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Abstract

We describe the implementation of a data structure called radix heap, which is a priority
queue with restricted functionality. Its restrictions are observed by Dijkstra’s algorithm, which
uses priority queunes to solve the single source shortest path problem in graphs with nonnegative
edge costs. For a graph with n nodes and m edges and real-valued edge costs, the best known
theoretical bound for the algorithm is O(m+nlogn). This bound is attained by using Fibonacci
heaps to implement priority queues.

If the edge costs are integers in the range [0...C], then using our implementation of radix
heaps for Dijkstra’s algorithm leads to a running time of O(m+nlog C). We compare our imple-
mentation of radix heaps with an existing implementation of Fibonacci heaps in the framework
of Dijkstra’s algorithm. Our experiments exhibit a tangible advantage for radix heaps over
Fibonacci heaps and confirm the positive influence of small edge ¢osts on the running time.
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1. Introduction.

In this paper, we describe the implementation of a data structure named radix heap. For conve-
nience, we will also refer to this structure as r_heap in the following.

A radix heap can be used to implement the data type priority queue. A priority queue stores
a collection of items, each of which has a key. The keys in the queue come from a linearly ordered
universe. There are operations available to update a priority queue. Operation insert adds a new
item with a given key to the queue. Operation decrease_key takes a given item and decreases its key
to a given value if applicable, i.e. if this value is smaller than the element’s current key. Furthermore,
with operation del_item we can delete any given item from the queue. The main query operation
on a priority queue is find_min, which returns an item containing a key that is minimal among
all keys occurring in the queue. Searching for any other particular key is not supported, and this
is what sets priority queues apart from e.g. sorted sequences or dictionaries. For convenience, a
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combination of the query find_-min and the update del_item is regularly offered on priority queues
as del_min.

Priority queues find an important application in the shortest path problem given a graph G
with n nodes and m edges where each edge is labeled with a nonnegative real-valued cost, the
problem is to compute the shortest distance from a designated node s to all other nodes in G. A
solution to this problem is provided by Dijkstra’s algorithm [D59]. Its running time is dominated
by n insert, find-min and del_item operations, plus m decrease_key operations carried out on a
priority queue of size at most n. The theoretically most efficient algorithm is obtained by using
Fibonacci heaps [FT87)] to implement the priority queune. A Fibonacci heap provides decrease key
for O(1) amortized time and the other mentioned operations for O(logn) amortized time. This
leads to a running time of O(m + nlogn) for Dijkstra’s algorithm.

While this is optimal for real-valued edge costs, improvements are possible if edge costs are
bounded integers. This was investigated by Ahuja et. al. [AMOT90]. Their paper contains two
solutions and for both, the running time depends on the bound C given for the edge costs. While
a one-level radix heap leads to a running time of O(m + nlogC), a complicated two-level radix
heap improves this bound to O(m + n+/log C). We chose to implement the one-level heap due to
its simplicity in order to include it into the data structures library LEDA [MN89, N&h93, MN95].

Radix heaps exploit some special properties of Dijkstra’s algorithm in the use of priority queues.
For every node v of G, the algorithm maintains a tentative distance d(v) that is not smaller than
its actual distance to s, say d(v). Each node v # s has d(v) = oo at the start of the algorithm and
enters the priority queue during the algorithm with a finite d(v). It is stored there using d(v) as its
key until its distance to s is known, i.e. d(v) = d(v). Assume that all edge costs are in the integer
range [0...C]. Then the following properties hold:

(1) For any node v: if d(v) < o0, then 0 < d(v) < nC

(2) Let z be the node with minimal d(z) in the priority queue. Then d(z) d(z). Furthermore,
let v be any other node in the graph whose final distance d(v) is not yet known. Then
d(v) > d(z), and if v is stored in the queued, we have d(v) € [d(z)...d(z) + C].

Property (2) particularly means that the sequence of minimum keys is nondecreasing. A priority
queue with the above properties is sometimes called a bounded monotonic heap. These restrictions
" have the following effect on the specification of the operations on r_heaps. Both insert and
decrease_key are given a key value as one of their arguments. It is required that this key is not
smaller than the current minimum key in the heap.

During the implementation, we will mention some parts of the analysis which are essential for
the understanding of the implementation. The reader is referred to the original paper [AMOT90]
for more details.

We implement the data structure r_heap in C++ with the intention to include it into the
LEDA library. To achieve this goal, we follow LEDA conventions in the specification as well as in
the implementation.

The paper is organized as follows. First, we give the specification of the data type in the
header file r_heap.h. Then, we describe the implementation of the functions that were declared in
the header file. Following this, we describe a LEDA implementation of Dijkstra’s algorithm using
generic priority queues. Using this algorithm, we compare the performance of radix heaps with
Fibonacci heaps, the default implementation of priority queues provided by LEDA. We conclude
the paper with experimental results.



