for linear integer constraints.

It was shown by V. Chvátal in 1973 for bounded integers and by A. Schrijver in 1980 for the

general case that any linear inequality cTx ≥ δ, with c ∈ ZZn, δ ∈ ZZ, that is satisfied by all integer

5

0

1

2

3

0 1 2 3 4 5

...........
...........
...........
...........
...........
...........
...........
...........
..

...

...

.........
....
.........
....
.........
....
.........
....
.............

.............
.............

.............
.............

.............
.............

.............

b b
b b

b

b b
b

b

b
b b

bb

b
r

r
r

x1 + 2x2 = 71
2

x1 + 2x2 = 7

Fractional vertex
P

PS

....
..

Figure 1: Chvátal-Gomory Cutting Plane

solutions of the system Ax ≥ b, can be obtained by finitely many applications of the Chvátal-

Gomory Procedure. If Ax ≥ b has no integer solutions, then we can derive a contradiction 0 ·x ≥ 1

[21].

In the given form, the Chvátal-Gomory Procedure is not effective. It is not clear how to

choose the weights in the non-negative linear combination of the given constraint matrix. However,

several well-known inference rules are subsumed by the Chvátal-Gomory principle. For example,

this holds for resolution in propositional logic. It is easy to see that any classical resolvent of a set

of propositional clauses of the form

x1 ∨ . . . ∨ xm ∨ y1 ∨ . . . ∨ yk

can be obtained as a Chvátal-Gomory cutting plane from the corresponding clausal inequalities,

which have the form

x1 + · · ·+ xm − y1 − · · · · · · − yk ≥ 1− k ,

together with the bounds 0 ≤ xi, yj ≤ 1. But, Chvátal-Gomory cutting planes are strictly more

powerful. For example, the unsatisfiablity of the famous pigeon-hole problem (fit n pigeons into

n− 1 holes) can be proved by cutting planes in O(n3) steps, whereas any resolution proof requires

exponentially many steps [10].

4 Cutting Planes in CLP(PB)

Using cutting planes, we can make explicit any dependency between the variables in the problem

that is expressible by linear inequalities. This, however, is far too general to be practically useful.

Therefore, we focus now on a special class of finite domain constraints, for which efficient cutting

plane techniques are available. We consider pseudo-Boolean constraints, where all domains are

equal to the two-element set {0, 1}. Formally, pseudo-Boolean constraints are defined as equations

or inequalities between integer polynomials in 0-1 variables. They arise naturally in many prac-

tical applications, in particular in problems from combinatorial optimization. A constraint logic

programming language CLP(PB) for logic programming with pseudo-Boolean constraints was in-

troduced in [8].

Let C be a set of pseudo-Boolean constraints. Using linearization techniques [4], we can assume

that C is given as a system of linear pseudo-Boolean inequalities of the form C : Ax ≥ b, x ∈ {0, 1}n

with A ∈ ZZm×n and b ∈ ZZm. By P = {x ∈ IRn | Ax ≥ b, 0 ≤ x ≤ 1} we denote the linear relaxation

and by S = P ∩{0, 1}n the 0-1 solution set of C. We will present two cutting plane approaches for

6

solving C. In both cases, the basic idea is to solve C by approximating an ideal solved form, which

is either

1. the set of facet-defining inequalities Γ [9] or

2. the set of prime extended clauses Π [4].

Let PS = conv(S) ⊂ IRn denote the convex hull of the 0-1 set S (see Fig. 1). An inequality cTx ≥ δ

is called facet-defining for PS , if it is satisfied by all points in PS and if moreover there are dim(PS)

affinely independent points in PS , for which it is satisfied at equality. Geometrically, this means

that cTx ≥ δ defines a face of maximal dimension of the 0-1 polytope PS . The ideal solved form Γ

is the set of all facet-defining inequalities for PS .

