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Abstract Voronoi diagrams were introduced by R. Klein as a unifying approach to Voronoi diagrams. 
In this paper we study furthest site abstract Voronoi diagrams and give a unmed mathematical and 
algorithmic treatment for them. In particular, we show that furthest site abstract Voronoi diagrams are 
trees, have linear size, and that, given a set of n sites, the furlhest site abstract Voronoi diagram can be 
computed by a randomised algorithm in expected time O(nlog n). 

1 Introduction 

Voronoi diagrams are among the structures most frequently investigated in Computational Geometry. Be­
cause of their wide range of applications, cf. Leven and Sharir ([LS86]) or Aurenhammer ([Aur91]), many 
different kinds of diagrams have been considered. Different kinds of diagrams are obtained by varying the 
shape of the sites, e.g., points, line segments, circles, and the distance function. A unifying approach to 
Voronoi diagrams has been proposed recently by Klein ([Kle89)), cf. [ES86] for a related approach. Klein's 
approach is based on the notion of bisecting curves instead of the concept of distance. For each pair p and 
q of sites the existence of a bisector dividing the plane into a p-region and a q-region is postulated. The 
Voronoi region of site p is then obtained by intersecting all p-regions generated by the sites different from 
p. The abstract Voronoi diagram is formed by the boundaries induced by the Voronoi regions. Klein inves­
tigated the topological properties of abstract Voronoi diagrams and showed that two natural assumptions, 
namely that Voronoi regions are connected and that every point of the plane belongs to a Voronoi region, 
sufflce to derive many properties of Voronoi diagrams. We review some of these properties in Section 2. 
Abstract Voronoi diagrams encompass a large number of specific diagrams, e.g., diagrams for point, disjoint 
line segment, and disjoint cirde sites under any Lp-norm (1 < P < 00). 

In his monograph [Kle89] Klein also gave an O(nlogn) deterministic divide-and-conquer algorithm for 
a subclass of his abstract diagrains.Next Mehlhorn, Meiser, and O'DUnlaing ([MMD91)) obtained an 
O( n log n) randomized algorithm for all abstract diagrams provided a certain general position assumptionis 
satisfied. Finally, Klein, Mehlhorn and Meiser ([KMM91]) removed the general position assumption. The 
algorithms of [MMD91] and [KMM91] are both instances of Clarbon and Shor's randomized incremental 
constructions ([CS89]) in the history graph version introduced in [BDS+92]. 

In this paper we study furthest site abstract Voronoi diagrams and thus give a unified treatment of a !arge 
class of furthest site diagrams. See Figure 3 for an example of a nearest and a furthest site Voronoi diagram. 
In section 2, we derive the basic topological properties of the furthest site abstract Voronoi diagram. In 
particular, we show that the diagram is a tree, i.e., a connected planar graph with no bounded face, and 
that, although the Voronoi region of a site may consist of more than one face, the total number of faces 
is linear. In section 4, we give a randomized algorithm which constructs the furthest site abstract Voronoi 
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2 ABSTRACT VORONOI DIA GRAMS 2 

diagram of n sites in time O(nlogn). Previously, an O(nlogn) algorithm has been known only for a few 
cases offuzthest site Voronoi diagrams, cf. [Bro79], [Ede87], and [Rap92]. 

The main features of our algorithm are its generality, as it applies to all abstract Voronoi diagrams, 
its modularity, as only the basic operation depends on the particular kind of diagram, and its simplicity. 
The algorithm is an instance of Clarkson and Shor's randomized incremental constructions ([CS8~]). The 
connection to RICs is made in Section 3. 

We use the following notation. For a subset X of IR? we use cl X , int X , and bd X to denote the 
closure, interior and boundary of X und er the standard topology, respectively. We use ~ and c to denote 
set inclusion and proper set inclusion. 

2 Abstract Voronoi Diagrams 

2.1 Admissible and semi-admissible dominance systems 

In this section we define nearest and furthest site abstract Voronoi diagrams, review basic properties of 
nearest site diagrams as established in [IOe89] and [KMM91], and show that furthest site diagrams share 
these properties. 

Let nEIN and S = {I, ... , n - I}. A family 1) = {D(p, q) 11 :$ p =I q < n} of subsets of the plane is 
called a dominance system over S, if the following conditions are satisfied for all p and q with 1 :$ p =I q < n: 

O. D(p, q) is a non-empty open subset of the plane. 

1. D(p,q)nD(q,p) =0and bdD(p,q) =bdD(q,p). 

2. J (p, q) = bd D(p, q) is homeomorphic to the open interval (0, 1). 

Clearly, J(p, q) = J(q, p). We call the elements of S sites, the cuzve J(p, q) the bisector of sites p and q 
and D(p, q) the region 0/ dominance of p over q. Following IOein [IOe89], the abstract nearest site Voronoi 
diagram is now defi.ned as folIows: 

Definition 1. Let S = {I, ... , n - I} and let< be a linear order on S. Let 

Rdp,q) ~ { D(p, q) U J(p, q) ifp<q 
D(p,q) ifp>q' 

VR«p,S) 
d!} n Rdp,q), 

qES 
q# 

VdS) 
d!} U bd VR«p, S). 

pES 

We call int VRdp, S) the nearest site Voronoi region of p w.r.t. to Sand <, VRdp, S) the extended nearest 
site Voronoi region of p w.r.t. to Sand <, and VdS) the nearest site Voronoi diagram of S with respect to 
<. 

A dominance systemis called admissible, if it satisfies the following additional properties: 

3. Any two bisecting cuzves intersed in only a finite number of connected components. 

4. For all non-empty subsets S' of Sand all orderings < of S: 

(A) VRdp, S') is path-connected and has a nonempty interior for every pES', 

(B) IR? = UPEsl VR«p, S'). 

Adominance system is called semi-admissible if it satisfies properties 3 and 4B (but not necessarily 4A). 
The following alternative charactenzation of property 4B is useful. For a point :z: E m2 and distinct sites p 
and q let p <,; q if and only if :z: E Rdp, q) . . 
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Fact 1 ([Kle89]) Let'D be a dominance system. Then the following three conditions are equivalent: 

a. 'D satisfies 4B. 

b. <:10 is a linear order on the sites for all z E IR2
• 

c. Rdp, q) n Rdq, r) S; Rdp, r) for all tripies p, q, r of distinct sites. 

Moreover, z E VR< (p, 5) if and only if p <:10 q for all q E 5\ {P}. 

Intuitively, <:10 orders the sites accordingto increasing distance from z and the extended nearest site 
Voronoi region of a site p consists of all points z having p as their closest site. It is now natural to also 
consider furthest site diagrams. 

Definition 2. Let< be a linear order on 5 and p E 5. Let 

d!! {z E IR2 1 q <:10 P for all q E 5 \ {P} }, 

U bd VR~(p, 5). 

VR~(p,5) 

V~(S) d!! 
pES 

In analogy to Definition 1 we call int VR~ (p, 5) the furthest site Voronoi region of p or p-region w.r.t. S 
and <, VR«p, 5) the eztended furthest site Voronoi region of p w.r.t. 5 and <, and V..('(5) the furthest site 
Voronoi diagram of 5 w.r.t. <. 

As we will see next the furthest site abstract Voronoi diagram can also be obtained by "reversing" the 
dominance relations and the linear order <. To make this intuition more precise we define the dual of a 
dominance system and consider the reverse order of the linear order on 5. The dual 'D* = {D*(p, q) 11 :::; 
p :I q < n} of a dominance system 'D is defined by D* (p, q) = D( q, p) for all p, q E 5 with p :I q. For a linear 
order< on 5 the reverse order <* is obtained by p <* q {:} q < p for all p, q E 5 with P:l q. 

Lemma 1 Let 'D be a semi-admissible dominance system and let 'D* be its dual. 

a. 'D* is semi-admissible. 

b. Let < be a linear order on 5 and let <* be the reverse order of <. Then VR< (p, 5) is equal to the 
e:nended nearest site Voronoi region of p w.r.t. 5, the linear order <* , and the dominance system 'D*. 

c. V..('(5) for'D is equal to V<*(5) for 'D*. 

Proof: Let< be a linear order on 5. For sites p and q, define p <; q if either z E D* (p, q) or z E J(p, q) 
and p <* q. Then p <:10 q if and only if q <; p. Parts (a) and (b) now follow from Fact 1. Part (c) is an 
immediate consequence of part (b). 0 

Lemma 1 implies that the furthest site abstract Voronoi diagram can again be defined by means of a 
dominance system, namely the dual of the given dominance system. Thus the following results on nearest 
site abstract Voronoi diagrams from [Kle89] and [KMM91] are valid in both contexts of nearest and furthest 
site abstract Voronoi diagrams. 

Fact 2 ([KMM91]) Let'D be semi-admissible and let <1 and <2 be two linear orders on 5. 

a. int VR<l (p, 5) = int VR<2(P, 5) for all p E 5, 

b. V<l (5) = V<2(5). 

Fact 2 states that the Voronoi diagram and the Voronoi regions do not depend on the particular linear 
order imposed on 5. Only for points in Vd5) does the linear order< decide to which Voronoi region they 
belong. In the light of Fact 2 we write V(5) instead of Vd5) and int VR(p, 5) instead of int VR<(p, 5) 
from now on. We will also write VR(p,5), resp. R(p, q), instead of VRdp,5), resp. R<(p, q), when the 
linear order< is clear from the context. In this way, the omission of the symbol< also applies to V..('(5), 
int VR«p, 5), and VR«p,5) which are replaced by V*(S), int VR*(p, 5), and VR*(p, 5), respectively. 
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Figure 1: A nearest site Voronoi region with tentacles 

The extended Voronoi region of a site p may also include points which are not contained in cl int VR(p, S) . 
Depending on the particular linear order imposed on S the extended Voronoi region can have Iong tentacles, 
i.e., VR(p, S) may include points of the Voronoi diagram which do not belong to the boundary of the Voronoi 
region int VR(p, S). See Figure 1 for an illustration. 

