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FÜR
INFORMATIK


 	

� �
Classical vs Non-classical Logics

The Universality of Classical Logic

Dov M Gabbay

MPI–I–93–230 August 1993

���
�

�� k

I N F O R M A T I K

Im Stadtwald

W 66123 Saarbrücken

Germany



Author’s Address

Dov M Gabbay
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

Publication Notes

This paper will be published in volume 2 of the Handbook of Logic in Artificial Intelligence and Logic
Programming, Oxford University Press.

Acknowledgements

The author is a SERC Senior Research Fellow. I am grateful to Professors Bob Kowalski and H. J. Ohlbach
for critical reading of the manuscript and many helpful discussions.

Several of the sections in this paper are based on early published shorter versions, while other sections
will be expanded into full papers. The following is the correspondence: Section 2 – [Gabbay, 1993], Sections
3 and 4 – [Gabbay, 1992], Section 5–8 – [Gabbay, 1992d], Section 9 – [Gabbay, 1993b]. Section 10 borrows
some text from [Gabbay and Ohlbach, 1992].



Abstract

This report investigates the question of the universality of classical logic. The ap-
proach is to show that an almost arbitrary logical system can be translated reasonably
intuitively and almost automatically into classical logic. The path leading to this result
goes through the analysis of what is a reasonable logic, how to find semantics for it,
how to build a labelled deductive system (LDS) for it, how to translate a LDS into
classical logic and how to automate the process using SCAN.

This report relies on other papers, published and/or to be published as explained
in the acknowledgements.
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1 Introduction—the debate

This paper addresses the problem of whether classical logic can be used as a universal system of
logic and whether it can be applied, profitably and sensibly, in all areas where logic needs to be
applied. More specifically, we focus on modal and temporal logics and ask whether the use of such
special logics, as compared with the use of classical logic, is advantageous. We examine what we
loose and what we gain if we use classical logic instead of specialised logics to describe and reason
about the same (e.g. temporal) phenomena.

The problem we are facing is not simple.1 Claims for and against classical and non-classical
logics are abundant in the literature. To be able to study the question seriously we must set
the background properly and isolate for examination the basic features involved. Further than
that, we are going to have to analyse several case studies in detail because we have to see what
machinery is involved in the classical vs non-classical representation and reasoning. The issue is so
dependent on fine tuning of concepts and methods that no amount of general discussion (without
actual technical details) will settle it. In short, to support the claim that classical logic is universal
in some sense one has to go ahead and show it in technical details!

What is it that we have to do? A close examination of application areas suggests the study of
the following basic features which seem to be central and important for our assessment.

1. We must first have a clear concept of the notion of what is a logical system and what is
the place of classical and non-classical logics in the family of logics. The proposed notion of
logical systems must take into account the multitude of ‘logics’ arising in application areas
such as software engineering and artificial intelligence. In many such applications there seem
to be several approaches of using logics, among them feature some prominent non-classical
specialised logics, as well as the direct use of classical logics. An analysis of how classical
logic compares in such applications with the use of non-classical logic might give us a clue
for our general assessment of classical vs non classical logics.

2. We need to analyse the technical characteristics of classical logic and some non-classical logics
and compare them in terms of expressive power and computability.

This will give us a picture of the ‘mathematical’ properites of these logics. Once we under-
stand the mathematical properties of what we are dealing with, we can proceed and make
judgment about applicability.

3. For this purpose we need to study what conceptual committment we make when operating
(a) in classical logic and (b) in non-classical logics. If classical logic is a candidate for being
a universal system, this analysis will help us determine in what sense it is universal. For
example we may discover that from the point of view of automated deduction (and from this
point of view only) classical logic can serve as a universal system.

4. Having understood by now the properties of classical and non-classical logics a bit better,
the natural next step is to study translation methods and especially the way non-classical
logics can be translated into classical logic.

Experience with applications shows that translation methods are central to classical logic
applicability.

5. The notion of translation needs clarification in itself. Many of the reductions of non-classical
logic and/or application areas representations make use of classical logic as a metalevel lan-
guage. This is a special kind of reduction. We therefore need to study notions of metalevel
and the possibilities of using any logic as a metalevel tool.

We need the notion of ‘object level implementation of metalevel features’. Obviously the use
of classical logic as a metalevel Turing machine is not going to be an acceptable support for
its universality.