An extended clause is an inequality of the form L1+ · · ·+Lm ≥ d (shortly L ≥ d), where d ≥ 1

is a positive integer number and Li, i = 1, . . . ,m, is either a positive literal xi or a negative literal

xi = 1 − xi. Intuitively, the clause holds if at least d out of the m literals Li are true. Classical

clauses correspond to the case d = 1. An extended clause L ≥ d is prime for a set S ⊆ {0, 1}n

if it is satisfied by all points in S and if there is no other extended clause with this property that

logically implies L ≥ d. The ideal solved form Π is the set of all prime extended clauses for S.

The two solved forms Γ and Π fit into the requirements imposed in the context of CLP. First,

Γ and Π have the same set of 0-1 solutions as the original constraint set C. Second, Γ and Π ease

deciding entailment, which is particularly important in the context of concurrent constraint logic

programming.

1. A linear pseudo-Boolean inequality cTx ≥ δ is entailed by C iff min{cTx | x ∈ S} ≥ δ. Since

the minimum of cTx over the polytope PS = conv(S) is attained in an extreme point x∗ ∈ S,

we have the basic relationship

min{cTx | x ∈ S} = min{cTx | x ∈ PS}. (5)

The first problem is a discrete linear optimization problem over the set S ⊆ {0, 1}n, while
the second problem is a continuous linear optimization problem over the polytope PS ⊆ IRn.

Given the linear inequality description Γ of PS , deciding entailment can be reduced to a linear

programming problem, which can be solved very efficiently.

2. An extended clause L ≥ d is entailed by C if and only if it is entailed by a single extended

clause in Π. Deciding entailment between two extended clauses is easy. In fact, L ≥ d entails

L′ ≥ d′ iff |L \ L′| ≤ d − d′. Here, L and L′ are viewed as sets of literals. Reformulation

techniques transforming arbitrary linear pseudo-Boolean inequalities into an equivalent set of

extended clauses are available [4].

The ideal solved forms Γ and Π may involve an exponential number of constraints. Therefore,

in general, they cannot be computed in practice. Providing the ideal solved form, however, is not

necessary. It suffices to approximate it until satisfiability or entailment can be decided easily. This

approximation is done by computing cutting planes. At each step, one or several cutting planes are

generated and added to the current constraint set, followed by simplification. The cutting planes

are chosen in such a way that they lead closer to the ideal solved form. Consider the satisfiability

problem for the constraint set C.

7

1. We start by solving the linear relaxation P = {x ∈ IRn | Ax ≥ b, 0 ≤ x ≤ 1}. If P is empty,

then C is unsatisfiable. Otherwise, we obtain an extreme point x∗ of the polyhedron P . If

x∗ ∈ {0, 1}n, then C is satisfiable. If x∗ ̸∈ {0, 1}n, we generate cutting planes that cut off

x∗, but leave invariant the 0-1 solution set S. The set C ′ obtained from C by adding these

cutting planes better approximates Γ, since the associated polyhedron P ′ is smaller than P .

Finding strong cutting planes, ideally facets in Γ, is an active research area in polyhedral

combinatorics. Recently developed strong cutting plane algorithms for general 0-1 problems

can be embedded into CLP-systems (see Appendix A and [9]).

2. Each extended clause entailed by C is entailed by a single extended clause in Π. To better

approximate Π, we look for an extended clause not yet entailed by a constraint in C. We

start an implicit enumeration algorithm on C, and suppose that we obtain a failure after

fixing all literals in a set L to the value 1. It can be shown that the clause L ≥ 1 is valid,

but not yet entailed by any pseudo-Boolean constraint in C. Thus, adding L ≥ 1 to S

gives a better approximation of Π, since more extended clauses are entailed. A subsequent

simplification procedure ensures that also extended clauses with a right-hand side greater

than 1 are generated. The choice of L focuses on the current entailment problem. If the

implicit enumeration algorithm finds a feasible 0-1 solution, we know that C is satisfiable. If

0 ≥ 1 is entailed, then C is unsatisfiable (see Appendix B and [4]).

