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Abstract

In this paper, we show how recently developed techniques from combinatorial

optimization can be embedded into constraint logic programming. We develop

a constraint solver for the constraint logic programming language CLP(PB) for
logic programming with pseudo-Boolean constraints. Our approach is based on

the generation of polyhedral cutting planes and the concept of branch-and-cut.

In the case of 0-1 constraints, this can improve or replace the finite domain

techniques used in existing constraint logic programming systems.
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1 Introduction

Constraint logic programming has been one of the major developments in declarative programming

in recent years [JM94]. The idea is to combine logic programming with constraint solving over some

domain of computation such as linear arithmetic, Boolean algebra, finite domains or lists. Various

constraint logic programming systems have been developed so far, for example Prolog III [Col87],

CLP(R) [JL87], CHIP [DvHS+88], and CAL [ASS+88]. Constraint logic programming has been

very successful in many practical applications, in particular in problems from artificial intelligence

and operations research. The combination of logic programming and constraint solving has benefits

for both sides. From the viewpoint of logic programming, constraint solving techniques enhance

the expressive power and the efficiency of logic programs. Efficient algorithms from mathematics,

artificial intelligence or operations research can be embedded directly into the logic programming

language and need not be coded on the level of unification and resolution using primitive system

predicates. From the viewpoint of constraint solving, a high-level declarative programming language

is available in addition to a pure constraint solver. This means that the problem to be solved can be

represented in a natural and declarative way. The logic language not only can be used to generate

the constraint formulas. It also allows us to handle those problem features that do not fit into the

given constraint solving framework.

The general idea of constraint solving is to compute a solved form which represents all the

solutions of a given constraint set. In many practical applications, however, one is interested in

a solution which is optimal with respect to some objective function. Although optimization is

not part of the original constraint logic programming framework, it is present in many existing

constraint logic programming systems. In this paper, we show how recently developed techniques

from combinatorial optimization can be embedded into constraint logic programming. We develop

a constraint solver for our constraint logic programming language CLP(PB) for logic programming

with pseudo-Boolean constraints. Originally, pseudo-Boolean constraints were seen as a gener-

alization of Boolean constraints that combines Boolean algebra with a restricted form of arith-

metic [Boc93]. Accordingly, our first approach to handle pseudo-Boolean constraints was to extend

Boolean unification to the pseudo-Boolean case. In this paper, we describe a new constraint solver

for linear pseudo-Boolean constraints which is based on cutting plane techniques from polyhedral

combinatorics. Concerning 0-1 constraints, the generation of cutting planes and the concept of

branch-and-cut can improve or replace the finite domain techniques and the branch-and-bound

approach adopted in existing constraint logic programming systems.

The organization of the paper is as follows. In Section 2, we recall briefly some basic concepts

of constraint logic programming and the language CLP(PB) for logic programming with pseudo-

Boolean constraints. We also present the main problems which have to be solved by a constraint

solver for this language. In Section 3, we discuss how a solved form for pseudo-Boolean constraints

should look like. We define a solved form which is based on the notion of strong valid inequalities

for the convex hull of the 0-1 solution set. A constraint set C is simplified by computing polyhedral

cutting planes for the linear relaxation of C. In Section 4, we consider the question how this

solved form can be computed in practice. To generate strong cutting planes, we propose to use

the new lift-and-project method [BCC93b, BCC93a] recently developed in the context of mixed 0-1

optimization. On the one hand, this method has very nice theoretical properties. In particular, we

can prove a correctness and completeness theorem for the constraint solver. On the other hand,
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the lift-and-project algorithm has also produced a number of impressive results on hard practical

problems. In Section 5, we show how the cutting plane algorithm can be embedded into the more

efficient branch-and-cut framework, without loosing the basic properties required in the context of

constraint solving. Finally, in Section 6, we discuss briefly a possible extension of this work to the

case of mixed 0-1 constraints.

2 Constraint Logic Programming with 0-1 Constraints

In its classical form [JL87], a constraint logic program over an algebra A consists of a finite set of

rules of the form

p0(⃗t0) :− c1(u⃗1), . . . , cm(u⃗m), p1(⃗t1), . . . , pn(⃗tn)

where pi are predicate symbols different from the relation symbols in A, cj are symbols denoting

relations in A, and t⃗i, u⃗j are tuples of terms of A with additional undefined function symbols. The

declarative semantics of such a rule is that the head p0(⃗t0) is logically implied by the conjunction

c1(u⃗1) ∧ . . . ∧ cm(u⃗m) ∧ p1(⃗t1) ∧ . . . ∧ pn(⃗tn) of all constraints cj(u⃗j) and atoms pi(⃗ti) in the body.

Given a constraint logic program one has to choose a goal, which has the same form as the

body of a rule. The operational semantics is based on two components: a constraint solver for

A-relations and an adaptation of the resolution method from classical logic programming. For

example, from the goal ?− c(t1), p(t2) and the rule p(t3) :− d(t4), q(t5) we may derive the new goal

?− S(c(t1), t2
.
= t3, d(t4)), q(t5) provided that the constraint c(t1), t2

.
= t3, d(t4) is solvable in A

and S(c(t1), t2
.
= t3, d(t4)) is its solved form. A derivation sequence consists of goals with solvable

constraints. It is successful when the last goal contains only constraints. These are called answer

constraints and constitute the output of the program. A derivation sequence is finitely failed if the

last goal cannot be expanded.

In [Boc93] we introduced a new constraint logic programming language CLP(PB) for logic

programming with pseudo-Boolean constraints. The language CLP(PB) is an instance of the

constraint logic programming language scheme CLP(X ) [JL87]. Pseudo-Boolean constraints or

0-1 constraints combine Boolean algebra with arithmetic. A pseudo-Boolean function is an integer-

valued function f : {0, 1}n → ZZ of 0-1 variables [HR68] and thus generalizes the notion of a Boolean

function f : {0, 1}n → {0, 1}. Any such function can be represented as a multilinear polynomial

in its variables. A pseudo-Boolean constraint is an equation or inequality between pseudo-Boolean

functions. A simple example is the inequality 3x1 + 2x2 + x3 + x4 ≤ 4 which has the solutions

(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1),

(1,0,1,0). Any Boolean constraint can be translated into a pseudo-Boolean constraint using the

identities

¬x = 1− x, x ∧ y = x ∗ y, x ∨ y = x+ y − x ∗ y.

The following example illustrates some typical aspects of logic programming with pseudo-

Boolean constraints.

Example 2.1 Suppose we want to compute the Hamming distance of two 0-1 vectors x, y ∈ {0, 1}n.
A naive program for solving this problem is

hamming1([], [], 0).
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hamming1([X|Xs],[Y|Ys], N) :-

X = Y, hamming1(Xs,Ys,N).

hamming1([X|Xs],[Y|Ys], N + 1) :-

X = 1 - Y, hamming1(Xs,Ys,N).

