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Abstract

Often, calculi for manipulating and reasoning about programs can be recast as calculi
for synthesizing programs. The difference involves often only a slight shift of perspec-
tive: admitting metavariables into proofs. We propose that such calculi should be
implemented in logical frameworks that support this kind of proof construction and
that such an implementation can unify program verification and synthesis. Our pro-
posal is illustrated with a worked example developed in Paulson’s Isabelle system. We
also give examples of existent calculi that are closely related to the methodology we
are proposing and others that can be profitably recast using our approach.
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1 Introduction

What is the difference between program verification and program synthesis? Can a calculus designed for
one of these activities be reused or recast for the other? These two questions motivate our work here; their
answers are important as they help us not only to understand better the theoretical relationship between
these development paradigms, but also to develop calculi and implement them on machines.

Let us illustrate the relationship between these two approaches, and that there exists a space of design
options between them, by choosing a popular kind of programming logic as an example: constructive type
theory as a logic for functional programs, as embodied in Martin-Lof’s type theory [26], Nuprl [10] or
the Calculus of Constructions [11]. In such logics one proves that a term ¢ meets a specification T by
demonstrating that ¢ has the type 7', denoted ¢t € T'. For example, if

te (Va:Ty.Jy:Ts. R[z,y])

then, by the nature of the logic, for any « in in T3, t(z) evaluates to a pair (f(x),p(x)) in Tz where p(z) is a
proof that R[z, f(z)]. If R[x,y] were the relation that y is a sorted version of z, then f(z) must be a sorting
program. Whether such a type theory is used for verification, synthesis, or both, depends on how its rules
are formalized. Martin-Lof, in presenting his logic, gives rules for demonstrating that terms in the theory are
members of types; that is, the rules construct verification proofs (showing a given t meets some specification
T). The Nuprl system provides similar rules as “refinement rules”: one starts with a goal T' and constructs
a proof that T is true. In such proofs, the program ¢ may or may not be given a priori, and the system
contains two (very similar) sets of rules depending on whether ¢ is present (i.e., the goal is ¢t € T') or not (i.e.,
the goal is simply T'). In the former case, proofs verify programs. In the latter, they say how to construct or
synthesize programs, and the system may extract the inhabiting term ¢. The synthesis and extraction may
be understood in a very simple way: the term ¢ is initially a metavariable, and each proof rule elaborates
a bit more of the structure of ¢ (using substitutions derived from unification). The Oyster system [6] uses
exactly this approach and manipulates these metavariables behind the scenes. In [28], Paulson sketches an
implementation in Isabelle of Martin-Lof’s calculus. Here the relationship between verification and synthesis
is especially clear: they are one and the same activity! That is, metavariables become “first-class” objects
and may appear directly in proofs as well as proof rules; hence one reasons about a term ¢ € T where t may
be a specific ground term of the type theory, a metavariable, or even a combination of both. In the first case
we have verification, in the second synthesis, and in the third a hybrid where some parts of the program
structure are known and others left unspecified (see [17] for examples of uses for this). In all three cases
the same kind of proof rule is used to build proofs, independent of whether the goal contains an actual or a
schematic term; hence verification and synthesis are unified.

This idea of unifying verification and synthesis through metavariables is not new. It goes back at least as
far as Green’s use of resolution not only for checking answers to queries, but also for synthesizing programs
[13]. In his work, metavariables were introduced through Skolemization in preparation for resolution (see
section 4 for further details).

In this report we suggest that the second-order generalization of this idea can be applied to unify program
verification and synthesis in a wide range of settings. Our contributions will be several fold: first, we give this
generalization, justify why it is appropriate, and explain how it can be simply implemented using the Isabelle
theorem prover (section 2); second we present a worked example of the kind of development paradigm we
have in mind, that of logic program synthesis (section 3); finally, we conclude with a brief survey of related
work and give examples of existent calculi that are closely related to the methodology we are proposing and
show how others can be profitably recast using our approach.



2 Schematic Proofs

2.1 Modeling Proof Rules and Deductions

We are proposing an approach for implementing program synthesis calculi, so it is fitting that we begin by
considering some of the design issues involved which lead us to our choice. This will also help us compare
our work with other approaches later.

