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~ Abstract

Abstract Voronoi diagrams were introduced by R. Klein as a unifying approach to Voronoi diagrams.
In this paper we study furthest site abstract Voronoi diagrams and give a unified mathematical and
algorithmic treatment for them. In particular, we show that furthest site abstract Voronoi diagrams are
trees, have linear size, and that, given a set of n sites, the furthest site abstract Voronoi diagram can be
computed by a randomized algorithm in expected time O(nlog n).

1 Introductiovn

Voronoi diagrams are among the structures most frequently investigated in Computational Geometry. Be-
cause of their wide range of applications, cf. Leven and Sharir ([LS86]) or Aurenhammer ([Aur91]), many
different kinds of diagrams have been considered. Different kinds of diagrams are obtained by varying the
shape of the sites, e.g., points, line segments, circles, and the distance function. A unifying approach to
Voronoi diagrams has been proposed recently by Klein ([Kle89]), cf. [ES86] for a related approach. Klein’s
approach is based on the notion of bisecting curves instead of the concept of distance. For each pair p and
g of sites the existence of a bisector dividing the plane into a p-region and a g-region is postulated. The
Voronoi region of site p is then obtained by intersecting all p-regions generated by the sites different from
p. The abstract Voronoi diagram is formed by the boundaries induced by the Voronoi regions. Klein inves-
tigated the topological properties of abstract Voronoi diagrams and showed that two natural assumptions,
namely that Voronoi regions are connected and that every point of the plane belongs to a Voronoi region,
suffice to derive many properties of Voronoi diagrams. We review some of these properties in Section 2.
Abstract Voronoi diagrams encompass a large number of specific diagrams, e.g., diagrams for point, disjoint
line segment, and disjoint circle sites under any Ly-norm (1 < p < oo).

In his monograph [Kle89] Klein also gave an O(nlogn) deterministic divide-and-conquer algorithm for
a subclass of his abstract diagrams. Next Mehlhorn, Meiser, and O’Dinlaing ([MMD91]) obtained an
O(nlog n) randomized algorithm for all abstract diagrams provided a certain general position assumption is
satisfied. Finally, Klein, Mehlhorn and Meiser ([KMM91]) removed the general position assumption. The
algorithms of [MMD91] and [KMM?91] are both instances of Clarkson and Shor’s randomized incremental
constructions ([CS89]) in the history graph version introduced in [BDS*92].

In this paper we study furthest site abstract Voronoi diagrams and thus give a unified treatment of a large
class of furthest site diagrams. See Figure 3 for an example of a nearest and a furthest site Voronoi diagram.
In section 2, we derive the basic topological properties of the furthest site abstract Voronoi diagram. In
particular, we show that the diagram is a tree, i.e., a connected planar graph with no bounded face, and
that, although the Voronoi region of a site may consist of more than one face, the total number of faces
is linear. In section 4, we give a randomized algorithm which constructs the furthest site abstract Voronoi
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2 ABSTRACT VORONOI DIAGRAMS 2

diagram of n sites in time O(nlogn). Previously, an O(nlogn) algorithm has been known only for a few
cases of furthest site Voronoi diagrams, cf. [Bro79], [Ede87], and [Rap92].

The main features of our algorithm are its generality, as it applies to all abstract Voronoi diagrams,
its modularity, as only the basic operation depends on the particular kind of diagram, and its simplicity.
The algorithm is an instance of Clarkson and Shor's randomized incremental constructions ([CS89]). The
connection to RICs is made in Section 3.

We use the following notation. For a subset X of IR? we use 1 X, int X, and bd X to denote the
closure, interior and boundary of X under the standard topology, respectively. We use C and C to denote
set inclusion and proper set inclusion.

2 Abstract Voronoi Diagrams

2.1 Admissible and semi-admissible dominance systems

In this section we define nearest and furthest site abstract Voronoi diagrams, review basic properties of
nearest site diagrams as established in [Kle89] and [KMM91], and show that furthest site diagrams share
these properties. ]

Let n € IN and S = {1,...,n—1}. A family D = {D(p,q)|1 < p # ¢ < n} of subsets of the plane is
called a dominance system over S, if the following conditions are satisfied for all p and ¢ with 1 < p# g < n:

0. D(p,q) is a non-empty open subset of the plane.

1. D(p,¢) N D(q,p) = @ and bd D(p,q) =bd D(g,p).

2. J(p,q) = bd D(p, q) is homeomorphic to the open interval (0,1).
Clearly, J(p,q) = J(g,p). We call the elements of S sites, the curve J(p,q) the bisector of sites p and ¢

and D(p, q) the region of dominance of p over q. Following Klein [Kle89], the abstract nearest site Voronoi
diagram is now defined as follows:

Definition 1. Let S = {1,...,n — 1} and let < be a linear order on S. Let

Re(p,q) ¥ {D(p,q)UJ(p,q) ifp<gq

B D(p,q) fp>q’
VR, S) < [ R(p,9),
T
ve(s) € | bdvR(p,5).
PES

We call int VR<(p, S) the nearest site Voronos region of p w.r.t. to S and <, VR<(p, S) the eztended nearest
site Voronos region of p w.r.t. to S and <, and V. (S) the nearest site Voronos diagram of S with respect to
<.

A dominance system is called admisssble, if it satisfies the following additional properties:

3. Any two bisecting curves intersect in oxﬂy a finite number of connected components.
4. For all non-empty subsets S’ of S and all orderings < of S:

(A) VR<(p,S’) is path-connected and has a nonempty interior for every p € 5’,
(B) IRZ = UpeS' VR< (pi S,)'

A dominance system is called semi-admissible if it satisfies properties 3 and 4B (but not necessarily 4A).
The following alternative characterization of property 4B is useful. For a point z € IR? and distinct sites p
and g let p <, ¢ if and only if z € R<(p,q). "
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Fact 1 ([K1e89]) Let D be a dominance system. Then the following three conditions are equivalent:
a. D satisfies 4B.

b. <z i3 a linear order on the sites for all ¢ € IR®.

c. Re(p,g)NR<(q,7) C Rc(p,7) for all triples p,q,r of distinct sites.
Moreover, * € VR<(p, S) if and only if p<s q forallge S\{r}.

Intuitively, <; orders the sites according to increasing distance from z and the extended nearest site
Voronoi region of a site p consists of all points # having p as their closest site. It is now natural to also
consider furthest site diagrams.

Definition 2. Let < be a linear order on S and p € S. Let
def

VR (p,S) = {zeR’|g<,plorallgeS\{p}},

» d *
vis) E | vdvri(e,S).
PES

In analogy to Definition 1 we call int VR (p, S) the furthest site Voronoi region of p or p-region w.r.t. S
and <, VR%(p, S) the exztended furthest site Voronos region of p w.r.t. S and <, and V?(S) the furthest site
Voronos diagram of S w.r.t. <.

As we will see next the furthest site abstract Voronoi diagram can also be obtained by “reversing” the
dominance relations and the linear order <. To make this intuition more precise we define the dual of a
dominance system and consider the reverse order of the linear order on S. The dual P* = {D*(p,q) | 1 <
P # ¢ < n} of a dominance system D is defined by D*(p, ¢) = D(q, p) for all p,q € S with p # g. For a linear
order < on S the reverse order <* is obtained by p <* ¢ & ¢ < p for all p,q € S with p # gq.

Lemma 1 Let D be a semi-admissible dominance system and let D* be sts dual.

a. D* 1is semi-admaissible.

b. Let < be a linear order on S and let <* be the reverse order of <. Then VR (p,S) is equal to the
extended nearest site Voronos region of p w.r.t. S, the linear order <™, and the domsnance system D*.

c. V2(S) for D is equal to V¢+(S) for D*.

Proof: Let < be a linear order on S. For sites p and g, define p <% g if either z € D*(p,q) or = € J(p,q)
and p <* q. Then p <, ¢ if and only if ¢ <} p. Parts (a) and (b) now follow from Fact 1. Part (c) is an
immediate consequence of part (b). m]

Lemma 1 implies that the furthest site abstract Voronoi diagram can again be defined by means of a
dominance system, namely the dual of the given dominance system. Thus the following results on nearest
site abstract Voronoi diagrams from [Kle89] and [KMM91] are valid in both contexts of nearest and furthest
site abstract Voronoi diagrams.

Fact 2 ([KMM91]) Let D be semi-admissible and let <3 and <z be two linear orders on S.

a. int VR, (p, S) = int VR, (p,S) forallp€ S,
b. V<1(S) = V<:(S)'

Fact 2 states that the Voronoi diagram and the Voronoi regions do not depend on the particular linear
order imposed on S. Only for points in V(S) does the linear order < decide to which Voronoi region they
belong. In the light of Fact 2 we write V(S) instead of V(S) and int VR(p, S) instead of int VR<(p, 5)
from now on. We will also write VR(p, S), resp. R(p, q), instead of VR.(p, S), resp. R<(p,q), when the
linear order < is clear from the context. In this way, the omission of the symbol < also applies to VZ(S),
int VR (p, S), and VR% (p, S) which are replaced by V*(S), int VR*(p, S), and VR*(p, S), respectively.
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Figure 1: A nearest site Voronoi region with tentacles

The extended Voronoi region of a site p may also include points which are not contained in clint VR(p, S).
Depending on the particular linear order imposed on S the extended Voronoi region can have long tentacles,
i.e., VR(p, S) may include points of the Voronoi diagram which do not belong to the boundary of the Voronoi
region int VR(p, S) . See Figure 1 for an illustration.