Definition 3. An edge e of V(S) is a ma.ximal connected subset of V(S) such that every point z E e lies on 
bd int VR(p, S) for exactly two sites p of S. The edge is said to separate the regions of these two sites. A 
tJertez v of V(S) is a point z E V(S) which lies on bd int VR(p, S) for at least three sites p of S. A lace of 
V(S) is a ma.ximal connected subset of int VR(p, S) for some pES. 

In the case of a semi-admissible dominance system a Voronoi region int VR(p, S) may consist of zero or 
more faces. In the case of admissible systems each Voronoi region consists, by Property 4A, of exactIy one 
face. 

Figure 2: illustration of Fact 3 

Fact 3 Let 1) be semi-admissible and let < be a linear order on S. 

a. All but finitely many points 01 V(S) belong to an edge 01 V(S). 

b. EtJery lace 01 V(S) is homeomorphic to an open disc and its boundary is a simple curtle. 

c. For each point z E V(S) there are arbitrarily small neighborhoods U 01 z hatJing the lollowing propertie,: 
V(S)nbd U is finite. Let Wl, ••• , WA be the points in V(S)nbd U as encountered in a cloclcwi,e tratJer,11l 
01 bd U. Then h ~ 2 and V(S) n U is the union 01 curtle segments ßl,.' ., ßA where A connects z 
to Wi and the A 's are dis;oint ezcept at their common endpoint z. For each " 1 :S • :S h, there u a 
site Pi ES such that the open "piece 01 pie" bordered by ßi, A+! (read indices mod h) is contained in 
int VR(Pi, S) with Pi :f. Pi+! for all i. Also, there is a site qi E S such that A \ {z} ~ VR(qi, S). Wt 
hatle qi :S min{Pi-l,p;}, The point z belongs to VR(p, S), where P = miniPI, ... ,PA,ql, .. . ,qA}. . 

d. 111) is admissible then Pi :f.Pi for all':f. j in part (c) and only site P can occur more th.4n once amo,.g .. 
Pl,···,PA,ql,···,qA· 
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Figure 2 illustrates Fact 3. Fact 3 is a consequence of Theorem 2.3.5 of [Kle89]. For admissible systems 
this was observed in Fact 1 and Fact 2 in [KMM9l]. For semi-admissible systems, the argument is as follows. 
Theorem 2.3.5 in [Kle89] is proved for admissible systems; cf. pages 31 to 51 in [Kle89]. However, Property 
4A is used only twice in the proof of Theorem 2.3.5. The first use is in Lemma 2.3.3 to show that V(S) 
contains no isolated points. This use of Property 4A is unnecessary, as we show nato Assume that there 
is an isolated point 11 in V(S), i.e., 11 E VR(p, S) for some site p and there is a neighbourhood U of 11 such 
that U \ {11} ~ VR( q, S) for some site q different from p. Then this situation arises even for S' = {p, q}, a 
contradiction to Properties 1 and 2. Thus Lemma 2.3.3 holds even for semi-admissible systems. The only 
other use is to prove the last sentence of Theorem 2.3.5. Thus an but the last sentence of that theorem 
already hold for semi-admissible dominance systems. This justifies parts (a) and (c). Part (b) follows from 
Lemma 2.2.4 of [Kle89]. 

From now on, we proceed on the assumption that 1) is the primal admissible dominance system and that 
1)* is its dual. So 1) determines V(S) and 1)* determines V*(S). Note, however, that by Lemma 1 the dual 
system 1)* is only guaranteed to be semi-admissible. 

An example of a nearest and a furthest site Voronoi diagram is given in Figure 3. 

site 1 site 1 

site 2 

site 3 

site 4 

nearest site Voronoi diagram furthest site Voronoi diagram 

Figure 3: The nearest and furthest site Voronoi diagram of three line seg­
ment sites (sites 1, 2, and 4) and one point site (site 3) under the 
Euclidean metric. In the furthest site diagram the region of site 
2 is empty and the region of site 3 has two faces. 

2.2 Properties of the furthest site abstract Voronoi diagram 

We characterue the furthest site Voronoi diagram. The furthest site diagram can be represented as an 
embedded planar graph in a natural way. Vertices, edges and faces ofV*(S) are in one-to-one correspondence 
to the vertices, edges and faces ofthis graph so that we use V*(S) to denote this graph, too. 

Lemma 2 Tke funkest site Voronoi diagram V*(S) is a tree. 

Proof: We show first that V*(S) is connected and then that it has no bounded face. 

Claim 1: V*(S) is a connected set. 

Proof: We show that if V*(S) is not connected, there is a site p whose region in the primal diagram is 
empty. So let us assume that V*(S) consists of at least two connected components. Since the faces of 
V*(S) are homeomorphic to open discs there must be a simple curve C disjoint from V*(S) which splits the 
plane into two unbounded domains h1 and h2 both of which contain at least one component of V*(S). Let 
pES be such that C ~ int VR* (p, S). By assumption there are points :Ci E 14 and sites qi "# p such that 
:Ci E VR*(qi, S) for i = 1,2. The bisector J(p, qi) does not intersect C (since C ~ int VR*(p, S)) and hence 
is completely contained in either h1 or h2• From:Ci E VR*(qi,S)nhö we conclude that J(P,qi) is completely 
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contained in hs and therefore D(p, qi) = D*(qi,p) ~ hs. Thus int VR(p, S) 
Property 4A. 

Claim 2: All faces of V*(S) are unbounded faces. 

6 

~ h l n h2 = 0, a contradiction to 
o 

Proof: We show that if V*(S) has a bounded face, there are two sites for which the bisector is not a simple 
curve. So let us assume that there is a bounded face 1 ~ VR*(P, S) for some site pES. W.I.o.g. we can 
suppose that S is a minimal set having this property. If I S I = 2, then a contradiction is immediate since 
the only bisector would have to cross itself. So let usassume that I S I ~ 3 and that all faces of V*(S') for 
o C S' C S are unbounded. We may also assume that p < q for all q E S \ {P} in the primal linear order 
imposed on S. Then R(p,q) = clD(p,q) for all q E S \ {P}. 

Let zEint VR(p, S) be a point in the interior of the Voronoi region of Pi z exists according to Property 
4A. Also, for each pair q', q" E S \ {P} with q' #: q" the set VR(p, {p, q', q"}) = R(p, q') n R(p, q") is 
path-connected and contains z by Property 4A. Let 

K= u 
q',q" ES\{p} 

q'~q" 

R(p, q') n R(p, q"). 

Assume first that there is a simple closed curve C ~ K which contains 1 in its inner domain. Let q' E 
S \ {P} be arbitrary and consider VR*(P, S \ {q'}). Clearly, 1 ~ VR*(p, S \ {q'}). On the other hand 
we have C n VR* (p, S \ {q'}) = 0 since z E C implies z E R(p, q") for some q" E S \ {p, q'} and hence 
z rt. VR*(p, S \ {q'}). Consequently, there would be a bounded face in V*(S \ {q'}), a contradiction to the 
minimality of S. 

Thus there is no simple closed curve C ~ K which contains 1 in its inner domain and hence there is a 
(topological) ray with (K u J) n r = 0 having its endpoint on bd 1 and going to infinity. 

Since IR? \ K and 1 are open sets we may assume that the endpoint of r lies on an edge, say e, of 
bd/. Let q be such that e separates VR*(p, S) and VR*(q, S). Note that e ~ J(p, q). Let ZI and Z2 be 
the two endpoints of e and let ql and q2 be sites different from p and q (but ql = q2 is possible) such that 
Zi E J(p, q) n J(p, qi) ~ R(p, q) n R(p, qi) for i = 1,2. Thus there is a path Pi ~ R(p, q) n R(p, qi) ~ K 
connecting Zi and z for i = 1,2. The concatenation of e, PI, and P2 is contained in R(p, q) and partitions 
the plane into a number of domainsi since the ray r is disjoint (except for its endpoint) from e, PI, and 
P2, we conclude that 1 is contained in one of the bounded domains. Thus int VR(p, {p, q}) = D(p, q) is not 
homeomorphic to an open disc, a contradiction to Property 4A. 0 

o 

Lemma 3 Suppose tkat hand 12 are two distinct laces witk h, 12 ~. VR* (p, S) lor some pES. Tken 
clhnclh=0. 

Proof: Assume that cl h n cl 12 #: 0. Since V*(S) is a tree cl h n cl 12 consists either of an edge of V*(S) 
together with its endpoints or of a single vertex of V*(S). The intersection cannot be an edge because this 
edge would disappear from V*(S} for an appropriate order of the sites, a coatradiction to Fact 2. Thus the 
intersection must be a single vertex v of V*(S). Since h and 12 are unbounded and V*(S) is a tree, the set 
IR2 

\ ({v} uhu 12) consists of exactly two connected components h 1 and h2 for which hl n h2 = 0. See also 
Figure 4. 

Next observe that bd h, bd 12 ~ UqES\{p} J(p, q). So it is possible to select a bisector J(p, q) contribut­
ing to the boundary of h l and h. Obviously, J(p, q) n (h u 12) = 0. Also, we have h2 n J(p, q) = 0, because 
otherwise D(p, q) n 12 = D*(q,p) n 12 #: 0. Thus D(p, q) ~ h l and hence int VR(p, S) ~ h l • By asymmetrie 
argument we have int VR(p, S) ~ h2. Recalling h l n h2 = 0 it follows that int VR(p, S) = 0, a contradiction 
to Property 4A. 0 

For the sequel, it is helpful to rest riet attention to the "finite part" of V*(S). Let r be a simpleclOled 
curve such that in the outer domain of r any two bisectors are either disjoint or identical and such that each . 
bisector J(p, q) intersects r exactly twice. We may also assume that if two bisectors are identical outside 
r then they meet before leaving the inner domain of r. That is, if the intersection of r and two bisectcns 
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J(p, q) and J(p', q') contains a point :z: then J(p, q) n Uz = J(P', q') n Uz for sufficiently small neighbourhoods 
of:z:. 

We add a site 0 to S, define J(p, 0) = J(O,p) = r for all p, 1 :::; p< n, and D(O,p) to be the inner 
domain of r for each p. Then VR*(O, S) is the outer domain of rand r = bd VR*(O, S). Also, the choice of 
rensures that every vertex of V*(S) on r has a degree of exactly three. 