In logic texts, proof rules, and sometimes axioms, are presented schematically. That is, they contain
metavariables ranging over terms and formulae. For example, in a proof rule like

A B
ANB

A and B are not formulae but variables ranging over formulae. On the other hand, aside, perhaps, from
when one is doing metatheory, one works only with ground terms.! For our work we must allow both proof
rules and proofs themselves to be schematic. What is involved in providing machine support for this?

For logics without operators that bind variables (e.g., quantifiers) the answer is easy: we can represent
both proof rules and proofs using terms that may contain first-order metavariables. That is, the metavariables
range over the syntactic categories of the logic (terms, formulae, etc.) and may be manipulated using (sorted,
if there is more than one category) first-order unification. So in the above rule for A-I, A and B may be
first-order metavariables ranging over, say, propositional logic terms. Another example would be Prolog,
where a program is a set of axioms with schematic terms and execution corresponds to building a proof that
can contain schematic terms.

When logical syntax employs operators that bind variables, first-order metavariables are insufficient.
Consider for example the rule

(A-D)

Vx. A
Alt/z]

(V-E)

If we tried to represent the schematic formula in the premise of this rule as Vz. A, where A is a first-order
metavariable and substitution is as usually defined in first-order logic, then we could neither adequately
instantiate A nor properly substitute ¢ for . The former is problematic because substitution should be
capture avoiding (how is A to reference the name of the bound variable — which in this case is z7); the
latter is problematic because first-order substitution is only defined on ground terms. Of the few proof
systems that allow metavariables in proofs (e.g., [12, 23, 29]) higher-order metavariables are used and object-
level syntax is encoded using some kind of higher-order abstract syntax. A notable exception is the KIV
system[16], which possesses both first-order metavariables and binding operators in the logic; it copes with
the above mentioned instantiation problems somewhat crudely: substitution for metavariables allows capture
and substitution for ordinary variables is allowed only in ground terms; although this preserves validity of
proofs, it greatly restricts the way in which they may be built.

One option for implementing schematic rules and proofs on a machine is to formalize an appropriate notion
of variables ranging over terms with holes and their interaction with binding operators. Such a calculus has
been formalized in [31]. A simpler approach, used by advocates of “higher order abstract syntax”, is to use
variables ranging over functions in the lambda calculus. Under this approach a schematic term like A[z]
is represented as an application A(z) where A ranges over functions.? With this representation, given a
term like Vz. A(z) we may instantiate A with a formula valued function, say Ay.y + 3 = 5, and perform
a [-reduction yielding Va. 2z + 3 = 5. Now applying V-E with some (perhaps schematic) argument ¢ yields
t +3 = 5. This is identical to first instantiating Vz. A(x) with ¢ (yielding A(f)) and then instantiating

I'We employ the following terminology: A logical framework like Isabelle provides a metalogic for encoding and reasoning
about object logics. Metavariables are variables in the metalogic which range over the syntactic categories of the object logic.
We call terms containing metavariables schematic terms and proofs containing metavariables schematic proofs. Schematic
terms are also used in in informal mathematics, although the metalogic is unspecified. We will exclusively use the term ground
to refer to terms which contain no metavariables, although they may contain variables of the object logic (either free or bound).

2Functions whose domain is the syntactic category of = and co-domain the syntactic category of A[z].



A. The point is that this representation allows us proofs (and proof rules) where each step is valid for all
instantiations. Hence, we may construct a program incrementally through a proof and the result is logically
the same as if we had first given the program and then verified it (with the same proof!).

Implemented languages and frameworks supporting higher-order metavariables and unification, such as
A-Prolog or ELF, could provide an implementation to base our work upon. We have chosen Isabelle as it is
well suited for interactive proof construction, manipulation of schematic rules and proofs, and has support
for automated proof construction. These points will become clearer with our example.

2.2 Construction of Synthesis Proofs

We have conducted a number of synthesis experiments in the Isabelle system. These include synthesizing
logic programs, functional programs, and representations of circuits. In this section we provide details on
how Isabelle can be used this way, and background necessary to understand our worked example. An detailed
description of Isabelle can be found in [28].