Definition 8. An edge e of V(S) is a maximal connected subset of V(S) such that every point z € e lies on
bdint VR(p, S) for exactly two sites p of S. The edge is said to separate the regions of these two sites. A
vertez v of V(S) is a point = € V(S) which lies on bd int VR(p, S) for at least three sites p of S. A face of

V(S) is a maximal connected subset of int VR(p, S) for some p € S. '

In the case of a semi-admissible dominance system a Voronoi region int VR(p, S) may consist of zero or
more faces. In the case of admissible systems each Voronoi region consists, by Property 4A, of exactly one
face. .

Wy ! wy

w1
w3 w,y

Figure 2: INlustration of Fact 3

Fact 8 Let D be semi-admissible and let < be a linear order on S.

a. All but finstely many points of V(S) belong to an edge of V(S).
b. Every face of V(S) is homeomorphic to an open disc and its boundary is a simple curve.

c. For each point & € V(S) there are arbstrarily small nesghborhoods U of z having the following properties:
V(S)NbA U is finste. Letwy,..., wn be the points sn V(S)Nbd U as encountered in a clockwise traversal
of bdU. Then h > 2 and V(S)NU 4s the union of curve segments By,..., P where B; connects z -
to w; and the B;’s are disjoint ezcept at thesr common endposnt z. For eachi, 1 <i < h, there s ¢
site p; € S such that the open “piece of pie” bordered by f5;, Bi+1 (read sndices mod h) is contained n
int VR(pi, S) wsth p; # piy1 for all i. Also, there 1s a site g; € S such that §; \ {z} C VR(g;, S). We-
have ¢; < min{p;_1,pi}. The point z belongs to VR(p, S), where p = min{py,...,pn,q1,---,qn}-

d. IfD is admisssble then p; # p; for alli # j in part (c) and only site p can occur more than once among
D1y Phyq1y---3Gn. :
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Figure 2 illustrates Fact 3. Fact 3 is a consequence of Theorem 2.3.5 of [Kle89]. For admissible systems
this was observed in Fact 1 and Fact 2 in [KMM?91]. For semi-admissible systems, the argument is as follows.
Theorem 2.3.5 in [Kle89] is proved for admissible systems; cf. pages 31 to 51 in [Kle89]. However, Property
4A is used only twice in the proof of Theorem 2.3.5. The first use is in Lemma 2.3.3 to show that V(S)
contains no isolated points. This use of Property 4A is unnecessary, as we show next. Assume that there
is an isolated point v in V(S), i.e., v € VR(p, S) for some site p and there is a neighbourhood U of v such
that U \ {v} C VR(g, S) for some site g different from p. Then this situation arises even for S’ = {p,q}, a
contradiction to Properties 1 and 2. Thus Lemma 2.3.3 holds even for semi-admissible systems. The only
other use is to prove the last sentence of Theorem 2.3.5. Thus all but the last sentence of that theorem
already hold for semi-admissible dominance systems. This justifies parts (a) and (c). Part (b) follows from
Lemma 2.2.4 of [Kle89].

From now on, we proceed on the assumption that D is the primal admissible dominance system and that
D* is its dual. So D determines V(S) and D* determines V*(S). Note, however, that by Lemma 1 the dual
system D* is only guaranteed to be semi-admissible.

An example of a nearest and a furthest site Voronoi diagram is given in Figure 3.

site 1 site 1
@ site 3
site 4 site
nearest site Voronoi diagram furthest site Voronoi diagram

Figure 3: The nearest and furthest site Voronoi diagram of three line seg-
ment sites (sites 1, 2, and 4) and one point site (site 3) under the
Euclidean metric. In the furthest site diagram the region of site
2 is empty and the region of site 3 has two faces.

2.2 Properties of the furthest site abstract Voronoi diagram

We characterize the furthest site Voronoi diagram. The furthest site diagram can be represented as an
embedded planar graph in a natural way. Vertices, edges and faces of V*(S) are in one-to-one correspondence
to the vertices, edges and faces of this graph so that we use V*(S) to denote this graph, too.

Lemma 2 The furthest site Voronos diagram V*(S) is a tree.

Proof: We show first that V*(S) is connected and then that it has no bounded face.
Claim 1: V*(S) is a connected set.

Proof: We show that if V*(S) is not connected, there is a site p whose region in the primal diagram is
empty. So let us assume that V*(S) consists of at least two connected components. Since the faces of
V*(S) are homeomorphic to open discs there must be a simple curve C disjoint from V*(S) which splits the
plane into two unbounded domains h; and h; both of which contain at least one component of V*(S). Let
P € S be such that C C int VR*(p, S). By assumption there are points z; € h; and sites ¢; # p such that
z; € VR*(qi, S) for i = 1,2. The bisector J(p, ¢;) does not intersect C (since C C int VR*(p, S)) and hence
is completely contained in either k; or h;. From z; € VR*(gi, S) N h; we conclude that J(p, ¢;) is completely
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contained in h; and therefore D(p, ¢;) = D*(gi,p) C hi. Thus int VR(p, S) C h1 N h2 = 0, a contradiction to
Property 4A. a]

Claim 2: All faces of V*(S) are unbounded faces.

Proof: We show that if V*(S) has a bounded face, there are two sites for which the bisector is not a simple
curve. So let us assume that there is a bounded face f C VR*(p, S) for some site p € S. W.l.o.g. we can
suppose that S is a minimal set having this property. If | S| = 2, then a contradiction is immediate since
the only bisector would have to cross itself. So let us assume that | S| > 3 and that all faces of V*(S’) for
@ C 8’ C S are unbounded. We may also assume that p < ¢ for all ¢ € S\ {p} in the primal linear order
imposed on S. Then R(p,q) = dD(p, q) for all g € S\ {p}.

Let Z € int VR(p, S) be a point in the interior of the Voronoi region of p; T exists according to Property
4A. Also, for each pair ¢',¢" € S\ {p} with ¢’ # ¢" the set VR(p,{p,¢',q¢"}) = R(p,¢') N R(p,q") is
path-connected and contains 7 by Property 4A. Let

k= U R®d)NR@").
¢'1¢" €S\ {p}
q'#9"

Assume first that there is a simple closed curve C C K which contains f in its inner domain. Let ¢’ €
S\ {p} be arbitrary and consider VR*(p, S \ {¢'}). Clearly, f C VR*(p,S \ {¢'}). On the other hand
we have C N VR*(p, S\ {¢'}) = 0 since z € C implies z € R(p,q") for some ¢” € S\ {p,q'} and hence
z ¢ VR*(p, S\ {¢'}). Consequently, there would be a bounded face in V*(S \ {¢'}), a contradiction to the
minimality of S.

Thus there is no simple closed curve C C K which contains f in its inner domain and hence there is a
(topologlcal) ray with (K U f) Nr = 0 having its endpoint on bd f and going to infinity.

Since IR? \ K and f are open sets we may assume that the endpoint of r lies on an edge, say e, of
bd f. Let g be such that e separates VR*(p, S) and VR*(q, S). Note that e C J(p,q). Let z; and z2 be
the two endpoints of e and let g; and g; be sites different from p and g (but g1 = g; is possible) such that
z; € J(p,q) N J(p,¢:) C R(p,q) N R(p,¢;) for i = 1,2. Thus there is a path P; C R(p,q) N R(p,¢:) C K
connecting z; and Z for < = 1,2. The concatenation of e, Py, and P; is contained in R(p,q) and partitions
the plane into a number of domains; since the ray r is disjoint (except for its endpoint) from e, P;, and
P,, we conclude that f is contained in one of the bounded domains. Thus int VR(p, {p, ¢}) = D(p, q) is not
homeomorphic to an open disc, a contradiction to Property 4A. o

u]

Lemma 8 Suppose that fi and f, are two distinct faces with fy, f» C VR*(p,S) for some p € S. Then
cdfindf, =0.

Proof: Assume that cl f; Ncl fo # . Since V*(S) is a tree cl fy Ncl f2 consists either of an edge of V*(S)
together with its endpoints or of a single vertex of V*(S). The intersection cannot be an edge because this
edge would disappear from V*(S) for an appropriate order of the sites, a contradiction to Fact 2. Thus the
intersection must be a single vertex v of V*(S). Since f; and f, are unbounded and V*(S) is a tree, the set
IR? \ ({v} U f1 U f2) consists of exactly two connected components hy and h; for which hy N h; = 0. See also
Figure 4.

Next observe that bd f1, bd 2 C U, s\{n} 7 (p, g). So it is possible to select a bisector J(p, g) contribut-
ing to the boundary of h; and f;. Obviously, J(p,q) N (f1 U f2) = 0. Also, we have ho N J(p,q) = 8, because
otherwise D(p, q) N f2 = D*(q,p) N f2 # 0. Thus D(p, q) C hy and hence int VR(p, S) C hy. By a symmetric
argument we have int VR(p, S) C h,. Recalling hy N hy = @ it follows that int VR(p, S) = @, a contradiction
to Property 4A. 0o

For the sequel, it is helpful to restrict attention to the ™finite part” of V*(S). Let I be a simple closed
curve such that in the outer domain of I' any two bisectors are either disjoint or identical and such that each-
bisector J(p,g) intersects I' exactly twice. We may also assume that if two bisectors are identical outside
T then they meet before leaving the inner domain of I'. That is, if the intersection of I' and two bisectors
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hy

Figure 4: f1, fa, b1, bz decompose IR?

J(p,q) and J(7', ¢’) contains a point z then J(p,¢)NU; = J(¢, ¢') NU; for sufficiently small neighbourhoods
of z.

We add a site 0 to S, define J(p,0) = J(0,p) =T for all p, 1 < p < n, and D(0,p) to be the inner
domain of T' for each p. Then VR*(0, S) is the outer domain of I' and ' = bd VR*(0, S). Also, the choice of
T’ ensures that every vertex of V*(S) on I' has a degree of exactly three.