Here N is a real or integer variable and X,Y are 0-1 variables. If we ask the query

?- hamming1([A,B,C],[0,1,0],2), backtracking will generate the answers

A = 0, B = 0, C = 1;

A = 1, B = 1, C = 1;

A = 1, B = 0, C = 0;

No.

To avoid enumerating a possibly exponential number of 0-1 tuples we may use the program

hamming2([], [], 0).

hamming2([X|Xs], [Y|Ys], N + (X + Y - 2*X*Y)) :-

hamming2(Xs,Ys,N).

Note that X + Y − 2 ∗ X ∗ Y evaluates to 0 if X = Y and to 1 if X ̸= Y . Linearization of the

nonlinear term X ∗ Y using a new 0-1 variable Z yields

hamming3([], [], 0).

hamming3([X|Xs], [Y|Ys], N + (X + Y - 2*Z)) :-

Z <= X, Z <= Y, X + Y <= 1 + Z,

hamming3(Xs,Ys,N).

Here, the pseudo-Boolean constraints Z ≤ X,Z ≤ Y,X +Y ≤ 1+Z express that Z = X ∗ Y . Now

consider again the query ?- hamming3([A,B,C],[0,1,0],2). A successful derivation is

?- hamming3([A,B,C],[0,1,0],2).

?- X = A, Xs = [B,C], Y = 0, Ys = [1,0], N + (X + Y - 2*Z) = 2,

Z <= X, Z <= Y, X + Y <= 1 + Z, hamming3([B,C],[1,0],N).

?- X = A, Xs = [B,C], Y = 0, Ys = [1,0], N + (X + Y - 2*Z) = 2,

Z <= X, Z <= Y, X + Y <= 1 + Z,

X1 = B, X1s = [C], Y1 = 1, Y1s = [0], N1 + (X1 + Y1 - 2*Z1) = N,

Z1 <= X1, Z1 <= Y1, X1 + Y1 <= 1 + Z1, hamming3([C],[0],N1).

?- X = A, Xs = [B,C], Y = 0, Ys = [1,0], N + (X + Y - 2*Z) = 2,

Z <= X, Z <= Y, X + Y <= 1 + Z,

X1 = B, X1s = [C], Y1 = 1, Y1s = [0], N1 + (X1 + Y1 - 2*Z1) = N,

Z1 <= X1, Z1 <= Y1, X1 + Y1 <= 1 + Z1,

X2 = C, X2s = [], Y2 = 0, Y2s = [], N2 + (X2 + Y2 - 2*Z2) = N1,

Z2 <= X2, Z2 <= Y2, X2 + Y2 <= 1 + Z2, hamming3([],[],N2).

?- X = A, Xs = [B,C], Y = 0, Ys = [1,0], N + (X + Y - 2*Z) = 2,

Z <= X, Z <= Y, X + Y <= 1 + Z,

X1 = B, X1s = [C], Y1 = 1, Y1s = [0], N1 + (X1 + Y1 - 2*Z1) = N,

Z1 <= X1, Z1 <= Y1, X1 + Y1 <= 1 + Z1,

X2 = C, X2s = [], Y2 = 0, Y2s = [], N2 + (X2 + Y2 - 2*Z2) = N1,

Z2 <= X2, Z2 <= Y2, X2 + Y2 <= 1 + Z2, N2 = 0.
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which can be simplified to A = 1 + B - C. This example shows how new variables and constraints

are generated during program execution and how symbolic answers to a given query can be obtained.

One of the most important features of the language CLP(PB) is that it allows us to handle

combinatorial optimization problems within the constraint logic programming framework [Boc93].

Example 2.2 Consider for example a knapsack problem. Suppose there is a vessel with capacity

w and goods gi with weight wi and value vi for i = 1, . . . , n. We introduce 0-1 variables Xi which

indicate whether or not gi is loaded on the vessel. The possible cargos not exceeding the capacity

can be determined by a constraint rule involving a pseudo-Boolean constraint.

cargo(X1, . . . , Xn) :-

w1 ∗X1 + · · ·+ wn ∗Xn ≤ w.

If we want to find a most valuable cargo, this can be done using a meta-predicate max that

maximizes a pseudo-Boolean function subject to some pseudo-Boolean constraints.

most-valuable-cargo(X1, . . . , Xn) :-

max(v1∗X1 + · · ·+ vn∗Xn, cargo(X1, . . . , Xn)).

Other applications of CLP(PB), in particular in artificial intelligence, are described in [BB93].

2.1 Main problems

In [Boc93] we showed how Boolean unification [MN89] which is a standard approach for solv-

ing Boolean constraints can be generalized to the pseudo-Boolean case. In particular, we gave

variable elimination algorithms for pseudo-Boolean unification and unconstrained pseudo-Boolean

optimization. Both algorithms generalize the well-known Boolean unification algorithm of [BS87].

The aim of this paper is to present a new constraint solver for linear pseudo-Boolean constraints

of the form a1x1 + · · ·+ anxn ≤ b, with a1, . . . , an, b ∈ ZZ and 0-1 variables x1, . . . , xn.

The constraint solver has to provide solutions to the following typical problems in constraint

logic programming:

Solvability: Decide whether a constraint set C has a solution.

Simplification: Simplify a constraint set C to a solved form S(C).

Entailment: Decide whether a constraint c is implied by a constraint set C.

Since in every resolution step new constraints are added to the current constraint set, the constraint

solver has to be incremental.

In many applications, as is illustrated for example by the knapsack problem given before, it

is not sufficient to compute an arbitrary solution of the constraint set C but one wishes to find a

solution which is optimal with respect to some pseudo-Boolean function f [Boc93, BB93]. Therefore

we have also the problem

Optimization: Optimize a pseudo-Boolean function f subject to a constraint set C.

The problem of optimization has recently received a lot of attention within the constraint logic

programming community (see e.g. [Fag93, MT93]).
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2.2 Pseudo-Boolean and finite domain constraints

Pseudo-Boolean constraints generalize Boolean constraints. At the same time, they are a special

form of finite domain constraints (see for example [Mac92]). In principle, we could apply finite

domain techniques to solve pseudo-Boolean constraints. Finite domain constraints have been used

very successfully in constraint logic programming [vH89]. However, these methods, which are based

on local consistency techniques for constraint satisfaction, cannot exploit the special structure of

0-1 problems. Another problem is that standard finite domain constraint solvers are not complete.

A set of constraints may be locally consistent although it does not admit a global solution. In

order to achieve completeness the values in the domains have to be enumerated by a backtracking

mechanism (labeling procedure).

