
A Complete Transformation System for

Polymorphic Higher-Order Unification

Ullrich Hustadt

MPI–I–91–228 December 1991



Author’s Address

Ullrich Hustadt

Max-Planck-Institut für Informatik

Im Stadtwald

W-6600 Saarbrücken

Germany

E-mail: Ullrich.Hustadt@mpi-sb.mpg.de



Abstract

Polymorphic higher-order unification is a method for unifying terms in the polymorphi-

cally typed λ-calculus, that is, given a set of pairs of terms S0 = {s1
?= t2, . . . , sn

?= tn},

called a unification problem, finding a substitution σ such that σ(si) and σ(ti) are

equivalent under the conversion rules of the calculus for all i, 1 ≤ i ≤ n.

I present the method as a transformation system, i.e. as a set of schematic rules

U =⇒ U ′ such that any unification problem δ(U) can be transformed into δ(U ′)

where δ is an instantiation of the meta-level variables in U and U ′. By successive

use of transformation rules one possibly obtains a solved unification problem with

obvious unifier. I show that the transformation system is correct and complete, i.e. if

δ(U) =⇒ δ(U ′) is an instance of a transformation rule, then the set of all unifiers of

δ(U ′) is a subset of the set of all unifiers of δ(U) and if U is the set of all unification

problems that can be obtained from successive applications of transformation rules

from an unification problem U , then the union of the set of all unifiers of all unification

problems in U is the set of all unifiers of U .

The transformation rules presented here are essentially different from those in

Snyder and Gallier (1989) or Nipkow (1990). The correctness and completeness proofs

are in lines with those of Snyder and Gallier (1989).

Keywords

Higher-order unification, Polymorphic Lambda-Calculus



1 Introduction

Since the beginning of the 1970s a variety of higher-order theorem provers and higher-order programming

languages have been invented. The languages used in these systems are based on the Simple Theory of Types

defined in Church (1932). This theory is based on three sets of rules: The term formation rules define how

to build expressions describing the application of a function to an object and the abstraction of a function

from an expression describing an object. These rules are governed by the classification of objects into types.

Types are either basic types or function types (A→ B) where A and B are again types. The conversion rules

define equivalence classes on terms. Turning the conversion rules into reduction rules gives an description

of application evaluation. Deduction rules describe how formulas, which are simply terms of a designated

type, can be proved.

In theorem proving most implementations lift the resolution principle well-known for first-order theorem

proving to the higher-order case. For example Gordon (1985) and Paulson and Nipkow (1990) respectively

describe the theorem provers HOL and Isabelle. Higher-order programming languages augment some

PROLOG-like language with the term formation and reduction rules of the Simple Theory of Types. See

for example Miller and Nadathur (1986) and Pfenning (1989) for descriptions of the programming languages

λProlog and ELF, respectively.

The core of these systems is an implementation of unification of terms in the Simple Theory of Types,

higher-order unification for short. All these implementations are based on the algorithmic description of the

correct and complete higher-order unification algorithm given in Huet (1975). In Snyder and Gallier (1989)

this algorithmic description is reformulated using the method of transformations on system of terms, which

is based on Herbrand’s thesis and was adapted to first-order unification in Martelli and Montanari (1982).

A unification problem is a set of pairs S0 = {s1
?= t1, . . . , sn

?= tn} of terms to be unified. By repeated

application of various transformation rules one possibly obtains a solved system Sn whose unifier is obvious.

The correctness of the transformation rules ensures that every unifier of a solved system Sn is also a unifier

of S0. A complete set of transformation rules allows to enumerate a complete set of unifiers by examing all

possible transformation sequences.

Soon the limitations of the simple type theory for the formulation of axiom system and programs became

apparent. Various extensions of the simple type theory were suggested. One of the most prominent extensions

is the polymorphic λ-calculus. Beside the basic types it allows the usage of type variables in type formation,

so it is possible to describe a family of types as instances of a single type.

To deal with these extensions the higher-order unification algorithm has to be modified. But none of the

current implementations provides a complete algorithm. Nipkow (1990) presents a correct but incomplete

transformation system for polymorphic higher-order unification. His transformation system is only able

to enumerate a complete set of unifiers for sure if none of these unifiers instantiates a type variable with

a function type. Dougherty (1991) presents a complete algorithm for unification in the polymorphic λ-

calculus. In his approach the problem of higher-order unification is translated to the problem of unification

with respect to extensional equality in combinatory logic. Solving a unification problem in the λ-calculus

involves translating it into a system of combinatory terms, computing unifiers using his transformation rules,

and translating back the unifiers into unifiers in the λ-calculus. Although this approach allows for a very

elegant presentation of the problem and its solution, it basically uses narrowing and some additional rules

to transform the systems of combinatory terms and inherits all weaknesses of narrowing.

We will present a correct and complete transformation system HPT for polymorphic higher-order

unification. The transformation rules are essentially different from the rules in Snyder and Gallier (1989) or

Nipkow (1990). The correctness and completeness proofs are in line with those of Snyder and Gallier (1989).

We define a verification system CPT , show that for every unifier for a given unification problem one can

find a terminating sequence of transformations resulting in a solved system whose associated solution is

this unifier. Then we show that every transformation in CPT corresponds to a sequence of transformations

in HPT . This enables us to enumerate a complete set of unifiers by systematically applying all possible

transformations in HPT to the unification problem.

1



2 Polymorphic Terms and Substitutions

Definition 2.1 (Types)

Let T0 be a set of base types and VT a set of type variables. The set of types T is inductively defined as the

smallest set containing T0 and VT such that if S, T ∈ T then (S → T ) ∈ T . An element of either T0 or VT
is called a atomic type. △

Definition 2.2 (Terms)

The set RLPoly of raw terms is defined by the following abstract syntax

RLPoly = V | (Σ: T ) | (V: T ) | (RLPoly · RLPoly) | λV: T .RLPoly

where V is a set of term variables and Σ a set of constants. We suppose V, Σ, and VT to be pairwise disjoint.

To define the set LPoly ⊆ RLPoly of well-typed terms, we use the following inference rules:

Bound variable: x:T ∈ Γ
Γ ⊢ x:T

,

if x ∈ V ∧ T ∈ T

Free variable:
Γ ⊢ (F :T ):T

,

if F ∈ V ∧ T ∈ T

Constant:
Γ ⊢ (c:T ):T

,

if c:T ∈ C ∧ T ∈ T

Application:
Γ ⊢M :(S → T ) Γ ⊢ N :S

Γ ⊢ (M · N):T

Abstraction: Γ⊕ x:S ⊢M :T
Γλx:S.N :(S → T )

The set LPoly is the set of all M ∈ RLPoly such that ǫ ⊢M :T for some T ∈ T . The set of all free variables is

FV. The type variables have no special meaning for type inference. They act like nullary type constructors.

△

Definition 2.3 (type and range)

We define the function range : T → T as follows:

range(T ) = T if T ∈ T0
range(T ) = T if T ∈ VT
range((S → T )) = range(T ) otherwise

The functions type : LPoly → T and range : LPoly → T are defined by

type(M) = T iff ǫ ⊢M :T

range(M) = T iff ǫ ⊢M :S and range(S) = T

△

α-, β- and η-conversion on terms is defined in the usual way. We ignore α-conversion by working with

α-equivalence classes of terms. The strong normalization property holds for β-reduction on polymorphically

typed terms, so any term M has a unique β-normal form denoted M ↓. With any term M in β-normal

form we can associate a unique η-expanded form η[M ]. The set of all terms in η-expanded form is LPoly

η .

Any term M in β-normal form can be represented in general form λx1:S1. . . . .λ xn:Sn.(((a · P1) · · · ·) · Pn)

which is also denoted λx1:S1 . . . xn:Sn. a(P1, . . . , Pn) or λxn:Sn. a(Pn). We call xn:Sn the binder of M , a

the head, which is also denoted head(M), and a(Pn) the matrix of M . If a is a constant or bound variable,

e is called rigid, otherwise it is called flexible.