From now on, V*(S) denotes the diagram including the site 0.

We have seen above (cf. Figure 3) that furthest site diagrams may contain more than one face for a site.
Next, we bound the number of faces. 4

Lemma 4 a. Letey,...,epmt1 with emyy = €1 be the cyclic list of edges of V*(S)NT and let p; € S\ {0}
be such that e; ltcs on the boundary of int VR* (p,, S) . Then there are no four tndices 1 <i1 < j<k<
h < m such that p; = pr end p; =

b. V*(S) has at most 2n — 2 faces, at most 6n — 12 edges, and at most 4n — 8 vertices.

Proof: (a) Assume that there are four such indices. Let p = p; = px and ¢ = p; = ps. Observe that
v*({p,a}) = V({p, a}) since int VR"(p, {p, ¢}) = int VR(g, {p,q}) and int V" (g, {p, q}) = int VR(p, {p,}).
Also, VR*(p,S) C VR*(p,{p,q}). Thus the situation described in part (a) arises even in V*({p,q}) and
hence in V({p,q}). But this is a contradiction to Property 4A.

(b) By part (a), the sequence py, ..., pm is a Davenport-Schinzel sequence ([HS85]) of order 2 over an alphabet
of size n — 1. Thus m < 2(n—1) — 1 = 2n — 3. Thus V*(S) has at most 2n — 2 faces, one for site 0 and
m for the sites 1 to n — 1. V*(S)\T' is a tree with at most 2n — 3 vertices of degree 1. Also, there are no
vertices of degree 2 in V*(S). Thus V*(S) has at most 2n — 3 + 2n — 5 = 4n — 8 vertices and at most
4n—~ 94 2n —3 = 6n — 12 edges. o

Next, we focus on the Voronoi vertices.

Definition 4. Let p,g,r be three sites of S and let f,, f;, f, be faces of VR*(p, S), VR*(g, S), VR*(r, S),
respectively. A vertex v € V*(S) is called a (p, g, r)-vertez iff v is located on bd f, Nbd f; Nbd f, and there
exists a clockwise tour around v encountering f, fq, fr in this order.

Lemma 5 Let p, g, and r be three distinct sites tn S. Then V*(S) contains at most one (p, g, r)-vertez and
at most one edge separating p- and g-region tncident to that vertez. .

Proof: Assume for the sake of a contradiction that there are two distinct (p,gq,r)-vertices v and w in
V*(S). There must be faces f7, f C VR*(p,S), f, fy € VR*(q,5), f7, f;’ € VR*(r,S) such that v
lies simultaneously on bd f7 , bd f7,bd f] and w lies smu.ltaneously on bd f“’ bd I bd £ . We have to’
distinguish two cases: , '

Assume first that one of the three sites, say p, is equal to 0: This implies v,w € T and f] # f7 and
f? # f7 since v and w can be connected by a path in V*(S)\TI'. In a clockwise tour on I starting at v the
faces f7, f7’, fg, f7 will be encountered in this order. This contradicts Lemma 4.
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Assume next that 0 ¢ {p,g,r}: According to Lemma 2 each of the six faces touches I' and hence
[{fo: F3 3 1 17+ 77} | < 4 according to Lemma 4. [{f7, ', f3: {2 f7+ £’} | = 3 would imply v = w and
hence exactly two of the associated pairs of faces collapse, say f; = f;’ and f7 = f’. But now it is possible
to connect v and w by paths P, C VR*(p, S) and P; C VR*(q, S). Glueing together both paths we obtain a
circle containing either f7 or f¥. Thus either f7 or f is a bounded face, a contradiction to Lemma 2.

So there is at most one (p, g, r)-vertex in V*(S), say v. The vertex v can be incident to at most one edge
separating p- and g-region because otherwise Lemma 3 would be violated. O

Note that Lemma 5 does not exclude the possibility of more than one edge separating the p- and the -
g-region. It only states that such edges have no common endpoints.

2.3 Addition of a site

This section prepares the ground for the incremental construction scheme used to compute V*(S). Suppose
from now on that R C S and | R| > 3. Throughout this section we also assume that 0 € R. Note that the
last condition implies that all edges of V*(R) are bounded. We consider the case when a new site t € S\ R
is to be inserted.

Let VR}(p, R) denote clint VR*(p, R), i.e., the closure of the p-region.

Lemma 68 T/ (V*(R)\ T) N VR}(t, RU{t}) # 0 if and only if VR}(t, RU {t}) # 0.

Proof: If T = 0 and VR}(t, RU{t}) # 0 then the boundary of each face f C VR*(t, RU {t}) is completely
contained in a face of V*(R) or is located on I'. |R\ {0}| > 2 ensures that V*(R) \ T # 0. Now consider
V*(R\ {0} U {t}). Since outside I' no Voronoi vertices can occur, V*(R\ {0} U {t}) consists of at least two
components, a contradiction to Lemma 2. The converse direction is trivial. o

Lemma 7 Let VR:(t, RU{t}) # 0, let f be a face of VR*(t, RU{t}), and let Ty = (V*(R)\T)Nel f. Then:

a. Ty 1s nonempty.
b. T} s a connected set.
c. Tj s not just a single point.

Proof: Part (a). This was already shown in the proof of Lemma 6.

Part (b). Assume that T} consists of at least two components. Then we can choose two endpoints, say =
and y, of distinct components of T§ such that z and y can be connected by a path P C (V*(R)\T)\clf. P
does not touch cl f except at its endpoints z and y. On the other hand there must be a path @ C (bd f)\T
connecting z and y. P and Q are disjoint except for their common endpoints, i.e., P o Q is a simple curve.
Path Q is contained in V*(R U {t}) \ I'. We next construct a path P’ C V*(RU {t}) \ T from P which also
connects z and y and which is disjoint from Q, i.e., P’ o Q is a simple cycle contained in V*(RU {t}) \ T.
This contradicts Lemma 2. '

To construct P’ path P is decomposed in subpaths P; o P;0...0 P, such that P;, for ¢ even, is a maximal
subpath of P contained in VR}(t, RU{t}). For each even i there is a face f; C VR*(t, RU {t}) different from
f with P; C cl f; (since, by Lemma 3, the closures of any two faces of VR*(t, R U {t}) are disjoint). Let
P} C (bd f; ) \ T be the path connecting the two endpoints of P;. Then P’ = Pyo PjoPsoPjo...0 P, isa
path contained in V*(RU {t})\T and disjoint from Q by Lemma 3. Figure 5 illustrates the definition of P’.

Part (c). At this point we know already that T} is a nonempty connected set. Assume now that Ty is a
single point. This point, say z, is a vertex of V*(R) or lies on an edge of V*(R). In either case f splits a
face f of V*(R) into two new ones, say f; and f,. Recall that f must touch I' according to Lemma 2. We
conclude that cl f; Ncl f, = {z}, a contradiction to Lemma 3. ]

Note that although (V*(R) \T) Nclf is connected, this is not necessarily true for V*(R)Nc f. We
therefore distinguish two types of faces:

Definition 5. A face f C VR*(t, RU{t}) is called rooted if Tf+ %f V*(R)Nel f is connected and unrooted
otherwise.

If ¢ gives rise to unrooted faces, we can prove stronger properties of VR*(t, RU {t}):
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Figure 5: Mlustration of paths P’ and Q

Lemma 8 Let f be a face of VR*(t, RU{t}).

a. Let v be a Voronos vertez of V*(R) located on T' and let e be the unique edge tn V*(R) \ T incident to
v. IfvEclf thenU,NeNnclf #0 for all nesghbourhoods U, of v.

b. f 1s unrooted if and only if cl f does not include a Voronos vertez of V*(R) located on T.

Proof: Part a). First note that there can be no face f' C VR*(t, RU{t}) with f # f' and v € cl f' according
to Lemma 3. If U, NeNcl f = 0 for some neighbourhood U, then v is also a Voronoi vertex in V*(RU {t}).
Moreover, in V*(RU {t}) there are four Voronoi regions meeting at v, namely the t-region and the three
Voronoi regions meeting at v before site ¢ has been inserted. Thus v is incident to four Voronoi edges in
V*(RU{t}), a contradiction to the choice of T.

Part b). (=) If f is an unrooted face T?' = V*(R)Necl f consists of exactly two components: Ty and
I'Ncl f. For the sake of a contradiction assume that I'Ncl f contains a Voronoi vertex v of V*(R). Now let
e be the unique edge in V*(R) \ T incident to v. By part a) we have U, NeNcl f # 0 for all neighbourhoods
U, of v. Since U, Nenc f C Ty, it follows that Ty and I' Ncl f are connected via v, a contradiction.

(«<) To show the converse, suppose that I'Ncl f does not include a Voronoi vertex of V*(R). Ty and
T'Ncl f are nonempty sets according to Lemma 7 and Lemma 2, respectively. Now observe that any path
inside V*(R) which runs from T to I' N cl f must pass through a Voronoi vertex on I'. Thus T;' is not
connected and the claim follows. o

Lemma 9 If VR*(t, RU {t}) has an unrooted face then VR*(t, RU {t}) consist of a single face.

Proof: Let f be an unrooted face of VR* (£, RU{t}). Lemma 8 shows that I'Ncl f contains no Voronoi vertex
~of V*(R). Consequently, there is a site p such that VR*(p, RU {t}) is the clockwise and counterclockwise
neighbour of f on I'. Thus f must be the only face of VR*(t, RU {t}) by Lemma 4. (m]

The following observation is also helpful.

Lemma 10 Let f be a face of VR*(t, RU{t}) and let e be an edge tn V*(R)\T. Then enclf has at most
one component.