A valid constraint not yet entailed by some constraint in C is also called a logic cut. There exist

many parallels between logic cuts and the more classical polyhedral cuts used in the first approach.

Logic cuts approximate the set of prime extended clauses Π, polyhedral cuts the set of facet-defining

inequalities Γ. A facet-defining inequality need not be prime, and a prime inequality need not be

facet-defining. However, techniques for deriving logic cuts may carry over to the generation of

polyhedral cuts and vice versa.

5 Pruning the Enumeration Tree

Many practical applications of finite domain techniques involve the optimization of some objective

function subject to a given constraint set. Consider the maximization problem

max{cTx | Ax ≥ b, x ∈ ZZn}, (6)

with A ∈ ZZm×n, b ∈ ZZm, c ∈ ZZn. The basic principle applied in finite domain constraint solvers to

solve this problem is

• find a feasible solution x∗ of the current constraint system

• add the inequality cTx ≥ cTx∗ + 1 as a new constraint

until the constraint system becomes infeasible. The last feasible solution that was found is an

optimal solution of problem (6).

While feasible solutions yield lower bounds for the maximum value of the objective function,

upper bounds are also very important. First, upper bounds give us information about the quality

of a feasible solution even without knowing the optimal solution. If the objective function value

8

of a feasible solution is close to the upper bound, then it must also be close to the optimum.

Often, good feasible solutions can be found very quickly, while finding an optimal solution may

take a very long time. The search can be stopped, if we know that only a minor improvement is

still possible. Second, upper bounds can be used to discard whole sets of feasible solutions from

further consideration. Suppose the set of feasible solutions S has been divided into two subsets

S0 and S1. If we know that max{cTx | x ∈ S0} ≤ u and we have found a feasible solution x∗

with cTx∗ > u, then the optimal solution of the problem must be contained in S1. To apply

this branch-and-bound principle, good upper bounds for the objective function are crucial. The

bounds obtained by local consistency, however, are very weak. Consider, for example, the constraint

x1 + · · · + xn ≤ 1, x ∈ {0, 1}n, and the objective function cx1 + · · ·+ cxn, with c ≥ 0. Using local

consistency, we can derive only the trivial upper bound nc, although there is the much better bound

c.

A more powerful principle to derive upper bounds, widely used in mathematical programming,

is to consider the linear relaxation

max{cTx | Ax ≥ b, x ∈ IRn}, (7)

of the original problem (6). This problem can be solved very efficiently by linear programming tech-

niques like the Simplex algorithm. Obviously, we have max{cTx | Ax ≥ b, x ∈ ZZn} ≤ max{cTx |
Ax ≥ b, x ∈ IRn}. Cutting planes tighten the linear relaxation without changing the set of inte-

ger solutions. Therefore, they improve the upper bound obtained by solving the linear relaxation

and thus reduce the search space of branch-and-bound. The combination of branch-and-bound

with cutting plane generation, called branch-and-cut, has been extremely successful during the last

years. For many hard problems, there is no hope to solve them by pure branch-and-bound. Only

when cutting planes are generated, good feasible or even optimal solutions can be obtained. For

the notoriously hard traveling salesman problem, instances up to 7397 cities, which corresponds to

27.354.106 0-1 variables, could be solved to optimality using branch-and-cut [2].

6 Global Consistency

Cutting planes can be used in a flexible way. Adding a few cutting planes already can yield a tighter

description of the problem that significantly reduces the number of enumeration steps. Generating

more cutting planes, we can decide consistency and provide a simplified and concise solved form of

the constraint system. The advantages are as follows. From the theoretical point of view, ensuring

global consistency gives a semantics in accordance with the original CLP(X)-scheme [16]. From

the practical point of view of programming with constraints, global consistency allows us to write

’real’ CLP-programs that can react to a failure precisely at the point where it occurs. Consider,

for example, the CLP-program

problem(<Vars>) :- cA(<Vars>),cB(<Vars>),cC(<Vars>).

cA(<Vars>) :- <state constraint over Vars>.

cA(<Vars>) :- <react to failure>.