1The problem is referred to as ‘The Debate’ by our colleagues at Imperial College.
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6. There is another problem we need to clarify. Up to now we used the term of ‘classical logic’
in our discussion. Do we mean first-order classical logic, or do we mean higher-order classical
logic or extensions? Can it be many sorted logic? Or perhaps any system which is classical
logic ‘look alike’ and gives the same ‘feel’?

7. We need to develop methodology and theorems showing how (almost) an arbitrary logic can
be translated in a natural way into classical logic.

8. The study of all the above mentioned concepts needs to be enhanced and sharpened by
diverse case studies from typical application areas.

The following is our plan and strategy for the chapter.
Our overall goal is to show that classical logic can be used as a universal system at least from

the point of view of automated deduction. Our main support for this view is the technical result
that there exists an algorithmic procedure which can translate (in a meaningful way) an almost
arbitrary non-classical logic into classical logic. The core of the Chapter is comprised of the analysis
of the concepts involved and the presentation and evaluation of the translation.

Section 2 will examine the notion of what is a logical system. The considerations are driven
by the needs of application areas and the needs for automated reasoning. We will progressively
refine our notion of logic by catering for more and more reasoning features needed in artificial
intelligence and software engineering applications and more and more fine tuning features needed
for automated reasoning. We will end up with a notion of a logic which is not at all like classical
logic. This process will achieve two objectives.

1. It will progressively persuade us that different kinds of logics with many features are needed
in applications.

2. It will show us exactly where classical logic is situated in this panorama of logical systems.

To proceed, we now have two options. The first is to accept the need to work directly in non-
classical logics and build an optimal logic for our use and/or develop methodologies for working
in a pluralistic view of logics. The second is to claim that although we do concede that there
is the phenomena of ‘non-classical’ types of reasoning and other specialised modes of reasoning
commonly ‘perceived’ as new logics we still maintain that really these should be considered as
speicalised systems to be expressed in classical logic. Thus there is need for only one universal
logic, namely classical logic or a variant in which various forms of reasoning can be expressed.
There is no need (indeed it may be ill advised) to construct a new logic for each type of reasoning.

To investigate the merits of each option we need case studies and some theoretical work. The
second option, using classical logic or variant as a universal system, presupposes expressive power
and naturalness of use. This has to be examined.2

At this point we must impress upon the reader that the only way to obtain a satisfactory answer
to the question of the universality of classical logic is to proceed and show in detail how and by
what mechanisms and translation methods classical logic can serve as a universal language and
examine the merit of every step we are doing. No general considerations will do. We must carry
out a detailed reduction program which is so naturally and clearly motivated that if it is found
unsatisfactory then we will be convinced that no such reduction is of merit!

We thus proceed to Section 3 entitled ‘How to construct a logic for your application’. We ex-
amine in this Section the needs of two central application areas, temporal reasoning and PROLOG
and parsing as deduction, and see how classical logic and the more specialised temporal logic and
the Lambek Calculus compare with each other mathematically and conceputally. Unfortunately
the case studies have to be done in detail and in full. The details are necessary to appreciate the
fine tuning and subtlty of the question we are studying.

Our conclusion from these case studies is that although classical logic (or more precisely a vari-
ation, many sorted possibly second-order classical logic) is mathematically adequate, there is still

2The social argument, that classical logic is well known and is already established in many communities, can
only supplement a scientific argument.
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the problem of naturalness of the representation and the compatibility of the reasoning movements
in the application areas which stands in contrast with the fixed and limited reasoning machin-
ery options of classical logic. On the other hand the non-classical logic candidates, e.g. temporal
and modal logics also have their drawbacks especially when it comes to ease of computation and
possibilities of skolemisation and normal form.3

At this stage (after Section 3) we have a stalemate. We could advise the reader to use specialised
logic if he wants to keep close to the application area (fine tuned jobs) and be prepared to sacrifice
computational ease and only use classical machinery for the ‘heavy’ jobs. We can leave it at that
and maybe even support a compromise on hybrid reasoning or maybe stick to classical logic and
disregard the problem of naturalness.

We choose to persist and proceed along a different route. We say let us be open minded. We
have seen the drawbacks of each approach for these case studies. Let us construct a better, more
flexible logical framework for the application areas by closely examining their needs. Let us forget
about the classical vs non-classical logic problem. Let us just do what seems to be right and
develop the best system which hopefully has the best of the classical and non-classical approaches.