Proof: We only need to notice that V*(R U {t}) is also a tree. m
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3 Descriptions and Conflicts

Our algorithm for furthest site abstract Voronoi diagrams is an instance of the randomized incremental
construction paradigm introduced by Clarkson and Shor [CS89]; cf. also [BDS*92] and [CMS92]. We briefly
review the paradigm.

Let S be a set with | S| = n objects, let b be an integer, let F(S) C S® be a subset of the b-tuples over S
and let C C S x F(S) be a relation (the so-called conflict relation). It is assumed that (s, (s1,...,3)) € C
implies s # s; for 1 < i < b. Let F,(S) = {D € F(S)| there is no s € S with (s, D) € C}. Clarkson and
Shor have analyzed the incremental construction of F,(S). In the general step, F,(R) for some subset R C S
is already available, a random object £ € S\ R is chosen, and F,(R U {t}) is constructed from F,(R).

In order to apply the paradigm we need to interpret S, F(S) and C. S is just our set {0,...,n— 1} of
sites. For F(S) and C the situation is more difficult. Intuitively, we want F,(R) to be the set of edges of
V*(R), formally (R) and hence F,(R) has to be a set of b-tuples of sites for some integer . We resolve
this dilemma as follows: We identify edges with certain 6-tuples of sites; for example, the edge e in Figure 6
will be identified with the 6-tuple (p, g, rq, 7p, 75, Ty), ie., the description of an edge involves the sites whose
Voronoi regions are separated by the edge e and sites owning neighbouring faces. We will now give the
precise definition of F(R).

Throughout this section the set R need not necessarily contain the site 0. However, | R| > 3 is supposed.

: o
Tp-Iegion rp-Tegion

fr CVR'(p, R)

! -
rq-Tegion fCVR*(g,R) s ry-Tegion

Figure 6: The description of e is Dr(e) = {(P, ¢, 7¢, p), (9,2, Ty Tg)}

Definition 6. A set D = {(p, q,1,72), (¢, P, 73,74)} is called a description over R iff {p,q,71,72,73,74} C R
and {p}, {q}, {r1, 72,73, 74} are pairwise disjoint. For a description D let set(D) def {p,q,71,72, 73,74}

Remark: A description D = {(p, ¢, 1, 72), (¢, P, 73, 74)} may also be written as a 6-tuple (p, g, 71, 72,73, T4),
i.e., the set of descriptions can be viewed as a subset of IN®. We prefer the notation of Definition 6 because
it allows a natural interpretation which we give next.

A bounded edge e of V*(R) is mapped to a description in the following way (see Figure 6): Let e
separate faces f, C VR*(p, R) and f; C VR*(g, R). Let g, and g, be the edges preceding and following e in
a counterclockwise traversal of bd f, and let g, and g be the edges preceding and following e in a clockwise
traversal of bd f, . The four edges are called the neighbouring edges of e and Gr(e) = {gp, g5, 9q, 95 } is used
to denote the set of neighbouring edges. Let sites r, and r;, be such that edges g, and g, separate f, from
a face of VR*(rp, R) and VR*(ry, R), respectively. Similarly, let sites ry and #; be such that edges g, and g
separate f, from a face of VR*(ry, R) and VR*(ry, R), respectively.

Definition 7. Let e be a bounded edge of V*(R) and let p,g,7p, 7y, g, 7y be as explained above. Then

Dr(e) %! {(P1 9,74, 7p); (4, P, Ty ¢ )} is called the description of e w.r.t. R.
We also define F(R) = {D|D is a description over R and V*(set(D)) contains a bounded edge with
description D }.
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Remarks:

1. Note that one of the endpoints of e is a (p, q,7p)- and (p, ¢, 7y)-vertex and the other one is a (g, p, r;)-
and (g, p, ry)-vertex.

2. |{rp, 75, 7qs ¢} | lies between 1 and 4, | Gr(e) | varies between 2 and 4. For example, if | R| =3 and 0 € R
the minimal values are attained for each edge in V*(R).

Our next aim is to establish basic properties of the mapping between the bounded edges and their
descriptions. The following two lemmas show that distinct edges have distinct descriptions and that an edge
retains its description if sites are removed from the Voronoi diagram which are not in the description of the
edge. .

Lemma 11 Let e be a bounded edge of V*(R) and let R’ be such that set(Dgr(e)) C R' C R. Then:

a. e exists in V*(R')..

b. The description of e in V*(R') 1s the same as in V*(R), s.e., Dr:(e) = Dg(e).

Proof: We have VR*(s, R) C VR*(s, R') for every site s € R'. The condition set(Dgr(e)) C R’ ensures that
the Voronoi regions involved in forming e also appear in V*(R’). Thus e exists in V*(R'). Also, for each
. edge g € Gr(e) sepa.rating the Voronoi regions VR*(r1, R) and VR*(r3, R) of two sites ry,72 € 3et(DR(e))
there is an edge ¢’ € Gr/(e) separating VR*(ry, R') and VR*(r, R') with g C ¢’ and gNU = ¢'NU for all -
* sufficiently small neighbourhoods U of e. Thus Dgs(e) = Dg(e). m]

Lemma 12 Lete and €' be distinct bounded edges of V*(R). Then Dgr(e) # Dg(e’).

Proof: We will show that Dg(e) = Dg(e’) implies e = ¢’. Let Dg(e) = Dr(e’) = {(p, 4,7, Tp): (4,2, 75 Tg) }-
Then both edges have a (p, ¢, p)-vertex and a (g, p, 7p)-vertex as an endpoint. Thus e and e’ have the same
endpoints according to Lemma 5 and hence are identical (again by Lemma 5). m]

Next, we turn to the definition of a conflict. We give two definitions, a topological and a combinatorial
definition, and show their equivalence. The combinatorial definition gives the conflict relation in the sense of
the incremental paradigm, the topological definition links the concept with the intuition that a sitet € S\ R
conflicts with an edge e in V*(R) if the edge e no longer exists in V*(RU{t}); more precisely, if the insertion
of t affects ¢ or one of the neighbouring edges at the endpoint shared with e.

Definition 8.

a. topological definition of conflict:
Let e be a bounded edge of V*(R) and let ¢t € S\ R. Then t conflicts with e in V*(R) if and only if

Un(eu |J o)nVRi(tL,RU{t}) #0
g€EGR(e)

for every neighbourhood U of e.

b. combinatorial definition of conflict:
Let D € F(S) and let t € S\ set(D). t conflicts with D if and only if there is no bounded edge in
V*(set(D) U {t}) with description D.
Fo(R) denotes the set of conflict-free descriptions in F(R), i.e., Fo(R) = {D € F(R)|D does not
conflict with any t € R\ set(D)}.

Remark: Recall that edges are relatively open sets, i.e., the endpoints of an edge do not belong to the edge.
Thus it is possible that an endpoint of e belongs to VR *(t, RU {t}) but ¢ does not conflict with e (in the
topological sense).

We next show the equivalence of the two notions of conflict.

Lemma 18 Let0 € R and t € S\ R. Then t conflicts with e in V*(R) if and only if t conflicts with Dg(e).
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Proof: Recall that the condition 0 € R ensures that all edges in V*(R) are bounded, and hence Dg(e) is
defined for each edge e in V*(R). We will prove the lemma by showing the contrapositions. Let D = Dg(e).
(=) Claim: If t does not conflict with Dgr(e) then ¢t does not conflict with e in V*(R).
By Lemma 11, the edge e is also an edge in V*(set(D)) and moreover has the same description D. Since
t does not conflict with Dg(e), there is an edge €’ in V*(set(D) U {t}) with description D. The edge €’
exists also in V*(set(D)) according to Lemma 11 and hence ¢ = ¢’ (by Lemma 12), i.e., e is an edge of
V*(set(D) U{t}) and D,.¢p)uqe}(€) = D. The last observations now ensure that for each sufficiently small
neighbourhood U of e the following holds:

Un(eu |J g)NVR(tset(D)U{t}) =0.
geG-el(D)(c)

Since Uyegn(e) 9 € Ugegm(p)(,) ¢ and VR*(¢t, RU {t}) C VR*(t, set(D) U {t}) it follows that

Uneu |J 9)nVRi(tRU{t}) =0
9EGR(e)

and hence ¢ does not conflict with e.

(<) Claim: If ¢t does not conflict with e in V*(R) then there is no conflict between ¢ and Dg(e).
When ¢ does not conflict with e, e is also an edge of V*(RU {t}) and moreover has the same description D.
By Lemma 11, the edge e is also an edge in V*(set(D) U {t}) and moreover has the same description D. D

Theorem 1 If 0 € R then the mapping e — Dg(e) is a bijection between the edge set of V*(R) and Fo(R).

Proof: We first show that the function really maps only into F,(R). Let D = Dg(e) and s be an element of
R\ set(Dg(e)), if any. Then e is also an edge of V*(set(D)) and V*(set(D)U{s}) and D = D,¢(pp(e))(€) =
D,et(Dr(e))u{s}(€) according to Lemma 11. Thus no site s € R\ set(Dgr(e)) conflicts with e and hence
Dr(e) € Fo(R).

The injectivity of the mapping was shown in Lemma 12.