For the kinds of examples we have in mind, it helps to begin with the view of a judgement or assertion.
Most proof systems have only one judgement, provability, but one can imagine other kinds; e.g., Martin-Lof
has four in his type theory (typehood, equality of types, membership in a type, and equalities of members).
We will use this notion to capture the idea that sequents we manipulate have certain shapes. For example,
if we wish to reason about imperative programs using a Hoare logic, then the judgements are triples of the
form {S} P{Q} where S and @Q are first order formulae and P a “while-loop” program. In this case, proof
rules will be structured so that they unify with such triples. Another example is that of reasoning about
VLSI or gate-level circuits: the judgements there are

V. spec(T) R Prog(T)

where T is a vector of variables representing port values, Prog is a term (or metavariable) representing a
circuit with external ports among the T, spec is a specification in first (or higher-order) logic expressing
constraints on the Z, and R is a refinement relation expressing the relationship between the program and
the specification. Typically such relations are equivalence or implication (when the program may be more
“concrete” than the specification). We will continue this discussion of hardware synthesis in section 4.

We wish to formalize such judgements in Isabelle and give proof rules such that proofs will verify or
construct (depending if there are metavariables in the original conjecture) programs that are correct with
respect to the intended semantics of the given programming logic. Isabelle is well suited to support this
activity. First, Isabelle is a logical framework. This means we can declare within it a desired object language
(syntactic categories and constructors) and axiomatize its proof rules. For instance, in first-order logic we
would declare function constants like implication and universal quantification respectively of typeso — 0 — o
and (i — 0) — o, where i is the sort of first order individuals, and o the sort of formulae. This logic is then
axiomatized by giving introduction and elimination rules for these defined logical constants.

Isabelle provides direct support for the construction of schematic proof rules and proofs. It manipulates
directly schematic inference rules of the form [¢1;...;¢,] = ¢ where the ¢ may contain higher-order
metavariables. The = is meta-level implication and this sequent represents the formula ¢y — (... =
(¢pn = ¢)...) in Isabelle’s metalogic, which is a fragment of higher-order logic. (The reader should be
careful not to confuse Isabelle’s implication, =, with implication in the object logic, or its higher order
universal quantifier “!!” with quantifiers in the object logic.) A proof in Isabelle proceeds by applying derived
rules to formulae of the above form until all the ¢; are proven, at which point ¢ is also proven. In our work,
¢ may initially contain metavariables, and at the end we can read off an assignment for them from the final
proof. This is illustrated below.

3 An Example: Logic Program Synthesis

We have chosen this problem domain as it admits a simple exposition and illustrates the essential ideas of
our proposed methodology: with only a few simple derived inference rules we may synthesize interesting logic



programs from first-order logic specifications. This domain is also interesting in its own right. Even though
full first-order logic can be seen as a programming language (e.g., via transformation to normal programs
[22]), there are many benefits to having a logic for deriving logic programs from first-order specifications. For
example, we may wish to synthesize an efficient program by changing the underlying algorithm embodied in
the recursive structure of the specification. Synthesizing a quick-sort sorting algorithm from a “slow sort”
specification, perm(z,y) A ord(y), is an example of this. Alternatively, we may wish to alter the way an
algorithm is represented, for example converting a normal program (in the sense of [21], i.e., one which
may contain negative atoms in the program body) to a Horn clause program. Such a transformation could
prevent floundering during Prolog execution. This approach to logic program development is described in
detail in [19, 20]; these papers describe the use of the CLAM theorem prover to synthesize programs from
their specifications automatically.

We must begin by fixing a programming logic and relationship between programs and specifications. We
choose first-order logic as a specification language and say a program is correct when it is equivalent to its
specification. Actually, this is not enough: even for logic programs without impure features there are many
rival notions of equivalence. The differences though (see [24, 5]) are not relevant from the standpoint of
illustrating our methodology. The notion of equivalence we choose is to associate a set of Horn clauses with
their Clark Completion [21] and show its equivalence to its specification in predicate calculus with theories
of standard data-types (e.g., numbers or lists). The details of this follow.

We define a Horn body to be a formula as follows

GZZ:A|G1/\G2|G1\/G2|3$.G

where A is a set of atomic predicate names (e.g., known relations like =, #, TRUFE, FALSE and previously
defined programs including the one currently being defined). We define a Horn Program to be a formula of
the form name(Z) < body(T) where body is a Horn body, name is an atomic predicate with variables T and
the free variables of body are contained in T. This definition guarantees that name < body is a Horn clause
(in the sense of [27]); such a definition may be straightforwardly translated to a set of standard Prolog Horn
clauses. As an example, the following relation sum is a Horn program:

sum(z,y,z) < (e =0Ay=2)V
2. (suce(x’) =x AN ((z=0ANFALSE) Vv
32 (succ(z') = z A sum(a’,y, 2'))))

And it translates directly into the following Prolog program:

sum(0,Y,Y).
sum(succ(X),Y,succ(Z)) :- sum(X,Y,Z).