.... ,

where cB and cC are defined similar to cA. Suppose that <state constraint over Vars> in cA

causes global, but not local inconsistency, whereas <state constraint over Vars> in cB and cC

9

cause no failure. If we ensure global consistency we will detect immediately the failure of the first

clause of cA, and can try the next clause. In a CLP-system based on local consistency, however,

failure will be detected only at the end in the extra enumeration predicate. By backtracking, we

will then retry cC, which is not intended. The wrong choice will be detected again only at the end,

during enumeration. Next cB will be retried, and only after one more iteration we will finally retry

cA. This illustrates how global consistency can enhance the efficiency of the program, and enables

the user to program explicitly with the failure of constraints. Another important point is that as

long as global consistency is ensured, the execution of a CLP-program does not depend on the

underlying constraint solver. Thus, existing applications need not be rewritten when the constraint

solving techniques of a CLP-system are enhanced.

It has been argued that ensuring global consistency for finite domain constraints in the context

of CLP is not achievable, since this is in general an NP-complete problem. As a consequence,

constraint solving has been delayed, and only local consistency is ensured. The advantage of

delaying constraint solving is that if all constraints are known, these can be used for pruning the

search space. The argument is that ensuring global consistency at each computation step might be

very complex, while deciding consistency of the complete constraint set at the end might be trivial.

However, we feel that for a large fraction of practical problems this is not the case. In particular,

this is true for optimization problems, meanwhile a standard functionality of CLP-systems [24, 17],

where we collect a set of constraints and then determine the optimal value of an objective function.

Typically, the constraint set is easily shown to be consistent. For many applications the constraints

that may cause inconsistency, or that make the problem hard, are known in advance. By reordering

the collection of constraints such that these hard constraints are added at the end, we will spend

effort at the same point where the extra enumeration predicate would. Promising experience in this

direction has been made with incremental enumeration algorithms for clausal satisfiability problems

that ensure global consistency [15]. Furthermore, almost all typical CLP-programs in systems with

incomplete solvers employ a determinate collection of the constraints, since inconsistency of the

current constraint set cannot be used to guide the computation. Typically, indeterminacy is only

employed in the extralogical enumeration predicate. A specialized CLP-compiler can extract these

determinate constraint collections and the whole set of accumulated constraints can be given at

once to the underlying complete solver. Hence, for typical CLP-programs written for incomplete

constraint solvers, there is no loss in efficiency due to hard intermediate problems. On the other

hand, the full power of a complete solver is available whenever a ’real’ CLP-program has to be

executed.

7 Computational Experience

7.1 Integer Programming

The utility of cutting plane generation has been widely recognized in the mathematical program-

ming community. For example, cutting planes are used in the mixed integer programming systems

MINTO [18], MIPO [3], MOPS [22] as well as in the commercial systems OSL and CPLEX 3.0. For

the new release CPLEX 3.0, we compared pure branch-and-bound with branch-and-cut. As a set of

benchmarks, we used the pure 0-1 problems in the mixed integer programming library MIPLIB [7],

except the very difficult problems air04, air05, p0548, p2756, and p6000. All experiments were