2. The header file.

The header defines two classes, one to represent a single heap element, and another to describe
the structure of the heap itself, along with the operations defined on the heap. In the description
of both classes, we use GenPtr, the generic pointer type of LEDA. Substituting actual types
for an application will be done by LEDA’s priority queue interface, with which we integrate our
implementation. See [MN95] for more details on this issue.

Let us begin with some terminology. In a radix heap, elements are grouped into buckets ac-
cording to their key. The first bucket will always contain the elements with the current minimum
key (and only those), which enables us to carry out find_min efficiently.

The maximal difference between any two keys in a radix heap is a certain integer C which
is given when the heap is created. There are B = [log(C + 1)] + 2 buckets. For each bucket
i,0 < i < B, there is a number u[¢] which gives an upper bound on the keys stored in that bucket.
More specifically, let min be the minimum key stored in the heap, and define u[—1] = min — 1.
Then, as mentioned above, u[0] = min, and

1. u[-1] < uf0] < u[l] < ... < u[B-1],

2. an element with key k belongs to bucket i, where 0 <7 < B — 1, if u[i — 1] < k < u¢],
. ufi) <uli—1]+2"1for1<i< B-1,

4. u[B — 1] = MAXINT.

3. A single heap element is stored in an r_heap_node. First of all, this structure contains a key
field. The field inf holds associated information. The bucket field gives the number of the bucket
which currently contains the element. We want to maintain the elements of a bucket in a doubly
linked list. Pointers succ and pred are provided for this purpose. For convenience, we also define
r_heap_item as a pointer to an r_heap_node. Activation of the LEDA memory manager will
improve the efficiency of memory (de-)allocation with new and delete.

(rheapmnode 3) =
class r_heap_node {
friend class r_heap;
GenPtr key; /] key
GenPtr inf; // information

int bucket; // number of bucket containing the node
r_heap_node xsucc, *pred; // pointers for list maintenance
public:

r_heap_node(GenPir k, GenPtr i): key(k), inf(3), bucket(0), succ(nil), pred(nil) { }

LEDA_MEMORY(r-heap_node)
b
typedef r_heap_node sr_heap_item;

This code is used in websection 6.

4. Class r_-heap defines the radix heap itself. First, there is a constant C' for the maximal
key span in the heap. That is, the keys stored in the heap always come from an integer range
[min...min + C]. Each bucket maintains a list of r_heap_nodes contained in it. Access to
the buckets is provided by the array buckets[]. Along with this array, there is another array u|]
such that for any 7, the keys of the elements stored in buckets(z] are bounded by ufi]. Both arrays
change dynamically during the lifetime of an r_heap. We will need to adjust the bucket boundaries
recorded in u[] from time to time, and to do this more efficiently, we tabulate the appropriate key




range for the buckets in an array bsize[]. This array remains unchanged during the lifetime of an
r_heap. B denotes the number of buckets necessary to store the elements in the heap for a given
key span C.

The class declaration provides all operations that are contained in the LEDA priority queue
interface, because we want to use r_heap in this framework. The counter s¢ records the number
of elements currently stored in the heap. Its purpose is to make the operations empty and size
particularly simple and efficient.

(class rheap 4) =
class r_heap {
/* data kept in an r_heap */
int C; // maximal difference between two keys in the heap

r_heap_item xbuckets; // buckets of the r_heap

int *u; // upper bounds on the key intervals corresponding to the buckets
int B; // number of buckets

int si; // current number of elements stored in the heap

int xbsize; // table used to (re-)initialize the array u or part of it

/* private functions that facilitate the descriptions of the r_heap operations * /

inline void set_bucket_bounds(int min,int upto);

inline int findbucket(r_-heap_item,int});

void copy_heap(const r_heap &);

inline void add_item(r_-heap_item, int);

inline void rm_item (r-heap_item);

/* non-public functions concerned with the use of r_heap within LEDA */

virtual void print_key(GenPtr) const { }

virtual void print_inf (GenPtr) const { }

virtual void clear_ key(GenPtr &) const { }

virtual void clear_inf(GenPtr &) const { }

virtual void copykey(GenPtr &) const { }

virtual void copy_inf(GenPtr &) const { }

virtual int int_type() const { return 0; }

protected:
r_heap_node xitem(void *p) const { return (r-heap_node ) p; }

public:
r_heap (int C);

// the maximal difference between two keys in the heap needs to be provided upon initialization

r-heap() { error_handler(1,"r_heap: must, initialize with,int,C>=0"); }
r_heap(const r_heap &);

r.-heap &operator=(const r_heap &);

virtual ~r_heap() { clear(); }

r-heap_item find_min() const;
r_heap_item insert(GenPtr k, GenPtr i); // precondition: k > key(find_min())
void del_item (r_heap_node xz);
void del_min();
void decrease_key(r_heap_node *z, GenPtr k);
/] precond.: key(find-min()) < k < key(z)
void change_inf (r_-heap_node *z, GenPtr i);