(note that the program may be run in various modes; i.e., it can not only add, but also subtract or find pairs
of numbers summing to a third).

We will reason about judgements of the form VZ. (spec(T) <> prog(T)), where spec is a concrete first-
order specification and prog is a schematic Horn program. As first-order logic is our specification language,
verification will take place in Isabelle’s standard theory of first-order logic augmented with axioms for natural
numbers and lists. These are standard Isabelle theories and come with the system along with tactic support
for rewriting. For example, we could prove in this theory, by induction on z, that

Veyz (z+y =z sum(z,y, z)),
where sum is the program given above. Alternatively, we could begin with a metavariable for sum and
synthesize it from such a proof. We show this shortly.
Proof Rules for Program Synthesis

Given a schematic goal, there are two ways we might prove it. The first corresponds to verification: instantiate
the goal with a program and proceed from there to show the equivalence. Indeed, given a goal spec(T) <> P(T)



the first thought that might occur to us is to complete the proof in one step, by instantiating the metavariable
P with spec. If our specification language does not satisfy the same restrictions as our programming language
(and ours does not) then arbitrary instantiation cannot be admitted; we must insist that P is instantiated
with a Horn program. Such constraints are not unique to our work and we will see examples in Section 4 of
such side conditions. In our case, we must insist that any instantiation yields a Horn body. Note, furthermore,
that even when spec is already a Horn body we may still wish to delay instantiation and instead try another
proof strategy to synthesize a more efficient program. This is analogous to program transformation work
(e.g., the “fold-unfold” technique of [7]) where the initial program specification is already executable but the
program is manipulated to derive a more efficient program.

Usually, instead of reducing synthesis to verification, we proceed by decomposing the specification using
rules that at the same time preserve the necessary syntactic properties of the synthesized program (i.e.,
never introduce non-Horn structure during metavariable refinement). Let us give an example of such a rule.
Our Isabelle theory contains an inductively defined type for the natural numbers built from 0 and successor
succ along with Peano axiomatization. We can use this to derive rules that construct Horn programs that
recurse or case split depending on their argument values. The following is a simple example of introducing
a case split in a Horn program depending on whether a number is 0 or not:

Case Split:
[l ALL y. B(O,y) <=> C(y); !!'n. ALL y. B(succ(n),y) <-> D(n,y) I]
==> ALL x y. B(x,y) <> (x=0 & C(y)) | (EX n.succ(n)=x & D(n,y))

A few explanations are in order. ALL and EX are universal and existential quantification in the encoded
logic and, as previously mentioned, should not be confused with “!!” which is universal quantification in
Isabelle’s metalanguage. Similarly &, |, and <-> are object-level conjunction, disjunction, and equivalence
as opposed to meta-level connectives like ==>. The rule is initially postulated with free variables B, C, and
D; this prevents their premature instantiation during proof (which would lead to a proof of something more
specialized). When the proof is completed, these variables are replaced by schematic variables (whereby each
is prefixed with a “?” which is Isabelle’s way of denoting metavariables).

Reading the above rule as a refinement rule (i.e., a way to refine a goal into subgoals that imply the original
goal) it says that to prove that B(x,y) is equivalent to (x=0 & C(y)) | (EX n.succ(n)=x & D(n,y)) it
suffices to prove two cases: one where B(0,y) is equivalent to C(y) and the other, where, for some given n
(an eigenvariable), B(succ(n),y) is equivalent to D(n,y). This rule is provable in Isabelle by induction on
x: the base case and step case follow from the first and second hypothesis respectively.

Now suppose that we have a goal

ALL x y. spec(x,y) <> ?P(x,y)

where spec is a ground specification (e.g., like sum) and ?P a metavariable. We can use the above rule to
reduce the goal to two subgoals
ALL y. spec(0,y) <-> 7C(y)

and
ALL y. spec(succ(n),y) <-> ?D(n,y).