From now on, V*(S) denotes the diagram including the site o. 
We have seen above (cf. Figure 3) that furthest site diagrams may contain more than one face for a site. 

Nm, we bound the number offaces. . 

Lemma 4 a. Let el,. .. , em +1 with em +1 = el be the cyclic list 01 edges oIV*(S)nr and let Pi E S\ {O} 
be such that ei lies on the boundary 01 int VR* (pi, S). Then there are no lour indices 1 :::; i < j < k < 
h :::; m such that Pi = p" and Pi = Ph. 

b. V*(S) has at most 2n - 2 laces, at most 6n - 12 edges, and at most 4n - 8 "ertices. 

Proof: (a) Assume that there are four such indices. Let p = Pi = p" and q = Pi = Ph. Observe that 
V*({P, q}) = V({P, q}) since int VR*(p, {p, q}) = int VR(q, {p, q}) and int VR*(q, {p, q}) = int VR(p, {p, q}). 
Also, VR*(p, S) ~ VR*(p, {p, q}). Thus the situation described in part (a) wes even in V*( {p, q}) and 
hence in V( {p, q}). But this is a contradiction to Property 4A. 
(b) By part (a), the sequence PI, ... ,Pm is a Davenport-Schinzel sequence ([HS85]) oforder 2 over an alphabet 
of size n - 1. Thus m :::; 2(n - 1) - 1 = 2n - 3. Thus V*(S) has at most 2n - 2 faces, one for site 0 and 
m for the sites 1 to n - 1. v*(S)\r is a tree with at most 2n - 3 vertices of degree 1. Also, there are no 
vertices of degree 2 in V*(S). Thus V*(S) has at most 2n - 3 + 2n - 5 = 4n - 8 vertices and at most 
4n - 9 + 2n - 3 = 6n - 12 edges. 0 

Next, we focus on the Voronoi vertices. 

Definition 4. Let p, q, r be three sites of S and let Ip , Iq , I.,. be faces of VR*(p, S), VR*(q, S), VR*(r, S), 
respectively. A vertex v E V*(S) is called a (p, q, r)-"ertez iff v is located on bd Ip n bd Iq n bd/.,. and there 
exists a clockwise tour around v encountering Ip , I q , I.,. in this order. 

Lemma 5 Let p, q, and r be three distinct sites in S. Then V*(S) contains at most one (p, q, r)-"ertez and 
at most one edge separating p- and q-region incident to that "ertez. 

Proof: Assume for the sake of a contradiction that there are two distinct (p, q, r )-vertices v and w in 
V*(S). There must be faces J;, J; ~ VR*(p, S), J;, r: ~ VR*(q, S), J:., J:' ~ VR*(r, S) such that v 
lies simultaneously on bd J; , bd I; , bd J:. and w lies simultaneously on bd J; , bd r: ' bd J:' . We have to 
distiIiguish two cases: 

Assume first that one of the three sites, say p, is equal to 0: This implies v, wEr and I; # r: and 
J:. # J:' since v and w can be connected by a path in v*(S)\r. In a clockwise tour on r starting at v the 
faces J;' J:' , r:, J:. will be encountered in this order. This contradicts Lemma 4. 
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Assume next that 0 f/. {p, q, r}: According to Lemma 2 each of the six faces touches r and hence 
I {f;, f;, r:, r:, r:, rr} I ~ 4 according to Lemma 4. I {1;, f;, r:, r:, r:, rr} 1= 3 would imply '11 = tu and 
hence exadly two of the associated pairs of faces collapse, say 1; = f; and r: = r:. But now it is possible 
to conned 'Iland tu by paths Pp ~ VR*(p, S) and Pq ~ VR*(q, S). Glueing together both paths we obtain a 
circle containing either r: or rr. Thus either r: or rr is a bounded face, a contradidion to Lemma 2. 

So there is at most one (p, q, r)-vertex in V*(S), say'll. The vertex '11 can be incident to at most one edge 
separating p- and q-region because otherwise Lemma 3 would be violated. 0 

Note that Lemma 5 does not exclude the possibility of more than one . edge separating the p- and the 
q-region. It only states that such edges have no common endpoints. 

2.3 Addition oe a site 

This section prepares the ground for the incremental construction schemeused to compute V*(S). Suppose 
from now on that R ~ S and I R I ~ 3. Throughout this sedion we also assume that 0 E R. Note that the 
last condition implies that all edges of V*(R) are bounded. We consider the case when a new site tE S \ R 
is to be inserted. 

Let VR~(p, R) denote clint VR*(p, R), i.e., the closure ofthe p-region. 

Lemma 6 T~ (V*(R) \ r) nVR~(t,RU{t}):/; 0 i/ lind only i/VR~(t,RU{t}):/; 0. 

Proof: If T = 0 and VR~(t, R u {tl) :/; 0 then the boundary of each face I ~ VR*(t, R u {t}) is completely 
contained in a face of V*(R) or is located on r. IR \ {O} I ~ 2 ensures that V*(R) \ r :/; 0. Now consider 
V*(R\ {O}u{t}). Since outside r no Voronoi vertices can occur, V*(R\ {O}U{t}) consists of at least two 
components, a contradidion to Lemma 2. The converse diredion is trivial. 0 

Lemma 7 LetVR~(t,RU{t}):/; 0, let/ be li/ace o/VR*(t,RU{t}), and letTJ ~ (V*(R)\r)ncl/. Then: 

a. TJ i.s nonempty. 

b. TJis a connected set. 

c. TJ i.s not ;ust a single point. 

Proof: Part (a). This was already shown in the proof of Lemma 6. 
Part (b). Assume that TI consists of at least two components. Then we can choose two endpoints, say :z: 
and y, of distind components of TJ such that :z: and y can be conneded by a path P ~ (V* (R) \ r) \ cl / . P 
does not touch cl I except at its endpoints :z: andy. On the other hand there must be a path Q ~ (bd f) \ r 
conneding :z: and y. P and Q are disjoint except for their common endpoints, i.e., P 0 Q is a simple curve. 
Path Q is contained in V*(R u {tl) \ r. We next construd a path pt ~ V*(R U {tl) \ r flom P which also 
conneds :z: and y and which is disjoint from Q, i.e., pt 0 Q is a simple cycle contained in V*(R u {tl) \ r. 
This contradicts Lemma 2. 

To construd pt path P is decomposed in subpaths P1 0 P2 0 ••• 0 Ph, such that Pi, for i even, is a maximal 
subpath of P contained in VR~(t, RU{t}). For each even ithere is a face li ~ VR*(t, RU{t}) different from 
I with Pi ~ cl/i (since, by Lem.ma3, the closures of any two faces of VR*(t,R U {tl) are disjoint). Let 
Pi ~ (bd li ) \ r be the path connecting the two endpoints of Pi. Then pt = P1 0 P~ 0 P3 0 P~ 0 ••• 0 Ph, is a 
path contained in V* (R u {t} ) \ rand disjoint flom Q by Lemma 3. Figure 5 illustrates the definition of PI. 

Part (c). At this point we Imowalready that TJ is a nonempty connected set. Assume now that TI is a 
single point. This point, say :z:, is a vertex of V*(R) or lies on an edge of V*(R). In either case I splits a 
face 7 of V*(R) into two new ones, say 7 1 and 72' Recall that I must touch r according to Lemma 2. We 
conclude that cl71 n cl7 2= {:z:}, a contradidionto Lemma 3. 0 

Note that although (V* (R) \ r) n cl I is conneded, this is not necessarily true for V· (R) n cl I. We 
therefore distinguish two types of faces: 

Definition 5. A face I ~ VR* (t, R u {t}) is called rooted if T/ ~ V" (R) n cl I is connected and unrooted 
otherwise. 

If t gives rise to unrooted faces, we can prove stronger properties of VR*(t, R u {t}): 
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Figure 5: illustration of paths P' and Q 

Lemma 8 Let I be a face of VR*(t, R U {t}). 

a. Let '11 be a Voronoi vertez oIV*(R) located on rand let e be the unique edge in V*(R) \ r incident to 
'11. If'll E cl Ithen U" ne n cl I =P 0 for all neighbourhoods U" 01 '11. 

b. I is unrooted i.f and only il cl I does not include a Voronoi lIertez of V*(R) located on r. 
Proof: Part a). First note that there can be no face I' S;;; VR*(t, RU{t}) with I =P I' and '11 E cl/' according 
to Lemma 3. If U" ne ncl I = 0 for some neighbourhood U" then 'V is also a Voronoi verte.x in V*(RU {t}). 
Moreover, in V*(R U {t}) there are four Voronoi regions meeting at '11, namely the t-region and the three 
Voronoi regions meeting at '11 before site t haS been inserted. Thus '11 is incident to four Voronoi edges in 
V* (R U {t} ), a contradiction to the choice of r. 

Part b). (~) If I is an unrooted face Ti = V* (R) n cl I consists of e.xactly two components:Tf and 
rn cl I. For the sake of a contradiction assume that r ncl I contains a Voronoi vertex 11 of V*(R). Now let 
e be the unique edge in V* (R) \ r incident to '11. By part a) we have U" ne n cl I =P 0 for all neighbourhoods 
U" of 11. Since U" ne n cl I ~ Tf' it follows that TJ and r n cl I are conneded via '11, a contradidion. 

(~) To show the converse, suppose that rn cll does not include a Voronoi vertex of V*(R}. TJ and 
rn cl I are nonempty sets according to Lemma 7 and Lemma 2, respectively. Now observe that any path 
inside V* (R) which runs from TJ to r n cl I must pass through a Voronoi verte.x on r. Thus Tt is not 
connected and the claim folIows. 0 

Lemma 9 11 VR*(t, Ru {t}) has an unrooted face then VR*(t, Ru {t}) consist of a single lace. 

Proof: Let I be an unrooted face of VR* (t, RU{ t}). Lemma 8 shows that r ncl I cont~ no Voronoi verte.x 
of V*(R). Consequently, there is a site p such that VR*(p, R U {t}) is the clockwise and counterclockwise 
neighbour of I on r. Thus I must be the only face of VR* (t, R U {t}) by Lemma 4. 0 

The following observation is also helpful. 