GenPtr key(r_heap_node xz) const { return z-key; }
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GenPir inf(r-heap_node *z) const { return z-inf; }

void clear( );
int size() const;
int empty( ) const;
/* functions that are used by the LEDA iteration macros */
r_heap_item first_item( ) const;
r_heap_item nezt_item(r_-heap._item p) const;
void print_contents(ostream &chk = cout) const;
3
/* dummy I/O and cmp functions */
inline void Print(const r_heap &,ostream &) { }
inline void Read(r_heap &,istream &) { }

inline int compare(const r_heap &,const r_heap &) { return 0; }

This code is used in websection 6.

5. It is necessary to include a header file containing standard functionality of LEDA.

(includes 5) =
#include <LEDA/basic.h>

This code is used in websection 6.

6. The header file now looks as follows:
(r_heap.h 6)=

(includes 5)

(r-heap_node 3)

( class r heap 4)



7. The implementation.

In the following sections, we present an annotated implementation of the member functions of class
r_heap.

8. We need a constructor that creates an empty r_-heap. In the previous section, we have seen
that class r_heap does not permit a constructor without arguments. Instead, there is a constructor
that receives an int argument. This argument determines the constant C' and is used to calculate
B, the number of buckets in the heap. The constructor also allocates space for the arrays buckets|],
u[] and bsize[]. After this, buckets|] and bsize[] are initialized. The array u[] is supposed to keep
the upper bounds on the keys stored in the buckets. These values cover the range [min...min+C]
of keys stored in the heap, where min is the current minimum key. Since the invocation of this
constructor creates an empty heap, we do not know min and defer the initialization of array u|]
until the first insert operation. Nevertheless, we already set the last entry, u[B — 1], whose value
MAXINT remains unchanged throughout the lifetime of the r_heap.

( constructors 8) =
r-heap ::r_heap(int ¢)
{
C =g
= int(ceil(log(C)/log(2))) + 2;
buckets = (r-heap_item %) new int [B];
for (int 7 = 0; ¢ < B; i++) buckets[i] = nil;
bsize = new int [B];
v = new int [B];
bsize[0] = 1;
bsize[B — 1] = MAXINT;
for (i=1; i< B—1; i++) bszze[]—1<<(z-—1)
u[B - 1] = MAXINT;
/* this value won’t change throughout the computation the other u[] values will be initialized
by insert */
st = 0;
}
See also websection 11.

This code is used in websection 28.

9. Throughout this section we need functions that add an r_heap_item to—or remove it from—
a bucket. Each of the following functions operates on a doubly linked list which connects the
r_heap_items that belong to a bucket.

( private functions 9) =
inline void r_heap :: add_item(r_heap_item it,int bnr)
{
it~succ = buckets[bnr];
if (buckets[bnr] # nil) buckets[bnr}-pred = it;
it~pred = nil; :
it-bucket = bnr;
buckets[bnr] = it;

}

inline void r_heap :: rm_item(r_heap_item it)

{

if (it-pred # nil) (it-pred)=succ = it-succ;



else buckets|it~-bucket] = it~succ;

if (it-succ # nil) (it~succ)-pred = it-pred;
See also websections 10, 12, and 16.
This code is used in websection 28.

10. - For the copy constructor and for the similar assignment operator, which are described below,
we use an auxiliary function. Called for an r_heap object, the function copy_heap is given another
r_heap as its argument and replicates that heap in its own member variables.

( private functions 9) 4=
void r_heap :: copy_heap(const r_heap &rh)

{

C = rh.C;
B = rh.B;
st = rh.si;

buckets = (r_heap_item x) new int [B];
u = new int [B];
bsize = new int [B];
for (int i = 0; i < B; i++) {
ulg] = rh.ufi);
bsize[i] = rh.bsize[];

}

r_heap_item item1, item2;
for (i =0; i < rh.B; i++) {
if (rh.buckets[] # nil) {
item1 = rh.buckets[i];
do {
item2 = new r_heap_node (item1-key, item1~inf);
add_item (item2,1);
item1 = iteml-~succ;
} while (item1 # nil);

else buckets[i] = nil;

}
}

11. Using the function copy-heap, the copy constructor and the assignment operator are simple.

( constructors 8) +=
r_heap ::r_heap(const r_heap &rh)

{
}

r_heap &r_heap ::operator=(const r_heap &rh)
{
if (this # &rh) {
delete [|buckets;
delete []u;
copy-heap(rh);

copy-heap(rh);

}
}



12. During the lifetime of an r_heap, we often change the bucket boundaries. The set_bucket_bounds
function serves this purpose. Its arguments are a key value min and a bucket number upto. The
function sets u[0] = min and then redefines u[l],...,u[upto — 1]. Since it is a private function,
we do not check these arguments for integrity, but the requirements are 1 < upto < B — 1 and
u[0] < min < ulupto).