It remains to show surjectivity. Let D € F,(R) be arbitrary and assume that D # Dg(e) for all edges e
of V*(R). D € F,(R) implies that there is an edge in V*(set(D)) with description D. Thus there must be
a set R’ with set(D) C R’ C R and a site s € R\ R’ such that V*(R’) contains an edge e with description
D but V*(RU {s}) does not. Thus s conflicts with Dr/(e) by Lemma 13. Also, Dr/(e) = D according to
Lemma 11 and hence D ¢ F,(R). o

Remark: What have we achieved? Theorem 1 links a topological concept, namely the edges of V*(R), with
a combinatorial concept, namely the descriptions in F,(R). We use this bijection as follows: Lemma 4 gives
us a bound on the number of edges of a furthest site diagram. Theorem 1 translates this into a bound on
the size of F,(R). The general theory of randomized incremental constructions (RICs) then gives a bound
on the number of combinatorial objects constructed in a RIC which, by Theorem 1, translates into a bound
on the number of topological objects constructed.

Edges (as point sets) could also be characterized by 4 sites, namely by the two sites separated by the
edge and one additional site incident to each endpoint of the edge. But then an edge incident to a high
degree vertex has many descriptions and there would be no bijection between combinatorial and topological
objects. This would make it impossible to apply the general results about RICs.

The equivalence between the combinatorial and the topological definition of conflict is also important.
Our algorithm detects certain topological conflicts. The general theory of RICs gives a bound on the number
of combinatorial conflicts encountered which, by the equivalence, translates into a bound on the topological
conflicts and hence into a bound for the running time.

4 The Algorithm

This section gives the algorithm for constructing the furthest site abstract Voronoi diagram. In section 4.1
we introduce the basic operation underlying our algorithm, in Section 4.2 we outline the algorithm, and in
the remaining sections we give the details.
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4.1 The Basic Operation

We first characterize the intersection of an edge with the region of a new site (Lemma 15) and show that
this intersection can be computed by considering the diagram of five sites (Lemma 14). We then define our
basic operation.

Lemma 14 Let e be an edge of V*(R) with Dr(e) = {(p,9,7¢,7p) (2, P, 751 Tg)}, let 7 € {rp, 7} and r' €
{rpirg}, let R = {p,q,7, 7'}, and let t € S\ R. Then e N VR;(t, RU {t}) = e N VR (¢, R' U {t}).

Proof: Since VR*(s, R) C VR*(s, R') for all s € R’ the point set e is also an edge of V*(R') separating the
Voronoi regions VR*(p, R') and VR*(g, R’).

(C) Since VR* (t, RU {t}) C VR*(t, R’ U {t}) we have e N VR:(t, RU {t}) C e N VR(t, R’ U{t}).

(2) To show the converse, we assume for the sake of a contradiction that a point z € e N VRy(t, R' U
{3\ eNVRE(t, RU{L}) = e N (VRL(t, B U {t}) \ VR:(t, RU {t})) exists. If z is in VR:(t, R U{t}), but not
in VR}(t, RU {t}), then there must be a site s € R\ R’ such that z € D*(s,t). From = € VR}(t, R’ U {t})
we conclude that in each neighbourhood U of z there must be a point y which lies in int VR*(¢, R’ U {t}).
y can be chosen such that either y € int VR*(p, R) or y € int VR*(q, R) holds. Assuming w.l.o.g. that y €
int VR*(p, R), we obtain y € D*(p,s). Moreover, we have y € D*(t,p) because of y € int VR*(¢, R’ U {t}).
Combining the last two observations we obtain y € D*(t,p) N D*(p, s) C D*(t, s). On the other hand z is an
element of the open set D*(s,t). This implies that all sufficiently small neighbourhoods U, of z also belong
to D*(s,t). Consequently, y € D*(s,t). But y cannot be an element of D*(s,t) and D" (%, s) simultaneously.

=}

Lemma 15 Lete be an edge of V*(R), let t € S\R, and let I denote the intersection of e and VR (t, RU{t}),
i.e., I = eNnVR,(t, RU{t}).

a. If I contains a connected component I' which 1s not incident to esther endpoint of e then I = I’ and
VR*(t, RU {t}) consists of a single unrooted face.

b. I consists of at most two connected components.

c. If I has two components then both are incident to an endpoint of e.

Proof: Part a). Let I’ be a connected component of I which is not incident to an endpoint of e. Since the
closures of distinct faces of VR (t, RU{t}) are disjoint (by Lemma 3) there is a unique face f of VR*(t, RU{t})
with I’ C f. We now distinguish cases.

Assume first that e is an edge located on T'. By the tree property, I' Ncl f is a connected set. Since I’ is
not incident to an endpoint of e, we obtain I' = T'Ncl f = eNcl f. In particular, cl f contains no Voronoi
vertex of V*(R) located on I'. Consequently, f is an unrooted face of VR*(t, RU {t}) (by Lemma 8) and
hence f is the only face of VR* (¢, RU {t}) (by Lemma 9).

Assume next that e is an edge in V*(R) \T. By Lemma 10, we obtain I’ = eNcl f. Since I’ is not
incident to an endpoint of ¢ we conclude from Lemma 7 that I' =enc f = (V*(R)\T)Nelf =T4. T Tf"'
is not connected and hence f is an unrooted face.

Finally, in both cases we observe I = e N VR, (t, RU{t}) =enc f =TI

Parts b) and c) follow immediately from part a). n]

Remark: If I has two components, VR*(¢, RU {t}) consists of rooted faces. The two components usually
belong to different faces of VR*(¢, RU {t}). An exception may occur when e is located on T'.

We can now define our basic operation. The procedure is designed to decide whether a site t € S\ R
intersects a given edge e of V*(R). When an intersection is detected, it determines the type of intersection.
Input as well as output are of combinatorial type and have constant size. We will charge one time unit for
each call of the basic operation.

The basic operation is the only part of our algorithm which depends on the particular kind of abstract
Voronoi diagram. This allows us to adapt our algorithm to a specific situation simply by exchanging this
procedure.
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Basic Operation

input: a description Dr(e) = {(p,q,7q:7p), (¢, P: 75, Tg)} € F(S) and a site ¢ with ¢ ¢ set(Dr(e)).
output: Let r € {rp, .}, let ' € {r;,,r;}, and let R = {p,q,r,7'}. A symbol is reported to describe the
combinatorial type of I = e N VR, (¢, R’ U {t}):

EMPTY: the intersection is empty (I =0)

ENTIRE_EDGE: the intersection is equal toe (I =e)

SEGMENT.1: the intersection consists of a segment having the (p, g, r)-vertex as one end
point (I Ce)

SEGMENT_2: the intersection consists of a segment having the (g, p, 7’)-vertex as one end
point (I Ce)

INNER_SEGMENT: the intersection is a segment of e incident neither to the (p, g, r)-vertex no

to the (g,p,r')-vertex (I Ce)
TWO_SEGMENTS: the intersection consists of two disjoint segments each of which is inciden
to an endpoint of e (I Ce )

We will use basic_op(t,D) to denote the output of the basic operation applied to site ¢ and description
D. An implementation of the basic operation requires the construction of the furthest site diagrams of four,
namely R’, and five sites, namely R’ U {t}, and the comparison of the two diagrams.

The correctness of the procedure follows from the preceding discussion: We have I = enVR;(t, R'U{t}) =
eNVR; (¢, RU{t}) according to Lemma 14, and Lemma 15 ensures that the list of symbols used to describe
I exhausts all possible cases.

Next, we link the basic operation to the notion of conflict.
Definition 9. Let e be an edge in V*(R), let v be an endpoint of ¢, and let t € S\ R.
t intersects the edge e if and only if e N VRZ(t, RU {t}) # 0.
t clips e at v if and only if U, NeN VR} (¢, RU{t}) # 0 for all neighbourhoods U, of v.
t intersects Dg(e) if and only if basic_op(¢, Dr(e) ) # EMPTY.

t clips Dg(e) at v if and only if basic_op(t, Dr(€e)) € { ENTIRE_LEDGE, TWO_SEGMENTS, SEGMENT_i
}, where v is the vertex referred to in the definition of case SEGMENT_i.

Ao T op

The intention behind these definitions is as follows:
Lemma 16 Let e be an edge in V*(R) and lett € S\ R.

a. t intersects e if and only 1f t intersects Dg(e).
b. t clips e at its endpoint v if and only if t clips Dr(e) at v.

c. t conflicts with e if and only if t intersects e or t clips an edge g € Gr(e) at the common endpoint of
e and g.

d. t conflicts with Dgr(e) if and only if t intersects Dr(e) or t clips a description Dgr(g) for some g €
GRr(e) at the common endpoint of e and g.

Proof: Parts a) and b) follow directly from the definition of the symbols used as output of the basic
operation.

Part c). Let v be the common endpoint of e and some edge g € Gr(e). Then ¢ clips g at v if and only if
U, NgNVR(t, RU {t}) # 0 for all neighbourhoods U, of v. Since eNg = @ and v is the common endpoint
of e and g, this is equivalent to U N g N VR (¢, RU {t}) # 0 for all neighbourhoods U of e. The claim now
follows since

t conflicts with e

& VU: UN(eUUgegan(e) 9) NVRI(E, RU{t}) #0

& VU: UNenVRy(t, RU{t}) # B or UNUgegp(e) 9 NVRL(E RU{t}) # 0

& VYU:  enVR,(t,RU{t}) #0or3g € Gr(e)(UNgNVR,(t,RU{t}) #0)

& t intersects e or ¢ clips an edge g € Gr(e) at the common endpoint of e and g.
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Part d) is an immediate consequence of parts a), b), c) and Lemma 13. 0

4.2 A Global View of the algorithm

In this section we give a global view of the algorithm and define essential data structures.

The algorithm chooses a random order {ti,...,tn_1} of the sites {1,...,n — 1}. Let R;y; denote
{0,%;,...,%}. Initially, it computes V*(R3) and then it successively adds ¢; to obtain V*(R;4+1) from V*(R;).
The following data structures are maintained for the current set R = R; of sites:

1. The furthest site Voronoi diagram V*(R) of the set R of sites already inserted is stored as a planar
map:

(a) For a vertex v € V*(R) we store the cyclic list of edges incident to v in clockwise order. This
data structure is denoted by listg(v).