Lemma 10 Let I be a face of VR* (t, Ru {t}) and let e be an edge in V*(R) \ r. Then e n cl I has at most 
one component. 

Proof: We only need to notice that V* (R U {t}) is also a tree. o 
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3 Descriptions and Conflicts 

Our algorithm for furthest site abstract Voronoi diagrams is an instance of the randomized incremental 
construction paradigm introduced by Clarkson and Shor [CS89]j cf. also [BDS+92] and [CMS92]. We brielly 
review the paradigm. 

Let 5 be a set with 151 = n obiects, let b be an integer, let F(5) S; Sb be a subset of the b-tuples over S 
and let C S; 5 x F(5) be a relation (the so-called confiict relation). It is assumed that (s, (Sl,"" Sb)) E C 
implies s::p si for 1 ::5 i ::5 b. Let Fo(5) = {D E F(5) I there is no s E 5 with (s, D) E Cl. Clarkson and 
Shor have analyzed the incremental construction öl Fo(5). In the general step, Fo(R) for some subset R S; 5 
is already available, a random object t E 5 \ R is chosen, and Fo(R U {t}) is constructed flom Fo(R). 

In order to apply the paradigm we need to interpret 5, F(S) and C. 5 is just our set {O, ... , n - 1} of 
sites. For F(S) and C the situation is more difficult. Intuitively, we want Fo(R) to be the set of edges of 
V*(R), forma:llY F(R) and hence Fo(R) has to be a set of b-tuples of sites for some integer b. We resolve 
this dilemma as follows: We identify edges with certain 6-tuples of sitesj for example, the edge e in Figure 6 
will be identified with the 6-tuple (p, q, rq , rp , r~, r~), i.e., the description of an edge involves the sites whose 
Voronoi regions are separated by the edge e and sites owning neighbouring faces. We will now give the 
precise definition of F(R). 

Throughout this section the set R need not necessarily contain the site O. However, I R I ;::: 3 is supposed. 

fp S; VR* (p, R) 

g~ f q S; VR*(q,R) ~ 

Figure 6: The description of eis DR(e) = {(p, q, rq, rp ), (q,p, r~, r~)} 

Definition 6. A set D = {(p, q, r1, r2), (q, p, r3, r4)} is called a description over Riff' {p, q, r1, r2, r3, r4} S; R 

and {P}, {q}, {r1' r2, r3, r4} are pairwise disjoint. For a description D let set(D) dg {p, q, r1, r2, r3, r4}' 

Remark: A description D = {(P, q, r1, r2), (q, p, r3, r4)} may also be written as a 6-tuple (p, q, r1, r2, r3, r4), 
i.e., the set of descripiions can be viewed as a subset of INs. We prefer the notation of Definition 6 because 
it allows a natural interpretation which we give nat. 

A bounded edge e of V* (R) is mapped to a description in the following way (see Figure 6): Let e 
separate {aces fp S; VR*(P, R) and fq S; VR* (q, R). Let gp and g~ be the edges preceding and following e in 
a counterclockwise traversal of bd fp and let gq and g~ be the edges preceding and following e in a clockwise 
traversal of bd fq. The fOUl edges are called the neighbouring edges of e and G R( e) = {gI" g~, gq, g~} is used 
to denote the set of neighbouring edges. Let siies rp and r~ be such that edges gp and g~ separate fp flom 
a face of VR*(rp , R) and VR*(r~, R), respectively. Similarly, let sites rq and r~ be such that edges gq and g~ 
separate fq flom a face of VR*(rq, R) and VR*(r~, R), respectively. 

Definition 7. Let e be a bounded edge of V*(R) and let p, q, rp , r~, rq , r~ be as explained above. Then 

DR(e) dg {(p, q, rq , rp ), (q, p, r~, r~)} is called the description of e w.r.t. R. 
We also define F(R) = {D I D is a description over R and V*(set(D)) contains a bounded edge with 
description D}. 
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Remarks: 
1. Note that one of theendpoints of eisa (p, q, rp )- and (PI q, rq)-vertex and the other one is a (q, p, r~)­
and (q, p, r;)-vertex. 
2. I {rp , r~, rq , r~} I lies between 1 and 4, I GR(e) I varies between 2 and 4. For example, if I R 1= 3 and 0 E R 
the minimal values are attamed for each edge in V*(R). 

Our next aim is to establish basic properties of the mapping between the bounded edges and their 
descriptions. The following two lemmas show that distinct edges have distinct descriptions and that an edge 
retains its description if sites are removed flom the Voronoi diagram which are not in the description of the 
edge. . 

Lemma 11 Let e be a bounded edge o/V*(R) and let R' be such that set(DR(e)) ~ R' ~ R. Then: 

a. e ezists in V*(R'). 

b. The description 0/ e in V*(R') is the same 48" in V*(R), i.e., DR,(e) = DR(e). 

Proof: We have VR*(s, R) ~ VR*(s, R') for every site sE R'. The condition set(DR(e)) ~ R' ensures that 
the Voronoi regions involved in forming e also appear in V*(R'). Thus e exists in V*(R'). Also, for each 
edge 9 E G R( e) separating the Voronoi regions VR* (rl' R) and VR* (r2' R) oftwo sites rl, r2 E set( D R (e)) 
there is an edge g' E GR,(e) separating VR*(rl' R') and VR*(r2' R') with 9 ~ g' and gnU = g' n U for all . 
sufficiently small neighbourhoods U of e. Thus DR,(e) = DR(e). 0 

Lemma 12 Let e and e' be distinct bounded edges 0/ V*(R). Then DR(e) =F DR(e'). 

Proof: We will show that DR(e) = DR(e') implies e = e'. Let DR(e) = DR(e') = {(p, q, rq , rp ), (q,p, r~, r~)}. 
Then both edges have a (p, q, rp)-vertex and a (q,p, r~)-vertex as an endpoint. Thus e and e' have the same 
endpoints according to Lemma 5 and hence are identical (agam by Lemma 5). 0 

Next, we turn to the definition of a con1l.ict. We give two definitions, a topological and a combinatorial 
definition, and show their" equivalence. The combinatorial definition gives the con1l.ict relation in the sense of 
the incremental paradigm, the topological definition links the concept with the intuition that a site t E S \ R 
con1l.icts with an edge ein V*(R) ifthe edge e no longer exists in V*(RU{t})j more precisely, ifthe insertion 
of t affects e or one of the neighbouring edges at the endpoint shared with e. 

Definition 8. 

a. topological definition of con1l.ict: 
Let e be a bounded edge of V*(R) and let t ES \ R. Then t con1l.icts with ein V*(R) if and only if 

un(eU U g)nVR~(t,RU{t})=F0 
gEGIt(e) 

for every neighbourhood U of e. 

b. combinatorial definition of con1l.ict: 
Lei D E :F(S) and lei t E S \ set(D). t con1l.icis with D if and only if there is no bounded edge in 
V*(set(D) U {tl) with description D. 
:Fo(R) denotes the sei of con1l.ict-flee descriptions in :F(R), i.e., :Fo(R) = {D E :F(R) I D does not 
con1l.ict with any t E R \ set(D)}. 

Remark: Recall that edges are relatively open sets, i.e., the endpoints of an edge do not belong to the edge. 
Thus it is possible that an endpoint of e belongs to VR~(t, R U {tl) but t does not con1l.ict with e (in ihe 
topological sense). 

We next show the equivalence of the two notions of con1l.ict. 

Lemma 13 Let 0 E R andt E S \ R. Then t confiicf$ with. e in V* (R) i/ and only i/ t confiicts with D R (e). 
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Proof: Recall that the condition 0 ERensures that all edges in V*(R) are bounded, and hence DR(e) is 
defined for each edge ein V*(R). We will prove the lemma by showing the contrapositions. Let D = DR(e). 

(=» Claim: 1ft does not confiict with DR(e) then t does not confiict with ein V*(R). 
By Lemma 11, the edge eis also an edge in V*(set(D)) and moreoverbas the same description D. Since 
t does not confiict with DR(e), there is an edge e' in V*(set(D) U {tl) with description D. The edge e' 
exists also in V*(set(D)) according to Lemma 11 and hence e = e' (by Lemma 12), i.e., e is an edge of 
V*(set(D) U {tl) and D.et(D)U{t}(e) = D. The last observations now ensure that for eachsufliciently small 
neighbourhood U of e the following holds: 

un(eU u g) n VR~(t, set(D) U {tl) = 0. 

Since UgEGIl(e) 9 s:;; UgEG.et(D)(e) 9 and VR*(t, Ru {t}) s:;; VR*(t,set(D) U{t}) it follows that 

Un(eU U g)nVR~(t,RU{t})=0 
gE G Il(e) 

and hence t does not confiict with e. 
(<=) Claim: 1ft does not confiict with e in V'"(R) then there is no confiict between t and DR(e). 

When t does not confiict with e, eis also an edge ofV*(RU{t}) and moreover has the same description D. 
By Lemma 11, the edge eisalso an edge in V'"(set(D) U{t}) and moreover has the same description D. 0 

Theorem 1 1jO E R then the mapping e 1-+ DR(e) is a bijection between tke edge set ojV*(R) and .Fo(R). 

Proof: We first show that the function really maps only into Fo(R). Let D = DR(e) and s be an element of 
R\set(DR(e)), if any. Then eis also an edge ofV*(set(D)) and V*(set(D)U{s}) and D = D.et(DJt(e»(e) = 
D..,t(DIl(e»U{.}(e) according to Lemma 11. Thus no site s E R \ set(DR(e)) confiicts with e and hence 
DR(e) E Fo(R). 

The injectivity of the mapping was ShOWD in Lemma 12. 
1t remains to show surjectivity. Let D E Fo(R) be arbitrary and assume that D #; DR(e) for all edges e 

of V*(R). D E Fo(R) implies that there is an edge in V*(set(D)) with description D. Thus there must be 
a set R' with set(D) s:;; R! s:;; Rand a site s ER \ R' such that V*(R') contains an edge e with description 
D but V*(RU {s}) does not. Thus s confiicts with DR.(e) by Lemma 13. Also, DR.(e) = D according to 
Lemma 11 and hence D fI. Fo(R). 0 

Remark: What have we achieved? Theorem 1 links a topological concept, namely the edges of V*(R), with 
a combinatorial concept, namely the descriptions in Fo(R). We use this bijection as folIows: Lemma 4 gives 
us abound on the number of edges of a furlhest site diagram. Theorem 1 translates this into abound on 
the size of Fo(R). The general theory of randomized incremental constructions (RICs) then gives abound 
on the number of combinatorial objects constructed in a RIC which, by Theorem 1, translates into abound 
on the number of topological objects constructed. 