Our approach to solve 0-1 constraints is based on polyhedral cutting plane techniques from

operations research. In general, polyhedral cutting planes are used in combination with traditional

branch-and-bound, which is then called branch-and-cut. The idea, however, is to avoid branching

as much as possible. The generation of polyhedral cutting planes may reduce the search space for

branch-and-bound algorithms in a dramatic way. There exist non-trivial examples which could be

solved even without any branching [Boy93]. For many hard combinatorial optimization problems,

branch-and-cut algorithms yield the best methods currently available in order to find optimal or

at least provably good solutions. The most prominent example is the traveling salesman problem

[PR91, JRT92] where instances with up to 3000 cities, which roughly corresponds to 4500000 0-1

variables, could be solved in a reasonable time.

3 Solving 0-1 Constraints

When executing a constraint logic program, the main problem is to simplify a given constraint set

C and to compute a solved form S(C). Our first question is how this solved form should look like.

There are the following basic requirements:

• S(C) should be equivalent to C, i.e. C and S(C) should have the same set of 0-1 solutions.

• S(C) should be “simpler” than C.

• S(C) should be false if C is unsolvable.

3.1 Equality descriptions of the solution set

The most natural approach to solve a set of 0-1 constraints is to compute families of solutions like

X1 X2 X3 X4 X5

0 0 − − −
0 1 1 − −
0 1 0 1 −
1 0 1 − −

Logically, this corresponds to a disjunction of conjunctions of equalities. In logic programming,

which is based on Horn logic, disjunction is normally provided by the possibility of defining a

predicate by more than one rule. Backtracking is used to apply these rules sequentially top-down
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Figure 1: Polyhedron P defined by six linear inequalities containing three 0-1 points

from left-to-right in order to find a solution to the given goal. Disjunction in the solved form of a

constraint set would mean that we introduce an additional level of indeterminism during program

execution. Backtracking would have to occur also within the constraint solving procedure. This

leads to an enormous blow-up of the search space which we want to avoid.

A second approach is therefore to compute a parametric solution or a most general pseudo-

Boolean unifier [Boc93]

X1
.
= t1[Y1, . . . , Yk]

...

Xn
.
= tn[Y1, . . . , Yk],

(1)

where t1, . . . , tn are pseudo-Boolean terms containing new variables Y1, . . . , Yk. This corresponds

to one of the most common approaches in Boolean constraint solving [BS87]. The advantage of this

approach is that we capture all the solutions of the constraint set by a conjunctive formula which

in addition can be seen as an idempotent substitution. However, practical experience already in

the Boolean case has shown that these most general unifiers involve very complex pseudo-Boolean

terms. Therefore, they seem to be useful only for special problem classes, for example in circuit

verification [SND88].

3.2 Inequality descriptions

Instead of computing an explicit representation of the solution set using equalities we may also

compute an implicit representation based on inequalities. As we will see, this is particularly useful

in the context of optimization because it allows us to use powerful methods from operations research.

From a mathematical point of view, a set C of linear 0-1 constraints is the same as a system of

linear inequalities in 0-1 variables

a11x1 + · · ·+ a1nxn ≤ b1
...

...
...

am1x1 + · · ·+ amnxn ≤ bm

⇔ Ax ≤ b, (2)

with A ∈ ZZm×n, x ∈ {0, 1}n and b ∈ ZZm. Such a system defines a possibly empty set S of 0-1

points in IRn. If we drop the condition x ∈ {0, 1}n then the system of linear 0-1 constraints (2)

becomes a system of linear arithmetic constraints over the real numbers, which defines a polyhedron
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Figure 2: Linear inequality descriptions of S = {(0, 0), (1, 0)}

P in IRn (see Fig. 1). The set of 0-1 solutions S = P ∩ {0, 1}n corresponds to the set of 0-1 points

lying within P .

There is an important difference between linear inequality descriptions of the real polyhedron P

and the 0-1 set S. Let us call a system Ax ≤ b over IRn (resp. {0, 1}n) irredundant if no constraint

αx ≤ β can be removed without changing the solution set P (resp. S). For a full-dimensional

polyhedron P there is up to multiplication of inequalities by a positive real number a unique

representation of P by an irredundant system of inequalities Ax ≤ b. The inequalities in Ax ≤ b

are in a 1-1 correspondence with the facets of P [Sch86]. Remember that an inequality defines a

facet of P if it is satisfied by all points in P and if moreover there are n affinely independent points

in P for which it is satisfied at equality.

For a 0-1 set S, however, there are many different representations by irredundant systems

Ax ≤ b. For example, the irredundant constraint sets {x2 ≤ 0}, {2x2 ≤ 1}, and {2x1 + 2x2 ≤
3, 2x2 − 2x1 ≤ 1} all define the same 0-1 set S = {(0, 0), (1, 0)} ⊆ IR2 (see Fig. 2).

If we use inequalities then the solved form of a constraint system C : Ax ≤ b is again a system

of inequalities C̄ : Āx ≤ b̄. Since we want to simplify our problem, C̄ should be “simpler” than

C. However, it is not clear what this should mean. There are many possibilities to compare linear

inequality descriptions Ax ≤ b of a 0-1 set S. In particular we may consider

• the size of the system Ax ≤ b depending on the number of inequalities and the size of their

coefficients.

• the strength of the inequalities in the system Ax ≤ b.

3.3 Size of the representation

Given a linear inequality in 0-1 variables, there are many other inequalities having the same set

S of 0-1 solutions. The set S∗ of all (α, β) ∈ IRn+1 such that αx ≤ β has the 0-1 solution set S

defines a polyhedron in IRn+1. To find an equivalent inequality with minimal coefficients one can

solve a linear optimization problem as described in [BHW74].
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Concerning the size of the coefficients, a recent result of Schmitt [Sch92] (improving a classical

theorem from threshold logic [Mur71]) says that any linear 0-1 inequality αx ≤ β, (α, β) ∈ IRn+1, is

equivalent to a 0-1 inequality γ1x1 + · · ·+ γnxn ≤ δ with integer coefficients γ1, . . . , γn, δ such that

|γi| ≤ 2−n(n+ 1)(n+1)/2 and |δ| ≤ 2−(n+1)(n+ 1)(n+3)/2 + 1/2.

By a result of Jeroslow [Jer75], at most 2n−1 linear 0-1 inequalities are needed to define a 0-1

set S ⊆ {0, 1}n. For any k in the range 1 ≤ k ≤ 2n−1, there exists S ⊆ {0, 1}n, such that at least

k linear 0-1 inequalities are needed to define S. Lipkin [Lip87] showed that in order to define a set

S ⊆ {0, 1}n of cardinality m, at most m linear 0-1 inequalities are needed. The problem of deciding

whether an arbitrary 0-1 set S can be defined by a single linear 0-1 inequality is NP-complete

[PS85].