2



Definition 2.4 (Bound and free variables)

A bound variable x is called bound in a term M1 if M1 contains a subterm of the form λx:T.M2. The

subterm M2 is the scope of this binding occurrence of x:T . The set of all bound variables of a term M1 is

denoted BV (M1).

A free variable (F :T ) ∈ FV is a free variable of M1 or is said to occur free in M1 if it is a subterm of

M1. The set of free variables of a term M1 is denoted FV
Term(M1).

The set of all type variables occurring in some type decoration in a term M1 is denoted FV
Type(M1).

The set of all free term and type variables of a term M1 is denoted FV (M1). △

Definition 2.5 (Size of types and terms)

The term size of a raw term M , denoted |M |Term, is the number of atomic subterms of M , defined by:

|x|Term = 1

|F :S|Term = 1

|c:S|Term = 1

|(M · N)|Term = |M |Term + |N |Term

|λx:S.M |Term = |M |Term

The type size of a type T , denoted |T |Type, is the number of atomic types of T , defined by

|A|Type = 1

|s|Type = 1

|(S → T )|Type = |S|Type + |T |Type

The type size of a raw term M , denoted |M |Type, is the number of atomic types occurring in M , defined by:

|x|Type = 0

|F :T |Type = |T |Type

|c:T |Type = |T |Type

|(M · N)|Type = |M |Type + |N |Type

|λx:S.M |Type = |S|Type + |M |Type

△

Definition 2.6 (Substitutions)

A polymorphic substitution is a pair σ = 〈σ1, σ2〉 consisting of a mapping σ1 from type variables to types

and a mapping σ2 from free variables to terms defined in the usual way. σ̂1 denotes the unique extension of

σ1 to a mapping from types to types and σ̂2 denotes the unique extension of σ2 to a mapping from λ-terms

to λ-terms. We usually write σ or 〈σ1, σ2〉 instead of 〈σ̂1, σ̂2〉. We write σ1(M) for the result of applying the

type substitution σ1 to all type variables occurring in the term M .

The identity substition ι is the pair consisting of the identity substitution ι1 on types and the identity

substitution ι2 on terms.

The union of two polymorphic substitutions σ = 〈σ1, σ2〉 and τ = 〈τ1, τ2〉 is the substitution σ ∪ τ =

〈σ1 ∪ τ1, σ2 ∪ τ2〉 where the union of the type substitutions and the union of the term substitutions are

defined in the usual way. For a set Z of type and free variables, we say that two substitutions σ and τ are

equal over Z with respect to some congruence relation =E on terms, denoted σ =E τ [Z], iff for all type

variables A ∈ Z, σ1(A) = τ1(A), and for all free variables (F :T ) ∈ Z, σ2(F :T ) =E τ2(F :T ).

We say that σ is more general than τ over Z, denoted σ ≤E τ [Z], iff there exists a substitution θ such

that θ ◦ σ =E τ [Z].

The domain of a substitution σ is

DOM(σ) = {A ∈ VT | σ1(A) 6= A} ∪ {F ∈ FV | σ2(F ) 6= F}.

3



The set of variables introduced by σ is

I(σ) =
⋃

F∈DOM(σ)

FV (σ(F )).

A substitution σ is normalized if σ(F ) = σ(F )↓β for all F ∈ DOM(σ) ∩ FV.

A substitution σ is a renaming substitution away from Z if σ(F )↓η ∈ FV ∪ VT for all F ∈ DOM(σ),

I(σ) ∩ Z = ∅ and σ is injective. If σ is a renaming substitution and τ is some arbitrary substitution then

σ ◦ τ is called a variant of τ .

The restriction of a substitution σ to a set of variables Z, denoted σZ, is the substitution

σZ(F ) =

{
σ(F ), if F ∈ Z

F, otherwise.

△

3 Polymorphic Unification Problems

Definition 3.1 (Unification problems in LPoly)

An equation in LPoly is a multiset of terms M and N in LPoly

η such that all free variables in {M,N} are

uniquely annotated. For equations we will use the notation M ?= N . A system S in LPoly is a multiset of

equations in LPoly such that that all free variables in the set of all terms in S are uniquely annotated. A

unification problem in LPoly is an ordered pair 〈σ, S〉 with σ a type substitution and S a system such that

DOM(σ) ∩ FV
Type(S) = ∅. △

For a system

S = {M1
?= N1, . . . ,Mn

?= Nn}

we write S↓ instead of {η[M1↓]
?= η[N1↓], . . . , η[Mn↓]

?= η[Nn↓]}. S↓ is unique up to renaming of bound

variables.

There are at least two views of the meaning of σ in a unification problem 〈σ, S〉.

1. The type substitution σ is a representation of some equations on types that have to be solved like

any equation on terms in S. That means any type variable has to occur only once in 〈σ, S〉. So if

A ∈ DOM(σ) and A ∈ FV
Type(S) we have to eliminate A in S by applying σ{A} to S.

2. The type substitution σ memorizes the type instantiation that has to be done to get a unifier for S. So

typically we start with 〈ι1, S〉 and transform it into 〈σ1, S
′〉. The solved system S′ represents a term

substitution σ2 and σ1 a type substiution. Then 〈σ1, σ2〉 is a unifier of S.

In this paper I choose the second view. Then the restriction DOM(σ) ∩ FV
Type(S) = ∅ on a pair 〈σ, S〉

ensures that we can memorize type instantiations on S. Now I will give definitions for the notions of unifier

and solved system that I already used in this explanation.

Definition 3.2 (Unifier in LPoly)

A normalized substitution θ is called a unifier in LPoly of two termsM andN from LPoly

η iff θ(M)
∗
←→βη θ(N)

holds. θ is a unifier of a system S in LPoly iff it is a unifier for every equation in S and it is called a unifier

of a unification problem 〈σ, S〉 iff it is a unifier of the system S and an instance of 〈σ, ι2〉.

The set of all unifiers of a unification problem U is denoted SU(U). △

Definition 3.3 (Complete set of unifiers)

Let U be a unification problem and Z a finite set of variables, called the set of protected variables. A set

CSU(U)[Z] of normalized substitutions is a complete set of unifiers for U separated on FV (U) away from Z

iff

4



(1) CSU(U)[Z] ⊆ SU(U)

(2) ∀φ ∈ SUE(Γ): ∃ θ ∈ CSU(U)[Z]: θ ≤β φ [FV (U)]

(3) ∀ θ ∈ CSU(U)[Z]:DOM(θ) ⊆ FV (U) and I(θ) ∩ (Z ∪ DOM(θ)) = ∅.

If Z is not significant we drop the notation [Z]. If CSU(U) consists of a single substitution we call this

substitution a most general unifier. △

For any set of equations between types there exists at most one unifier up to variable renaming. If this

unifier exists for a set of equations E, it will be denoted mgu(E).

Definition 3.4 (Idempotent Substitution)

A substitution σ is idempotent if σ ◦ σ = σ. △

It is easy to show that if I(σ) ∩ DOM(σ) = ∅ holds, σ is idempotent.

Lemma 3.5 If θ ∈ CSU(U) for some unification problem U then θ is idempotent.

Proof: Follows directly from the last condition in the definition of a complete set of unifiers CSU(U).

Definition 3.6 (Solved Form)

An equation M ?= N is in solved form in a unification problem 〈σ, S〉 if it is in the form η[F :T ] ?= N for some

variable F :T which occurs exactly once in U , and F :T and N have the same type. A system S is solved if

all of its pairs are solved. A unification problem 〈σ, S〉 is solved if S is solved.

With a system S = {F1:T1
?= N1, . . . , Fn:Tn

?= Nn} in solved form we associate a term substitution

⌈S⌉SUB = {F1:T1/N1, . . . , Fn:Tn/Nn}. This substitution is unique up to variable renaming. With a

unification problem 〈σ, S〉 in solved form we associate a substitution ⌈U⌉SUB = 〈σ, ⌈S⌉SUB〉. △

4 Problems with Unification in LPoly

As stated in Nipkow (1990) type variables cause new problems through the possibility of type instantiation.