Edges (as point sets) could also be characterued by 4 sites, namely by the two sites separated by the 
edge and one additional site incident to each end point of the edge. But then an edge incident to a high 
degree vertex has many descriptions and there would be no bijection between combinatorial and topological 
objects. This would make it impossible to apply the general results ab out RICs. 

The equivalence between the combinatorial and the topological definition of confiict is also important. 
Our algorithm detects certain topological confiicts. The general theory of RICs gives abound on the number 
of combinatorial confiicts encountered which, by the equivalence, translates into abound on the topological 
confiicts and hence into abound for the running time. 

4 The Algorithm 

This section gives the algorithm for constructing the furthest site abstract Voronoi diagram. In section 4.1 
we introduce the basic operation underlying our algorithm, in Section 4.2 we outline the algorithm, and in 
the remaining sections we give the details. 
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4.1 The Basic Operation 

We first characterize the intersection of an edge with the region of a new site (Lemma 15) and show that 
this intersection can be computed by considering the diagram of five sites (Lemma 14). We then define our 
basic operation. 

Lemma 14 Let e be an edge 01 V*(R) with DR(e) = {(p, q, rq, rp ), (q,p, r~, r~)}, let r E {rp , rq } and r' E 
{r~, r~}, let R' = {p, q, r, r'}, and let t E S \ R. Then e n VR~(t, Ru {t}) = e n VR~(t, R' u {t}). 

Proof': Since VR*(s, R) s;: VR*(s, R') for all s E R' the point set eis also an edge of V*(R') separating the 
Voronoi regions VR*(p, R') and VR*(q, R'). . 

(s;:) Since VR* (t, R u {t}) s;: VR*(t, R' U {t}) we have e n VR~(t, R u {t}) s;: e n VR~(t, R' u {tl). 
(2) To show the converse, we assume for the sake of a contradiction that a point z E e n VR~(t, R' u 

{tl) \ e n VR~(t, Ru {tl) = e n (VR~(t, R' u {tl) \ VR~(t, Ru {tl)) exists. If z is in VR~(t, R' u{t}), but not 
in VR~(t,Ru{t}), then there must be asite sE R\R' such that z E D*(s,t). From z E VR~(t,R'U{t}) 
we conclude that in each neighbourhood U% of z there must be a point y which lies in int VR*(t, R' u {t}). 
y can be chosen such that either y E int VR*(p, R) or y E int VR*(q, R) holds. Assuming w.l.o.g. that y E 
int VR*(P, R), we obtain y E D*(P, s). Moreover, we have y E D*(t,p) because of y E int VR*(t, R' u {t}). 
Combining the last two observations we obtain y E D*(t,p) n D*(p, s) s;: D*(t, s). On the other hand z is an 
element ofthe open set D*(s, t). This implies that all sufficiently small neighbourhoods U% of z also belong 
to D*(s, t). Consequently, y E D*(s, t). But y cannot be an element of D*(s, t) and D*(t, s) simultaneously. 

. . 0 

Lemma 15 Let e 6e an edge oIV*(R), let t E S\R, and let I denote the intersection 01 e and VR~(t, Ru{t}), 
i.e., 1= e n VR~(t, Ru {tl). 

a . If I contains a connected component I' which is not incident to either endpoint of ethen I = I' and 
VR*(t, Ru {t}) consists 01 a single unrooted face. 

b. I consists 01 at most two connected components. 

c. 11 I has two components then 60th are incident to an endpoint 01 e. 

Proof': Part a). Let I' be a connected component of I which is not incident to an endpoint of e. Since the 
closures of distinct faces ofVR*(t, RU{t}) are disjoint (by Lemma 3) there is a unique face f ofVR*(t, Ru{t}) 
with I' s;: f. We now distinguish cases. 
Assume first that e is an edge located on r. By the tree property, rn clf is a connected set. Since I' is 
not incident to an endpoint of e, we obtain I' = rn cl 1 = e n cl f . In particular, cl f contains no Voronoi 
vertex of V*(R) located on r. Consequently, fis an unrooted face of VR*(t, R u {tl) (by Lemma 8) and 
hence fis the only face of VR*(t, Ru {t}) (by Lemma 9). . 

Assume next that eis an edge in V*(R) \ r. By Lemma 10, we obtain I' = e n clf . Since I' is not 
incident to an endpoint of e we conclude from Lemma 7 that I' = e n cl f = (V* (R) \ r) n cl f = TI' T T/ 
is not connected and hence f is an unrooted face. 

Finally, in both cases we observe I = e n VR~(t, Ru {t}) = e n cl f = I' . 
Parts b) and c) follow immediately from part a). 0 

Remark: H I has two components, VR* (t, R u {t}) consists of rooted faces. The two components usually 
belong to different faces of VR*(t, R u {tl). An exception may occur when e is located on r. 

We can now define Out basic operation. The procedure is designed to decide whether a site t E S \ R 
intersects a given edge e of V* (R). When an intersection is detected, it determines the type of intersection. 
Input as well as output are of combinatorialtype and have constant size. We will charge one time unit for 
each call of the basic operation. 

The basic operation is the only part of Out algorithm which depends on the particular kind of abstract 
Voronoi diagram. This allows us to adapt our algorithm to a specific situation simply by exchanging this 
procedute. 
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Basic Operation 

input: a description DR(e) = {(p,q,rq,rp ), (q,p,r~,r~)} E :F(S) and a site t with t f/. set(DR(e)). 
output: Let r E {rp , rq}, let r' E {r~, r~}, and let R' = {p, q, r, r'}. A symbol is reported to describe the 

combinatorial type of I = e n VR~(t, R' u {tl): 
EMPTY: the intersection is empty ( I = 0 ) 
ENTIRE...EDGE: the intersection is equal to e ( I = e ) 
SEGMENT_I: the intersection consists of a segment having the (p, q, r)-vertex as one end 

point ( lee) 
SEGMENT.2: the intersection consists of a segment having the (q,p, r')-vertex as one end 

point ( lee) 
INNER-SEGMENT: the intersection is a segment of e incident neither to the (p, q, r)-vertex na 

to the (q,p, r')-vertex( lee) 
,TWO-SEGMENTS: the intersection consists of two disjoint segments each of which is ineiden 

to an endpoint of e ( lee ) 

We will use basic_op(t,D) to denQte the output of the basic operation applied to site t and description 
D. An implementation of the basic operation requires the construction of the furthest site diagrams of four, 
namely R', and five sites, namely R' U {tl, and the companson of the two diagrams. 

The correctness ofthe procedure follows !rom the preceding discussion: We have I = enVR~(t, R'U{t}) = 
e n VR~(t, Ru {t}) according to Lemma 14, and Lemma 15 ensues that the list of symbols used to describe 
I exhausts all possible case5. 

Next, we link the basic operation to the notion of conßict. 

Definition 9. Let e be an edge in V· (R), let v be an endpoint of e, and let t E S \ R. 

a. t intersects the edge e if and only if e n VR~(t, Ru {tl) ::/; 0: 
b. t clips e at v if and only if U., ne n VR~(t, Ru {tl) ::/; 0 for all neighbourhoods U., of v. 

c. t intersects DR(e) if and only if basic..op(t, DR(e)) ::/; EMPTY. 

d. t clips DR(e) at vif and only if basic_op(t, DR(e)) E { ENTmE...EDGE, TWO-SEGMENTS, SEGMENT_i 
}, where v is the vertex referred to in the definition of case SEGMENT_i. 

The intention behind these definitions is as folIows: 

Lemma 16 Let e be an edge in ~(R) arid let tE S \ R. 

a. t intersects e if and omy if t intersects DR(e). 

b. t clips e at its endpoint v if and only if t clips DR(e) at '11 . 

c. t confticts with e if and only if t intersects e or t clips an edge 9 E GR(e) at the common endpoint of 
e and g. . 

d. t confticts with DR(e) if and only if t intersects DR(e) or t clips a description DR(g) for some 9 E 
GR(e) at the common endpoint of e and g. 

Proof: Parts a) and b) follow directly !rom the definition of the symbols used as output of the basic 
operation. 
Part c). Let v be the common endpoint of e and some edge 9 E GR(e). Then t clips 9 at v if and only if 
U., n 9 n VR~(t, R u {t}) ::/; 0 for all neighbourhoods U., of v. Since eng = 0 and v is the common endpoint 
of e and g, this is equivalent to U n 9 n VR~(t, Ru {tl) ::/; 0 for all neighbourhoods U of e. The claim now 
follows since 

{::> '<IU: 
{::> '<IU: 
{::> '<IU: 
{::> 

t conßicts with e 
U n (e U UgEGJt(e) g) n VR~(t, R u {t})::/; 0 

Une n VR~(t, R u {tl) ::/; 0 or U nUgEGJt(e) 9 n VR~(t, Ru {tl) ::/; 0 
e n VR~(t,RU {t})::/; 0 or 3g E GR(e)(U ng n VR~(t,RU {t})::/; 0) 

t intersects e or t clips an edge 9 E GR(e) at the common endpoint of e and g. 
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Part d) is an immediate consequence ofparts a), b), c) and Lemma 13. o 

4.2 A Global View of the algorithm 

In this section we give a global view of the algorithm and define essential data structures. 
The algorithm chooses a random order {tl,"" 'tn-l} of the sites {I, ... , n - I}. Let ~+1 denote 

{O, tl,"" tt}. Initially, it computes V*(Rs) and then it successively adds ti to obtain V*(~+1) from V*(~). 
The following data structures are maintained for the current set R = ~ of sites: 

1. The furthest site Voronoi diagram V*(R) of the set R of sites already inserted is stored as a planar 
map: 

(a) For a vertex 11 E V*(R) we store the cyclic list of edges incident to 11 in clockwise order. This 
data structure is denoted by listR(lI). 