3.4 Strength of the representation

Linear inequality descriptions Ax ≤ b of a 0-1 set S can also be compared with respect to the

strength of the inequalities that are used. When comparing the strength of linear inequalities we

have to specify in which kind of solutions we are interested.

Definition 3.1 Let Q,R ⊆ IRn. An inequality αx ≤ β is valid for Q iff αx0 ≤ β, for all x0 ∈ Q.

αx ≤ β is stronger than γx ≤ δ with respect to R iff {x ∈ R | αx ≤ β} ⊆ {x ∈ R | γx ≤ δ}. The

inequality is strictly stronger iff the inclusion is strict.

If {x ∈ IRn
+ | αx ≤ β} ̸= ∅, then αx ≤ β is stronger than γx ≤ δ with respect to IRn

+ iff there

exists λ ≥ 0 such that λαi ≥ γi, for i = 1, . . . , n and λβ ≤ δ.

A facet-defining inequality of a polyhedron P ⊆ IRn is a strongest valid inequality for P with

respect to IRn. A strongest valid inequality for a 0-1 set S with respect to {0, 1}n is called a prime

inequality [Hoo92]. Note that these two notions of strongest valid inequality are not equivalent. A

facet-defining inequality of the convex hull conv(S) of S need not be a prime inequality for S and

vice versa.

Example 3.2 Let S = {(1, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)}. The inequality x1 + x2 ≥ 1

defines a facet of conv(S) but it is not prime. The inequality 2x1 + x2 + x3 ≥ 2, which is valid

for S, is stronger than x1 + x2 ≥ 1 with respect to {0, 1}3 because it is not satisfied by the point

(0, 1, 0). However, 2x1 + x2 + x3 ≥ 2 does not define a facet of conv(S).

The notion of prime inequality can also be defined relative to a given class T of linear 0-1

inequalities. A prime inequality for S relative to T is a strongest valid inequality for S in the class

T with respect to {0, 1}n.

3.5 Defining a solved form

Unfortunately, the various possibilities that we have considered so far to compare two constraint

sets C1 and C2 are not compatible.
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Example 3.3 The constraint sets

C1 = {3x1 + 2x2 + x3 + x4 + x5 ≥ 5} (3)

and
C2 = { x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1, x1 + x5 ≥ 1,

x1 + x2 + x3 + x4 ≥ 2, x1 + x2 + x3 + x5 ≥ 2, x1 + x2 + x4 + x5 ≥ 2 }
(4)

have the same 0-1 solution set S.

The first description contains only one inequality, but some coefficients of the left-hand side are

different from 0 and 1. The second description consists of seven extended clauses, that is inequalities

of the form L1 + · · · + Lm ≥ k, which express that at least k out of m literals L1, . . . , Lm have to

be true [Hoo92].

In [Bar93a, Bar93b], a constraint solver for 0-1 constraints is presented that computes for a given

linear 0-1 inequality an equivalent set of prime extended clauses. Given a set of prime extended

clauses π(S) for a 0-1 set S, testing solvability and entailment becomes very easy. The set π(S),

however, may be very large. The members of π(S) are strongest valid inequalities for S with

respect to {0, 1}n (relative to the class T of extended clauses), but they need not be strongest valid

inequalities for the convex hull conv(S) with respect to IRn.

Example 3.4 The extended clause {y1 + y2 + y3 + y4 ≥ 2} is equivalent to the set of classical

clauses {y1 + y2 + y3 ≥ 1, y1 + y2 + y4 ≥ 1, y1 + y3 + y4 ≥ 1, y2 + y3 + y4 ≥ 1}. Therefore another

description of S by classical clauses would be

C3 = { x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1, x1 + x5 ≥ 1,

x2 + x3 + x4 ≥ 1, x2 + x3 + x5 ≥ 1, x2 + x4 + x5 ≥ 1 }.
(5)

While all these representations define the same 0-1 set S, their strength is quite different. The

set of all nontrivial facets of conv(S) is

C4 = { x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1, x1 + x5 ≥ 1,

2x1 + x2 + x3 + x4 ≥ 3, 2x1 + x2 + x3 + x5 ≥ 3, 2x1 + x2 + x4 + x5 ≥ 3,

3x1 + 2x2 + x3 + x4 + x5 ≥ 5 }.
(6)

For example, the facet-defining inequality 2x1+x2+x3+x4 ≥ 3 is strictly stronger than the prime

extended clause x1+x2+x3+x4 ≥ 2, which again is strictly stronger than than the classical clause

x2+x3+x4 ≥ 1 (with respect to both {0, 1}n and [0, 1]n). The inequality 3x1+2x2+x3+x4+x5 ≥ 5

is strictly stronger than 2x1 + x2 + x3 + x4 ≥ 3 with respect to {0, 1}n, but not with respect to

[0, 1]n. Note that a set C of facet-defining inequalities for conv(S) need not contain all facets of

conv(S) in order to define the 0-1 set S, consider for example C = {3x1 +2x2 + x3 + x4 + x5 ≥ 5}.

Given all these possibilities, how should we define the solved form? In order to answer this

question we have to take into account one more point that we have not considered so far. Since we

are interested not only in constraint solving but also in constrained optimization we need a solved

form that supports optimization.

One of the most powerful techniques to obtain provably good solutions of combinatorial opti-

mization problems is linear optimization combined with the generation of polyhedral cutting planes

[HP85]. A discrete optimization problem over the 0-1 set S

10



0

1

0 1

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

t t

t
Cutting Planes

Fractional Vertex

conv(S)

Figure 3: Approximating the convex hull of S by cutting planes

Maximize z = cx subject to x ∈ S = {x ∈ {0, 1}n | Ax ≤ b}

is equivalent to the linear optimization problem

Maximize z = cx subject to x ∈ conv(S) ⊆ IRn

over the convex hull conv(S) of S. This means that 0-1 optimization problems can be solved by

linear optimization techniques provided that a linear inequality description of conv(S) is known.

First we should point out that it is not necessary to have a complete description of conv(S)

which might be very complex [KP82]. It is enough to have a sufficiently good approximation of

conv(S), which can be computed by the generation of cutting planes. A first approximation P of

conv(S) is obtained by the linear relaxation Ax ≤ b, 0 ≤ x ≤ 1 of the original problem. Then new

inequalities are added which are satisfied by all points in S but which cut off at least one fractional

vertex of P . These are called cutting planes. This is repeated until a 0-1 vertex is obtained, which

then automatically belongs to S (see Fig. 3).

It is crucial for this approach that the cutting planes which are generated are strong with respect

to IRn (cf. Definition 3.1). In the best case, they should define facets of conv(S) or at least faces of

sufficiently high dimension. Traditional Chvàtal-Gomory-Cuts [Gom58] do not have this property.