Assume we use the transformation system HT defined in Snyder and Gallier (1989). HT is correct and

complete for higher-order unification in the simply typed λ-calculus. In the following example we consider

a system of polymorphically typed λ-terms with HT . We examine the effect of type variables on the

applicability of the projection rule of HT which is

Projection
{λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪D

⇓

{F ?= P , λxk:Tk. F (Mm) ?= λxk:Tk. a(Nn)} ∪ {F/P}(D)↓,

where

• D is a system,

• F is a free variable and a an arbitrary atom,

• P is a variant of a ith projection binding for 1 ≤ i ≤ m, appropriate to the term λxk:Tk. F (Mm), that

is, P = λ ym:Sm. yi(λ zpq
:Rpq

. Hq(ym, zpq
)), and

• head(Mi) = a, if head(Mi) is a constant.

5



Example 4.1 Let A be a type variable and t some base type, such that type(F ) = (A→ t) and type(G) = A

for free variables F and G. We consider the unification problem U

〈ι1, {F (G) ?= a}〉.

If we want to instantiate F with a projection binding the only possibility is to use the first projection binding

because there’s only one argument G. For the first projection binding to be appropriate for F we must have

range(G) = range(F ). A complete set of type substitutions for A satisfying this equation is

Θ = {{A/(A1, . . . , Am → t)} | A1, . . . , Am type variables,m ≥ 0}.

For every substitution θm1 in this set the projection rule is applicable using the projection binding

θm2 = λ y: (A1, . . . , Am → t). y(H1(y), . . . , Hm(y)),

where type(Hi) = ((A1, . . . , Am → t)→ Ai).

After applying θm2 to θm1 (F ) we get the unification problem

Sm = 〈θm1 , {G(H1(G), . . . , Hm(G)) ?= a}〉.

For the transformed unification problem Sm the substitution

ωm
2 = {G/λxm:Am. a}

is a unifier. Depending on m we get an infinitary set of non-subsuming unifiers for the unification problem

U . So if the transformation system for higher-order unification in LPoly contains a projection rule like HT

does, it will be infinitary branching even for preunification or it will be incomplete, if it only considers a

finitary subset of Θ.

5 An Analysis of Polymorphic Unifiers

We analyse the process of polymorphical higher-order unification as follows. Without loss of generality we

assume that M and N are two lambda terms in LPoly

η and that θ is an idempotent normalized unifier of M

and N . In other words M has the form

M = λxk:Ak. a(M1, . . . ,Mm)

where M has type A = (A1, . . . , Ak → A0) and a has type B = (B1, . . . , Bm → A0). N has the form

N = λxl:Cl. b(N1, . . . , Nn),

where N has type C = (C1, . . . , Cl → C0) and b has type D = (D1, . . . , Dn → C0). And there exists some

sequence of reductions to a β-normal form η[θ(M)]
∗
−→β P

∗
←−β η[θ(N)]. We analyse this sequence top-

down. We have the following cases (which are intended to be mutually exclusive):

(A) M = N and no unification is necessary. We assume M and N to be distinct in the remaining cases.

(B) Suppose k < l. Then θ instantiates the type of M such that a sequence of η-expansions enlarges the

binder of M . This is only possible if A0 is a type variable. Thus

θ(A0) = (θ(Ck+1), . . . , θ(Cl)→ θ(C0))

= θ((C + 1, . . . , Cl → C0))

= θ({A0/(Ck+1, . . . , Cl → C0)}(A0))

and θ is an instance of the most general unifier of A0 and (Ck+1, . . . , Cl → C0).

6



(C) Suppose k = l but Ai 6= Ci for some i, 0 ≤ i ≤ k. Then we have

θ(Ai) = θ(Ci)

and θ must be an instance of the most general unifier of Ai and Ci. In the remaining cases we assume M

and N have the same type. This implies that the binders of M and N are identical up to α-conversion.

(D) Suppose head(M) = a: (B1, . . . , Bm → A0) and head(N) = a: (D1, . . . , Dm → A0) are atoms with

distinct types. Then we have Bi 6= Di for some i, 1 ≤ i ≤ m. Then θ possibly unifies Bi and

Di, i.e.

θ(Bi) = θ(Di).

So θ is an instance of the most general unifier of Bi and Di.

Note that B and D necessarily have the same number of argument types.

(E) No substitution takes place in the head of either term. In this case, head(M) = head(N). Suppose

M = λxk:Ak. a(M1, . . . ,Mm)

and

N = λxk:Ak. a(N1, . . . , Nm),

where either a ∈ Σ or a = xi for some i, 1 ≤ i ≤ k, or a is a free variable not in DOM(θ). Here we

must have

η[θ(λxk :Ak.Mi)]
∗
−→β λxk:Ak. Pi

∗
←−β η[θ(λxk:Ak. Ni)]

for 1 ≤ i ≤ m. That is, the subterms of M and N are pair-wise unifiable by θ.

(F) The two terms are

M = λxk:Ak. F (xk)

and

N = λxk:Ak. b(N1, . . . , Nm)

for some free variable F c.f. F 6∈ FV (N). In this case, we must have

η[θ(λxk:Ak. F (xk))]
∗
←→β λxk:Ak. b(N1, . . . , Nm)

and we know that σ = {F/λxk:Ak. b(N1, . . . , Nm)} is a most general unifier of this equation.

(G) Some substitution takes place in the head of only one term. Assume that this term is M . Then b is

either a function constant, a bound variable, or a free variable not in DOM(θ). Now in order for the

two terms to unify, we must ensure that at some point in the sequence of β-reductions from θ(M) to P

the head of M becomes b. There are two possibilities: either we imitate the head of N by substituting

a term for F whose head is b or we substitute a term for F which projects up a subterm of M . We

consider each of these possibilities in turn.

(Imitation) The substitution for F matches the head symbol of N by imitating the head symbol b

where b ∈ Σ or b is a free variable not in DOM(θ). In contrast to the simply typed case

we need to take the type substitution θ1 into account. Suppose N is a rigid term of the

form

N = λxk:Ak. b:D(Nm)

and the application of θ1 to D yields

θ1(D) = θ1((D1, . . . , Dm → A0)) = D′ = (D′
1, . . . , D

′
m, A′

k+1, . . . , A
′
k+p → A′

0).

Then we get the following reduction sequence

7



θ(N) = θ2(λxk:A
′
k. b:D

′(N ′
m))

= λxk:A
′
k. b:D

′(θ2(N
′
m))

∗
−→β λxk:A

′
k. b:D

′(Pm)
∗
←−η λxk+p:A

′
k+p. b:D

′(Pm, xk+1, . . . , xk+p)

where N ′
i is the result of applying θ1 to Ni and Pi is the η-expanded normal form of

θ2(N
′
i) for all i, 1 ≤ i ≤ m.

We can assume that M has the form

M = λxk:Ak. F :B(Mm)

and the result of applying θ1 to the type of M and the type of the head of M will be

θ1(type(M)) = θ1((A1, . . . , Ak → A0)) = A′ = (A′
1, . . . , A

′
k, A

′
k+1, . . . , A

′
k+p → A′

0),

and

θ1(B) = θ1((B1, . . . , Bm → A0)) = B′ = (B′
1, . . . , B

′
m, A′

k+1, . . . , A
′
k+p → A′

0).

Note that B must have the same number of argument types as D.

The η-expanded normal form of θ1(M) will be

λxk+p:A
′
k+p. F :B′(M ′

m, xk+1, . . . , xk+p)

where M ′
i is the η-expanded normal form of θ1(Mi) for all i, 1 ≤ i ≤ m. Thus θ must

take the form

θ(F :B′) = λ zm:B′
m, zm+1:A

′
k+1, . . . , zm+p:A

′
k+p. b:D

′(Qm, zm+1, . . . , zm+p)

for some terms Qm of appropriate types. Note that none of the zm+1,. . . ,zm+p occurs

in one of the Qi, since none of them occurs in one of the Pi = η[θ1(Ni)] for some i,

1 ≤ i ≤ m.