According to the original paper [AMOT90], we need compute u[i] = Min(u[i—1]+bsize[s], u[upto])
for i = 1,...,upto — 1. However, we know that the sequences u[] and bsize[] are monotonically
nondecreasing, so the outcome of the above Min computation is also monotone. Hence, when
computing u[i], we explicitly check whether u[i — 1] + bsize[é] > u[upto]. If this is the case, then
u[j] = u[upto}, ¢ < j < upto — 1, which simplifies the computation for these j.

( private functions 9) +=
inline void r_heap :: set_bucket_bounds(int min,int upto)
{
u[0] = min;
for (int i = 1; ¢ < upto; i++) {
u[i] = ufi — 1] + bsize[d];
if (u[i] > u[upto]) break;
}
for (; i < upto; i++) ui] = u[upto];

}

13. We are now ready to describe the implementation of the important priority queue opera-
tions. Our implementation slightly deviates from the one sketched in [AMOT90] by additionally
maintaining the following invariant for a non-empty r_heap:

Before and after each operations, the elements with minimum key are contained in the
first bucket of the r_heap, i.e. in bucket[0].

14. Operation find_min, which returns an element with minimum key, has a simple implementa-
tion due to the aforementioned invariant.

( public functions 14) =
r_heap_item r_heap :: find_min(void) const
{
if (si > 0) return buckets[0};
else error_handler(1l,"r_heap::find_min,: Heap is empty!");
}
See also websections 15, 17, 18, 19, 20, 21, 24, 25, and 26.

This code is used in websection 28.

15. Operation insert adds a new element the heap. To do this, it is given two arguments which
represent a key and an information, respectively. First, an r_heap_node is created using the key
and the information argument. If the heap was previously empty, we set the interval bounds using
the key argument and put the newly created r_heap_node into the first bucket. Otherwise, the
bucket bounds are already initialized, and to find the correct bucket for the new element, we scan
the bucket boundaries for the “slot” containing the new key, in descending order starting with the
last bucket. v

After the new r_heap_node is inserted into the data structure in either way, we conclude the
operation by updating the element counter and returning a pointer to the new node.



( public functions 14) +=
r.heap_item r_heap :: insert(GenPtr k, GenPtr )

{

r-heap_item item = new r_heap_node (k,?);
if (si > 0) {
/* We check whether the operation respects the r_heap conditions */
if (int(k) < u[0] v int(k) > »[0] + C) {
string s("r_heap::insert: k= kduout,of range,[%d,%d]\n",int(k), «[0], u[0] + C);

error_handler(1, s);
}
int i = findbucket(item, B — 1);
add_item (item, 1);

}

else {
set_bucket_bounds((int) k, B — 1);
buckets[0] = item;
item-bucket = 0;

} .

st++;

return item;

}

16. We haven’t described findbucket yet. This is a private function which, given an r_heap_item
as its first argument, finds the appropriate bucket for that item. It does this by scanning the buckets
in decreasing order starting from the bucket whose number is given as the second argument. Since
find_bucket is private, we do not check any invariants. This is up to the public functions calling
find_bucket.

( private functions 9) +=
inline int r_heap :: findbucket(r_heap_item it,int start)

{
if (int(it-key) = u[0]) start = —1;
else
while (int(it-key) < u[--start]) ; // now u[start] < int(it— > key) < u[start + 1]
return (start + 1);

}

17. Operation del_min may be expressed using find_min and del_item. For efficiency reasons, we
replace the call of find_min by a direct access to the head of the first bucket, since our invariant

guarantees that bucket[0] is not empty if the heap is not empty.

( public functions 14) +=
void r_heap :: del_min(void)

if (si >0) {
r_heap_item it = buckets[0];

del_item(it);

else error_handler(1,"r_heap::del_miny,: Heap,isyempty!");

}



18. Operation decrease_key is given an item z sets its key to a given value k. According to the
specification given before, the new value must be smaller than the previous key of  but not smaller
than the current minimum key of the heap. If these requirements are satisfied, the key of the item
is decreased as desired. Additionally, if the new key violates the boundaries of the item’s bucket,
the item is moved to a bucket with lower index.

( public functions 14) +=
void r_heap :: decrease key(r_heap_node xz, GenPtr k)

if ((llcnt(k)k< int(z-key)) A (int(k) > «[0])) {
z-key = k;
if ((int(k) < ufz~bucket —1])) {
rm_item(z);
int i = findbucket(z, z-bucket );
add_item(z, i);
}
}

else {
string s("r_heap: :decrease_key: k=y%d out of range,[%d,%d]\n", int(k),u[0],

int (z-key) — 1);
error_handler(1, s);

}
}

19. The following operation allows the user to change the associated information of an item. It
has no influence on the heap structure, however, since we can directly access the information by

the given r_heap_item.