(b) An edge e in V*(R) is connected with its two endpoints. e also knows the two sites whose Voronoi
regions share edge e.

2. The history graph H(R) provides information about conflicts ((BDS*92]). In contrast to the terms
vertex and edge used to describe the Voronoi diagram we use the terms node and arc for H(R). H(R)
is a directed acyclic graph with a single source. The node set is given by {source}U s, <; {Dr;(e) |
e is an edge of V*(R;)}. The following history graph invariants hold:

(a) Every edge e of V*(R) is linked with its description Dg(e) in H(R).
(b) Each node of H(R) has outdegree at most 5 and the nodes corresponding to edges in V*(R) have
outdegree 0.

(c) For every site t € S\ R and every edge e of V*(R), such that ¢ intersects e, there is a path from
source to Dp(e) that visits only descriptions intersected by t.

The general outline of the algorithm is as follows:
algorithm
begin
choose a random permutation {¢1,...,2n—1} of {1,...,n ~1};
R=R; /* R={0,t:,t} */ ;
compute V*(R) and H(R);
for i=3,...,n—1do
t=1;;
compute E; = {e | e is an edge of V*(R) and conflicts with ¢ };
compute V*(R U {t}) from E; and V*(R);
compute H(RU {t}) using H(R) and V*(RU {t});
R=RuU({t};
end
end

In the following we will show in detail how the iteration treating ¢ works. We also show that the insertion
of t takes O(c) time, where ¢ denotes the number of nodes in H(R) in conflict with t.

4.3 Collecting the Edges of E,

We proceed in two steps: In a first step we identify the edges in V*(R) which are intersected by t. Starting
at node source a simple variant of breadth first search in H(R) extracts all these edges. Each intersection
test requires a call to the basic operation. Only if the basic operation indicates a nonempty intersection
we search the successors of the node. The fact that no edge is missed follows from the third history graph
invariant. Since the outdegree of a node is bounded by 5, the search in H(R) takes time proportxonal to the
number of descriptions in H(R) intersected by t.
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In a second step we determine all edges which conflict with ¢. According to Lemma 16 this is tantamount
to checking all neighbours of intersected edges.
Altogether, the computation of E; can be accomplished in time proportional to O(c). We summarize in:

Lemma 17 The set E; can be computed in time O(c).

4.4 Construction of V*(RU {t})

As above, let T = (V*(R) \T)N VR}(t, RU{t}) and let Ty = (V*(R)\T)Ncl f and T}" =V*(R)Nclf for
a specified face f C VR*(t, RU {t}).

We know from Lemma. 6 that T' = 0 iff VR;(t, RU {t}) = 0. The case T = @ can be checked by the
predicate E; = 0. If so, V*(R) = V*(RU {t}) and we are done. Otherwise we have T'# @ and E; # 0. We
start by classifying the vertices in V*(R) and V*(R U {t}):

UNCHANGED = {v| v is a vertex of V*(R) and no edge incident to v in V*(R) is clipped at v}

CHANGED = {v| vis a vertex of V*(R) and some but not all edges incident to v are clipped at v by ¢t}
DELETED = {v| v is a vertex of V*(R) and all edges incident to v in V*(R) are clipped at v}
NEW = {v| v is an endpoint of a segment of e N VR*(t, RU {t}) which is not an endpoint of e}

Intuitively, UNCHANGED collects all vertices of V*(R) which are not affected by the insertion of ¢,
CHANGED collects all vertices of V*(R) which are also vertices of V*(R U {t}) but with a modified edge
list, DELETED collects all vertices of V*(R) which are not vertices of V*(R U {t}), and NEW collects all
vertices of V*(R U {t}) which were not already a vertex of V*(R).

Next, we will describe this intuition more precisely and also characterize the cyclic egde lists of the
vertices of V*(RU {t}):

Consider the set UNCHANGED first. We claim that the elements of UNCHANGED lie outside VR (¢, RU{t})
and are also vertices of V*(R U {t}).

Let v € UNCHANGED and assume for the sake of a contradiction tha.t v € clf for some face f C
VR*(t, RU{t}). Then v either lies on T’ or belongs to T; which is a connected set and not just a single point
by Lemma 7. In the former case the only edge in V*(R) \ T incident to v is clipped by ¢ at v according to
Lemma 8. The latter case implies that one of the Voronoi edges incident to v is clipped by ¢ at v by Lemma
7. In either case we have v ¢ UNCEANGED. Thus v ¢ VR:(t, RU {t}) and v is a vertex of V*(RU {t}), too.
By the same argument we have listpy, (4} (v) = listr(v).

Figure 7: v € CHANGED

Now consider the set CBEANGED. We claim that the elements of CHANGED belong to bd VR (¢, RU {t})
and are vertices of V*(R U {t}).
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Let v € cHANGED and let listp(v) = (ey,...,ex). Additionally, let p;,...,px be sites such that e;
(1 < ¢ < k) separates the Voronoi regions of sites p; and pimodr+1. Some of the edges (ey,...,ex) are
clipped by t at v and some are not. Consequently, v is a vertex on bd VR}(t, RU{t}). Lemma 3 ensures
that there is only one face f C VR*(t, RU{t}) with v € bd f. The boundary of f splits the edges (e1,...,ex)
into two nonempty and uninterrupted subsequences. One of them, say F;, contains the edges clipped by ¢ and
the other the unclipped edges. Suppose that E; = (e;, ..., €;) is the latter subsequence. In V*(RU{t}) vertex
v is shared by the Voronoi regions of the sites p;,...,Pj, Pimodk+1 and t. Suppose that €, resp. e, is the
Voronoi edge in V*(R U {t}) separating t-region from p;-region, resp. p; modr+1-region. To update listg(v)
we have to replace the subsequence E, by the two edges e’ and €”, i.e. listry(e)(v) = (¢, €i,...,€5,€"). See
also Figure 7.

Next, we turn to the set NEw. We claim that the elements of NEW are located on bd VR (t, RU {t}) and
are vertices of V*(R U {t}), but not of V*(R).

If v € NEW then there is an edge e of V*(R) such that v is an endpoint of a segment of eNVR}, (¢, RU{t})
which is not an endpoint of e. Thus v is not a vertex of V*(R) and v lies on bd VR}(¢t, RU{t}). If e has
separated p-region and g-region in V*(R) then v lies also on bd VR}(p, RU {t}) and bd VR}(gq, RU{t}).

Thus v is a vertex of V*(RU {t}) and the cyclic edge list listry(s)(v) contains precisely three edges, one
for each pair of the three Voronoi regions meeting at v. The cyclic order is readily inferred from the basic
operation applied to ¢t and Dg(e). See also Figure 8.

p-region

g-region

Figure 8: v € NEW

Finally, we regard the set DELETED. We claim that the elements of DELETED do not appear in the vertex
set of V*(RU {t}).

When all edges incident to a vertex v € DELETED are clipped by ¢ then either v lies in int VR* (¢, RU {t})
or v lies on the boundary of exactly two Voronoi regions, namely the ¢-region and a Voronoi region which
had v on its boundary before ¢ was inserted. In either case v is no longer incident to three Voronoi regions
and vanishes from the vertex set.

We summarize these observations in the following lemma:

Lemma 18 The set of vertices of V*(R) equals UNCHANGED U CHANGED U DELETED, the set of vertices of
V*(RU {t}) equals UNCEANGED U CHANGED U NEW.

Proof: The distinction made in the definition of UNCHANGED, CHANGED and DELETED is exhaustive. This
proves the first part. A vertex in V*(RU {t}) is either a vertex of V*(R) or it is not. In the former case
UNCHANGED U CHANGED includes the vertex, in the latter case it is contained in NEW. m]

Vertices in UNCHANGED have no importance for updating the Voronoi diagram. Their edge lists stay
unchanged and they do not require any treatment. The vertices contained in CHANGED, NEW and DELETED
can be identified when E; is calculated.
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At this point we have achieved the following: We have shown how to compute the vertex set of V*(RU{t})
and the cyclic edge list of every vertex.

In order to complete the planar map for V*(RU {t}) we still need to do the following: Each new Voronoi
edge has two endpoints. So each such edge appears exactly twice in the cyclic lists of the vertices. It remains
to explain how to link the two occurrences of each new edge.

There are two kinds of new Voronoi edges in V*(RU {t}):

type 1: edges which are on bd VR}(t, RU {t}).
type 2: edges which are proper subsets of edges in V*(R).

The task is easy for edges of type 2. They can be determined during the computation of E;. An edge of
this type is detected whenever the basic operation does not return EMPTY or ENTIRE_EDGE. Note that type
2 edges have at least one endpoint in NEW.

The computation of the type 1 edges is much more involved. We distinguish cases according to whether
VR*(t, RU {t}) has unrooted faces or not. A criterion to decide this question is given in the next Lemma.

Lemma 19 VR*(t,RU {t}) has an unrooted face if and only if basic_op(t, Dr(e))=INNER_SEGMENT for
some edge e of V*(R).

Proof: (=) Let f be the unrooted face of VR*(t, RU {t}). By the tree property, there must be an edge
eonT withenclf # 0. By Lemma 8, cl f cannot contain the endpoints of ¢ and hence basic_op(t,
Dr(e))=INNER_SEGMENT. According to the third history graph invariant e is found when the set E, is
computed. (<=) The converse follows from Lemma 15. ]

'l"-‘l"
!
7 '.Y
'
)
]
!