This leaves us with a reduction sequence of the form

θ(M) = θ1(λxk+p:A
′
k+p. F :B′(M ′

m, xk+1...k+p))

−→β λxk+p:A
′
k+p. b:D

′(Pm, xk+1...k+p)
∗
−→η λxk:A

′
k. b:D

′(Pm)
∗
←−β θ(λxk:Ak. b:D(Nn)).

Note that

λ zm:B′
m, zm+1:A

′
k+1, . . . , zm+p:A

′
k+p. b:D

′(Qm, zm+1, . . . , zm+p)

is an type-instance of

λ zm:Bm. b:D(Qm).

(Projection) The substitution for F projects up a subterm of M . When substituting a ith projection

for the head of a flexible term M = λxk:Ak. F (Mm) we constrain the type of Mi as

follows:

range(type(θ(Mi))) = range(θ1(Bi))

= range(type(θ(F )))

= range(θ1((B1, . . . , Bm → A0)))

= range(θ1(A0)).

8



Assume θ1((B1, . . . , Bm → A0)) = B′ = (B′
1, . . . , B

′
m, B′

m+1, . . . , B
′
p → E0) for

some types B′
0, . . . , B

′
p and m ≤ p. The substitution for F takes the form

{F :B′/λ yp:B
′
p. yi(Lq)} for some terms Lq and some i in {1, . . . ,m} such that type(yi) =

type(θ(Mi)) = (E1, . . . , Eq → E0). We have a reduction sequence of the form

θ2(η[θ1(M)]) = θ2(λx
′
k+p−m. F :B′(M ′

1, . . . ,M
′
m, x′

k+1, . . . , x
′
k+p−m))

= λx′
k+p−m. λ yp. yi(Lq)(s

′
1, . . . ,M

′
m, x′

k+1, . . . , x
′
k+p−m)

−→β λx′
k+p−m.M ′

i(Lq)
∗
−→β λx′

k+p−m. a′(Pr)
∗
←→β θ(N).

In this case, the head b of N may be a function constant, a free variable or a bound

variable. Note that i ≤ m because b can not be equal to any of the x′
k+1, . . . , x

′
k+p−m.

(H) Substitutions take place at the head of both terms. Then let M = λxk:Ak. F (Mm) and N =

λxk:Ak. G(Nn) for both F and G in DOM(θ). Here we must eventually match the heads of the

two terms, but we can do it in a large number of ways. In order to simplify our analysis if possible, we

reduce it to the previous case. Let us (without loss of generality) focus on the binding for the variable

F . There are two subcases.

(1) θ substitutes a non-projection term for F , e.g., θ(F ) = λ yp. a(rq), where a 6= G is not a bound

variable. By idempotency a is not a variable in DOM(θ). The substitution (possibly) causes a

β-reduction, after which we can analyse the result using (G).

(2) θ substitutes a projection term for F (which obeys the typing constraints discussed above), e.g.,

θ(F ) = λ yp. yj(Lq). For further analysis we use (G) if the head symbol is either a function constant,

a bound variable, or a variable not in DOM(θ). We use (H) if the head is a variable in DOM(θ).

It is straightforward to formulate transformation rules for cases (A), (C), (D), (E), and (F). To formulate

the transformation analysed in case (B), we need the notion of a binder expanding substitution:

Definition 5.1 (Binder expanding substitution)

A type substition {A0/(A1 → A2)} with type variables A0, A1, and A2 is called a binder expanding

substitution for a term of type (B1, . . . , Bm → A0), where B1, . . . , Bm are arbitrary types. △

The substitution {A0/(Ck+1, . . . , Cl → C0)} in case (B) is an instance of the composition of l − (k + 1)

binder expanding substitutions.

The transformations associated with cases (G) and (H) can be formulated using partial binding

substitutions. I use the definition due to Snyder and Gallier (1989).

Definition 5.2 (Partial binding)

A partial binding of type (A1, . . . , An → B) (for B atomic) is the η-expanded form of a term of the form

λ yn:An. a(H1(yn), . . . , Hm(yn))

for some atom a of type (C1, . . . , Cm → B), where Ci = (Di
1, . . . , D

i
pi
→ C′

i) for 1 ≤ i ≤ m. The Hi have

type (A1, . . . , An, D
i
1, . . . , D

i
pi
→ C′

i) for 1 ≤ i ≤ m. C′
1, . . . , C

′
m are atomic types. The arguments of a

partial binding will be called general flexible terms. △

We will now show that every partial binding can be constructed using matrix expanders and selectors.

Definition 5.3 (Matrix expander)

A matrix expander of type (A1, . . . , Am+n → A) (where A is a base type) is a term of the form

λ ym+n:Am+n. F (ym+n, G(ym))

with free variables F and G such that

9



• type(F ) = (A1, . . . , Am+n, B → A) and

• type(G) = (A1, . . . , Am → B).

A substitution {H :D/M} with M a matrix expander of type D is called a matrix expanding substitution. △

Definition 5.4 (Selector)

A selector appropriate to type (A1, . . . , Am, B1, . . . , Bn → C) is a term of the form

λ ym:Am, zn:Bn. a(zn)

where a is some arbitrary atom of type (B1, . . . , Bn → C). A substitution {H :D/M} with M a selector of

type D is called a selector substitution. △

Lemma 5.5 For any partial binding substitution

τ = {F/λ ym:Am. a(λ z1p1
:B1

p1
. H1(ym, z1p1

), . . . , λ znpn
:Bn

pn
. Hn(ym, znpn

))}

such that

• F is free variable of type (A1, . . . , Am → A),

• a is some arbitrary atom of type (C1, . . . , Cn → A) with Ci = (Bi
1, . . . , B

i
pi
→ Bi) for 1 ≤ i ≤ n and

Bi ∈ T0, and

• type(Hi) = (A1, . . . , Am, Bi
1, . . . , B

i
pi
→ Bi) for 1 ≤ i ≤ n,

there exist matrix expanding substitutions τ1, . . . , τn and a selector substitution τ0, such that

τ = τ0 ◦ τn ◦ · · · ◦ τ1.

Proof: Let

τ1 = {F/λ ym:Am. F1(ym, λ z1p1
:B1

p1
. H1(ym, z1p1

))}

type(F1) = (A1, . . . , Am, (B1
1 , . . . , B

1
p1
→ B1)→ A)

= (A1, . . . , Am, C1 → A)

type(H1) = (A1, . . . , Am, B1
1 , . . . , B

1
p1
→ B1)

τ2 = {F1/λ ym:Am, x1:C1. F2(ym, x1, λ z
2
p2
:B2

p2
. H2(ym, z2p2

))}

type(F2) = (A1, . . . , Am, C1, (B
2
1 , . . . , B

2
p2
→ B2)→ A)

= (A1, . . . , Am, C1, C2 → A)

type(H2) = (A1, . . . , Am, B2
1 , . . . , B

2
p2
→ B2)

...

τn = {Fn−1/λ ym:Am, xn−1:Cn−1. Fn(ym, xn−1, λ z
n
pn
:Bn

pn
. Hn(ym, znpn

))}

type(Fn−1) = (A1, . . . , Am, C1, . . . , Cn−1 → A)

type(Fn) = (A1, . . . , Am, C1, . . . , Cn−1, (B
n
1 , . . . , B

n
pn
→ Bn)→ A)

type(Hn) = (A1, . . . , Am, Bn
1 , . . . , B

n
pn
→ Bn)

τ0 = {Fn/λ ym:Am, xn:Cn. a(xn)}

type(a) = (A1, . . . , Am → A)

We have

τ0 ◦ τn ◦ · · · ◦ τ1 = {F/λ ym:Am. a(λ z1p1
:B1

p1
. H1(ym, z1p1

), . . . , λ znpn
:Bn

pn
. Hn(ym, znpn

))}

= τ

10



6 The Transformation System HPT

We define the following transformation system on unification problems using the notions of binder expanding,

matrix expanding and selector substitutions.