( public functions 14) +=
void r_heap :: change.inf (r_heap_node *z, GenPtr i)

{

z-inf = 15

}

20. Operation clear deletes all elements of the r_heap and deallocates the storage space taken
by the elements.
(public functions 14) +=

void r_heap :: clear(void)

{

r-heap_item it;
for (int i = 1; i < B; i++)
while ((it = buckets[i]) # nil) {
rm_item (it);
delete it;

}

21. Operation del_item removes a given item from the heap. This is the most complicated of our
operations. If the heap is not empty after the given item has been removed, but the first bucket
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does no longer contain any element, then the invariant is violated. To reinstate the invariant, we
first find the element that holds the minimum key. We place this element in bucket[0] and readjust
the bucket boundaries accordingly. Finally, all the elements which previously were in the same
bucket as the new heap minimum are redistributed to buckets with lower indices according to the
new boundaries.
( public functions 14) +=

void r_heap :: del_item(r_heap_node xz)

{

int buck = z-bucket;

rm_item(z);

delete z;

if ((st > 1) A (buck = 0) A (buckets[0] = nil)) {
r_heap_item item;
(find new minimum 22 )( reorganize r_heap 23)

}
s1——;

}

22. We now describe how to find the element that holds the new minimum key. Knowing that
bucket[0] is empty, we check the buckets in ascending order starting from bucket[1] until we find
the first non-empty bucket. Note that such a bucket must exist since the case that the heap is
empty after the operation was excluded by the previous if condition. We check all items of the
found bucket to retrieve the one with the smallest key.

(find new minimum 22) =

int idz = 1;

while (buckets[idz] = nil) idz ++;

item = buckets[idz];

r_heap_item dummy = item-succ;

while (dummy # nil) {
if ((int) dummy-key < (int) item-~key) item = dummy;
dummy = dummy-succ;

} // we have found the minimum

This code is used in websection 21.

23. We now reorganize the heap. The element that was found by the previous code segment will
be the new minimum of the heap. Then we recalculate the new bucket boundaries for all buckets
with index 1 < % < idz. Then the new minimal element is moved to bucket[0], and for all the other
elements in bucket[idz], we scan the new bucket boundaries starting from u[¢dz — 1] in descending
order and move the element to the appropriate bucket.

It is worth noting that out of the newly computed bucket boundaries, at least the last one,
u[idz — 1], equals u[idz]. It follows that every element of bucket[idz] must move to a bucket with
smaller index. This allows us to amortize the time previously spent to find the new minimum.

(reorganize r_heap 23) =
set_bucket_bounds(int(item~key), idz);
rm_item(item);
add_item (item,0);

/* Redistribution */
item = buckets[idz];

11



r-heap_item nezt;
while (item # nil) {
nezxt = item-~succ;
/+ we know that every item in bucket #idx MUST be redistributed */
rm_item (item);
int i = findbucket(item, idz);
add_item (item, ©);
item = next;

}

This code is used in websection 21.

24. The operations size and empty can be easily implemented using the counter sz.

( public functions 14 ) +=
int r_heap :: size(void) const

{

return si;

}

int r_heap :: empty(void) const

return (si = 0);

}

25. The following functions are used for iterating over the heap elements. There is a LEDA
macro forall_items which is based on these functions. The function first_item is particularly
simple because of our heap invariant. The function nezt_item checks whether the given item has
a successor in its bucket. If this is the case, that successor is returned. Otherwise, the following
buckets are checked until a non-empty bucket is found. If the search is not successful, the given
item is the last one and next_item returns nil. Otherwise, the first element of the found bucket is
returned.

( public functions 14) +=
r-heap_item r_heap :: first_item(void) const

{

return buckets[0]; // nil if heap is empty

}

r_heap_item r_heap :: nezt_item(r-heap_item p) const

if (p-succ # nil) return p~succ;
else {
int next = p~bucket + 1;
while ((next < B) A (buckets[nest] = nil)) neat++;
if (nezt = B) return nil;
else return buckets[nezt];

26. The following function gives a overview of the contents of an r_heap. It is added for main-
tenance purposes. '
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( public functions 14) +=
void r_heap :: print_contents(ostream &os) const

{

r_-heap_item item;

08 < W i S i e e e RS S \n"
0s € "Si:y" K st K "\n";
B8 & Bmmmmm e e B e e L B R \n";
for (int i =0; i < B; i++) {
08 L Mmm=mmmmmmm oo ee e m oo \n";

0s & "Bucket," € 7 < "\n";
os € "Intervall:[";

if (1>0) os Kuft—1]-1;
else os < ufi);

05 & u’n & ’U,[Z] & n] \I‘l";

item = buckets|i];

while (item # nil) {
0s € "Key:," < (int) item~key < " Bucket:" < item~bucket;
0s & n\nn;
item = item~succ;

}

}
}

27. Here are the header files that need to be included for the implementation of r_heap.

(r-heap includes 27) =
#include "r_heap.h"
#include <math.h>

This code is used in websection 28.