- WD D D ey oy

rooted face unrooted face

Figure 9: Touring around T}"

The procedure completing the update of the Voronoi diagram works as follows:

1. Assume first that VR* (¢, RU{t}) has only rooted faces. Then T; = V*(R)Ncl f is connected for each
‘face f C VR*(¢, RU {t}) and T} nT‘t = 0 for distinct faces f and f’ of VR*(t, RU {t}) by Lemma 3. We
conclude that the faces of VR‘(! t, RU {t}) are in one-to-one correspondence to the connected components of
V*(R)NVR*(t, RU{t}). Let T} be one such connected component for a particular face f C VR*(t, RU{t}).
V*(R) provides a planar embedding of T}" in the plane. T}" induces exactly one outer domain and a possibly
empty set of domains surrounded by T}'. A traversal of the boundary of the outer domain meets all endpoints
of the new Voronoi edges on bd f and also the two occurrences of each new edge, cf. Figure 9. This allows

the two occurrences to be linked.

2. Assume next that VR*(t, RU {t}) has an unrooted face f. Then f is the only face of VR* (t RuU{t})
(by Lemma 9), Tf = (V*(R) \T)Ncl f is connected (Lemma 7), and I = 'Ncl f is a subsegment of some
edge e on I' which is not incident to an endpoint of e (Lemma 8). I and T} are disjoint, cf. Figure 9.
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~ There are two kinds of vertices on bd f. Two vertices are located on I' and all other vertices belong to
Ty. The cyclic order of the latter kind can again be determined by a traversal of the boundary of the outer
domain of T¢. The only problem unresolved is where to insert the two vertices on T into this cyclic order.

Overcoming this difficulty requires a more detailed inspection: The unrooted face f splits a face f, of
some Voronoi region VR*(p, R) into smaller faces belonging to VR*(p, R U {t}). The border between f and
these two faces is formed by two edges which must lie on J(p,t). In V*(R U {t}) there are two new Voronoi
vertices on I': a (t,p, 0)-vertex called v and a (p, ¢, 0)-vertex called w. See also Figure 10.

Among the other vertices on bd f we single out those vertices which lie also on bd VR;(p, RU {t}).
Let (vy, w1, v2, w2, ..., vk, wi) with k > 1 be the cyclic clockwise sequence of those vertices with v; being a
(p, t, ai)-vertex and w; being a (2, p, b;)-vertex for some sites a; and b; (1 < i < k). We need to find out which
vertex v; has to be connected with vertex v by a new Voronoi edge and which vertex w; has to be linked
with w. If £ = 1 the problem is trivial. If £ > 1 then the next two lemmas show how the basic operation
can be used to determine v;. We first show that v, w, and v; are vertices of V*({p,t, 0, a;}) and that there
is an edge e; connecting v and v; in V*({p,t,0, a;}) and we then show that j = 7 if and only if e; exists in
v ({Pa t,0,a;, bi})-

: region
p-region S

----- ¢ -
'l\ L — g \
- 1 \
----- 1 \Y
’ \
ll N,
’, \
e N
"l \\
w; t-region
; p-region
p-Tegion
r
1 -
W TS mmme=meememm=TT v
0-region

Figure 10: VR*(t, RU {t}) consists of an unrooted face

Lemma 20 Let 1 < i < k and let D; = {(p,t,ai,a:),(¢,p,0,0)}. V*({p,¢,0,a;}) contains an edge e;
separating VR*(p, {p,t,0, a;}) and VR*(¢,{p,t,0,a;}) and connecting v and v;. Moreover, D(p;0,q.)(€;) =

(%3

Proof: Since VR*(s, R) C VR*(s, R') for each § C R’ C R and s € R’ the vertices v, w and v; also occur
in V*({p,t,0, a;}) as (¢, p, 0)-vertex, (p, ¢, 0)-vertex and (p, ¢, a;)-vertex, respectively. Recall that a 3-tuple of
sites uniquely determines a Voronoi vertex according to Lemma 5. In V*({p, t, 0, a;}) there is the p-region in
the neighbourhood of v and w. On the other hand the existence of the a;-region prevents that v and w can
be connected by a path inside int VR*(p, {p,,0, a;}) . Thus VR*(p, {p,,0, a;}) consists of two faces. From
Lemma 4 we conclude that VR*(¢, {p,t,0, a;}) and VR*(ai, {p,?,0, a;}) can only have one face. By the tree
property, the (¢, p, 0)-vertex v and the (p, t, a;)-vertex v; are endpoints of the same edge.

D; is the description of e since v; cannot be located on bd VR*(0,{p,?,0,a;}) and v cannot be on
bd VR*(ai, {p,t, 0, a;}) . Otherwise, there would be a vertex of degree 4 on I m}

Lemma 20 shows that D; € F(S). Thus it is possible to use D; as input for a call to the basic operation.
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Lemma 21 v directly follows v; in the cyclic clockwise ordering of the vertices of bd f if and only if ba-
sic_operation(b;, D;) = EMPTY.

Proof: (=) If v follows v; in the cyclic clockwise ordering then e; as defined in Lemma 20 is identical to
the edge connecting v; and v in V*(R U {t}). Thus the basic operation returns EMPTY.

(<) Conversely, if the basic operation returns EMPTY, then w; does not lie on e;. This is only true if v
follows v;. (m}

We summarize in:
Lemma 22 Given E;, V*(RU {t}) can be computed from V*(R) in time O(c).

Proof: The vertices in CHEANGED U DELETED UNEW can be calculated as a by-product when computing E;.
Also, the update of the cyclic edge lists does not take more then O(c) time.

Next, we show that the construction of the new edges also consumes no more than O(c) time. VR*(t, RU
{t}) can have rooted faces or an unrooted face. If VR*(t, RU {t}) consists of rooted faces the construction of
the new edges requires a walk around T;" for each face f C VR*(t, RU {t}). In case of an unrooted face all
edges but the edges connecting v and v;, resp. w and wj, can be found by walking around T,'* =IUTy. The
construction of the latter two edges again requires a walk around Ty to find v; and w;. Each traversal on T},
resp. Ty, takes time proportional to the number of edges of V*(R) contributing to T‘" resp. Ty. Summing
over all faces of VR*(t, RU {t}) this number coincides with the number of edges in V"'(R) intersected by t.
Hence O(c) time suffices to compute V*(R U {t}).

noncritical edge critical edge

Figure 11: T(e) is shown by a dashed line

We close this section with two definitions which will be needed in the next section. An edge e on the
boundary of int VR*(t, RU {t}) is called crstical if VR*(¢, R U {t}) has an unrooted face and exactly omne
endpoint of e lies on I'. Otherwise edge e is called noncritical.

For an edge e on the boundary of int VR*(t, RU {t}) we associate a certain point set T'(e):

(e ifeCT

the part of fl;" traversed to con- if e is a non-critical
T(e) = ¢ struct e except its endpoints edgeand e Z T

the part of Ty leading from v; to if e is a critical edge
w; (as defined above) except its
| endpoints

The definition of T'(e) is illustrated by Figure 11.
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4.5 Computation of H(RU {t})

In this section we show how to update the history graph. We first characterize the nodes which are added to
it, then define the set of arcs to be added, and finally argue that the history graph invariants are maintained.
Throughout this section we use B to denote the boundary of int VR*(t, RU {t}).
An edge e is called
new ifeCB
affected if e was already an edge in V*(R) and at least one edge g € Gr(e)
was clipped at an endpoint of e, but e is not a subset of B
shortened  if e does not belong to B and there is an edge € in V*(R) such
thateCe
If e is an affected or shortened edge of V*(RU{t}) we use super(e) to denote the edge of V*(R) containing
e. Thus we have e = super(e) for affected edges and e C super(e) for shortened edges; see Figure 12 for an
example.

Figure 12: new, affected, and shortened edges

Lemma 28 Let N, be the set of nodes of H(RU {t}) which are not already nodes of H(R). Then N, =
{D|D = Dgryqs)(e) for some new, affected or shortened edge e of V*(RU {t})}.

Proof: (=>) Let D € N;. Then D = Dpyy)(e) for some edge of V*(RU {t}). Assume that e is neither
new, shortened, nor affected. Then e was already an edge in V*(R) and no edge of Gr(e) was chpped at an
endpoint of e. So the descriptions of e in V*(RU {t}) and V*(R) are equal, i.e., Dryy¢}(e) = Dr(e). Thus
D ¢ N, a contradiction.

(<) It is enough to show that ¢ € set(D). Assume first that e is a new edge. Then e C B and hence
t € set(D). Assume next that e is a shortened edge. Then at least one endpoint of e must be in NEW.
Consequently, at least one edge in GRU{t}(e) belongs to B and hence t € set(D). Finally, if e is an affected
edge, then at least one edge in Ggr(e) is clipped by ¢. Each such edge is replaced by an edge lying in B
Hence t € set(D).

Next we define the new arcs of the history graph. Each new arc goes from a node of H(R) to a node in
N;. There are four types of arcs:
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type 1: For each affected or shortened edge e of V*(R U {t}) there is an arc
Dr(super(e)) — Druy:y (e).

type 2: For each affected edge e and each new edge ¢ € Gruyq:)(e) there is an arc
Dr(super(e)) — Drufz}(9)-

type 8: For each new and critical edge e and each edge € in V*(R) N I' which contains an
endpoint of e there is an arc Dgr(€) — Druye)(e).

type 4: For each new edge e and each edge € of V*(R) such that € N T'(e) is nonempty and
more than just a point there is an arc Dr(€) — Druis}(e)-

It remains to verify the history graph invariants and to estimate the time needed to construct H(RU{t}).
The first history graph invariant is clearly maintained.