They converge much too slowly in order to be practically useful. In order to compute strong cutting

planes with a reasonable effort, advanced techniques from polyhedral combinatorics are necessary,

which will be described in the next section. Our paradigm for solving 0-1 constraints is therefore

the following:

A constraint set C is solved by computing polyhedral cutting planes for the convex hull

conv(S), where S denotes the set of 0-1 solutions of C.

This is also reflected in the next definition.

Definition 3.5 Given two constraint sets C : Ax ≤ b and C ′ : A′x ≤ b′ with the same set of 0-1

solutions S, we say that C is simpler than C ′ iff {x ∈ IRn | Ax ≤ b} ⊆ {x ∈ IRn | A′x ≤ b′}.
The ideal solved form of C is a constraint set C̄ : Āx ≤ b̄ with conv(S) = {x ∈ IRn | Āx ≤ b̄}

such that there is a 1-1 correspondence between the inequalities in Āx ≤ b̄ and the facets of conv(S).
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In practice, this ideal solved form cannot be computed, because an exponential number of

inequalities may be needed. However, the idea is not to compute the ideal solved form. On the

contrary, we want to avoid the exponential blow-up as much as possible. Therefore constraint

solving is done in a lazy way. We compute only as many cutting planes as are needed in order to

answer the basic questions presented in Section 2.1. The solved form that is actually computed is

defined implicitly by the cut generation process.

4 Computing the Solved Form

In the previous section, we have defined a solved form for a given set of 0-1 constraints. The main

question now is how to compute this solved form. In other words the problem is to find strong

cutting planes for a given set of 0-1 constraints. For special problems (knapsack, set covering,

traveling salesman etc.) strong valid inequalities have been found by analyzing the specific problem

structure. For general 0-1 problems, strong valid inequalities are very hard to obtain. An early

strong cutting plane approach for general 0-1 problems was presented in [CJP83]. The cutting

planes used there are facet-defining inequalities for the knapsack polytope generated by an indi-

vidual 0-1 constraint. This approach has been particularly successful in the case of large-scale 0-1

problems with a sparse coefficient matrix and with no apparent special structure. In this case, the

constraints do not interact very much, so that one can expect that strong valid inequalities for

the knapsack polytope of an individual 0-1 constraint will also be strong for the 0-1 polytope of

the full problem. The mixed integer optimizer MINTO [SN93] is based on these ideas. Another

interesting recent approach for solving hard 0-1 programs, which uses knapsack and enumeration

cutting planes combined with preprocessing, is described in [Boy93].

In our context, however, the most promising way to find strong cutting planes for general

0-1 problems, seems to be the new lift-and-project method for mixed 0-1 optimization due to

[BCC93b, BCC93a]. This method not only has very nice theoretical properties, such as finite

convergence. It has also been applied very successfully in practice. The approach was able to

solve several previously unsolved problems and in many cases seems to obtain better results than

other procedures available like CPLEXMIP 2.0 or OSL 2.0 [Cer93]. In several cases, the procedure

even outperformed specialized algorithms on the class of problems for which these algorithms were

designed. Extensive empirical results documenting this can be found in [BCC93b, BCC93a, Cer93].

The starting point of the lift-and-project method is a sequential convexification theorem. Sup-

pose

P = {x ∈ IRn | Ax ≥ b, 0 ≤ x ≤ 1} def
= {x ∈ IRn | Ãx ≥ b̃}, (7)

with A ∈ IRm×n, b ∈ IRm, is a polyhedron in IRn. If

Rj(P ) = conv(P ∩ {x ∈ IRn | xj ∈ {0, 1}}), for j = 1, . . . , n, (8)

is the convex hull of those points in P for which xj = 0 or xj = 1, then

R1(R2(. . . Rn(P ))) = conv(S), (9)

where as usual S = P ∩ {0, 1}n.

12



The idea of [BCC93b, BCC93a] is to use facets of Rj(P ) as strong cutting planes for S. By

lifting the problem into a higher-dimensional space one can show that

Rj(P ) = {x ∈ IRn | αx ≥ β for all (α, β) ∈ R∗
j (P )}

where R∗
j (P ) is the set of those (α, β) ∈ IRn+1 for which there exist vectors u, v ∈ IRm+2n and

u0, v0 ∈ IR satisfying
α −uÃ −u0ej = 0

α −vÃ −v0ej = 0

ub̃ = β

vb̃ +v0 = β

u, v ≥ 0,

(10)

where ej is the j-th unit vector in IRn.

If P is full-dimensional, P ∩ {x | xj = 0} ̸= ∅ and P ∩ {x | xj = 1} ̸= ∅, then for any constant

β ̸= 0, αx ≥ β defines a facet of Rj(P ) iff (α, β) is an extreme ray of R∗
j (P ). To compute such

extreme rays one can solve a linear program of the form

max{aα+ bβ | (α, β) ∈ R∗
j (P ) ∩ T} (11)

where (a, b) ∈ IRn+1 is a vector that determines the direction of the cut and T a normalization

set that truncates the cone R∗
j (P ). This linear program has roughly twice the size of the current

problem. Several choices of (a, b) and T are possible. Usually, one uses (a, b) = (−x, 1), where x is

the fractional vertex of P which should be cut off, and T = {(α, β) | −1 ≤ αi ≤ 1, i = 1, . . . , n} or

T = {(α, β) |
∑n

i=1 |αi| ≤ 1}. In some cases, one can also choose the truncation β = 1 or β = −1.

Example 4.1 Consider the set of 0-1 constraints

C = {−2x1 − 2x2 ≥ −3, 2x1 − 2x2 ≥ −1}.

The linear relaxation P is given by the system of linear inequalities Ãx ≥ b̃, where

ÃT =

(
−2 2 1 0 −1 0

−2 −2 0 1 0 −1

)
and

b̃T =
(

−3 −1 0 0 −1 −1
)
.

To cut off the fractional vertex (12 , 1) of P we solve the linear program

Maximize −1
2α1 − α2 + β subject to

α1 +2u1 −2u2 −u3 +u5 −u0 = 0

α2 +2u1 +2u2 −u4 +u6 = 0

α1 +2v1 −2v2 −v3 +v5 −v0 = 0

α2 +2v1 +2v2 −v4 +v6 = 0

−3u1 −u2 −u5 −u6 = β

−3v1 −v2 −v5 −v6 +v0 = β

−1 ≤ α1, α2 ≤ 1

u1, u2, u3, u4, u5, u6, v1, v2, v3, v4, v5, v6 ≥ 0.