28. The source code of the r_heap implementation is composed of the following chunks.
(r_heap.c 28)=

(r-heap includes 27)

( constructors 8 )

( private functions 9)

( public functions 14)

13



29. Dijkstra’s algorithm.

Here is the LEDA implementation of Dijkstra’s algorithm. It uses the generic LEDA type p-queue.
We will use this algorithm to evaluate the performance of our r_heap implementation. Note that
the function decrease_key described in the definition of r_heap is replaced by decrease.p. The
reason for this is a LEDA naming convention. Qur implementation is integrated into the generic
priority queue framework by an interface thats uses r_heap as an implementation parameter for
p-queue (see also the next section). While this interface e.g. offers an operation decrease_p, it
actually expects the implementation to provide the corresponding function with name decrease_key
and explicitly performs the switch. More information on this issue can be found in the textbook

on LEDA [MN95].

(function dijkstra 29) =
void dijkstra(graph &G,node s,edge_array(int) &cost,node_array (int)
&dist, node_array (edge) &pred, p-queue(int, node) &PQ)
{

node_array(pq-item) I(G);

node v;
forall_nodes (v,G) {
pred[v] = nil;

dist[v] = MAXINT;
}
dist[s] = 0;
I[s] = PQ.insert(0, s);
while (-PQ.empty()) {
pg-item it = PQ.find_min();
node u = PQ.inf(it);
int du = dist{u];
edge e;
forall_adj_edges (e,u) {
v = G.target(e);
int ¢ = du + cost[e];
if (c < dist[v]) {
if (dist[v] = MAXINT) I[v] = PQ.insert(c,v);
else PQ.decreasep(I[v],c);
dist[v] = ¢;
pred[v] = e;
}
}
PQ.del_item (it);
}
}

This code is used in websection 30.
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30. The benchmark program.

In this section, we show a simple program that compares radix heaps with Fibonacci heaps,
LEDA’s default implementation for priority queues. The declaration p_queue(int,node) cre-
ates a Fibonacci heap whose priorities are integers, each of which has a node associated with
it. An r_heap with maximal key span M is provided as a priority queue with the declaration
p-queue(int, node,r_heap) (}). With this mechanism, r_heap is provided as an implementa-
tion parameter for the type priority_queue. Inclusion of the implementation parameter as well as
the replacement of the generic pointer type GenPtr by the actual parameter types int and node
is done by the interface in the file <LEDA/_prio.h>. See [MN95] for details.
(main.c 30)=
( main includes 31)
(function dijkstra 29)
int main(void)
{
GRAPH (int, int) G;
int n = read_int("# nodes = ");
int m = read_int("# edges =,");
random_graph (G, n, m);
edge_array (int) cost(G);
node_array (int) dist(G);
node_array(edge) pred(G);
int M = read_int("maxgedge costy=y");
node s = G.choose_node( );
edge ¢; :
forall_edges (e, G) Gle] = costle] = rand_int(0, M);
p-queue(int, node) *PQ[2];
PQ[0] = new p_queue(int, node);
PQ[1l] = new _p_queue(int,node,r_heap) (M);
float T = used_time( );
float {f = 0.0, t.r = 0.0;
dijkstra(G, s, cost, dist, pred, x(PQ[0]));
t.f = used_time(T);
dijkstra (G, s, cost, dist, pred, x(PQ[1]));
t.r = used_time(T);
cout < string("f_heap: %6.2f, sec, r_heap: %6.2f sec\n", t_f, t.r);

31. We need to include the following header files.
(main includes 31) =

#include "r_heap.h"
#include <LEDA/random.h>
#include <LEDA/p_queue.h>
#include <LEDA/_p_queue.h>
#include <LEDA/graph.h>
#include <LEDA/graph_alg.h>
#include <fstream.h>
#include <string.h>
#include <math.h>

This code is used in websection 30.
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32. Experiments.

We ran the experiments on a SUN workstation SPARC-10. The code was compiled with the GNU
C++ compiler g++ and linked with the LEDA libraries 1G (graphs) and 1L (basis) and the math
library 1m. See the LEDA manual [N3h93] for more details on the use of the different LEDA
libraries. The command line syntax to obtain the benchmark program is therefore

g++ -0 -o r heap r heap.c main.c -1G -1L -1m

The test results are shown in tables. Additionally, they are visualized using GNUPLOT. Our inputs
are generated using a LEDA facility that produces random graphs. An arbitrary node of the test
graph is chosen as the start node s. Note that Dijkstra’s algorithm as described above only visits
the nodes reachable from s. In order to avoid biased results, we add a minimal number of edges to
an input graph such that every node is reachable from s.