Lemma 24 The second history graph snvariant is masniasned:
1. No node in H(RU {t}) has more than five children and
2. precisely the nodes corresponding to edges sn V*(RU {t}) have outdegree 0.

Proof: Observe first that in H(R) precisely the nodes corresponding to edges in V*(R) have outdegree 0,
that all arcs added go from nodes conflicting with ¢ to nodes in N, and that for each node conflicting with
t at least one outgoing arc is added. This proves the second claim.

For the first claim, let € be an arbitrary edge of V*(R) in conflict with ¢ and let D = Dg(g). We
distinguish the following cases:
Case 1: Assume first that there is an affected edge e in V*(R U {t}) with super(e) = €. Then there is at
most one type 1 arc out of D and there are at most four type 2 arcs out of D (at most two for each endpoint
of €), for a total of five arcs.
Case 2: Otherwise there is no affected edge in V*(R U {t}) with super(e) = €. Then T =N VR}(t, RU{t})
is nonempty. Again we distinguish several cases:
Case 2.1: We first assume that VR*(¢, RU {t}) consists of rooted faces.
The edge € is either contained in I' or it is not. In either case €\ T is a single connected component (by
Lemma 19) and hence there is at most one type 1 arc to a shortened edge e with super(e) = €. There are
no type 2 and type 3 arcs and there at most four type 4 arcs as there can be at most four edges e where
€N T(e) is a non-trivial subsegment of €. (This also covers the case when € is an edge on T, VR*(t, RU {t})
has only one rooted face, and I consists of two segments.)
Case 2.2: If VR*(t, R U {t}) consists of a single unrooted face then T is a single component by Lemma 10.
There are two cases which have to be considered.
Case 2.2.1: Suppose now that e C T. :
Then there are two type 1 arcs to shortened edges, no type 2 arc, two type 3 arcs to the critical edges having
an endpoint on €, and one type 4 arc to the boundary edge of VR*(t, RU {t}) on I.
Case 2.2.2: Finally, assume that e C V*(R)\ .
Then there can be at most two type 1 arcs to shortened edges out of D, no type 2 and 3 arcs, and at most
four type 4 arcs to the new edges incident to the endpoints of I. Moreover, if there are two type 1 arcs out
of D then there must be a new edge connecting the two endpoints of 7 (by Lemma 7). Thus there are at
most three type 4 arcs in this case. u}

Fiﬁa.lly, we turn to the third history graph invariant.
Lemma 25 The third history graph snvariant is masntained.

Proof: It suffices to show that for all D € N; and all « € S\ RU {¢t} which mtersect D there is a node
D € H(R) such that u intersects D and D — D is an arc in H(RU {t}).

Let e be the edge of V*(RU{t}) with Dgyys)(e) = D. By Theorem 1 e is unique. We distinguish sevetal
cases depending on whether e is new, shortened, or affected.
Case 1: Let e be either a shortened or an affected edge. Then let € = super(e) and D = Dp,(e) Now
observe that e C € and hence e N VR}(u, RU {t,u}) C €N VR;(u, RU {u}). Thus u intersects € in V*(R)
if u intersects e in V*(R U {t}). Consequently, u intersects D according to Lemma 16. Now the type 1 arc
D — D supplies the desired connection.
Case 2: The case where e is new is more complicated. We distinguish several cases according to whether



4 THE ALGORITHM ‘ 23

e C T or not.

Case 2.1: Let e C T. Then we have type 4 arcs Dg(€) — D for all edges € C V*(R)NT with en€ # 0. Thus
if u intersects e in V*(R U {t}) then u intersects some edge € in V*(R) with Dg(€) — D.

Case 2.2: From now on assume that e C V*(RU {t}) \ I'. We need some additional notation. Let f, be a
face of VR*(u, RU {t,u}) with enclf, # 0, let f, be the face of VR*(u, RU {u}) with f, C fi,let pE R
be such that e separates face f, of VR*(p, RU {t}) and face f; of VR*(t, RU {t}), and let f; be the face of
VR (p, R) with f, C f,.

Assume first that some endpoint v of e lies in cl f}, . v is either a vertex of V*(R) or lies on an edge € of
V*(R). In the latter case we have €ncl f; # 0, i.e., u intersects € in V*(R). By Lemma 16, « must also
intersect Dg(€). But Dgr(€) — D was added as an azc of type 3 or type 4. In the former case, v is a vertex on
the boundary of f;. Let € and €2 be the two edges of bd fp incident to v. Assume first that v is located on
T and that &; is the edge on bd f;, which does not lie on I'. Then U, N€; Ncl f, # 0@ for all neighbourhoods
U, of v by Lemma 8. Now observe that Dg(€;) — D is an arc of type 4. See also Figure 13a. Assume next
that v is a Voronoi vertex in V*(R)\T. From Lemma 7 we get that Ty, = (V*(R)\T)Neclf, is a connected
set and more than just a point. Moreover, we have v € Tj,. On the other hand eNcl f;, # 0 ensures that
clf; and clf; have a nonempty intersection. We conclude that at least one edge out of {€;,€z} is among
the edges of V*(R) clipped by u at v. Thus cl f intersects €; or €3, i.e., u intersects €; or €; and hence
Dg(e,) or Dr(€;). But Dr(€,) — D and Dr(€z) — D are axcs of type 2 and 4, respectively. See also Figure
13b.

aaverl b: v¢T

Figure 13: v € cl f, (The shaded region belongs to cl f, )

So assume from now on that no endpoint of e lies in cl f;. Since enecl f, C eNnclf, ,the set encl fy
must be an "INNER_SEGMENT” of e and hence f, is an unrooted face. Thus (V*(R)\T)Neclfy, =encl fy
is an inner segment of e. Since e separates f, and f; it follows that bd f, NT is either an inner segment of
bd f, NT or an inner segment of bd f; NI'. Again we distinguish several cases:

Assume first that e is critical and hence f; is unrooted. Let € be the edge of V*(R) with € =bd f, NT.
Then €= (bd f, Ubd f )N T and hence

0#bdf, NT=bdf, N(bdfy NT)C bdf, N((bdf, Ubdf;)NT)=bdf, NEC clf, NECcf, NE.

Thus u intersects €, resp. Dg(€). The type 3 arc Dg(e) — D supplies the desired connection.

Assume finally, that e is noncritical. Our goal is to show that T'(e) Ncl f, is nonempty and more than
just a point. Then we can infer that u intersects an edge € of V*(R) with €N T(e) # @ and observe that
Dr(€) — D is an arc of type 4.
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Claim: T'(e) Ncl f, is nonempty and more than just a single point.

Proof: We have either bd f, NT' C bd f; NT or bd f, NI’ C bd f, NT. In the former case the claim obviously
holds because each curve connecting e and bd f, NT and running inside f; N f, must intersect T(e).

So assume that bd fy NT C bd f, NT. (For an illustration see Figure 14.) We will argue next that
funfp = fuN fp. Since fy C fy, the relation f, N fp C fi N fp is certainly true. To show the converse, recall
that f, C D*(u,p) and that f, C P*(p,t). Thus, by Fact 1,

finfp=(finD'wp) N (fN D (2Y) S i fpND* () C fun

Also recall that cl f, does not intersect bd f, \ (e UT). Consequently, cl f, cannot intersect bd f, \ (¢ UT).
Since f, C f, we conclude that f; is an unrooted face in V*(RU {u}). Lemma 7 ensures that Ty, =
(v* (R)\I‘)ﬂcl fe is nonempty and more than just a single point. Now f, C f; and cl f; N(bd f, (eﬁI‘)) =

imply that cl f, must intersect T(e) in more than one point. I:I

Figure 14: bd f, N Cbd f, NT

Let = be a point in T'(e) Nclf,. z can be chosen to lie on an edge € of V*(R). Since = € clf,, u
intersects € and hence Dg(€), according to Lemma 16. Thus the type 4 arc Dg(€) — D supplies the desired
connection. This completes the proof of Lemma 25. @]

It remains to estimate the time consumed to update the history graph.
Lemma 26 H(RU {t}) can be constructed from E; and V*(RU {t}) in time O(| E;|) = O(c).

Proof: The descriptions in N; can be inferred from V*(R U {t}) in constant time per description. Also,
| N¢ | < 5| B¢ | according to Lemma 24. Computing the arcs of types 1,2 and 4 only requires another traversal
around Tj‘.” . This takes time O(| E; |). For arcs of type 3 note that there can be at most two arcs of this type
which can be found in constant time. o

4.6 Complexity Analysis
We summarize our result in:
Theorem 2 The furthest site abstract Voronos diagram of a set of n sites can be computed by a randomszed

algorithm in ezpected time O(nlogn) and ezpected space O(n). The ezpected time to snsert the n-th site is
O(logn).
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Proof: We apply the analysis of [CMS92] for randomized incremental constructions. Initializing the data
structures requires O(1) time. In the i-th iteration we have to compute Ey, V*(RU {t}), H(R U {t}) for
t=1; (3 <i<n). Lemmas 17, 22, 26 ensure that O(c) time suffices to perform these steps, where c is the
number of nodes of H(R;) in conflict with ¢.

Thus the assumptions made in [CMS92] are met. By Theorems 3 and 4 of [CMS92] and Lemma 4 the
expected size of ¢ is O(log ¢) and the expected size of H(R;) is O(i). This implies the stated time and space
bounds. m]

5 Concluding remarks

We have presented an algorithm computing the furthest site abstract Voronoi diagram. Its most important
features are its generality, as it applies to all abstract Voronoi diagrams, its modularity, as only the basic
operation depends on the particular kind of diagram, and its simplicity. We admit, however, that the
correctness proof is complicated.

It would be desirable to extend the algorithm such that it can compute abstract Voronoi diagrams of
arbitrary order.
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