Furthermore, this unifies ?P(x,y) with
(x=0 & ?C(y)) | (EX n. succ(n)=x & 7D(n,y)). (1)

This last term meets our syntactic requirement for the body of a Horn clause program, provided 7C(y) and
?D(n,y) do too. Hence, we have reduced finding a program 7P to finding programs ?C and 7D that meet
simpler specifications. Moreover, when ?C and 7D are structurally correct, so is ?P. When the proof is done,
and 7C and 7D have been instantiated with ground terms, than so will ?P. Note too that the same proof rule
can be used when 7P (x,y) is instead a ground term, provided that it unifies with (1).



This proof rule is really a special case of the following induction rule. We will see shortly how this rule
is used to create a definition of a Horn program which may (through use of the induction hypothesis given
in the last goal) be recursively defined.

Induction:
[l ALL x y z. P(x,y,2) <> (x=0 & Q(y,z)) | (EX n.succ(n)=x & R(n,y,z));

ALL y z.8(0,y,2) <> Q(y,2);

I'm. ALL y z. S(m,y,z) <-> P(m,y,z) ==> ALL y z.S(succ(m),y,z) <-> R(m,y,z) |]
==> ALL x y z. S(x,y,z) <> P(x,y,2z)

It is worth reemphasizing that these rules are formally derived, not asserted as axioms; there is no doubt
that they are correct.
We are now ready for an example.

3.1 Example: the sum predicate

Our example is to synthesize the above sum predicate. What follows are snapshots taken directly from an
Isabelle session (apart from “pretty printing”).

The initial goal, as previously indicated, is the equivalence between a ground specification and a metavari-
able. There is one additional complication: to synthesize recursive programs we need to create a definition
that may refer to itself. Isabelle has no facility for creating dynamically new (schematic) definitions during
a proof, so instead we allow proof under an assumption 7H that is to become (incrementally) instantiated
with the definition of the (Clark completed) Horn program. Hence, our initial goal is:

7H ==> (ALL x y z. x + y = z <> 7P(x,y,2))

We begin by resolving (Isabelle has a resolve tactic which combines higher-order unification with backchain-
ing) the conclusion of this with the induction rule we have previously derived. Examining the previously
given induction rule, we see this yields three subgoals; but the first subgoal we unify against 7H, initializing
our schematic definition. Hence the entire proof step (invoked with a tactic that first resolves with the
induction rule, then discharges the first assumption through unification with ?H) reduces the initial goal to
the following two subgoals.

(ALL x y z. ?P(x,y,2z) <> x =0 & 7?Q(y,2z) | (EX n. succ(n) = x & "R(n,y,z)))
==> (ALL x y z. x +y = z <> 7P(x,y,2))
1. ALL x y z. ?P(x,y,2) <> x =0 & 7Q(y,z) | (EX n. succ(n) = x & ?R(n,y,2))
==> ALL y z. 0 +y =z <> 7Q(y,2z)
2. !'!m.
[l ALL x y z. ?P(x,y,2z) <> x = 0 & ?Q(y,z) | (EX n. succ(n) = x & 7"R(n,y,z));
ALLy z. m+y =z <-> ?P(m,y,z) |]
==> ALL y z. succ(m) +y = z <-> 7?R(m,y,2)

Isabelle always prints the goal that is being proved followed by numbered subgoals whose proof is required to
establish the goal. Here the top three lines show the goal with 7H already partially instantiated to a program
for ?7P; with each successive snapshot we will see this program further instantiated. The remaining lines are
the numbered subgoals and consist of the base and step cases of the induction proof. Note that we are not
forced by the system to give a name to the predicate 7P we are synthesizing.

We now turn our attention to the two cases. Each case will further instantiate the program we are
building, the base case instantiating ?Q (which is the base case of the recursion) and the step case 7R. The
base case is simple: We direct Isabelle’s rewriting tactic to apply the appropriate Peano axiom to reduce
0 +y =2ztoy = z; we prove the resulting simplified subgoal by unifying ?Q(y,z) with y = z which is
a Horn body; the equivalence immediately follows. The step case is more complex, and leads to a more
involved program construct. Here we resolve against the derived case-split rule. This further contributes to
the synthesized program by partially instantiating 7R.