(b) An edge e in V*(R) is connected with its two endpoints. e also knows the two sites whose Voronoi 
regions share edge e. 

2. The history graph H(R) provides information about con1licts ([BDS+92]). In contrast to the terms 
vertex and edge used to describe the Voronoi diagram we use the terms node and arc for H(R). H(R) 
is a dUected acyclic graph with a single source. The node set is given by {source} U US<i<dDR;(e) I 
eis an edge of V*(R;)}. The following history graph invariants hold: - -

(a) Every edge e of V*(R) is linked with its description DR(e) in H(R). 
(b) Each node of H(R) has outdegree at most 5 and the nodes corresponding to edges in V*(R) have . 

outdegree 0. 
(c) For every site t E S \ Rand every edge e of V*(R), such that t intersects e, there is a path from 

sour ce to DR(e) that visits only descnptions intersected by t. 

The general outline of the algorithm is as follows: 
algorithm 
begin 

choose a random permutation {tl, ... , 'tn-l} of {I, ... , n - l}j 
R = Rs /* R = {O,t l ,t2} *j j 

compute V*(R) and H(R)j 
for i = 3, ... , n - 1 do 

t = tij 
compute E t = {e leis an edge of V*(R) and con1licts with t}j 
compute V*(RU{t}) from E t and V*(R)j 
compute H(RU{t}) using H(R) and V*(RU{t})j 
R= RU{t}j 

end 
end 

In the following we will show in detail how the iteration treating t worn. We also show that the insertion 
of t takes O( c) time, where c denotes the number of nodes in H (R) in con1lict with t. 

4.3 . Collecting the Edges of Et 

We proceed in two steps: In a first step we identify the edges in V*(R) which are intersected by t . Starting 
at node source a simple variant of breadth first search in H(R) extracts all these edges. Each intersection 
test requires a call to the basic operation. Only if the basic operation indicates a nonempty interseetion 
we search the successors of the node. The fact that no edge is missed follows from the third history graph 
invariant. Since the outdegree of anode is bounded by 5, the search in H(R) takes time proportional to the 
number of descriptions in H(R) intersected by t. 
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In a second step we determine all edges which conftict with t. According to Lemma 16 this is tantamount 
to checking all neighbours of intersected edges. 

Altogether, the computation of Et can be accomplished in time proportional to O(c). We summarue in: 

Lemma 17 The set Et can be computed in time O(c). 

4.4 Construction of V"'(R U {t}) 

As above, let T= (V*(R)\r)n VR~(t,RU{t}) and let TI = (V*(R) \r) nclf and TI = V*(R) nclf for 
aspecmed face f ~ VR*(t, Ru {t}). . 

Wemow flom Lemma. 6 that T = 0 iff VR~(t, R U {tl) = 0. The case T = 0 can be checked by the 
predicate Et =0. If so, V*(R) = V*(R u {tl) and we are done. Otherwise we have T #= 0 and Ee #= 0. We . 
start by classifying the vertices in V* (R) and V* (R u {t} ): 

UNCRANGED = {vi visa vertex of V*(R) and no edge incident to v in V*(R) is clipped at v} 
CRANGED = {vi visa vertex of V*(R) and some but not all edges incident to v are clipped at v by t} 
DELETED = {vi visa vertex of V*(R) and all edges incident to v in V*(R) are clipped at v} 
NEW = {11 I v is an endpoint of a segment of e n VR* (t, Ru {t}) which is not an endpoint of e} 

Intuitively, UNCRANGED colleds all vertices of V*(R) which are not aft'ected by the insertion of t, 
CRANGED collects all vertices of V*(R) which are also vertices of V*(R U {tl) but with a modified edge 
list , DELETED collects all vertices of V* (R) which are not vertices of V* (R u {t}), and NEW collects all 
vertices of V*(R U {tl) which were not already avertex of V*(R). 

Nm, we will describe this intuition more precisely and also characteme the cyclic egde lists of the 
vertices of V*(R U {t}): 

Consider the set UNCRANGED first. We claim that the elements OfUNCRANGED lie outside VR~(t, RU{t}) 
and are also vertices of V* (R u {t} ). 

Let v E UNCRANGED and assume for the sake of a contradidion that v E cl f for some face f ~ 
VR* (t , Ru {t}). Then v either lies on r or belongs to TI which is a connected set and not just a single point 
by Lemma 7. In the former case the only edge in V*(R) \ r incident to v is clipped by t at v according to 
Lemma 8. The laUer case implies that one of the Voronoi edges incident to v is clipped by t at v by Lemma 
7. In either case we have v rt. UNCRANGED. Thus v rt. VR~(t, R u {t}) and visa vertex of V*(R U {t}), too. 
By the same argument we have listRu{t} (v) = listR(v). 

edges in E2 

Figure 7: v E CRANGED 

Now consider the set CRANGED. We claim that the elements of CRANGED belong to bd VR~(t, Ru {t}) 
and are vertices of V*(R U {tl). 
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Let v E CHA.NGED and let listR(v) = (eI, ... , ek). Additionally, let PI, ... ,Pk be sites such that ei 
(1 ::5 i ::5 k) separates the Voronoi regions of sites Pi and Pimodk+l. Some of the edges (eI, .. . ,ek) are 
clipped by t at v and some are not. Consequently, visa vertex on bd VR~(t, Ru {t}). Lemma 3 ensures 
that there is only one face / ~ VR* (t, Ru {t} ) with v E bd /. The boundary of / splits the edges (eI' .. • , ek) 
into two nonempty and uninterrupted subsequences. One of them, say EI, contains the edges clipped by t and 
the other the unclipped edges. Suppose that E2 = (ei, ... , eil is the latter subsequence. In V*(RU{t}) vertex 
v is shared by the Voronoi regions of the sites Pi, .. . ,Pi,Pimodk+l and t. Suppose that e' , resp. eil, is the 
Voronoi edge in V*(R U {tl) separating t-region flom Pi-region, resp. Pimodk+l-region. To update listR(v) 
we have to replace the subsequence EI by the two edges e' and eil, i.e. listRu{t} (v) = (ei, ei, ... , ei, eil). See 
also Figure 7. 

Next, we turn to the set NEW. We claim that the elements of NEW are located on bd VR~(t, Ru {t}) and 
are vertices of V*(R U {tl), but not of V*(R). 

If v E NEW then there is an edge e of V*(R) such that v is an endpoint of a segment of en VR~(t, RU{t}) 
which is not an end point of e. Thus v is not a vertex of V* (R) and v lies on bd VR~ (t, R u {t} ). If e has 
separated p-region and q-region in V*(R) then v lies also on bd VR~(p, R u {t}) and bd VR~(q, R u {t}). 

Thus visa vertex of V*(RU {t}) and the cyclic edge list listRu{t}(v) contains precisely three edges, one 
for each pair of the three Voronoi regions meeting at v. The cyclic order is readily inferred flom the basic 
operation applied to t and DR(e). See also Figure 8. 

p-region 

Figure 8: v E NEW 

Finally, we regard the set DELETED. We claim that the elements of DELETED do not appear in the vertex 
set of V*(RU {tl). 

When all edges incident to a vertex v E DELETED are clipped by t then either v lies in int VR* (t, R U {t}) 
or v lies on the boundary of exact1y two Voronoi regions, namely the t-region and a Voronoi region which 
had v on its boundary before t was inserted. In either case v is no longer incident to three Voronoi regions 
and vanishes flom the vertex set. 

We summarue these observations in the following lemma: 

Lemma 18 The set 0/ tJemces 0/ V*(R) equals UNCHA.NGED U CHA.NGED U DELETED, the set 0/ tJertices 0/ 
V*(RU {tl) equals UNCHA.NGED U CHA.NGED U NEW. 

Proof: The distinction made in the definition of UNCHA.NGED, CHA.NGED and DELETED is exhaustive. This 
proves the first part. A vertex in V* (R U {t}) is either a vertex of V* (R) or it is not. In the former case 
UNCHA.NGED U CHA.NGED includes the vertex, in the latter case it is contained in NEW. 0 

Vertices in UNCHA.NGED have no importance for updating the Voronoi diagram. Their edge lists stay 
unchanged and they do not require any treatment. The vertices contained in CHA.NGED, NEW and DELETED 

can be identified when E t is calculated. 
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At this point we have achieved the following: We have shown how to compute the vertex set ofV"(RU{t}) 
and the cyclic edge list of every vertex. 

In order to complete the planar map for V"(RU{t}) we still needto do the following: Each new Voronoi 
edge has two endpoints. So each such edge appears exactly twice in the cyclic lists of the vertices. It remains 
to explain how to link the two occunences of each new edge. 

There are two kinds ofnew Voronoi edges in V"(RU {tl): 

type 1: edges which are on bd VR~(t, R U {t}). 

type 2: edges which are proper subsets of edges in V"(R). 

The task is easy for edges of type 2. They can be determined during the computation of Et . An edge of 
this typeis detected whenever the basic operation does not return EMPTY or ENTIRE..EDGE. Note that type 
2 edges have at least one end point in NEW. 

The computation of the type 1 edges is much more involved. We distinguish cases according to whether 
VR"(t, R U {t}) has unrooted faces or not. A criterion to decide this question is given in the nen Lemma. 

Lemma 19 VR"(t, Ru {t}) has an unrooted face i.f and only i.f basic_op(t, DR(e))=INNER_SEGMENT for 
some edge e of V"(R). 

Proof: (~) Let I be the unrooted face of VR"(t,RU {t}). By the tree property, there must be an edge 
e on r with e n cl I =f:. 0. By Lemma 8, cl I cannot contain the endpoints of e and hence basic_op(t, 
DR(e))=INNER_SEGMENT. According to the third history graph invariant e is found when the set Et is 
computed. ({:::) The converse follows from Lemma 15. 0 

face f 

r 

rooted face 
unrooted face 

Figure 9: Touring around Tt 
The procedurecompleting the update of the Voronoi diagram works as folIows: 
1. Assume first that VR" (t, Ru {t}) has only rooted faces. Then Tt = V" (R) n cl I is connected for each 

. face I ~ VR"(t, R U {tl) and T+ n Tt = 0 for distinct faces I and I' of VR"(t,RU {tl) by Lemma 3. We 
conclude that the faces of VR" ({, Ru {t}) are in one-to-one correspondence to the connected components of 
V"(R) n VR"(t, Ru {t}). Let Tt be one such connected component for a particular face I ~VR"(t, RU{t}). 
V"(R) provides a planar embedding ofT/ in the plane. T/ induces exactly one outer domain and a possibly 

empty set of domains surrounded by T/. A traversal ofthe boundary ofthe outer domain meets all endpoints 
of the new Voronoi edgeson bd I and also the two occurrences. of each new edge, cf. Figure 9. This allows 
the two occurrences to be linked. 