13
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Figure 4: Sequential convexification for P = {x ∈ [0, 1]2 | −2x1 − 2x2 ≥ −3, 2x1 − 2x2 ≥ −1}

We get the optimal solution α1 = 0, α2 = −1, β = −1
2 , which corresponds to the facet x2 ≤ 1

2 of

R1(P ). In the same way, we can compute the facets x1+
1
2x2 ≤ 1 and x1− 1

2x2 ≥ 0 of R2(P ), which

cut off the vertices (1, 12) and (0, 12) respectively (see Fig. 4). In this example, we really compute

facets of Rj(P ). Note however that, due to the truncation T , this need not always be the case.

We give now our strong cutting plane algorithm for solving 0-1 constraints. Implicitly, it

computes a solved form of a constraint set C.

Strong Cutting Plane Algorithm for Solving 0-1 Constraints

Initialization: Let t := 1; C1 := C = {Ax ≥ b, 0 ≤ x ≤ 1},
Iteration t: 1. Solution of the linear relaxation: Optimize a linear function gt

over the relaxation P t = {x ∈ IRn | x is a solution of Ct}.
2. Infeasibility test: If P t = ∅, stop, C is unsolvable.

Otherwise let the vertex xt ∈ P t be an optimal solution.

3. Feasible 0-1 solution: If xtj ∈ {0, 1}, for j = 1, . . . , n, stop,

xt is a feasible 0-1 solution of C,

Ct is the solved form of C.

4. Cut generation: For j ∈ {1, . . . , n} with 0 < xtj < 1 generate a j-cut αjx ≥
βj by solving

max{β − αxt | (α, β) ∈ R∗
j (P

t) ∩ T}.

Define Ct+1 by adding the j-cuts αjx ≥ βj to the constraint set Ct and

simplify Ct considered as a set of linear arithmetic constraints.

5. Let t := t+ 1 and goto 1.

Example 4.2 Consider again the linear 0-1 inequality

3x1 + 2x2 + x3 + x4 + x5 ≥ 5.

For most objective functions, linear optimization over the corresponding linear relaxation yields

immediately a 0-1 solution. Minimizing the objective function x1 + x4 + x5 yields the fractional

solution x1 = 2/3, x2 = x3 = 1, x4 = x5 = 0. Now, the cutting plane procedure generates the 1-cut

x1 + x4 + x5 ≥ 1. Adding this cut to the linear relaxation and re-optimizing yields the optimal 0-1

solution x1 = x2 = x3 = 1, x4 = x5 = 0.

For a specialized version of this algorithm we can prove the following correctness and complete-

ness theorem (see Appendix A).
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Theorem 4.3 Given a constraint set C : {Ax ≥ b, x ∈ {0, 1}} the specialized strong cutting plane

algorithm finds a feasible 0-1 solution if one exists or detects that C is unsolvable.

The same algorithm can also be used for optimization and entailment. If we want to compute

an optimal solution to the linear 0-1 optimization problem

Minimize g(x) subject to the constraints Ax ≥ b, x ∈ {0, 1}n.

we choose gt = g, for all t = 1, 2, . . .. If the algorithm stops with a solution x∗ ∈ {0, 1}n, then this

solution is optimal. In order to check whether a constraint cx ≥ d is entailed by a constraint set

Ax ≥ b, we can minimize the objective function cx subject to Ax ≥ b, x ∈ {0, 1}n. As soon as we

find an optimal solution xt for the linear relaxation P t such that cxt ≥ d, the constraint is entailed.

If cx∗ < d, for an optimal solution x∗ of the 0-1 problem, the constraint is not entailed.

We close this section with a remark on incrementality. Suppose we have computed a solved

form for the constraint set C and a new constraint has to be added. If we have used the simplex

algorithm to solve the linear relaxation P then there is a straightforward way to use the current

optimal solution to solve the new problem. If the new constraint is satisfied by the current optimal

solution, nothing has to be done. If the constraint is not satisfied, it can be converted to an equality

by the addition of a nonnegative slack variable and added to the constraint set. The optimal basis

for the original problem and the new slack variable provide a basis for the expanded problem. This

new basis is dual feasible and primal feasible in all but the last row. In order to reoptimize, we can

therefore use the dual simplex algorithm which was designed to deal with just this kind of situation.

Since the current solution is “nearly” primal feasible, it is likely that only a few iterations will be

required [NW88].

5 Branch and Cut

It is a general experience with cutting plane algorithms that the effect of the cutting planes on

the objective function value is more significant at the beginning than at the end [Cer93]. In order

to move away from the current optimal solution when the cuts become shallow, the cutting plane

algorithm can be combined with classical branch-and bound. The idea of branch-and-bound is to

divide the set of feasible solutions into subsets, to compute bounds for the objective function on

these subsets, and to use these bounds to discard some of the subsets from further consideration.

In the case of 0-1 optimization, the splitting of the set of feasible solutions is usually done by fixing

a variable to the values 0 and 1 (for more details see for example [NW88]).

Example 5.1 Consider the linear 0-1 optimization problem

Maximize z = x1 + x2 + x3 subject to

x ∈ S = {x ∈ {0, 1}3 | x1 − x2 ≥ 0, x1 − x3 ≥ 0, x1 + x2 + x3 ≥ 1}.

The branch-and-bound tree is given in Fig. 5. It contains only 7 instead of possibly 15 nodes.

The linear relaxation of S0 is infeasible. The sets S110 resp. S111 contain only one point with

value 2 resp. 3. For S10 we get the upper bound 2 which is smaller than 3. Therefore this node

need not be expanded and (1, 1, 1) is the optimal solution with optimal value 3.
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Figure 5: Branch-and-bound tree

Branch-and-bound is the standard technique used in finite domain constraint solvers in case an

optimal solution of the given constraint set has to be found. It was also very popular in operations

research until it became clear that bounds computed by solving the linear relaxation could be

considerably improved by generating suitable cutting planes. Better bounds in turn reduce the size

of the branch-and-bound search tree. In a first period, cutting planes were generated only at the

root node of the branch-and-bound tree in order to improve the initial formulation given by the

linear relaxation.

This had already remarkable effects as is illustrated for example by the standard benchmark

p0033 of the mixed integer programming library MIPLIB [BBI92]. This is a linear 0-1 minimization

problem consisting of 33 0-1 variables and 15 constraints. If standard branch-and-bound is applied

without adding cuts, the best solution found after 1000 nodes has value 3095, and the tree still

contains 163 active nodes. If branch-and-bound is applied after generating 20 cuts (in 6 iterations),

then a solution of value 3095 is found at node 17, and an optimal solution of value 3089 is found

at node 65. Optimality is proved at node 77 [NW88].