Definition 6.1 (Transformation system HPT )

The rules for the transformation system HPT for unification problems in LPoly are:

Trivial removal

〈σ, {M ?= M} ∪ S〉 ⇒ 〈σ, S〉 HPT

Type unification
〈σ, {M ?= N} ∪ S〉

⇓

〈θ ◦ σ, θ({M ?= N} ∪ S)〉

HPT

where

• M is a term of type A and N is term of type C,

• A 6= C, and

• θ = mgu({A ?= C}).

Head type unification

〈σ, {λxk:Ak. a:B(Mm) ?= λxk:Ak. a:D(Nm)} ∪ S〉

⇓

〈θ ◦ σ, θ({λxk:Ak. a:B(Mm) ?= λxk:Ak. a:D(Nm)} ∪ S)〉

HPT

where

• B 6= D,

• θ = mgu({B ?= D}).

Decomposition
〈σ, {λxk:Ak. a(Mm) ?= λxk:Ak. a(Nm)} ∪ S〉

⇓

〈σ,
⋃

1≤i≤m {λxk:Ak.Mi
?= λxk:Ak. Ni} ∪ S〉

HPT

where a is some arbitrary atom.

Variable elimination
〈σ, {λxk:Ak. F (xk)

?= N} ∪ S〉

⇓

〈σ, {λxk:Ak. F (xk)
?= N} ∪ {F/N}(S)〉

HPT

where

• F is a free variable,

• F ∈ FV (S) and F 6∈ FV (N), and

• type(F ) = type(N).

Binder-Expansion
〈σ, {λxk:Ak. F (Mm) ?= λxk:Ak. b(Nn)} ∪ S〉

⇓

〈θ ◦ σ, η[θ({λxk:Mk. F (Mm) ?= λxk:Mk. b(Nn) ∪ S})]〉,

HPTa

where

11



• F is a free variable of type (B1, . . . , Bm → A0),

• A0 is a type variable, and

• θ = {A0/(C1 → C2)} for type variables C1 and C2.

Matrix-Expansion

〈σ, {λxk:Ak. F (Mm) ?= λxk:Ak. b(Nn)} ∪ S〉

⇓

〈σ, {F ?= Q} ∪ {F/Q}({λxk:Ak. F (Mm) ?= λxk:Ak. b(Nn)} ∪ S)↓〉,

HPTb

where

• F is a free variable of type (B1, . . . , Bm → A0);

• b is an arbitrary atom of type type(a) = (D1, . . . , Dn → A0);

• Q is a variant of a matrix expander of type (B1, . . . , Bm → A0), i.e. M = λ ym:Bm. G(ym, H(yl)) with

l ≤ m.

Selection

〈σ, {λxk:Tk. F (Mm) ?= λxk:Tk. b(Nn)} ∪ S〉

⇓

〈θ ◦ σ, {θ(F ) ?= Q} ∪ {θ(F )/Q}(θ({λxk:Tk. F (Mm) ?= λxk:Tk. b(Nn)} ∪ S))↓〉,

HPT

where

• F is a free variable of type (Bm → A0);

• b is some arbitrary atom of type (Dn → D0);

• a is some arbitrary atom of type (E1, . . . , Ek → E0), for some k and some l, k ≤ m − l, 0 ≤ l ≤ m,

such that (Bl+1, . . . , Bm → A0) and type(a) have a most general unifier θ;

• Q is a variant of a selector appropriate for type θ((B1, . . . , Bm → A0)), i.e.

Q = η[θ(λ ym:Bm. a(yl+1, . . . , ym))],

such that l ≤ m.

△

7 Correctness and Completeness of HPT

7.1 Correctness of HPT

Lemma 7.1 Let τ be an idempotent type substitution and M , N two terms. If θ is an instance of τ then θ

is a unifier of τ(M) ?= τ(N) iff θ is a unifier of M ?= N .

Proof: Because θ is an instance of τ there exists a substitution ρ such that θ = ρ ◦ τ . So we have

θ(τ(M)) = θ(τ(N))

iff ρ(τ(τ(M))) = ρ(τ(τ(N)))

iff ρ(τ(M)) = ρ(τ(N))

iff θ(M) = θ(N).

Lemma 7.2 If U =⇒HPT U ′ using one of the transformation rules HPT, HPT, or HPT, then U(U) =

U(U ′).

12



Proof: We consider each of the transformation rules in turn:

HPT If θ is a unifier for a unification problem 〈σ, S〉 then θ is also a unifier of 〈σ,M ?= M ∪ S〉. The

converse holds because θ(M) = θ(M) holds for any substitution θ.

HPT Suppose τ is a unifier of 〈σ,M ?= N ∪ S〉. Then τ1 unifies the types of M and N and because there

exists a most general unifier θ of type(M) and type(N), τ1 must be an instance of θ. So a variant of

τ is also a unifier of 〈θ ◦ σ, θ(M ?= N ∪ S)〉.

Suppose on the other hand τ is a unifier of 〈θ ◦ σ, θ(M ?= N ∪ S)〉. Then τ must be an instance of θ

and therefore a variant of τ is a unifier of 〈σ,M ?= N ∪ S〉.

HPT Let ρ be the substitution {F/N}. For any substitution τ if τ(F )
∗
←→βη τ(N) then τ =βη τ ◦ ρ, since

τ ◦ ρ differs from τ only at F but τ(F )
∗
←→βη τ(N) = τ ◦ ρ(F ). We have τ ∈ U(U) iff τ ◦ ρ ∈ U(U).

Furthermore, since for any term P we have τ ◦ ρ(P ) = τ(ρ(u))
∗
−→β τ(ρ(P )↓), it can easily be shown

that τ ◦ ρ ∈ U(U) iff τ ∈ U(ρ(U)↓). Thus

τ ∈ U({F ?= N} ∪ S)

iff τ(F )
∗
←→βη τ(N) and τ ∈ U(N)

iff τ(F )
∗
←→βη τ(N) and τ ◦ ρ ∈ U(U)

iff τ(F )
∗
←→βη τ(N) and τ ∈ U(ρ(U)↓)

iff τ ∈ U({F ?= N} ∪ ρ(U)↓).

Lemma 7.3 Let U =⇒HPT
U ′ where the transformed equation in U is

λxk:Ak. a:B(Mm) ?= λxk:Ak. a:D(Nm).

Let θ be any substitution. Then

(1) θ ∈ U(U ′) iff θ ∈ U(U) if a is either a constant or a free variable not in DOM(θ).

(2) θ ∈ U(U ′) implies θ ∈ U(U) if a ∈ DOM(θ).

Proof: Let U ′ = 〈τ ◦ σ,D′〉 and U = 〈σ,D〉. Let θ be a unifier of U ′. Then θ is an instance of τ ◦ σ where

τ is an idempotent substitution. So following lemma 7.1 θ is a unifier of every equation in D. And because

DOM(σ) ∩ DOM(τ) = ∅ the substitution θ is an instance of σ. So θ is a unifier of the unification problem

U .

Now let θ be a unifier of U . Suppose a is either a constant or a free variable not in DOM(θ). Then

θ(a:B) = a: θ1(B) = a: θ1(D) = θ(a:D). So θ is an instance of the most general unifier τ of B and D. Using

lemma 7.1 we can conclude that θ must be a unifier of U ′.

Lemma 7.4 Let U =⇒HPT
U ′ where the transformed equation in U is λxk:Ak. a(Mm) ?= λxk:Ak. a(Nm).

Let θ be any substitution. Then

(1) θ ∈ U(U ′) iff θ ∈ U(U) if a is either a constant or a bound variable or a free variable not in DOM(θ).

(2) θ ∈ U(U ′) implies θ ∈ U(U) if a ∈ DOM(θ).

Proof: If ρ(λxk:Ak.Mi)
∗
←→β ρ(λxk:Ak. Ni) for 1 ≤ i ≤ m, then clearly we have ρ(λxk. a(Mm)) =

ρ(λxk. a(Nm)). So for any atom a we have ρ ∈ U(U) whenever ρ ∈ U(U ′). If a is either a function constant,

a bound variable or a variable not in DOM(ρ), then ρ(a) = a. It is easy to see that the converse direction

holds as well.