(ALL x y z. ?P(x,y,2) <> x=0&y =2z | (EXn. succ(n) =x & (z =0 & ?C(n,y)
| (EX na. succ(na) = z & ?D(n,na,y)))))
==> (ALL x y z. x +y = z <> 7P(x,y,2))
1. !im.
[l ALL x y z. ?P(x,y,2) <> x=0&y =2z | (EX n. succ(n) =x & (z = 0 & 7C(n,y)
| (EX na. succ(na) = z & ?D(n,na,y))));
ALLy z. m+y =2z <> ?P(m,y,z) |]
==> ALL y. succ(m) + y = 0 <-> 7C(m,y)
2. !''m n.
[l ALL x y z. ?P(x,y,2) <> x=0&y =2z | (EX n. succ(n) =x & (z =0 & 7C(n,y)

| (EX na. succ(na) = z & ?D(n,na,y))));
ALL y z. m +y = z <> ?P(m,y,2z) |]
==> ALL y. succ(m) + y = succ(n) <-> ?D(m,n,y)

The case split has yielded two subgoals. In the first, we simplify the conclusion to ALL y. False <->
?C(n,y). Since False is a Horn body, we may unify ?C(m,y) with it. This expands our program and leaves
us with the following singleton subgoal.

(ALL x y z. ?P(x,y,2) <> x=0&y =2z | (EXn. succ(n) = x & (z =0 & False
| (EX na. succ(na) = z & ?D(n,na,y)))))
==> (ALL x y z. x +y = z <> 7P(x,y,2))
1. ''m n.
[l ALL x y z. ?P(x,y,2) <> x=0& y =2z | (EX n. succ(n) = x & (z
| (EX na. succ(na) = z & ?D(n,na,y))));
ALLy z. m+y =2z <> ?P(m,y,z) |]
==> ALL y. succ(m) + y = succ(n) <-> ?D(m,n,y)

0 & False

Rewriting simplifies succ(m) + y = succ(n) tom + y = n and the goal becomes:

(ALL x y z. ?P(x,y,2) <> x=0& y =2z | (EX n. succ(n) = x & (z = 0 & False
| (EX na. succ(na) = z & 7?D(n,na,y)))))
==> (ALL x y z. x +y = z <> 7P(x,y,2))
1. !''mn y.
[l ALL x y z. ?P(x,y,2) <> x=0&y =2z | (EX n. succ(n) = x & (z
| (EX na. succ(na) = z & 7D(n,na,y))));
ALLy z. m+y =2z <> ?P(m,y,z) |]
==>m +y =n <> ?D(m,n,y)

0 & False

And now the conclusion may be resolved against the induction hypothesis
ALLy z. m+y =2z <> ?P(m,y,2).

Using the induction hypothesis this way gives us a recursive program as it invokes a call to the predicate
we are defining. This completes the proof and Isabelle yields the following proven sequent with no subgoals.

(ALL x y z. ?P(x,y,2) <> x=0&y =2 | (EX n. succ(n) = x & (z = 0 & False
| (Ex na. succ(na) = z & ?P(n,y,na)))))
==> (ALL x y z. x +y = z <> 7P(x,y,2))

Taking stock

Let us review what has been accomplished and what the example demonstrates. First through our proof we
have constructed the Horn program 7?P(x,y,z) given in the final proof state and proved it correct. Program



instantiation occurred only through resolution and the same proof would have worked if we had given the
program 7P up front. So there is no difference between verification and synthesis here. This is true for any
proof similarly developed.

Second, the resulting proof is guaranteed to be logically correct. This follows as every rule used to build
the proof is either a primitive rule in our theory or a derived rule. This point deserves further clarification
though. To handle the problem of defining a recursive predicate, we set up the proof within an assumed
“context”: the hypothesis 7H, which is instantiated with the recursive definition or definitions. Naturally, if
the context is inconsistently instantiated the proof, while still correct, will not give rise to a verified program.
Our emphasis in this paper is on the schematic proof mechanism itself and its flexibility — there are means,
of course, to ensure consistency of contexts depending on the logic in question. In our logic we could check
consistency afterwards analogous to what occurs after synthesis in INKA (see section 4) or the way recursive
definitions are checked in NQTHM. Another way would be to include in the logic a means of establishing
through proof that the definition is sensible (e.g., well-founded). Such an interactive obligation would be
easier in type theory, for example, where recursive definitions can be given using fix-point combinators and
termination shown via appropriate inductions.