2. Assume nen that VR"(t, Ru {tl) has an unrooted face f. Then fis the only face of VR"(t, R U {tl) 
(by Lemma 9), TI = (V"(R) \ r) n cll is connected (Lemma 7), and I = rn eIl is a subsegment of some 
edge e on r which is not incident to an end point of e (Lemma 8). I and TI are disjoint, cf. Figure 9. 
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There are two kinds of vertices on bd I. Two vertices are located on r and all other vertices belong to 
TI' The cyclic order of the laUer kind can again be determined by a traversal of the boundary of the outer 
domain of TI' The only problem unresolved is where to insert the two vertices on r into this cyclic order. 

Overcoming this difficulty requires a more detailed inspection: The unrooted face 1 splits a face I, of 
some Voronoi region VR* (p, R) into smaller faces belonging to VR* (p, R U {t}). The border between 1 and 
these two {aces is formed by two edges which must lie on J(p,t). In V*(RU{t}) there are two new Voronoi 
vertices on r: a (t,p, O)-vertex called v and a (p, t, O)-vertex called w. See also Figure 10. 

Among the other vertices on bd 1 we single out those vertices which lie also on bd VR~(p, R u {t}). 
Let (VI, Wl, V2, W2, • •• , Vk, Wk) with Tc ~ 1 be the cyclic clockwise sequence of those vertices with Vi being a 
(p, t, ao)-vertex and Wi being a (t,p, bi)-vertex for some sites ao and bi (1 ::; i ::; Tc). We need to find out which 
vertex Vj has to be connected with vertex V by a new Voronoi edge and which vertex Wj has to be linked 
with w. If Tc = 1 the problem is trivial. If Tc > 1 then the next two lemmas show how the basic operation 
can be used to determine V;. We first show that v, w, and Vi are vertices of V* ({P, t, 0, ao}) and that there 
is an edge ei connecting V and Vi in V* ({P, t, 0, ao}) and we then show that j = i if and only if ei exists in 
V* ({P, t, 0, ao, bi} ). 

Wk 
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... ... 
\ 

\ TI \ , 
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I \ 
I \ , \ , ... , ... 
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I 
w-------------------- V 
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Figure 10: VR* (t, R U {t}) consists of an unrooted face 

Lemma 20 Let 1 ::; i ::; Tc and let Di = {(p,t,ao,ao),(t,p,O,O)}. V*({P,t,O,ao}) contains an edge ei 

separating VR*(p,{p,t, 0, ao}) and VR*(t,{p,t, 0, ao}) and connecting 11 and l1i. Moreover, D{"t,O,ai}(ei) = 
Di . 

Proof: Since VR*(s, R) ~ VR*(s, R') for each 0 C R' ~ Rand s E R' the vertices 11, wand Vi also occur 
in V* ({P, t, 0, ao}) as (t, p, O)-vertex, (p, t, O)-vertex and (p, t, ao)-vertex, respectively. Recall that a 3-tuple of 
sites uniquely determines a Voronoi vertex according to Lemma 5. In V* ({P, t, 0, ao}) there is the p-region in 
the neighbourhood of V and w. On the other hand the existence of the ao-region prevents that 11 and W can 
be connected by a path inside int VR* (p, {p, t, 0, ao} ). Thus VR* (PI {p, t, 0, ao}) consists of two faces. From 
Lemma 4 we conclude that VR*(t, {p, t, 0, ao}) and VR*(ao, {p, t, 0, ao}) can only have one face. By the tree 
property, the (t, p, O)-vertex V and the (p, t, ao)-vertex Vi are endpoints ofthe same edge. 

Di is the description of e since l1i cannot be located on bd VR* (0, {p, t, 0, ao}) and V cannot be on 
bd VR* (ao, {p, t, 0, ao} ). Otherwise,there would be avertex · of degree 4 on · r. 0 

Lemma 20 shows that Di E :F(S). Thns it is possible to use Di as input for a call to the basic operation. 
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Lemma 21 v direetly follows Vi in tke eyelie eloekwise ordering 01 tke fJertiees 01 bd f il and only il ba­
sic_operation(bi, Di) = EMPTY. 

Proof: (=» H V follows Vi in the cyclic clockwise ordering then ei as defined in Lemma 20 is identical to 
the edge connecting Vi and V in V*(Ru{t}). Thus the basic operation returns EMPTY. 

( {:) Conversely, if the basic operation returns EMPTY, then Wi does not lie on ei. This is only true if V 

follows Vi. 0 

We summarize in: 

Lemma 22 GifJen E" V*(R U {tl) ean be eomputed from V*(R) in time O(c). 

Proof: The vertices in CBANGED U DELETED U NEW can be calculated as a by-product when computing E,. 
Also, the update ofthe cyclic edge lists does not take more then O(c) time. 

Nat, we show that the construction ofthe new edges also consumes no more than O(c) time. VR*(t, Ru 
{t}) can have rooted faces or an unrooted face. If VR*(t, Ru {t}) consists ofrooted faces the construction of 
the new edges requires a walk around rt for each face f ~ VR* (t, R U {t} ). In case of an unrooted face all 
edges but the edges connecting V and Vi, resp. wand Wj, can be found by walking around Tt = IUTI. The 
construction of the latter two edges agam requires a walk around TI to find Vj and Wj. Each travers al on Tt, 
resp. TI, takes time proportional to the number of edges of V* (R) contributing to rt, resp. TI. Summing 
over all faces of VR* (t, Ru {t}) this number coincides with the number of edges in V*(R) intersected by t. 
Bence O(c) time snffices to compute V*(Ru{t}). 0 

noncritical edge critical edge 

Figure 11: T(e) is shown by a dashed line 

We close this section with two definitions which will be needed in the nat section. An edge e on the 
boundary of int VR*(t, R U {t}) is called eritieal if VR*(t, R U {t}) has an unrooted face and exactly one 
endpoint of e lies on r. Otherwise edge eis called noneritieal. 

For an edge e on the boundary of int VR*(t, R U {t}) we associate a certam point set T(e): 

T(e) = 

e 

the part of rt traversed to con­
struct e except its endpoints 

the part of TI leading !rom Vj to 
Wj (as defined above) except its 
endpoints 

The definition of T(e) is illustrated by Figure 11. 

ife~r 

if eisa non-critical 
edge and e ~ r 

if eisa critical edge 
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4.5 Computation of H(R U {t}) 

In this section we show how to update the history graph. We first characterise the nodes which are added to 
it, then define the set of arcs to be added, and finally argue that the history graph invariants are maintained. 
Throughout this section we useB to denote the boundary of int VR* (t, R u {t}). 

An edge e is called 
new üe ~ B 
aflected ü e was already an edge in V*(R) and at least one edge gE GR(e) 

was clipped at an endpoint of e, but eisnot a subset of B 
shortened Ü e does not belong to B and there is an edge e in V*(R) such 

that e Ce 
He is an affected or shortened edge of V* (RU {t}) we use super ( e) to denote the edge of V* (R) containing 

e. Thus we have e = super(e) for affected edges and e C super(e) for shortened edgesj see Figure 12 for an 
e.xample. 

Figuxe 12: new, affected, and shortened edges 

Lemma 23 Let Nt be the set 0/ nodes 0/ H(R U {t}) which are not already nodes 0/ H(R). Then Nt = 
{D I D = DRU{t}(e) /or sorne new, aflected or shortened edge e o/V*(R U {tl)}. 

Proof:. (=» Let D E Nt. Then D = DRU{t}(e) for som~ edge of V·(R U {tl). Assume that eis neither 
new, shortened, nor affected. Then e was already an edge in V·(R) and no edge of GR(e) was clipped at an 
endpoint of e. So the descriptions of ein V·(R U {tl) and V'"(R) are equal, i.e., DRU{t}(e) = DR(e). Thus 
D (/. Nt, a contradiction. 

(<=) It is enough to show that t E set(D). Assume first that eisa new edge. Then e ~ B and hence 
t E set(D). Assume ne.xt that eisa shortened edge. Then at least one endpoint of e mut be in NBW. 

Consequently, at least one edge in GRU{t}(e) belongs to B and hence t E set(D). Finally, ü eis an affected 
edge, then at least one edge in GR(e) is clipped by t. Bach such edge is replaced by an edge lying in B. 
Hence t E set(D). CJ 

Ne.xt we define the new arcs of the history graph. Each new arc goes from anode of H(R) to anode in 
Nt. There are foux types of arcs: 
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type 1: For eaeh aft'ected or shortened edge e of V*(R U {t}) there is an are 
DR(super(e» -+ DRU{t} (e). 

type 2: For each aft'ected edge e and each new edge 9 E GRU{t}(e) there is an are 
DR(super(e)) -+ DRU{t} (g). 

type 3: For each new and eritical edge e and eachedge e in V*(R) n r which eontains an 
endpoint of e there is an are DR(e) -+ DRU{t}(e). 

type 4: For each new edge e and each edge e of V*(R) such that e n T(e) is nonempty and 
more than just a point there is an are D R (e) -+ D Ru {t} ( e ). 

22 

It remains to verify the history graph invariants and to estimate the time needed to eonstruct H(RU{t}). 
The first history graph invariant is clearly maintained. 

Lemma 24 The second history graph invariant is maintained: 
1. No node in H(R U {t}) has more than Jive chiMren and 
e. precisely the nodes corresponding to edges in V*(RU {t}) have outdegree O. 

Proof: Observe first that in H(R) precisely the nodes eorresponding to edges in V*(R) have outdegree 0, 
that all ares added go {rom nodes eonilicting with t to nodes in Nt, and that for each node eon:ß.icting with 
t at least one outgoing are is added. This proves the second claim. 