In our experiments, we varied the maximal edge costs C' as well as the number of nodes and
edges. We mainly examined sparse graphs since we were interested in problem instances where the
theoretical time bounds for the implementations—O(m+ nlogn) vs. O(m + nlog C)—are actually
different.

We ran two kinds of experiments. In the first kind, we measured the running time against
varying C for three problems where n and m are fixed. The test cases are (1) n = 1000, m = 10000,
(2) n = 1000, m = 100000 and (3) n = 10000, m = 100000.

In the second kind of tests, we measured the running time against varying n for four problems
where C is fixed and m = n f(n) for a given function f(n). More specifically, for C we tested one
small value, 10, and one large value, 106. For the number of edges m, we also chose one small
value, 3n, and one large value, nlogn. Note that we consider m = nlogn as large although there
might be (n?) edges. The reason is that for m > nlogn, choosing among the different heap
implementations will no longer have a significant influence on the running time.

For each experiment, there is a table showing the running times ¢ and ¢, for Dijkstra’s algorithm
using f_heap and r_heap, respectively. These values are also shown in the GNUPLOT graph below
the table. Additionally, the table lists the absolute and relative advantage of r_heap over f_heap,
given by t; — ¢, and Ef;—t' - 100, respectively. All times are given in seconds.
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33. Time vs Maximal Edge Cost C for n = 1000 and m = 10000.

The following test suite was run on a random graph with 1000 nodes and 10000 edges.

max. edge cost | time f heap time r heap | diff. | %-Adv. of r.heap
4 =2%10.051 0.032 0.019 | 56.280
32 =2%|0.050 0.035 0.016 | 45.972
256 = 28 | 0.052 0.037 0.014 | 39.737
211 1 0.056 0.037 0.019 | 50.442
214 1 0.055 0.041 0.013 | 32.539
217 | 0.054 0.039 0.013 | 35.983
220 | 0.054 0.044 0.011 | 24.045
223 1 0.054 0.041 0.012 | 28.458
226 | 0.054 0.043 0.009 | 23.756
229 | 0.052 0.045 0.008 | 18.079

Average Advantage of radix over fibonacci heaps in percent: 35.5296%
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34. Time vs Maximal Edge Cost C for n = 1000 and m = 100000.

. The following test suite was run on a random graph with 1000 nodes and 100000 edges.

max. edge cost | time f heap time r heap | diff. | %-Adv. of r_heap
4 =2%10.252 0.227 0.025 | 10.819
32 = 2% | 0.261 0.238 0.024 | 10.293
256 = 28 | 0.266 0.238 0.027 | 11.149
211 1 0.266 0.242 0.025 | 10.262
2141 0.269 0.243 0.025 | 10.776
2171 0.269 0.244 0.024 | 9.890
220 | 0.269 0.246 0.022 | 9.140
2231 0.268 0.247 0.020 | 8.439
2261 0.268 0.248 0.019 | 7.784
229 | 0.268 0.249 0.019 | 8.048

Average Advantage of radix over fibonacci heaps in percent: 9.66055%
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35. Time vs Maximal Edge Cost C for n = 10000 and m = 100000.

The following test suite was run on a random graph with 10000 nodes and 100000 edges.

max. edge cost | time f heap time r heap | diff. | %-Adv. of r_heap
4=2%10.691 0.423 0.268 | 63.361
32 =2%10.705 0.461 0.245 | 53.125
256 = 22 | 0.748 0.485 0.263 | 54.120
211 10.773 0.514 0.259 | 50.258
214 | 0.782 0.522 0.261 | 50.111
2*7 [ 0.782 0.532 0.250 | 46.890
220 1 0.781 0.542 0.239 | 44.290
223 1 0.781 0.555 0.225 | 40.768
226 | (.782 0.560 0.221 | 39.478
229 [ 0.786 0.572 0.214 | 37.442

Average Advantage of radix over fibonacci heaps in percent: 47.9847%
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36. Time vs number of nodes n for C = 10 and m = 3n.

The following table shows test runs with maximal edge costs of 10. The test suite consists of
random graphs with n nodes and 3n edges.

number of nodes | time f heap time r heap | diff. | %-Adv. of r_heap
1000 | 0.027 0.017 0.011 | 64.706
2000 | 0.064 0.035 0.028 | 79.535
3000 | 0.100 0.059 0.041 | 67.688
4000 | 0.137 0.079 0.059 | 73.793
5000 | 0.180 0.104 0.075 | 71.472
6000 | 0.224 0.125 0.098 | 79.440
7000 | 0.263 0.149 0.114 | 77.466
8000 | 0.305 0.170 0.136 | 79.783
9000 | 0.351 0.200 0.150 | 75.478
10000 | 0.397 0.221 0.175 | 79.158

Average advantage of radix over fibonacci heaps in percent: 74.8525%
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37. Time vs number of nodes n for C = 10 and m = nlogn.