Lemma 7.5 If U =⇒HPT U ′ using one of the transformation rules HPT or HPT then U(U ′) ⊆ U(U).

Proof: This is a consequence of lemma 7.3 and 7.4.

Lemma 7.6 If U =⇒HPT U ′ using transformation rule HPTa then U(U ′) ⊆ U(U).

13



Proof: In this case U ′ = θ(U) where θ is an idempotent type substitution. So we can use lemma 7.1 to

prove U(U ′) ⊆ U(U).

Lemma 7.7 If U =⇒HPT U ′ using transformations HPTb or HPT then U(U ′) ⊆ U(U).

Proof: These transformations add a pair {F ?= Q} to the system S of the unification problem U = 〈σ, S〉

and then apply the substitution {F/Q} to S. Since S ⊆ {F ?= Q} ∪ S we have U({F ?= Q} ∪ S) ⊆ U(S).

The application of the substitution can be seen as an application of HPT which has been shown to be sound

in lemma 7.2.

Theorem 7.8 (Soundness) If U
∗

=⇒HPT U ′, with U ′ in solved form, then the substitution ⌈U ′⌉SUB

FV (U) ∈

U(U).

Proof: By induction on the length of transformation sequences, and using the previous lemmas in the

induction step, we can show that ⌈U ′⌉SUB ∈ U(U). Since the restriction to the free variables of U does not

change the effect of the substitution on the terms in U , we see that ⌈U ′⌉SUB

FV (U) ∈ U(U).

7.2 Completeness of HPT

In this section we will give a completeness proof for the transformation system HPT .

Lemma 7.9 Let U be any unification problem, φ any substitution, and Z any set of protected variables.

Then, provided φ ∈ SU(U), there exists some normalized substitution θ such that

(1) θ ∈ SU(U);

(2) θ ≤βη φ [FV (U)] and φ ≤βη θ [FV (U)];

(3) DOM(θ) ⊆ FV (U) and I(θ) ∩ (Z ∪DOM(θ)) = ∅.

Proof: Suppose φFV (U) is normalized and satisfies condition (3). Then θ = φFV (U) is the substitution we

are looking for.

Otherwise, we assume that I(φ) ∩ FV = {F1, . . . , Fn} holds. We can choose a set of free variables

{G1, . . . , Gn} such that type(Gi) = type(Fi) for all i, 1 ≤ i ≤ n, holds and the intersection with Z ∪ I(φ) ∪

FV (U) is empty. Also we can assume that I(φ) ∩ VT = {A1, . . . , Am} holds. We can choose a set of type

variables {B1, . . . , Bm} such that the intersection with Z ∪ I(φ) ∪ FV (U) is empty. Let

ζ1 = {A1/B1, . . . , Am/Bm}

ρ1 = 〈ζ1, {ζ1(F1)/η[ζ1(G1)], . . . , ζ1(Fn)/η[ζ1(Gn)]}〉

ζ2 = {B1/A1, . . . , Bm/Am}

ρ2 = 〈ζ2, {G1/η[F1], . . . , Gn/η[Fn]}〉

θ′ = (ρ1 ◦ φ)FV (S)

θ = θ′↓βη

We will show now that the substitution θ satisfies conditions (1)-(3).

(1): For every M ?= N ∈ S we have φ(M)↓ = φ(N)↓ and for every term P we have θ′(P )
∗
←→βη θ(P ).

Therefore
θ(M)

∗
←→βη θ′(M)

= ρ1(φ(M))
∗
−→βη ρ1(φ(M)↓) = ρ1(φ(N)↓)

∗
←−βη ρ1(φ(N))

= θ′(N)
∗
←→βη θ(N)

Thus θ is an element of SU(U).

14



(2): Because

θ =βη ρ1 ◦ φ [FV (U)]

we must have

φ ≤βη θ [FV (U)].

Since ρ2 ◦ ρ1 =βη ι [FV (S) ∪ I(φ)] holds, we have

φ =βη ρ2 ◦ ρ1 ◦ φ [FV (U) ∪ I(φ)].

Using θ =βη ρ1 ◦ φ [FV (U)] we get

φ =βη ρ2 ◦ θ [FV (U)], and

therefore

θ ≤βη φ [FV (U)].

(3): is implied by the construction of θ.

Lemma 7.10 Let U = 〈σ, {F1
?= M1, . . . , Fn

?= Mn}〉 be a unification problem in solved form. Then the set

{⌈U⌉SUB} is a CSU(U)[Z] for any finite set Z such that Z ∩ FV (U) = ∅.

Proof: We have to show that {⌈S⌉SUB} satisfies (1)-(3) of definition 3.3.

(1): Trivially, {⌈U⌉SUB} ⊆ SU(U).

(2): We must prove that for every normalized substitution θ ∈ SU(U) there exists a substitution in σ ∈

{⌈U⌉SUB} such that σ ≤β θ [FV (U)] holds.

If θ ∈ SU(U) then θ =β θ ◦ ⌈U⌉SUB because

θ(Fi)
∗
←→β θ(Mi) = θ(⌈U⌉SUB(Fi))

for every i, 1 ≤ i ≤ n, and

θ(Fi) = θ(⌈U⌉SUB(Fi)),

otherwise. For any type variable A we have

θ(A) = ρ(σ(A))

for some type substitution ρ because θ is an instance of σ. Therefore ⌈U⌉SUB ≤β θ and ⌈U⌉SUB ≤β

θ [FV (U)].

(3): We have to show that DOM(φ) ⊆ FV (U), and I(φ) ∩ (Z ∪ DOM(φ)) = ∅ for all φ ∈ {⌈U⌉SUB}.

This is satisfied because DOM(⌈U⌉SUB) = FV (U) and ⌈U⌉SUB is idempotent.

Lemma 7.11 If M = λxn:An. a(sm) is any term of type (An → A0) then there exists a variant of a partial

binding P and a substitution ρ such that ρ(P )
∗
−→β M .

Proof: We distinguish the two cases m = 0 and m > 0.

m = 0: M has the form λxn:An. a. According to the definition of partial bindings M is itself one. So choose

P = M and ρ = ι.

m > 0: Let

P = η[λxn:An. a(Hm(xn))]

be a partial binding appropriate for type (A1, . . . , An → A0). ρ is the substitution

〈ι1, {H1/λxn:An.M1, . . . , Hm/λxn:An.Mm}〉.

Then

ρ(P ) = λxn:An. a((λxn:An.Mm)(xn))
+
−→β λxn:An. a(M1, . . . ,Mm)

as required.

15



So the term P and the substitution ρ have the desired properties.

Lemma 7.12 If θ = {F/M} ∪ θ′ then there exists a variant of a partial binding P appropriate to F and a

substitution ρ such that

θ = {F/M} ∪ ρ ∪ θ′ [DOM(θ)]

=β ρ ◦ {F/P} ∪ θ′ [DOM(θ)].

Furthermore, if DOM(θ) ∩ I(θ) = ∅ then θ′′ = {F/M} ∪ ρ ∪ θ′ is a unifier of the equation F ?= P and

DOM(θ′′) ∩ I(θ′′) = ∅.

Proof: Define P and ρ according to lemma 7.11. Therefore DOM(ρ) ∩ DOM(θ) = ∅ and ρ(P )
∗
−→β M .

Thus

{F/M} = {F/M} ∪ ρ =β ρ ◦ {F/P} [DOM(θ)].

Assume DOM(θ) ∩ I(θ) = ∅. Because P is a variant we also have DOM(ρ) ∩ I(θ) = ∅ which implies

(DOM(θ) ∪ DOM(ρ)) ∩ I(θ) = ∅.

Because DOM(θ) ∪ DOM(ρ) = DOM(θ′′) and I(θ) = I(θ′′) we have DOM(θ′′) ∩ I(θ′′) = ∅.

Finally, we show that θ′′ is a unifier of F and P :

θ′′(P ) = ({F/M} ∪ ρ ∪ θ′)(P ) = ρ(P )
∗
−→β M = ({F/M} ∪ ρ ∪ θ′)(F ) = θ′′(F ).