10

Table 1: MIPLIB: Branch-and-bound vs. branch-and-cut

CPLEX 3.0 Branch & Bound Branch & Cut

Name #C #V Nodes Time Nodes Cuts Time

bm23 20 27 452 1.88 590 0/0/59 5.80

l152lav 97 1989 24732 2415.20 7226 0/0/70 976.32

lp4l 85 1086 69 4.27 297 66/0/2 37.68

lseu 28 89 15889 82.05 1932 17/0/31 14.95

misc01 54 83 721 6.97 439 10/7/16 5.95

misc02 39 59 60 0.60 44 8/3/0 0.55

misc03 96 160 527 16.77 428 13/6/0 15.40

misc07 212 260 22832 1450.48 11854 17/14/0 858.70

mod010 146 2655 1065 109.75 292 58/0/0 42.33

p0033 16 33 964 2.23 82 5/0/21 0.47

p0040 23 40 54 0.17 0 0/0/1 0.07

p0201 133 201 1023 25.83 986 6/0/62 45.25

p0282 241 282 > 100000 > 2000.00 749 269/40/122 39.65

p0291a 252 291 > 100000 > 2000.00 40 413/14/40 5.02

pipex 25 48 3452 12.08 337 0/0/62 3.02

sentoy 30 60 723 4.92 1129 0/0/65 19.97

aNo presolving

done on a SPARC 10/31. The integer optimizer of CPLEX 3.0 generates only two special classes

of cutting planes, clique cuts and cover cuts, which are not applicable to all problems. Other,

more sophisticated cutting plane techniques, like those of MIPO (see Appendix A), may lead to

further improvements. Table 1 contains those problems for which there exists a significant differ-

ence between pure branch-and-bound and branch-and-cut with CPLEX 3.0. The columns #C and

#V indicate the number of constraints and 0-1 variables in the problem. The next two columns

give the number of nodes and the running time (in seconds) of the pure branch-and-bound variant

of CPLEX 3.0 (option: covers = cliques = –1), which already is known to be very efficient. The

last three columns give the number of nodes, the number of generated clique cuts/applied clique

cuts/applied cover cuts, and the running time (in seconds) of the branch-and-cut variant of CPLEX

3.0 (option: covers = cliques = 1). In most cases, branch-and-cut is better than branch-and-bound,

in particular for problems with a large number of nodes. In some of the smaller examples, the num-

ber of nodes increases when cutting planes are generated, due to the branching heuristics of CPLEX

3.0.

7.2 Propositional Satisfiability

The clausal satisfiability problem of propositional logic (SAT) is fundamental to a large number of

practical problems. It has become a standard for the evaluation of constraint solvers. We show on

two examples how cutting plane methods can be applied successfully to notoriously hard instances

of the SAT-problem.

First, we consider the well-known pigeon-hole problems. By a restricted application of the di-

11

Table 2: Combinatorial SAT-problems

Name Vars Clauses CPLEX Simp SCPLEX

ulmbc060 60 610 3.22 5.40 0.35

ulmbc084 84 994 1.62 12.90 0.40

ulmbp096* 96 244 364.23 1.28 0.05

ulmbp126* 126 351 >1000 2.30 0.07

ulmbp160* 160 485 >1000 4.18 0.10

ulmbp198* 198 649 >1000 7.21 0.12

ulmbs084 84 189 6.70 0.78 0.03

ulmbs112 112 280 89.70 1.50 0.07

hole6* 42 133 25.02 0.38 0.02

hole7* 56 204 306.90 0.87 0.03

hole8* 72 297 >1000 1.71 0.02

hole10* 110 561 >1000 5.86 0.08

hole20* 420 4221 >1000 291.30 0.10

nod5col4* 40 130 2.20 0.70 0.22

nod6col4* 60 255 12.68 2.21 0.05

nod7col4* 84 441 86.98 6.25 0.12

nod7col6* 126 651 >1000 11.91 797.42

agonal sum rule (see Appendix B), we are able to construct automatically a cutting plane proof

similar to the one found by Cook et al. [10]. This specialized cut generation technique has been

incorporated into a logic cut based constraint solver [4]. In combination with a linear programming

system, we obtain a constraint solver that detects unsatisfiability of the pigeon hole problems in

polynomial time [5]. In Table 2, we report computational results for solving some satisfiability

problems with CPLEX (Branch & Bound) and for solving the simplified problem after cut gen-

eration. In the column ’CPLEX’ we report the running time (in seconds) for solving the original

problem with CPLEX. In column ’Simp’ we report the time used by a simple Prolog-prototype for

the logic cut generation and in ’SCPLEX’ the running time of CPLEX for solving the preprocessed

problem. We also included some other examples in order to demonstrate the wider applicability of

the approach.