A final point is that the object constructed satisfies our structural requirement: it is a Horn-clause
program.? As with context consistency, this is a meta-level problem in the sense that we do not enforce it
in our logical theory. (Though there are theories, of course, that do have well-formedness proof obligations,
e.g., Martin-Lo6f’s type theories.) In our case, structural correctness is particularly easy to understand and
(at the meta-level) to ensure. That is, if we restrict proof steps that instantiate the program so that they use
our derived rules, the induction hypothesis, or atomic rules, then the objects synthesized will always meet
our structural requirement. This invariant follows by induction on the structure of derivations using these
rules.

4 Related Work

In this section we will look at a selection of other work in program synthesis/transformation and relate that
work to the approach we propose.

Resolution Based Synthesis

In [13] Green suggests using the “answer predicate trick” in resolution (see also [9] for a description of this
trick) to find unifiers using resolution to answer questions. In this setting, as in Prolog, object-level variables
stand in for metavariables and are assigned values, possibly incrementally, using resolution.

Let R(x,y) be a first-order relation between = and y. Green’s contribution is to show how resolution can
serve as a basis for answering each of the following types of questions:

Problem Question Desired Answer
checking R(a,b) yes or no

simulation Jdz. R(a, z) yes £ = b or no
verifying Va. R(x,g(x)) | yesornoxz =rc
programming | Vz.Jy. R(x,y) | yesy = f(z) or no z = ¢

The first three are straightforward, but the last may be surprising; it is directly related to our proposal. To
see if V. Jy. R(z,y) follows from a set of formulae, Green negates it, turns it into a clause, and searches for a
refutation. Negated and clausified it becomes {—~R(zg,y)}, and if we can prove inconsistency we get a unifier
for y, e.g., y = car(xp). Hence we have y as a “function” of zp, and only first-order variables and unification
have been used in the proof process. Green can get away with using first-order variables because skolemizing
removes binding operators and, at the same time extends (implicitly) the signature (e.g., with z() in which

3Not quite as unification never forced us to name the synthesized predicate 7P. But the result is a Horn program under any
predicate name.



the theorem is proved. He is really not synthesizing a function, but a first-order object. However, since the
context variables are arbitrary, he can generalize afterwards.

We see here the essence of the schematic proof idea in a simple first order setting: the same resolution
steps can be used either to verify that a function is correct, or to construct a function.

Deductive Synthesis

There are a number of approaches loosely classified under the heading of deductive synthesis, which also
have close ties to schematic proof. In Manna and Waldinger’s deductive tableau system, [25], one proves a
goal VZ.37.R(Z,y) by manipulating R(Z,7) in a “tableau” where the T are turned into eigenvariables and
the 7 are kept in “output columns”, essentially as metavariables. This is quite similar to Green’s approach,
except that the goal is not negated, since the proof is not refutation based. Similarly to Green’s and our
work, each proof step may extend the output metavariables using substitutions derived by rule application.
At the end of the proof, if variables have been instantiated only by primitive program constructors (this is
analogous to our side conditions), the tableau yields a completed program. Again, this is very similar to the
schematic proof idea, and, as with Green’s work, they are able to operate on quantifier free terms, so they
can use first-order metavariables in their proofs (later implicitly generalizing the first-order object they have
constructed to a program).

Another approach to deductive synthesis, proposed for example by Biundo [2, 3], and Steinbriiggen [30]
is, given a formula ¢ = VZ. Jy. p(T, y), to prove instead the skolemized version ¢y = VZ. p(Z, f(T)). Proving
¢ is not only sufficient to prove ¢, but it provides us with a recursive function f that meets the specification
p as well. In Biundo’s work, proof proceeds top down, with f an uninterpreted function constant. At
some point the system has isolated, in various “subgoals”, f(z,y) as conditional equations. For example,
Vey.y=0—= f(z,y) =z and Ve yv.y = suce(v) — f(z,y) = suce(f(x,v)) arise in the synthesis of the plus
function (given a definition for subtraction). These equations can be accepted as a definition for f after side
conditions are checked (e.g., that f terminates, is deterministic, and is defined on all inputs). Note that
this approach, unlike those previously discussed, does not really incrementally “instantiate” f. Instead, the
definition of f is given to the system (and side conditions are checked) all at once. Incremental development
here is problematic since we cannot view these equations as saying how to assign a unique term in the
object logic to f; indeed, no such term exists! However, if instead of using her equational representation of
functions, they existed as terms in her object language, like in Boyer and Moore’s logic [4], then another
option would be available to her. Under such a representation it would be possible to view an equation
involving a skolem function as specifying an equality between a schematic function and its specification.
This would be analogous to the relationship between schematic Horn programs and their specifications in
our logic programming example (where <+ plays the role of equality). In such a setting, her skolem functions
could be replaced by metavariables and instantiated incrementally.