This we do in Section 4, right after the case studies. We simply continue to analyse the case
studies and devlop the notion of algebraic Labelled Deductive System, LDS.

We now resume the main thread of the argument about the universality of classical logic and
argue as follows.

We argue that we have examined some case studies and developed some best systems directly for
them. These systems can be translated into classical logic (i.e. in our case LDS can be translated).
The translation is more or less naturalness preserving. Therefore classical logic can serve as a
universal system.

To support this argument we need to:

1. Show how an almost arbitrary logic can be naturally presented as an LDS.

2. Show how LDS can be translated into classical logic in a natural way.4

(1) and (2) show that an arbitrary logic can be technically translated into classical logic. The
problem now is the acceptability and quality of the reduction-translation. Obviously a metalevel
translation through Gödel numbers is not what we want. Such translation will not convince us
of the universality of classical logic. A term translation (i.e. turning all wffs into terms) is not
satisfactory either.5

So we ask what is then to be considered good translation? We therefore need:

3. A theory of translation and metalevel translation or at least some acceptable ways of trans-
lation which will count as satisfactory reductions into classical logic.

Sections 5 and 6 deal with translation problems. Section 7 and 8 deal with the metalevel, in
an attempt to propose classical logic (look-alike) extension which can serve as a universal system.
Section 9 uses algebraic methods and shows that almost any logic can be translated into classical
logic.

By now we can assume that we have successfully shown that a rather general class of logics
can be translated (in a satisfactory way) into classical logic. Can we now claim that classical logic
can serve as a universal logic. Unfortunately, not yet: We still have one more point to argue.
Classical logic itself can be translated into, say, intuitionistic logic. This logic is constructive, is

3My personal view is that only from the automated reasoning point of view does current knowledge distinguish
classical logic as universal.

4Personally, I was quite happy with LDS. It is a general unifying framework for logics which is also capable
of bringing the semantics into the syntax and is very flexible. The simple version of algebraic LDS seems a good
compromise language for our case studies. I could not help but notice, however, that algebraic LDS can easily be
translated into many sorted classical logic, though some naturalness of the presentation is lost! Since LDS is a
general framework it can serve as a vehicle for reducing an almost arbitrary logic into classical logic. For the sake of
the universality argument the reader need not necessarily support LDS, just accept the reduction to classical logic
it generates.

5I find the claim that the possiblity of using term translation into classical logic actually establishes its universality
unreasonable. See example 10.2.5 for my reasons. The notion of term translation is defined in 8.0.5 and 9.0.8.
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richer and has a nicer proof theory. Our entire argument can be used now to show that we should
use intuitionistic or linear logic as the universal logic. Why classical logic? A historical accident?
Is it like FORTRAN, a substandard language which cannot be rid of for social reasons or does
classical logic have some special features?

Section 10 shows that certain features are available in classical logic which cannot be obtained
in intuitionistic logic. These features are available in linear logic. Should we then adopt linear
logic?

I shall not answer this question now. Let us wait until the end of the Chapter, where all will
be unveiled!

The following summarises the structure of arguments in the debate.
The Proposal
It is strongly reasonable to regard classical logic as a distinguished universal system of logic among
the pluralistic family of logics. Classical logic or some reasonable extension of it, can sensibly and
profitably ‘stand in’ for most proposed non-classical logics, especially when applied in Artificial
Intelligence, Logic Programming and Software Engineering. Classical Logic is outstanding when
it comes to automated reasoning needs.

The approach for supporting the proposal

• Take typical case studies and show how classical logic (or extensions) can ‘stand in’ for
non-classical logics.

• Clarify, as much as possible, all conceputal ambiguities inherent in the meaning of ‘standing
in for’.

The argument
The argument relies on two main points

• Almost any logic can be translated into classical logic using good translation methods.

• Other logics seem to have some natural requirements in functionality (automated deduction,
interpolation, SCAN) and structure (labelling, bringing semantics into syntax) which are
better treated through (which in fact invite) translation into classical logic.

• Some of these functionality requirements can be effectively done at current state of knowledge
only through translation.

The presentation of the argument

• Present classical logic within the pluralistic family of logics. Stretch the notion of logic as
much as possible, to show that really the notion of logic we need (in view of applications) is
very general indeed (Section 2).

• Take two traditional case studies. One syntactical (Lambek calculus) with wide applications
in logic and language and one semantical (temporal logic) with wide applications in AI and
software engineering. Analyse in detail how classical logic can ‘stand in’ for them. See the
weaknesses and propose a natural improvement, (Labeled Deductive Systems). (Section 3).