Second, we consider some of the “aim...” problems, artificially generated instances of the SAT

problem with at most 3 literals per clause, found in the DIMACS-collection [23]. The names give

more information about the problem, e.g. aim-100-1 6-no-1 means that the problem is unsatisfiable

and that it contains 100 variables and 160 clauses. We solved the problems with a prototype

implementation of a logic cut based pseudo-Boolean constraint solver that generates logic cuts, as

presented on page 8, and additionally includes simplifications steps based on the deductive system

“generalized resolution” (see Appendix B), which further strengthen the derived logic cuts [5, 4].

We report the number of logic cuts generated with “generalized resolution” (GRCuts), the number

of logic cuts generated by enumeration (ECuts) and the running time (Time) needed to solve the

problem. We compare the results with SATO [25], a state-of-the-art implementation of the implicit

enumeration Davis-Putnam procedure, where we abort the search after the first solution of the

problem has been found or all branches have been explored. We report the number of evaluated

12

Table 3: “aim. . .” Problems

Name DPNodes DPTime ECuts GRCuts Time

aim-100-1 6-no-1 521776459 56812.13 70 131 39.43

aim-100-1 6-no-2 324665079 31308.94 15 33 7.50

aim-100-1 6-no-3 212014823 35305.32 168 65 113.18

aim-100-1 6-no-4 531054239 55406.34 88 122 55.70

aim-100-1 6-yes1-1 16459005 1782.93 0 22 0.55

aim-100-1 6-yes1-2 53 0.0 0 20 0.53

aim-100-1 6-yes1-3 42288874 4860.4 41 12 15.51

aim-100-1 6-yes1-4 53778746 5677.95 0 10 2.80

aim-100-2 0-no-1 92442475 12880.38 6 13 7.80

aim-100-2 0-no-2 53797042 6675.17 7 18 8.48

aim-100-2 0-no-3 24070150 2786.52 32 38 27.61

aim-100-2 0-no-4 268969301 31555.01 64 26 53.10

aim-100-2 0-yes1-1 271346 24.8 75 108 51.98

aim-100-2 0-yes1-2 32300 3.66 3 80 7.51

aim-100-2 0-yes1-3 24876 2.86 39 26 17.75

aim-100-2 0-yes1-4 166373 24.99 1 96 7.16

aim-100-3 4-yes1-1 10 0.01 7 67 24.30

aim-100-3 4-yes1-2 77 0.02 7 122 43.10

aim-100-3 4-yes1-3 121 0.03 3 131 25.41

aim-100-3 4-yes1-4 915 0.17 5 97 26.58

nodes (DPNodes) and the running time (DPTime).

We selected only some of the problems in order to demonstrate the applicability of the presented

logic cut method. The smaller problem instances (50 variables) are solved in about the same time

by both methods, but almost always fewer cuts are generated than nodes visited. Most hard larger

instances (200 variables) cannot be solved by SATO in reasonable time. The logic cut method was

able to solve many of the hard larger instances within 1000 seconds running time. The final state

of the logic cut based method for the satisfiable instances consists of the single extended clause

L ≥ |L|, where L is the set of all literals that need to be fixed to 1. Thus, the information that the

satisfiable instances have a unique solution is determined by the solver. An implicit enumeration

procedure, like SATO, would have to enumerate completely the remaining search space for detecting

this information.

References

[1] A. Aggoun, D. Chan, P. Dufresne, E. Falvey, H. Grant, A. Herold, G. Macartney, M. Meier,

D. Miller, B. Perez, E. van Rossum, J. Schimpf, P. A. Tsahageas, and D. H. de Villeneuve.

ECLIPSE 3.4, ECRC Common Logic Programming System. Technical report, ECRC, Munich,

July 1994.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (A preliminary

report). Distributed at the Mathematical Programming Symposium, Ann Arbor, August 1994.

13

[3] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed

0-1 programs. Mathematical Programming, 58:295 – 324, 1993.