For the first claim, let e be an arbitrary edge of V*(R) in eonilict with t and let D = DR(e). We 
distinguish the following cases: 
Case 1: Assume first that there is an afFected edge ein V*(R U {tl) with super(e) = e. Then there is at 
most one type 1 are out of D and there are at most four type 2 ares out of D (at most two for each ·endpoint 
of e), for a total of five ares. 
Case 2: Otherwise there is no afFected edge in V*(R U {tl) with super(e) = e. Then 1 = en VR~(t, Ru {tl) 
is nonempty. Again we distinguish several cases: 
Case 2.1: We first assume that VR*(t, Ru {t}) eonsists ofrooted faces. 
The edge e is either eontained in r or it is not. In either ease e \ 1 is a single connected eomponent (by 
Lemma 19) and henee there is at most one type 1 are to a shortened edge e with super(e) = e. There are 
no type 2 and type 3 ares and there at most four type 4 ares as there can be at most four edges e where 
enT(e) is a non-trivial subsegment ofe. (This also covers the ease when eis an edge on r, VR*(t, RU{t}) 
has only one .rooted face, and 1 eonsists of two segments.) 
Case 2.2: If VR*(t, R U {t}) eonsists of a sinsle unrooted face then 1 is a single eomponent by Lemma 10. 
There are two cases whieh have to be eonsidered. 
Case 2.2.1: Suppose now that e ~ r. 
Then there are two type 1 ares to shortened edges, no type 2 are, two type 3 ares to the eritical edges having 
an endpoint on e, and one type 4 are to the boundary edge of VR* (t, Ru {t}) on r. 
Case 2.2.2: Finally, assume that e ~ V*(R) \ r. 
Then there can be at most two type 1 ares to shortened edges out of D, no type 2 and 3 ares, and at most 
four type 4 ares to the new edges incident to the endpoints of 1. Moreover, if there are two type 1 ares out 
of D then there must be a new edge eonnecting the two endpoints of 1 (by Lemma 7). Thus there are at 
most three type 4 ares in this ease.O 

Finally, we turn to the third history graph invariant. 

Lemma 25 The third his tory graph invariant is maintained. 

Proof: It suftiees to show that for all D E Nt and all u E S \ Ru {tl which intersect D there is anode 
D E H(R) such that u interseets D and D -+ Dis an are in H(R U {t}). · .. 

Let e be the edge of V*(RU {t}) with DRU{t}(e) = D. By Theorem 1 e is unique. We distinguish several 
cases depending on whether eis new, shortened, or aft'ected. 
Case 1: Let e be either a shortened or an aft'ected edge. Then let e = super(e) and D = DR(e). Now 
observe that e ~ e and henee e n VR~(u, R U {t, u}) ~ e n VR~(u, R U {u}). Thus u intersects ein V"'(R) 
if u intersects ein V*(R U {tl). Consequently, u intersects D according to Lemma 16. Now thetype 1 are 
D -+ D supplies the desired eonneetion. . 
Case 2: The ease where eis new is more eomplicated. We distinguish several cases aceording to whether 
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eS; r or not. 
Case 2.1: Let e S; r. Then we have type 4 arcs DR(e) -+ D for all edges e S; V*(R) n r with ene"# 0. Thus 
if u intersects ein V*(R U {tl) then u intersects some edge ein V*(R) with DR(e) -+ D. 
Case 2.2:From now on assume that e S; V*(Ru {tl) \ r. We need some additional notation. Let fu be a 
face of VR*(u, R U {t, u}) with e n clfu "# 0,let f~ be the face of VR*(u, Ru {u}) with fu S; f~, let pER 
be such that e separates face f" of VR* (p, RU {t}) and face fe of VR* (t, Ru {t}), and let f; be the face of 
VR*(p,R) with f" S; f;. 

Assume first that some endpoint 'V of e lies in cl f~. 'V is either avertu of V* (R) or lies on an edge e of 
V* (R). In the laUer case we have e n cl f~ "# 0, i.e., u intersects e in V* (R). By Lemma 16, u must also 
intersect DR(e). But DR(e) -+ D was added as an MC oftype 3 or type 4. In the former case, 'V is a. vertu on 
the boundary of f;. Let el and ez be the two edges of bd f; incident to 'V. Assume first that 'V is located on 
r and that el is the edge on bd f; which does not lieon r. Then U., n el n cl f~ "# 0 for all neighbourhoods 
U., of'V by Lemma 8. Now observe that DR(eI) -+ D is an arc of type 4. See also Figure 13a. Assume next 
that 'V is a Voronoi vertu in V*(R) \ r. From Lemma'" we get that TI!. = (V*(R) \ r) n clf~ is a connected 
set and more than just a point. Moreover, we have 'V E TI:" On the other hand e n cl f~ "# 0 ensures that 
cl f~ and cl f; have a nonempty intersection. We conclude that at least one edge out of {eI, e2} is among 
the edges of V* (R) clipped by u at 11. Thus cl f~ intersects el or ez, i.e., u intersects el or e2 and hence 
DR(eI) or DR(e2)' But DR(el) -+ D and DR(e2) -+ D are arcs oftype 2 and 4, respectively. See also Figure' 
13b. 

e fe 

'\ type 4 

I fe 

r 
'V 

a: 'V E r b: 'V ft r 

Figure 13: 'V E cl f~' (The shaded region belongs to cl f~ ) 

So assume flom now on that no endpoint of e lies in cl f~. Since e n cl fu S; e n cl f~ ,the set e n cl fu 
must be an "INNER-SEGMENT" of e and hence fu is an unrooted face. Thus (V*(R) \ r) n cl fu = e n cl fu 
is an inner segment of e. Since e separates f" and fe it follows that bd fu n r is either an inner segment of 
bd f" n r or an inner segment of bd fe n r. Again we distinguish several cases: 

Assume first that e is critical and hence fe is unrooted. Let e be the edge of V· (R) with e = bd f; n r. 
Then e = (bd f" U bd fe ) n r and hence 

0"#bdfu nr=bdfu n(bdfu nr)S;bdfu n«bdf" ubdft}nr)=bdfu neS;clfu neS;clf~ neo 

Thus u intersects e, resp. DR(e). The type 3 arc DR(e) -+ D supplies the desired connection. 
Assume finally, that e is noncritical. Our goal is to showthat T( e) n cl f~ is nonempty and more than 

just a point. Then we can infer that u intersects an edge e of V* (R) with e n T( e) "# 0 and observe that 
DR(e) -+ D is an arc oftype 4. . 
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Claim: T( e) n cl f~ is nonempty and more than just a single point. 

Proof: We have either bd fu n r S; bd ft n r or bd fu n r S; bd fp n r. In the former case the claim obviously 
holds because each curve connecting e and bdfu n rand running inside h n fu must intersectT(e). 

So assume that bd fu n r S; bd fp n r. (For an illustration see Figure 14.) We will argue next that 
fu n fp = f~ n fp. Since fu S; f~, the relation fu n fp S; f~ n fp is certainly true. To show the converse, recall 
that f~ S; D*(u,p) and that fp S; .P*(p,t). Thus, by Fact 1, 

f~ n fp = (f~ n D*(u,p» n (fp n D*(p, t» S; f~ n fp n D*(u, t) S; fu n fp 

Also recall that cl fu does not intersect bd f, \ (e ur). Consequently, cl f~ cannot intersect bd fp \ (e ur). 
Since fp S; f; we conclude that f~ is an unrooted face in V*(R U {u}). Lemma 7 ensures that TI!.. = 
(V*(R)\r)ncl f~ is nonempty and more thanjust a single point. Now fp S; f; and cl f~ n(bd fp \(enr» = 0 
imply that cl f~ must intersect T( e) in more than one point. . 0 

ft 

r 

Figure 14: bd fu n r S; bd fp n r 

Let :z: be a point in T( e) n cl f~. :z: can be chosen to lie on an edge e of V* (R). Since:z: E cl f~, u 
intersects e and hence DR(e), according to Lemma 16. Thus the type 4 arc DR(e) -+ D supplies the desired 
connection. This completes the proof of Lemma 25. 0 

It remains to estimate the time consumed to update the history graph. 

Lemma 26 H(RU{t}) can be constructedfrom E t and V*(RU{t}) in time O(IEtl} = O(c). 

Proof: The descriptions in Nt can be inferred !rom V*(R U {t}) in constant time per descnption. Also, 
I Nt I ~ 51 Et I according to Lemma 24. Computing the arcs of types 1,2 and 4 only requires &nother traversal 
around Tt. This takes time 0(1 Et I}. For ares of type 3 note that there C&n be at most two ares ohhis type 
which can be found in constant time. 0 

4.6 Complexity Analysis 

We summarize our result in: 

Theorem 2 The /urthe8t 6ite a68tract Voronoi diagram 0/ a 6et 0/ n 6ite6 can be compu'ed by a randomued 
algorithm in ezpected time O(nlogn) and ezpected 6pace O(n). The ezpected time '0 inaert 'he n-th aite ia 
O(logn). 
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Proof: We apply the analysis of [CMS92] for randomized incremental constructions. Initializing the data 
structures requires 0(1) time. In the i-th iteration we have to compute E~, V*(RU{t}), H(RU{t}) for 
.t = t. (3:::; i < n). Lemmas 17,22,26 ensure that O(c) time suffices to perform these steps, where cis the 
number of nodes of H(Rt) in con1lict with t. 

Thus the assumptions made in [CMS92] are met. By Theorems 3 and 4 of [CMS92] and Lemma 4 the 
expected size of cis o (log i) and the expected size of H(Rt) is O(i). This implies the stated time and space 
bounds. 0 

5 Concluding remarks 

We have presented an algorithm computing the furthest site abstract Voronoi diagram. Its most important 
features are its generality, as it applies to all abstract Voronoi diagrams, its modularity, as only the basic 
operation depends on the parlicular kind of diagram, and its simplicity. We admit, however, that the 
correctness proof is complicated. 

It would be desirable to extend the algorithm such that it can compute abstract Voronoi diagrams of 
arbitrary order. 
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