• Having proposed the discipline of Labelled Deductive Systems, show that it seems to unify
and act as a framework for the variety of logics of section 2. Thus show that perhaps LDS
can be the universal framework. Show how almost an arbitrary logic can be presented in
LDS (Section 9).

• Show how LDS can be more or less naturally translated into classical logic and then using
this experience, show how classical logic or extensions (linked predicate languages, which is
really LDS in disguise and HFP) can serve as a universal target translation, (Section 8).

• Strengthen the argument by fortifying the conceptual foundation of object level and metalevel
translation.

• Show why translation into other logics cannot give the same functionality, (Section 11).
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2 What is a logical system?—the challenge

This section studies the notion of what is a logical system. It will incrementally motivate a notion
of logical system through the needs of various applications and applied logical activity. The aim
is to set the scene for the examination of the relationship of classical and non-classical logic, and
pose the challenge to the claim of the universality of classical logic. The section proposes an
increasingly more detailed image of a logical system. The initial position is that of a logical system
as a consequence relation on sets of formulas. Thus any set theoretical binary relation of the
form ∆ |∼ Γ satisfying certain conditions (reflexivity monotonicity and cut) is a logical system.
Such a relation has to be mathematically presented. This can be done either semantically, or
set theoretically or it can be algorithmically generated. There are several options for the latter.
Generate first the {A | ∅ |∼ A} as a Hilbert system and then generate {(∆,Γ) | ∆ |∼ Γ} or generate
the pairs (∆,Γ) directly (via Gentzen rules) or we use any other means (other proof theories)?

The concepts of a logical system, semantics and proof theory are not sharp enough even in the
traditional literature. There are no clear definitions of what is a proof theoretic formulation of a
logic (as opposed to, e.g. a decision procedure algorithm) and what is e.g. a Gentzen formulation.
Let us try here to propose a working definition, only for the purpose of making the reader a bit
more comfortable and not necessarily for the purpose of giving a definitive formulation of these
concepts.

• We start with the notion of a well formed formula of the langauge L of the logic.

• A consequence relation is a binary (consequence) relation on finite sets of formulas, ∆,Γ
written as ∆ |∼ Γ, satisfying certain conditions, namely reflexivity,monotonicity and cut.

• Such a relation can be defined in many ways. For example, one can list all pairs (∆,Γ) such
that ∆ |∼ Γ should hold. Another way is to give ∆,Γ to some computer program and wait
for an answer (which should always come).

• A semantics is an interpretation of the langauge L into some family of set theoretical struc-
tures, together with an interpretation of the consequence relation |∼ in terms of the inter-
pretation. What I have just said is not clear in itself because I have not explained what
‘structures’ are and what an interpretation is. Indeed, there is no clear definition of what
is semantics. In my book [Gabbay, 1976], following Scott I defined a model as a function
s giving each wff of the language a value in {0,1}. A semantics S is a set of models, and
∆ |∼S Γ is defined as the condition:

(∀s ∈ S)[∀X ∈ ∆(s(X) = 1) → ∃Y ∈ Γ(s(Y ) = 1)]

• There can be algorithmic systems for generating |∼. Such systems are not to be considered
‘proof theoretical systems’ for |∼. They could be decision procedures or just optimal theorem
proving machines.

• the notion of a proof system is not well defined in the literature. There are some recognised
methodologies such as ‘Gentzen formulations’, ‘tableaux’, ‘Hilbert style’ but these are not
sharply defined. For our purpose, let us agree that a proof system is any algorithmic system
for generating |∼ using rules of the form:

∆1 |∼ Γ1; . . . ; ∆n |∼ Γn

∆ |∼ Γ

and ‘axioms’ of the form:
∅

∆ |∼ Γ

The axioms are initial list of (∆,Γ) ∈|∼ and the other rules generate more. So a proof system
is a particular way of generating |∼. Note that there need not be structural requirement on
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the rule (that each involves a main connective and some subformulas, etc.).
A Gentzen formulation would be a proof system where the rules are very nicely structured
(try to define something reasonable yourself, again, there is no clear definition!) and a Hilbert
formulation is a proof system where all the ∆’s involved are ∅.