[4] P. Barth. Logic-based 0-1 constraint solving in constraint logic programming. PhD thesis,

Fachbereich Informatik, Univ. des Saarlandes, 1994. Forthcoming.

[5] P. Barth. Simplifying clausal satisfiability problems. In Constraints in Computational Logic

CCL’94, Munich, pages 19–33. Springer, LNCS 845, 1994.

[6] F. Benhamou, D. McAllester, and P. van Hentenryck. CLP(Intervals) revisited. Technical

Report CS-94-18, Brown Univ., April 1994.

[7] R. E. Bixby, E. A. Boyd, and R. Indovina. MIPLIB: A test set for mixed integer programming

problems. SIAM News 25, page 16, 1992. ftp: softlib.rice.edu.

[8] A. Bockmayr. Logic programming with pseudo-Boolean constraints. In F. Benhamou and

A. Colmerauer, editors, Constraint Logic Programming. Selected Research, chapter 18, pages

327 – 350. MIT Press, 1993.

[9] A. Bockmayr. Cutting planes in constraint logic programming. Technical Report MPI-I-94-207,

Max-Planck-Institut für Informatik, Saarbrücken, February 1994.

[10] W. Cook, C. R. Coullard, and Gy. Turán. On the complexity of cutting plane proofs. Discrete

Applied Mathematics, 18:25 – 38, 1987.

[11] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In Proc. 10th Intern.

Conf. Logic Programming, Budapest, 1993.

[12] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The constraint logic

programming language CHIP. In Fifth Generation Computer Systems, Tokyo, 1988. Springer,

1988.

[13] W. S. Havens, S. Sidebottom, G. Sidebottom, J. Jones, and R. Ovans. Echidna: a constraint

logic programming shell. In Pacific Rim Int. Conf. Artificial Intelligence, Seoul, Korea, pages

165 – 171, 1992.

[14] J. N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research,

12:217 – 239, 1988.

[15] J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic Programming,

15:177 – 186, 1993.

[16] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp. Principles

of Programming Languages, Munich, 1987.

[17] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Pro-

gramming, 1994.

[18] G. Nemhauser, M. W. P. Savelsbergh, and G. Sigismondi. MINTO, a Mixed INTeger Opti-

mizer. Operations Research Letters, 15:47 – 58, 1994.

14

[19] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley,

1988.

[20] W. Older and F. Benhamou. Programming in CLP(BNR). In Principles and Practice of

Constraint Programming PPCP’93, Newport, RI, 1993.

[21] A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

[22] U. Suhl. MOPS - Mathematical OPtimization System. Europ. J. Oper. Res., 72:312 – 322,

1994.

[23] M. Trick. The second DIMACS international algorithm implementation challenge: Clique,

graph coloring, and satisfiability, 1993. ftp: dimacs.rutgers.edu.

[24] P. van Hentenryck. Constraint satisfaction in logic programming. MIT Press, 1989.

[25] H. Zhang. SATO: A decision procedure for propositional logic. Association of Automated

Reasoning Newsletters, 22:1–3, March 1993.

A Lift-and-Project Cutting Planes

A complete polyhedral cutting plane method for linear pseudo-Boolean constraints is the lift-and-

project approach [3]. Consider a polyhedron P = {x ∈ IRn | Ax ≥ b, 0 ≤ x ≤ 1} = {x ∈ IRn |
Ãx ≥ b̃}, with A ∈ IRm×n, b ∈ IRn, and a fractional vertex x∗ of P . For any j ∈ {1, . . . , n} with

0 < x∗j < 1 a lift-and-project cutting plane αx ≥ β that cuts off x∗ can be obtained by solving a

linear program of the form

max{β − x∗α | (α, β) ∈ R∗
j (P) ∩ T}.