A final example of a deductive synthesis approach, and one which clearly exemplifies the schematic proof
idea, is that of the KIV theorem prover. KIV is a prover for dynamic logic that supports proofs with
metavariables. Within dynamic logic one can formulate other logics such as Hoare logic, when we could
then manipulate formulae like {P} S {Q}. As with our approach, any of these components can be partially
or completely uninstantiated (by using metavariables) during the proof. KIV uses first-order metavariables
(see comments in section 2) but we believe the work would be better served by implementation in a system
like Isabelle which supports higher-order schematic proofs, while providing the same kind of tactic based
metareasoning support as currently.

Constructive Type Theories

As explained in the introduction, our schematic proof idea can be seen to capture the kind of program
construction that takes place in many type theories. The common explanation of program extraction in a
type theory like Nuprl’s is that, as the logic is constructive, a proof yields a program which exhibits the
implicit construction. This is correct but the emphasis can be misleading. As indicated previously, the



schematic proof idea is enough to account for extraction in type theories like Martin-Lof’s or Nuprl’s; so
constructivity is not significant in extraction, but rather execution. That is, because the logic is constructive,
the terms extracted can be effectively executed and their evaluation behavior agrees with the semantics of
the type theory. We could extend such languages to extract constructions from classical proofs (e.g., see
[18]), but we would not be able to execute the results since, for example, there is no general way to decide
which branch of a case-split to execute when this corresponds to a use of the law of the excluded middle.

Hardware Synthesis

We conclude with an example from the domain of hardware synthesis; what is interesting about this example
is that it presents an idea based on “validation functions” and “achievement theorems” which seems rather
different from the schematic proof idea but can be cleanly reformulated in our framework. The reformulation
yields a conceptually and implementationally simpler calculus than the original presentation.

The Veritas group at Kent [14, 15] proposed a novel approach to synthesizing circuits. Their technique,
which they call Formal Synthesis, is to refine a “design goal” (spec) interactively, using methods, eventually
concluding with a theorem that some circuit specification circ achieves spec; i.e., that circ — spec. Each
method consists of a pair of functions: a subgoal function and a validation function. The former decomposes
a specification spec into subspecifications spec;. The latter constructs from a proof that the circ; achieve
spec;, an implementation circ with a proof that circ that achieves spec.

The relationship between implementation and specification is different from the one we used for logic
program synthesis (implication instead of equivalence) but the idea is the same: apply rules to decompose
the specification and each rule should tell how to construct an implementation that stands in the desired
relation to the specification. An example should make this clear, as well as our recasting.

The Split method takes a specification which is the conjunction of specifications and returns the individual
specifications as subgoals.

speci  specy (Split)
specy N\ speca
The validation theorem for this is the following inference rule?

circy — specy  Circg — Specs

(cirey A cireg) — (specy A specs)

Looking at the above validation theorem we immediately see that this is a derivable rule in Isabelle (in
a first or higher-order theory). Their other rules are more complex, but they too are all derivable — the
authors point this out themselves. Therefore the recasting of their idea as a schematic proof approach is
especially simple. We may do away with their machinery of subgoaling and validation functions; instead we
start simply with a schematic achievement theorem where the circuit is given by a metavariable, and directly
apply their derived rules as schematic inference rules. As with the rules for logic program synthesis, the
entire development calculus can be simply and formally developed within Isabelle, giving a formal guarantee
of correctness not just to the proofs but to the calculus itself. We are currently experimenting with an
implementation based on these ideas.

5 Conclusion

We have given a general framework for unifying the ideas of synthesis and verification; we have shown how
it can be applied to formalize and use new calculi as well as understand and simplify a range of previously
proposed approaches.

4In the hardware formal reasoning community, circuits are often represented as relations expressing constraints (on port
values) [8]. These constraints may be joined by logical A and this also represents an operator that builds a circuit from two
subcircuits by parallel composition. So the A used to construct the implementation in the validation theorem represents both
a circuit constructor (so we see we are building a circuit) and a logical operator (so we may prove facts about it).
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