The central role which proof theoretical methodologies plays in generating logics compells us to
put forward the view that a logical system is a pair (|∼,S|∼), where S|∼ is a proof theory for |∼.
In other words, we are saying that it is not enough to know |∼ to ‘understand’ the logic, but we
must also know how it is presented (i.e. S|∼).

The next shift in our concept of a logic is when we observed from application areas whose
knowledge representation involves data and assumptions the need to add structure to the assump-
tions and the fact that the reasoning involved relies on and uses the structure. This view also
includes non-monotonic systems. This led us to develop the noton of Labelled Deductive Systems
and adopt the view that this is the framework for presenting logics. Whether we accept these new
systems as logics or not, 6 classical logic must be able to represent them.

The real departure from traditional logics (as opposed to just giving them more structure)
comes with the notion of aggregating arguments. Real human reasoning does aggregate arguments
(circumstantial evidence in favour of A as opposed to evidence for ¬A) and what is known as quan-
titative (fuzzy) reasoning systems make heavy use of that. Fortunately LDS can handle that easily.
The section concludes with the view that a proper practical reasoning system has ‘mechanisms’
for updates, inputs, abduction, actions, etc. as well as databases (theories, assumptions) and that
a proper logic is an integrated LDS system together with a specific choice of such mechanisms.7

2.1 Logical systems as consequence relations

Traditionally, to present a logic L, we need to first present the set of well formed formulas of
that logic. This is the language of the logic. We define the sets of atomic formulas, connectives,
quantifiers and the set of arbitrary formulas. Secondly we mathematically define the notion of
consequence, namely for a given set of formulas ∆ and a given formula Q, we define the consequence
relation ∆ |∼L Q, reading ‘Q follows from ∆ in the logic L’.

The consequence relation is required to satisfy the following intuitive properties: (∆,∆′ abbre-
viates ∆ ∪ ∆′).

Reflexivity

∆ |∼ Q if Q ∈ ∆

Monotonicity

∆ |∼ Q implies ∆,∆′ |∼ Q

6Indeed almost any logic can be presented as an LDS. This had led me to accept that classical logic can act as
a universal system from the point of view of automated deduction, because there are natural ways of translating
LDS into an extension of classical logic as shown in Section 7, and we can benefit from this reduction by using the
computational machinery (e.g. resolution) of classical logic.

7My personal view is that this is a logic, i.e. Logic = LDS system + several mechanisms. In AI circles this might
be called an agent. Unfortunately, some members of the traditional logic community are still very conservative in
the sense that they have not even accepted non-monotonic reasoning systems as logics yet. They believe that all
this excitement is transient, temporarily generated by computer science and that it will fizzle out sooner or later.
They believe that we will soon be back to the old research problems, such as how many non-isomorphic models does
a theory have in some inaccessible cardinal or what is the ordinal of yet another subsystem of analysis. I think this
is fine for mathematical logic but not for the logic of human reasoning. There is no conflict here between the new
and the old, just further evolution of the subject.
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Transitivity (Cut)8:

∆ |∼ A; ∆, A |∼ Q imply ∆ |∼ Q

The consequence relation may be defined in various ways. Either through an algorithmic system
S|∼,or implicitly by postulates on the properties of |∼.

Thus a logic is obtained by specifying L and |∼. Two algorithmic systems S1 and S2 which
give rise to the same |∼ are considered the same logic.

If you think of ∆ as a database and Q as a query, then reflexivity means that the answer is
yes to any Q which is officially listed in the database. Monotonicity reflects the accumulation of
data, and transitivity is nothing but lemma generation, namely if ∆ |∼ A, then A can be used as
a lemma to obtain B from ∆.

The above properties seemed minimal and most natural for a logical system to have, given that
the main applications of logic were in mathematics and philosophy.

The above notion was essentially put forward by [Tarski, 1936] and is referenced to as Tarski
consequence. [Scott, 1974], following [Gabbay, 1969], generalised the notion to allow Q to be a set
of formulas Γ. The basic relation is then of the form ∆ |∼ Γ, satisfying:

Reflexivity

∆ |∼ Γ if ∆ ∩ Γ ̸= ∅

Monotonicity

∆ |∼ Γ

∆,∆′ |∼ Γ

Transitivity (cut)

∆, A |∼ Γ; ∆′ |∼ A,Γ′

∆′,∆ |∼ Γ,Γ′

Scott has shown that for any Tarski consequence relation there exists two Scott consequence
relations (a maximal one and a minimal one) that agree with it (see my book [Gabbay, 1986]).