Here, R∗
j (P) is the polyhedral cone consisting of those (α, β) ∈ IRn+1 for which there exist vectors

u, v ∈ IRm+2n and u0, v0 ∈ IR satisfying

α −uÃ −u0ej = 0

α −vÃ −v0ej = 0

ub̃ = β

vb̃ +v0 = β

u, v ≥ 0,

and ej is the j-th unit vector in IRn. The set T is a normalization that truncates the cone R∗
j (P),

for example T = {(α, β) |
∑n

i=1 |αi| ≤ 1}.
Given a system of linear pseudo-Boolean constraints Ax ≥ b, x ∈ {0, 1}n, the lift-and-project

method yields in finitely many steps either a 0-1 solution or detects that the problem is unsatisfiable

[9].

B Generalized Resolution

A complete inference system for deriving the set of prime extended clauses for a set of extended

clauses E is generalized resolution [14, 5], which is based on the following rules.

15

Resolution: E ⊢ E∪{R} if there exist classical clauses C1 and C2 each implied by some extended

clause in E such that R is a classical resolvent of C1 and C2 and R is not implied by some

extended clause in E.

Diagonal Sum: E ⊢ E ∪ {DS} if there exist m− d+ 1 out of the m extended clauses

L2 +L3 + · · · +Lm−1 +Lm ≥ d

L1 +L3 + · · · +Lm−1 +Lm ≥ d
...

L1 +L2 +L3 + · · · +Lm−1 ≥ d

that are implied by some extended clause in E such that DS is the extended clause

L1 +L2 +L3 + · · · +Lm−1 +Lm ≥ d+ 1

and DS is not implied by some extended clause in E.

Here, the symbol 2 is used to indicate a missing literal.

Simplification: E ⊎ {C} ⊢ E iff C is implied by some extended clause in E.

Given a set of extended clauses E, applying these rules as long as possible, yields the set of

prime extended clauses for the 0-1 solution set S of E [14]. Note that both, resolvents and diagonal

sums, are special Chvátal-Gomory cutting planes.

���
�

�� k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: kraemer@mpi-sb.mpg.de

MPI-I-94-246 M. Hanus On Extra Variables in (Equational) Logic
Programming

MPI-I-94-241 J. Hopf Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the
KI-94 Workshop

MPI-I-94-240 P. Madden Recursive Program Optimization Through Inductive
Synthesis Proof Transformation

MPI-I-94-239 P. Madden, I. Green A General Technique for Automatically Optimizing
Programs Through the Use of Proof Plans

MPI-I-94-238 P. Madden Formal Methods for Automated Program
Improvement

MPI-I-94-235 D. A. Plaisted Ordered Semantic Hyper-Linking

MPI-I-94-234 S. Matthews, A. K. Simpson Reflection using the derivability conditions

MPI-I-94-233 D. A. Plaisted The Search Efficiency of Theorem Proving
Strategies: An Analytical Comparison

MPI-I-94-232 D. A. Plaisted An Abstract Program Generation Logic

MPI-I-94-230 H. J. Ohlbach Temporal Logic: Proceedings of the ICTL Workshop

MPI-I-94-229 Y. Dimopoulos Classical Methods in Nonmonotonic Reasoning

MPI-I-94-228 H. J. Ohlbach Computer Support for the Development and
Investigation of Logics

MPI-I-94-226 H. J. Ohlbach, D. Gabbay, D. Plaisted Killer Transformations

MPI-I-94-225 H. J. Ohlbach Synthesizing Semantics for Extensions of
Propositional Logic

MPI-I-94-224 H. Aı̈t-Kaci, M. Hanus, J. J. M. Navarro Integration of Declarative Paradigms: Proceedings
of the ICLP’94 Post-Conference Workshop Santa
Margherita Ligure, Italy

MPI-I-94-223 D. M. Gabbay LDS – Labelled Deductive Systems: Volume 1 —
Foundations

MPI-I-94-218 D. A. Basin Logic Frameworks for Logic Programs

MPI-I-94-216 P. Barth Linear 0-1 Inequalities and Extended Clauses

MPI-I-94-209 D. A. Basin, T. Walsh Termination Orderings for Rippling