The following table shows test runs with maximal edge costs of 10. The test suite conmsists of
random graphs with n nodes and nlogn edges.

number of nodes | time f heap time r.heap | diff. | %-Adv. of r_heap
1000 | 0.050 0.032 0.017 | 54.546
2000 | 0.119 0.078 0.041 | 54.272
3000 | 0.195 0.130 0.065 | 50.000
4000 | 0.275 0.180 0.095 | 52.719
5000 | 0.365 0.239 0.125 | 52.256
6000 | 0.456 0.300 0.157 | 52.110
7000 | 0.546 0.358 0.187 | 52.460
8000 | 0.639 0.418 0.222 | 53.068
9000 | 0.742 0.484 0.257 | 53.219
10000 | 0.839 0.549 0.291 | 52.958

Average advantage of radix over fibonacci heaps in percent: 52.761%

0.9 T T T T T i T T

Timing f-heap —
Timing r-heap

0.8

0.7
0.6
0.5

Time

0.4
0.3
0.2

0.1
u 0 ! L 1 I 1 i ! !

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Nodes

21



38. Time vs number of nodes n for C = 10° and m = 3n.

The following table shows test runs with maximal edge costs of 1000000. The test suite consists of
random graphs with n nodes and 37 edges.

number of nodes | time f heap time r.heap | diff. | %-Adv. of r_heap
1000 | 0.030 0.025 0.004 | 17.721
2000 | 0.069 0.056 0.012 | 20.118
3000 | 0.112 0.088 0.022 | 25.794
4000 | 0.156 0.122 0.034 | 27.694
5000 | 0.204 0.158 0.045 | 28.961
6000 | 0.250 0.193 0.057 | 30.104
7000 | 0.302 0.226 0.075 | 33.138
8000 | 0.351 0.263 0.088 | 33.776
9000 | 0.407 0.301 0.104 | 34.804°
10000 | 0.465 0.335 0.128 | 38.157

Average advantage of radix over fibonacci heaps in percent: 29.0267%
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39. Time vs number of nodes n for C = 10° and m = nlogn.

The following table shows test runs with maximal edge costs of 1000000. The test suite consists of
random graphs with n nodes and nlogn edges.

number of nodes | time f heap time r.heap | diff. | %-Adv. of r_heap
1000 | 0.052 0.045 0.008 | 18.586
2000 | 0.126 0.102 0.024 | 23.625
3000 | 0.210 0.170 0.041 | 24.558
4000 | 0.300 0.236 0.064 | 27.368
5000 | 0.398 0.307 0.090 | 29.673
6000 | 0.496 0.379 0.114 | 30.337
7000 | 0.595 0.455 0.141 | 30.902
8000 | 0.694 0.531 0.164 | 30.865
9000 | 0.805 0.611 0.193 | 31.624
10000 | 0.913 0.694 0.219 | 31.635

Average advantage of radix over fibonacci heaps in percent: 27.9178%
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40. Implementation notes.

This paper emerged from a semester project associated with a course on data structures and
algorithms taught by Kurt Mehlhorn and Christian Schwarz at the Univerisitat des Saarlandes in
the winter semester of 1994 /95, with teaching assistants Christoph Schmitz and Frank Schulz.

Given the specification r_heap.h, and the application framework consisting of the code for
Dijkstra’s algorithm, the test program and some test graphs, the students were asked to implement
r-heap and to conduct a performance comparison against f heap using the test program. The
students were supposed to form small groups for this task.

Combining our own ideas with those provided by the solutions of the student teams and those
resulting from discussions on the project, we came up with the final solution that is presented in
this paper. Our solution is mainly based on work of the group formed by Jochen K6énemann, Arnd
Christian K6nig and Mirek Riedewald.

Additionally, the contributions of all other students who worked on the project helped to shape
this final version. These students are Klaus Briimmer, Claas Buchterkirche, Silvio Engel, Stefan
Funke, Michael Gillmann, Ralf Glutting, Wolfgang Grof}, Jan Holger Schmidt, Stephan Jost, Bjérn
Kettner, Gunnar Klar, Gints Klavins, Boris Koldehofe, Klaus Kursawe, Karsten Kwappik, Markus
Lentes, Peter Leven, Marc Meidlinger, Martin Reinstadtler, Andreas Schifer, Ulrich Schmitt, Jan-
Georg Smaus, Dirk Wagner, René Weiskircher and Frank Wittig. We thank them all.
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