The above notions are monotonic. However, the increasing use of logic in theoretical computer
science and artificial intelligence has given rise to logical systems which are not monotonic. The
axiom of monotonicity is not satisfied in these systems. There are many such systems, satisfying a
variety of conditions, presented in a variety of ways. Furthermore, some are proof theoretical and

8There are several versions of the Cut Rule in the literature, they are all equivalent for the cases of classical
and intuitionistic logic but are not equivalent in the context of this section. The version in the main text we call
Transitivity (Lemma Generation). Another version is:

Γ |∼ A ∆, A |∼ B
.

∆,Γ |∼ B

This version implies monotonicity, when added to Reflexivity.
Another version we call Internal Cut:

∆, A |∼ Γ ∆ |∼ A,Γ
.

∆ |∼ Γ

A more restricted version of cut is Unitary Cut:

∆ |∼ A;A |∼ Q

∆ |∼ Q
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some are model theoretical. All these different presentations give rise to some notion of consequence
∆ |∼ Q, but they only seem to all agree on some form of restricted reflexivity (A |∼ A). The essential
difference between these logics (commonly called non-monotonic logics) and the more traditional
logics (now referred to as monotonic logics) is the fact that ∆ |∼ A holds in the monotonic case
because of some ∆A ⊆ ∆, while in the non monotonic case the entire set ∆ is used to derive A.
Thus if ∆ is increased to ∆′, there is no change in the monotonic case, while there may be a change
in the non monotonic case.

The above describes the situation current in the early 1980’s. We have had a multitude of
systems generally accepted as ‘logics’ without a unifying underlying theory and many had semantics
without proof theory. Many had proof theory without semantics, though almost all of them were
based on some sound intuitions of one form or another. Clearly there was the need for a general
unifying framework. An early attempt at classifying non-monotonic systems was [Gabbay, 1985].
It was put forward that basic axioms for a consequence relation should be reflexivity, transitivity
(cut) and restricted monotonicity, namely:

Restricted Monotonicity

∆ |∼ A; ∆ |∼ B

∆, A |∼ B

A variety of systems seem to satisfy this axiom. Further results were obtained [Kraus et al., 1990,
Makinson, 1989, Lehmann and Magidor, 1992, Wójcicki, 1988, Wójcicki, to appear, Makinson, 1989]
and the area was called ‘axiomatic theory of the consequence relation’ by Wojcicki.9

Although some classification was obtained and semantical results were proved, the approach
does not seem to be strong enough. Many systems do not satisfy restricted monotonicity. Other
systems such as relevance logic, do not satisfy even reflexivity. Others have richness of their own
which is lost in a simple presentation as an axiomatic consequence relation. Obviously a different
approach is needed, one which would be more sensitive to the variety of features of the systems in
the field. Fortunately, developments in a neighbouring area, that of automated deduction, seem to
give us a clue.

2.2 Logical systems as algorithmic proof systems

The relative importance of automated deduction is on the increase, in view of its wide applicability.
New automated deduction methods have been developed for non-classical logics, and resolution
has been generalised and modified to be applicable to these logics. In general, because of the value
of these logics in theoretical computer science and artificial intelligence, a greater awareness of the
computational aspects of logical systems is developing and more attention being devoted to proof
theoretical presentations. It became apparent to us that a key feature in the proof theoretic study
of these logics is that a slight natural variation in an automated or proof theoretic system of one
logic (say L1), can yield another logic (say L2).

Although L1 and L2 may be conceptually far apart (in their philosophical motivation, and
mathematical definitions) when it comes to automated techniques and proof theoretical presenta-
tion, they turn out to be brother and sister. This kind of relationship is not isolated and seems to
be widespread. Furthermore, non monotonic systems seem to be obtainable from monotonic ones
through variations on some of their monotonic proof theoretical formulation.

This seems to give us some handle on classifying non-monotonic systems.
This phenomena has prompted us to put forward the view that a logical system L is not just

the traditional consequence relation ⊢ (monotonic or non monotonic) but a pair (|∼,S|∼), where
⊢ is a mathematically defined consequence relation (ie the set of pairs (∆,Γ) such that ∆ |∼ Γ)
satisfying whatever minimal conditions on a consequence one happens to agree to, and S|∼ is an
algorithmic system for generating all those pairs [Gabbay, 1992a]. Thus according to this definition
classical propositional logic |∼ perceived as a set of tautologies together with a Gentzen system S|∼

9In general, the exact formulations of transitivity and reflexivity can force some form of monotonicity.
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is not the same as classical logic together with the two valued truth table decision procedure T|∼
for it. In our conceptual framework,( |∼,S|∼) is not the same logic as (|∼,T|∼).