In a second step, cutting planes were used not only at the root node of the branch-and-bound

tree but also for the rest of the tree [PR91]. The crucial point here is that the cutting planes that

are generated are not only valid for the descendants of the current node but for the whole tree. This

means that one has to compute coefficients for the variables that have been fixed before. Padberg

and Rinaldi called their method, which they developed in the context of solving large instances of

the traveling-salesman-problem, branch-and-cut.

The cutting planes generated by the lift-and-project method have this crucial property. They

can be lifted from one node in the branch-and-bound tree to all other nodes (see Appendix B).

Therefore, our strong cutting plane algorithm for 0-1 constraint solving can be embedded into a

branch-and-cut procedure, which in many cases converges much faster.

Here is a sketch of a full branch-and-cut procedure [BCC93b, PR91, JRT92].

For F0, F1 ⊆ {1, . . . , n}, F0 ∩ F1 = ∅ let LP (z, C, F0, F1) denote the linear optimization problem

Minimize z = cx subject to Ax ≥ b, 0 ≤ x ≤ 1, xi = 0, for i ∈ F0, xi = 1, for i ∈ F1.
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Branch-and-Cut Procedure

1. Initialization: Let L = {(∅, ∅)}, C = {Ax ≥ b, 0 ≤ x ≤ 1}, UB = ∞.

2. Node Selection: If L = ∅, then stop.

Otherwise choose an ordered pair (F0, F1) and remove it from L.
3. Lower Bound: Solve the linear optimization problem LP (z, C, F0, F1).

If the problem is infeasible, goto Step 2, otherwise let x̄ denote its optimal solution.

If cx̄ ≥ UB goto Step 2.

If x̄ is integer let x∗ = x̄, UB = cx̄ and goto Step 2.

4. Branching-Cutting-Decision: Should cutting planes being generated?

If yes, goto Step 5, else goto Step 6.

5. Cut Generation: Generate lift-and-project cutting planes αx ≥ β violated by x̄.

Lift the cuts so that they are valid for the whole branch-and-cut tree.

Add the resulting cuts to C and goto Step 3.

6. Branching: Pick an index j ∈ {1, . . . , n} such that 0 < x̄j < 1.

Generate the subproblems corresponding to (F0 ∪ {j}, F1) and (F0, F1 ∪ {j}) and
add them to L. Goto Step 2.

When the algorithm stops, the problem is either infeasible or x∗ is an optimal solution. C is

the solved form of the constraint set Ax ≥ b. Note that in spite of branching the solved form does

not involve disjunction. This important property is obtained by lifting the cuts.

Several other improvements are possible, which we mention only briefly. First of all, we should

apply the various preprocessing techniques for 0-1 programs which are described in the literature

[HP91]. There is a computationally inexpensive method of strengthening the cuts computed by the

lift-and-project method which also improves convergence. Finally, in an actual implementation of

the branch-and-cut procedure various choices have to be made. For example, we have to decide

which normalization T should be chosen, how many cuts should be generated in one iteration, when

a branching step should be performed etc.

6 Conclusion and Further Research

In this paper we have presented a new approach for 0-1 constraint solving based on cutting plane

techniques from combinatorial optimization. The generation of strong cutting planes may dramati-

cally reduce the search tree of classical branch-and-bound algorithms. It thus provides an interesting

alternative to the finite domain techniques used in existing constraint logic programming systems.

When solving linear 0-1 constraints by cutting plane techniques, we have to use linear arith-

metic constraints and linear optimization. A natural extension of our approach would be to use

linear arithmetic already from the beginning. This leads to a new kind of constraints, mixed 0-1

constraints ∑
i∈I

aixi +
∑
j∈J

bjyj ≤ c,

with real variables xi and 0-1 variables yj .

Mixed 0-1 constraints are particularly interesting because they integrate two of the most impor-

tant domains in constraint logic programming, Boolean algebra and linear arithmetic. The strong
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cutting plane method presented in this paper works also for the mixed 0-1 case. Therefore this

approach could also provide the basis for a constraint logic programming language for mixed 0-1

constraints.
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A Correctness and Completeness of the Specialized Cutting

Plane Algorithm

In our strong cutting plane algorithm the current polyhedron P t is defined by the original constraint

set C = {Ax ≥ b, 0 ≤ x ≤ 1} and a set of cuts Ct =
∪n

j=1C
t
j , where Ct

j is the set of j-cuts which

have been generated so far. If P t
j is the polyhedron defined by C ∪

∪j
i=1C

t
i , then P t

0 = P, P t
n = P t

and P t
j ⊆ P t

i , if i ≤ j.

The special version of the strong cutting plane algorithm is obtained by replacing the polyhedron

P t for which a j-cut is generated by the relaxation P t
j−1 ⊃ P t and by computing only one cut per

iteration.

Remark A.1 For all t = 1, 2, . . . and for all j = 1, . . . , n: Rj(P
t
j−1) ⊆ P t

j .
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Proof: P t
j is obtained from P t

j−1 by adding some j-cuts. Any of these j-cuts is valid for Rj(P
s
j−1),

for some s < t. Since Rj(P
s
j−1) ⊇ Rj(P

t
j−1), these cuts are also valid for Rj(P

t
j−1). 2

Specialized Strong Cutting Plane Algorithm

Initialization: Let t := 1; C1 := C = {Ax ≥ b, 0 ≤ x ≤ 1},

Iteration t: 1. Solution of the linear relaxation: Optimize a linear function gt

over the relaxation P t = {x ∈ IRn | x is a solution of Ct}.
2. Infeasibility test: If P t = ∅, stop, C is unsolvable.

Otherwise let the vertex xt ∈ P t be an optimal solution.

3. Feasible 0-1 solution: If xtj ∈ {0, 1}, for j = 1, . . . , n, stop,

xt is a feasible 0-1 solution of C,

Ct is the solved form of C.

4. Cut generation: Let j ∈ {1, . . . , n} be the largest index with 0 < xtj < 1.

Generate a j-cut αjx ≥ βj by solving

max{β − αxt | (α, β) ∈ R∗
j (P

t
j−1) ∩ T}.

Define Ct+1 by adding the j-cut αjx ≥ βj to the constraint set Ct.

5. Let t := t+ 1 and goto 1.

Theorem A.2 Given a constraint set C : {Ax ≥ b, x ∈ {0, 1}} the specialized strong cutting plane

algorithm either finds a feasible 0-1 solution or detects that C is unsolvable.

Proof: a) First we prove that the inequality αjx ≥ βj generated in Step 4 cuts off xt.