Note that a can be a variable. If DOM(θ) ∩ I(θ) 6= ∅ then θ = {F/M, a/N} ∪ θ′ is possible. But in this

case we have θ′′(t) = ({F/M} ∪ ρ ∪ {a/N} ∪ θ′)(P ) 6= ρ(P ). Therefore the condition DOM(θ) ∩ I(θ) = ∅ is

necessary.

These lemmas show that using partial bindings we can build arbitrary terms in an incremental way.

We define a transformation system CPT in which the applications of the transformation rules is controlled

by a substitution θ. It is the goal of the transformations to get from the original unification problem U to a

unification problem U ′ in solved form such that ⌈U ′⌉SUB ≤β θ holds.

Definition 7.13 (Transformation system CPT )

With the following rules we define a transformation system on ordered pairs of normalized substitutions and

unification problems.

Trivial removal

〈Θ, 〈σ, {M ?= M} ∪ S〉〉 =⇒ 〈Θ, 〈σ, S〉〉 CPT

Term type unification
〈Θ, 〈σ, {M ?= N} ∪ S〉〉

⇓

〈Θ, 〈θ ◦ σ, θ({M ?= N} ∪ S)〉〉

CPT

where

• M is a term of type B and N is term of type D,

• B 6= D, and

• θ = mgu({B ?= D}).

Head type unification

〈Θ, 〈σ, {λxk:Ak. a:B(Mm) ?= λxk:Ak. a:D(Nm)} ∪ S〉〉

⇓

〈Θ, 〈θ ◦ σ, θ({λxk:Ak. a:B(Mm) ?= λxk:Ak. a:D(Nm)} ∪ S)〉〉

CPT

where

16



• B 6= D,

• Θ1(B) = Θ1(D), and

• θ = mgu({B ?= D}).

Decomposition
〈Θ, 〈σ, {λxk:Ak. a(Mm) ?= λxk:Ak. a(Nm)} ∪ S〉〉

⇓

〈Θ, 〈σ,∪1≤i≤m{λxk:Ak.Mi
?= λxk:Ak. Ni} ∪ S〉〉,

CPT

where a is some arbitrary atom.

Variable elimination
〈Θ, 〈σ, {λxk:Ak. F (xk)

?= N} ∪ S〉〉

⇓

〈Θ, 〈σ, {λxk:Ak. F (xk)
?= N} ∪ {F/N}(S)↓〉〉,

CPT

where

• F is a free variable,

• F 6∈ FV (N) and F ∈ FV (S),

• type(F ) = type(N), and

• F and head(N) are not in DOM(Θ).

Partial binding

〈{F/Q} ∪ Φ, 〈σ, {λxk:Ak. F (Mm) ?= λxk:Ak. N} ∪ S〉〉

⇓

〈{F/Q} ∪ ρ ∪ Φ, 〈τ ◦ σ, {F ?= P , η[{F/P}(τ(λxk :Ak. F (Mm) ?= λxk:Ak. N) ∪ S)]}〉〉

CPT

where

• F is a free variable of type (Bm → B0) which is not solved in {λxk:Ak. F (Mm) ?= λxk:Ak. N} ∪ S,

• Q = λ yl:B
′
l. a:D(Qp) with some terms Q1, . . . , Qp and Φ(Bm → B0) = (B′

l → B′
0) where a is some

atom of type D = (Dp → B′
0),

• τ = mgu({B0
?= (Bm+1, . . . , Bl → C0)}) for some type variables Bm+1, . . . , Bl, and C0,

• P = η[τ(λ yl:Bl. a:C(Hp: (Bl → Ci)(yl)))] is a partial binding appropriate for F with the same head

a as Q of type C = (Cp → C0) and free variables Hi: (Bl → Ci) for all i, 1 ≤ i ≤ p, and

• ρ = 〈mgu(
⋃

1≤i≤p {τ(Bl → Ci)
?= Di}), {H1:D1/λ yl:B

′
l. Q1, . . . , Hp:Dp/λ yl:B

′
l. Qp}〉.

△

Lemma 7.14 If Θ1 ∈ SU(U1) for some unification problem 〈σ1, S1〉 and

〈Θ1, 〈σ1, S1〉〉 =⇒CPT 〈Θ2, 〈σ2, S2〉〉

then there exists a corresponding sequence of HPT -transformations

〈σ1, S1〉
+

=⇒HPT 〈σ2, S2〉.

Proof: The only problematic transformation rule is CPT. Suppose F is a free variable of type (Bm → B0)

and the partial binding substitution is 〈τ, {τ(F )/P}〉 with

17



τ = mgu({B0
?= (Bm+1, . . . , Bl → C0)})

and

P = η[τ(λ yl:Bl. a:C(Hp(yl)))].

We define the substitutions θ1, . . . , θl−m, γ1, . . . , γp and δ in the following way:

θ1 = {B0/(Bm+1 → F1)}

θ2 = {F1/(Bm+2 → F2)}

...

θl−m = {Fl−(m+1)/(Bl → C0)}

γ1 = {θl−m ◦ . . . ◦ θ1(F )/λ yl:Bl. G1(yl, H1(yl))}

γ2 = {G1/λ yl:B
′
l , z1:C1. G2(yl, z1, H2(yl))}

...

γp = {Gp−1/λ yl:Bl, zp:Cp. Gp(yl, Hp(yl))}

δ = {Gp/λ yl:Bl, zp:Cp. a:C(zp)}.

It is easy to see that θl−m◦· · ·◦θ1 = τ [FVType({B0, Bm+1, . . . , Bl, C0})] and δ◦γm◦· · ·◦γ1 = {τ(F )/P} [{F}].

Now define the systems S1, . . . , Sl−m+p+3 as follows:

S1 = {λxk:Ak. F (Mm) ?= λxk:Ak. N} ∪ S

S2 = η[θ1(S1)]

S3 = η[θ2(S2)]

...

Sl−m+1 = η[θl−m(Sl−m)]

Sl−m+2 = {η[F ] ?= γ1(η[F ])} ∪ γ1(Sm−l+1)↓

Sl−m+3 = {G1
?= γ2(G1)} ∪ γ2(Sm−l+2)↓

...

Sl−m+p+2 = {Gp−1
?= γp(Gp−1)} ∪ γp(Sl−m+p+1)↓

Sl−m+p+3 = {Gp
?= δ(Gp)} ∪ δ(Sl−m+p+2)↓.

Then we get following transformation sequence:

〈σ1, S1〉 =⇒HPTa
〈θ1 ◦ σ1, S2〉

=⇒HPTa
〈θ2 ◦ θ1 ◦ σ1, S3〉

...

=⇒HPTa
〈θl−m−1 ◦ · · · ◦ θ1 ◦ σ1, Sl−m〉

=⇒HPTa
〈τ ◦ σ1, Sl−m+1〉

=⇒HPTb
〈τ ◦ σ1, Sl−m+2〉

=⇒HPTb
〈τ ◦ σ1, Sl−m+3〉

...

=⇒HPTb
〈τ ◦ σ1, Sl−m+p+1〉

=⇒HPTb
〈τ ◦ σ1, Sl−m+p+2〉

=⇒HPT
〈τ ◦ σ1, Sl−m+p+3〉

18



and 〈τ ◦ σ1, Sl−m+p+3〉 = 〈σ2, S2〉 holds.

Lemma 7.15 If Θ ∈ SU(〈σ, S〉) for some unification problem U = 〈σ, S〉 not in solved form then there

exists a transformation

〈Θ, 〈σ, S〉〉 =⇒CPT 〈Θ
′, 〈σ′, S′〉〉,

such that

(1) Θ = Θ′ [W ] with W a set of variables,

(2) If DOM(Θ) ∩ I(Θ) = ∅, then Θ′ ∈ SU(S′) and DOM(Θ′) ∩ I(Θ′) = ∅, and

(3) 〈σ, S〉
+
=⇒HPT 〈σ′, S′〉.

Proof: Because U is not in solved form there is a pair M ?= N which is not solved in U . We distinguish the

following cases:

1. M = N . Then we may apply the transformation rules CPT or CPT.

2. type(M) 6= type(N). Then we can apply CPT. In the remaining cases we may assume type(M) =

type(N).