To illustrate and motivate our way of thinking, observe that it is very easy to move from T|∼ for
classical logic to a truth table system Tn

|∼ for  Lukasiewicz n-valued logic. It is not so easy to move
to an algorithmic system for intuitionistic logic. In comparison, for a Gentzen system presentation,
exactly the opposite is true. Intuitionistic and classical logics are neighbours, while Lukasiewicz
logics seem completely different. In fact for a Hilbert style or Gentzen style formulation, one can
show proof theoretic similarities between  Lukasiewicz’s infinite valued logic and Girard’s Linear
Logic, which in turn is proof theoretically similar to intuitionistic logic.

This issue has a bearing on the notion of ‘what is classical logic’, in other words, the question
of what is it that we support as a universal system? Given an algorithmic proof system S|∼c

for classical logic |∼c, then (|∼c,S|∼c
) is certainly classical logic. Now suppose we change S|∼c

a
bit by adding heuristics to obtain S′. The heuristics and modifications are needed to support an
application area. Can we still say that ‘classical logic supports the application area’ and therefore
we have here yet another instance of the universality of classical logic? I suppose we can because
S′ is just a slight modification of S|∼c

. However, slight modifications of an algorithmic system may
yield another well-known logic. In fact S′ may be linear logic. So is classical logic supporting the
application or is linear logic? Or perhaps when we say ‘classical logic is universal’ we mean ‘A
certain proof methodology (e.g. resolution) and all its slight modifications are universal’, no matter
what logic the modification is.

We give an example from goal directed implicational logic. Consider a language with implication
only. It is easy to see that all wffs have the form A1 → (A2 → . . .→ (An → q) . . .), q atomic. We
now describe a computation with database a multiset ∆ of wffs of the above form and the goal a
wff of the above form. We use the metapredicate ∆ ⊢ A to mean the computation succeeds; i.e. A
follows from ∆. Here are the rules:

1. ∆, q ⊢ q, q atomic and ∆ empty. (Note that we are not writing A ⊢ A for arbitrary A. This
is not a Gentzen system).

2. ∆ ⊢ A1 → (A2 → . . . → (An → q) . . .) if ∆ ∪ {A1, . . . , An} ⊢ q. Remember we are dealing
with multisets.

3. ∆′ = ∆ ∪ {A1 → (A2 → . . . (An → q) . . .)} ⊢ q if ∆ = ∆1 ∪ . . . ∪ ∆n, ∆i, i = 1, . . . , n are
pairwise disjoint and ∆i ⊢ Ai.

The above computation characterises linear implication. If we relinquish the side condition in (3)
and let ∆i = ∆′ and the side condition (1) that ∆ is empty, we get intuitionistic implication.

The difference in logics is serious. In terms of proof methodologies, the difference is minor.

2.3 Logical systems as algorithmic structured consequence relations

Further observation of field examples shows that in many cases the database is not just a set
of formulas but a structured set of formulas. The most common is a list or multiset.10 Such
structures appear already in linear and concatenation logics and in many non-monotonic systems
such as priority and inheritance systems. In many algorithmically presented systems much use is
made (either explicitly or implicitly) of this additional structure.

A very common example is a Horn clause program. The list of clauses

(a1) q
(a2) q → q

does not behave in the same way as the list

(b1) q → q
(b2) q

10Classical logic cannot make these distinctions using conjunction only. It needs further annotation or use of
predicates.
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The query ?q succeeds from one and loops from the other. This example is studied in more detail
in Section 3.

It is necessary to formulate axioms and notions of consequence relations for structures. This is
studied in detail in [Gabbay, 1993a]. Here are the main features.

• Databases (Assumptions) are structured. They are not just sets of formulas but have a more
general structure such as multisets, lists, partially ordered sets, etc. To present a database
formally, we need to describe the structures. Let M be a class of structures (e.g. all finite
trees). Then a database ∆ has the form ∆ = (M, f), where M ∈ M and f : M 7→ wffs,
such that for each t ∈M, f(t) is a formula. We assume the one point structure {t} is always
in M. We also assume we know how to take any single point t ∈ M out of M and obtain
(M ′, f ′), f ′ = f �M .