To prove this, we show by induction that xt is a vertex of P t
k, for k = n, . . . , j. The case k = n

is trivial, because xt is a vertex of P t = P t
n. Suppose that xt is a vertex of P t

k ⊆ P t
k−1, for some

k ∈ {n, . . . , j + 1}. Since xtk ∈ {0, 1}, we get by Remark A.1 that xt ∈ P t
k−1 ∩ {x ∈ IRn | xk =

xtk} ⊆ Rk(P
t
k−1) ⊆ P t

k. This implies that xt is a vertex of P t
k−1 ∩ {x ∈ IRn | xk = xtk}. Since this is

a face of P t
k−1, x

t is also a vertex of P t
k−1.

Next we show that xt ̸∈ Rj(P
t
j−1). Since Rj(P

t
j−1) ⊆ P t

j by Remark A.1, the assumption

xt ∈ Rj(P
t
j−1) would imply that xt is a vertex of Rj(P

t
j−1). But all vertices of Rj(P

t
j−1) have a j-th

component equal to 0 or 1 in contradiction to 0 < xtj < 1.

Since xt ̸∈ Rj(P
t
j−1) there exists a valid inequality αx ≥ β for Rj(P

t
j−1) that is violated by xt,

i.e. β−αxt > 0. We may assume that (α, β) ∈ R∗
j (P

t
j−1)∩T . Therefore βj −αjxt = max{β−αxt |

(α, β) ∈ R∗
j (P

t
j−1) ∩ T} > 0, i.e. αjx ≥ βj cuts off xt.

b) Next we prove by induction that for j = 1, . . . , n the set Cj of all j-cuts generated by the

algorithm is finite.

For j = 1, this holds because every 1-cut corresponds to a vertex of R∗
1(P

t
0) ∩ T = R∗

1(P ) ∩ T ,

of which there are only finitely many. Furthermore, every 1-cut cuts off some xt that satisfies all

1-cuts generated earlier.

Suppose that Ci is finite for all i = 1, . . . , j−1 and consider the case i = j. Since P t
j−1 is defined

by C ∪
∪j−1

i=1 C
t
i and Ct

i ⊆ Ci, there exist only finitely many different polyhedra P t
j−1, t = 1, 2, . . ..

Every j-cut corresponds to some vertex of some R∗
j (P

t
j−1)∩T , of which there are only finitely many,
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and it cuts off some xt which satisfies all j-cuts generated earlier. Therefore the set Cj of j-cuts is

finite, too.

c) Since only finitely many cutting planes can be generated by the algorithm, for some t ≥ 1

either P t = ∅ or xt ∈ {0, 1}n. 2

We used the proof technique of [BCC93a], which in turn is based on the convergence proof in

[Jer80]. Note that cutting plane algorithms have the surprising property that choosing the wrong

facets or generating deeper cuts than those specified may destroy finite convergence [Bla80].

B Cut Lifting

Given a fractional vertex xt of the linear relaxation P t, let F = {i ∈ {1, . . . , n} | 0 < xti < 1} denote

the index set of the fractional components of xt and let |F | = r. By complementing variables if

necessary, we can assume that xti = 0, for all i ̸∈ F .

We now show how a lift-and-project cutting plane separating xt can also be obtained by working

on the subspace defined by F . This means that the size of the linear optimization problem that has

to be solved in order to find a cut can be substantially reduced. Let ÃF denote the (m+ 2r)× r-

matrix obtained from the (m+2n)×n-matrix Ã by removing column i and rows m+i,m+n+i, for

all i ̸∈ F . Similarly, denote by αF , (xt)F , eFj ∈ IRr resp. b̃F , uF , vF ∈ IRm+2r the vectors obtained

from α, xt, ej ∈ IRn resp. b̃, u, v ∈ IRm+2n by removing the components i resp. m+ i,m+ n+ i, for

all i ̸∈ F . Note that m+ i,m+ n+ i correspond to the constraints xi ≥ 0,−xi ≥ −1.

Consider the linear optimization problem

Maximize β − (xt)FαF subject to

αF −uF ÃF −u0e
F
j = 0

αF −vF ÃF −v0e
F
j = 0

uF b̃F = β

vF b̃F +v0 = β

uF , vF ≥ 0∑
i∈F |αi| ≤ 1

(12)

If (αF , β, uF , u0, v
F , v0) is an optimal solution to (12), then (α, β, u, u0, v, v0), with

αi = αF
i , for i ∈ F

αi =

{
vF ÃF

i , if vF ÃF
i ≥ uF ÃF

i

uF ÃF
i , if uF ÃF

i ≥ vF ÃF
i

for i ̸∈ F,

ui = uFi , for i = 1, . . . ,m

vi = vFi , for i = 1, . . . ,m

um+i =

{
(vF − uF )ÃF

i , if vF ÃF
i > uF ÃF

i

0, otherwise
for i ̸∈ F,

vm+i =

{
(uF − vF )ÃF

i , if uF ÃF
i > vF ÃF

i

0, otherwise
for i ̸∈ F,

um+n+i = 0, for i ̸∈ F

vm+n+i = 0, for i ̸∈ F

(13)
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is a basic feasible optimal solution to the linear optimization problem

max{β − αxt | (α, β) ∈ R∗
j (P

t) ∩ T}, (14)

with the truncation T = {(α, β) |
∑

i∈F |αi| ≤ 1}. Here Ãi denotes the i-th column of Ã.

The proof of a similar result for the truncation β = 1 or β = −1 can be found in [BCC93a].

Example B.1 Consider again the 0-1 constraint set

C = {−2x1 − 2x2 ≥ −3, 2x1 − 2x2 ≥ −1}.

The linear relaxation P was given by the system of linear inequalities Ãx ≥ b̃, where

ÃT =

(
−2 2 1 0 −1 0

−2 −2 0 1 0 −1

)

and

b̃T =
(

−3 −1 0 0 −1 −1
)
.

Suppose we want to generate a cutting plane for the fractional vertex (0, 12) of P . This means that

that F = {2} and r = 1. We remove from Ã the column 1 and the rows corresponding to x1 ≥ 0

and x1 ≤ 1. This yields

(ÃF )T =
(

−2 −2 . 1 . −1
)

and

(b̃F )T =
(

−3 −1 . 0 . −1
)
.

The corresponding linear optimization problem is

Maximize −1
2α2 + β subject to

α2 +2u1 +2u2 −u4 +u6 −u0 = 0

α2 +2v1 +2v2 −v4 +v6 −v0 = 0

−3u1 −u2 −u6 = β

−3v1 −v2 −v6 +v0 = β

−1 ≤ α2 ≤ 1

u1, u2, u4, u6, v1, v2, v4, v6 ≥ 0,

which has the optimal solution α2 = −1, u0 = −1, v0 = 1, v2 = 1 and all other variables are 0.

Lifting gives us the values u3 = 2, v3 = 0, u5 = v5 = 0, and α1 = 2. Altogether, we have computed

again the cutting plane x1 − 1
2x2 ≥ 0 of R2(P ).

23