3. head(M) = a:B and head(N) = a:D for some arbitrary atoms a:B and a:D such that B 6= D. We

can apply CPT.

4. head(M) = head(N) 6∈ DOM(Θ). Then we can apply CPT.

5. M 6= N , head(M) = a:B, head(N) = b:D, and one of the following two cases applies.

(a) Θ1(head(M)) 6= Θ1(head(N)): Because there exists a unifier of S, not both M and N can be

rigid. We can assume that M is a flexible term.

(b) Θ1(head(M)) = Θ1(head(N)) ∈ DOM(Θ): One of the terms is flexible too. Let’s assume that

M is flexible.

Therefore

M = λxk:Ak. F (Mm)

and

N = λxk:Ak. N
′.

Then we can apply CPT or if M
∗
−→η F CPT is applicable too if it’s application constraints are

fulfilled.

Thus there exists a transformation

〈Θ, 〈σ, S〉〉
+

=⇒CPT 〈Θ
′, 〈σ′, S′〉〉.

If we apply one of the transformation rules CPT, . . . , CPT, the conditions hold because

(1) Θ = Θ′,

(2) of the correctness lemma.

(3) of the definition of CPT .

If we apply the transformation rule CPT, we can assume that

Θ = {F/Q} ∪ Φ

and

Θ′ = {F/Q} ∪ ρ ∪ Φ =β ρ ◦ {F/P} ∪ Φ

S′ = {F ?= P} ∪ {F/P}(τ(S))

σ′ = τ ◦ σ

19



holds for partial binding P and substitutions ρ and τ , as given in the definition of CPT.

Therefore the conditions are satisfied

(1) because of the construction of Θ′ and lemma 7.12.

(2) If we assume DOM(θ′) ∩ I(θ′) = ∅ then following lemma 7.12

DOM(Θ′) ∩ I(Θ′) = ∅

and

Θ′(P ) = ρ(q)
∗
−→β Q = Θ′(F )

holds.

(3) because of lemma 7.14.

Corollary 7.16 If θ ∈ SU(U) and no transformation rule in CPT is applicable to 〈θ, U〉, then U is in solved

form.

Theorem 7.17 (Completeness of HPT ) Let U be a unification problem. If Θ ∈ SU(U), then there exists

a sequence of transformations

U = U0 =⇒HPT U1 =⇒HPT U2 =⇒HPT · · · =⇒HPT Un,

where Un is in solved form and ⌈Un⌉SUB ≤β Θ [FV (U)].

Proof: DOM(Θ)∩I(Θ) = ∅ because of lemma 7.9. We define a complexity measure µ(〈〈Θ1,Θ2〉, 〈σ, S〉〉) =

〈l,m, n〉 by
l =

∑
x∈DOM(Θ2)\Solved(S) |Θ2(x)|Term

m =
∑

(M
?=N)∈S

|M |Term + |N |Term

n =
∑

x∈DOM(Θ1)
|Θ1(x)|Type − |σ(x)|Type.

Using lexicographic combination of the <-ordering on natural number on every component we get a notherian

ordering < on this measure. For every CPT -transformation U =⇒CPT U ′ we get µ(U ′) < µ(U):

CPT reduces m without changing l.

CPT reduces n without changing l and m. Since θ 6= ι and |σ(x)|Type ≤ |θ ◦ σ(x)|Type ≤ |Θ1(x)|Type for all

x ∈ DOM(Θ1).

CPT reduces n without changing l and m for the same reason as for CPT.

CPT reduces m without changing l.

CPT reduces l, because a variable out of DOM(Θ) \ Solved(U) is erased.

CPT reduces l: The binding

{F/λ yl:B′
l . a:D(Qp)}

does not increase l because F is solved in U ′, Rather

〈mgu(
⋃

1≤i≤p

{τ(Bl → Ci)
?= Di}), {H1:D1/λ yl:B

′
l. Q1, . . . , Hp:Dp/λ yl:B

′
l. Qp}〉.

is inserted and a is removed. In all l has decreased.

Hence every sequence of CPT -transformations is finite. Therefore there exists a sequence

〈Θ, U〉 = 〈Θ0, U0〉
+
=⇒CPT 〈Θk, Uk〉,

20



such that no further transformations are applicable, and by induction over k using lemma 7.15 with W =

FV (S) we get Θ = Θk [W ] and Θk ∈ SU(Uk). Due to lemma 7.14 there exists a corresponding sequence of

HPT -transformations

U = U0
+

=⇒HPT Up,

where as in Corollary 7.16 Up is in solved form. Applying lemma 7.10 we get

⌈Up⌉
SUB ≤β Θk = Θ [FV (U)].

Theorem 7.18 For every unification problem U there exists a set

G = {⌈U ′⌉SUB

FV (U) | U
+
=⇒HPT U ′ and U ′ is in solved form}

which is a CSU(U). Using some renaming substitution away from W this set is a CSU(U)[W ] for arbitrary

W .

Proof: We have to check the conditions of Definition 3.3:

(1) G ⊆ SU(S) follows from the correctness of HPT .

(2) The fact that for any normalized substitution θ ∈ SU(U) there is substitution σ ∈ G, such that σ ≤β

θ [FV (U)], follows from the completeness of HPT .

(3) The condition DOM(σ) ⊆ FV (U) follows from the construction of the substitutions in G. The condition

I(σ) ∩ (Z ∪ DOM(σ)) = ∅ can be satisfied by appropriate renaming.

8 Future Work

The transformation system HPT introduced in this paper is based on the transformation system UT of

Dougherty (1991) for unification in the polymorphically typed combinatory logic. In a forthcoming paper I

present a detailed investigation of the relationship between HPT and UT.

It is not difficult to see that the search space of HPT is finitely branching. The search space of HT ,

in contrast, is infinitely branching. However, although we have transformed the infinitely branching search

space into a finitely branching one, (unfortunately) we have not reduced the search space. To this end the

idea in Nipkow (1990) of introducing product types should be investigated. This amounts to developing a

correct and complete unification algorithm for the λ-calculus with product types.

References

Alonzo Church, 1932. A Set of Postulates for the Foundation of Logic. Annals of Mathematics, Vol. 33,

pp. 346–366.

Daniel J. Dougherty, 1991. Higher-Order Unificaiton via Combinators. Preprint.

M. Gordon, 1985. HOL: A Machine Oriented Formulation of Higher Order Logic. Technical Report 68,

Computer Laboratory, University of Cambridge, Cambridge, England.

G.P. Huet, 1975. A Unification Algorithm for typed λ-Calculus. Theoretical Computer Science, Vol. 1, pp.

27–57.

S. Kaplan and M. Okada, editors, 1990. Proceedings of the Second International Workshop on Conditional

and Typed Rewriting Systems, LNCS, vol. 516, Montreal, Canada. Springer-Verlag.

A. Martelli and U. Montanari, 1982. An Efficient Unification Algorithm. ACM Transactions on

Programming Languages and Systems, Vol. 4, No. 2, pp. 258–292.

21



D. Miller and G. Nadathur, 1986. Higher-Order Logic Programming. In Shapiro (1986), pp. 448–462.

Tobias Nipkow, 1990. Higher-Order Unification, Polymorphism and Subsorts. In Kaplan and

Okada (1990), pp. 229–237.

L. C. Paulson and T. Nipkow, 1990. Isabelle Tutorial and User’s manual. Technical Report 189,

Computer Laboratory, University of Cambridge, Cambridge, England.

Frank Pfenning, 1989. Elf: A language for logic definition and verifieed meta-programming. In Fourth

Annual Sumposium on Logic in Computer Science, pp. 313–322. IEEE.

E. Shapiro, editor, 1986. Proceedings of the Third International Logic Programming Conference, LNCS,

vol. 225, London. Springer-Verlag.

W. Snyder and J. Gallier, 1989. Higher-Order Unification Revisited: Complete Sets of Transformations.

Journal of Symbolic Computation, Vol. 8, pp. 101–140.

22