• A structured-consequence relation |∼ is a relation ∆ |∼ A between structured databases ∆
and formulas A.

• |∼ must satisfy the minimal conditions, namely

Identity

{A} |∼ A

Surgical Cut

∆ |∼ A; Γ[A] |∼ B

Γ[∆] |∼ B

where Γ[A] means that A resides somewhere in the structure Γ and Γ[∆] means that ∆
replaces A in the structure. These concepts have to be defined precisely. If ∆ = (M1, f1)
and Γ = (M2, f2) then Γ[A] displays the fact that for some t ∈ M2, f2(t) = A. We allow for
the case that M2 = f2 = ∅ (i.e. taking A out) We need a notion of substitution, which is a
binary function Sub(Γ,∆, t), meaning that for t ∈ M2 we substitute M1 in place of t. This
gives us a structure (M3, f3) according to the definition of Sub. (M3, f3) is displayed as Γ[∆],
and Γ[∅] displays the case of taking A out.
Many non monotonic systems satisfy a more restricted version of surgical cut:

Γ[∅/A] |∼ A; Γ[A] |∼ B

Γ[Γ[∅/A]] |∼ B

Another variant would be
Deletional Cut

Γ[∅/A] |∼ A; Γ[A] |∼ B

Γ[∅/A] |∼ B
.

• A logical system is a pair (|∼,S|∼), where ⊢ is a structured-consequence and S|∼ is an algo-
rithmic system for it.

Of course we continue to maintain our view that different algorithmic systems for the same struc-
tured consequence relation define different logics. Still although we now have a fairly general
concept of a logic, we do not have a general framework. Monotonic and non-monotonic systems
still seem conceptually different. There are many diverse examples among temporal logics, modal
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logics, defeasible logics and more. Obviously, there is a need for a more unifying framework. The
question is, can we adopt a concept of a logic where the passage from one logic to another is natu-
ral, and along predefined acceptable modes of variation? Can we put forward a framework where
the computational aspects of a logic also play a role? Is it possible to find a common home for
a variety of seemingly different techniques introduced for different purposes in seemingly different
intellectual logical traditions?

2.4 Logical systems as labelled deductive systems

To find an answer, let us ask ourselves what makes one logic different from another? How is
a new logic presented and described and compared to another? The answer is obvious. These
considerations are performed in the metalevel. Most logics are based on modus ponens anyway.
The quantifier rules are formally the same anyway and the differences between them are metalevel
considerations on the proof theory or semantics. If we can find a mode of presentation of logical
systems where metalevel features can reside side by side with object level features then we can
hope for a general framework. We must be careful here. In the logical community the notions of
object-level vs metalevel are not so clear. Most people think of naming and proof predicates in this
connection. This is not what we mean by metalevel here. We need a more refined understanding
of the concept. There is a similar need in computer science. We shall discuss these topics in a later
section.

We found that the best framework to put forward is that of a Labelled Deductive System, LDS.
Our notion of what is a logic is that of a pair (|∼,S|∼) where ⊢ is a structured (possibly non-
monotonic) consequence relation on a language L and S|∼ is an LDS, and where ⊢ is essentially
required to satisfy no more than Identity (i.e. {A} |∼ A) and a version of Cut. This is a refinement
of our concept of a logical system presented in [Gabbay, 1992a]. We now not only say that a logical
system is a pair (|∼,S|∼), but we are adding that S⊢ itself has a special presentation, that of an
LDS.

As a first approximation, we can say that an LDS system is a triple (L,A,M), where L is a
logical language (connectives and wffs) and A is an algebra (with some operations) of labels and
M is a discipline of labelling formulas of the logic (from the algebra of labels A), together with
deduction rules and with agreed ways of propagating the labels via the application of the deduction
rules. The way the rules are used is more or less uniform to all systems.

To present an LDS system we need first to define its set of formulas and its set of labels.
For example, we can take the language of classical logic as the formulas (with variables and

quantifiers) and take some set of function symbols on the same variables as generating the labels.
More precisely, we allow for ordinary formulas of predicate logic with quantifiers to be our LDS
formulas. Thus ∃xA(x, y) is a formula with free variable y and bound variable x. To generate the
labels, we start with a new set of function symbols t1(y), t2(x, y), . . . of various arities which can
be applied to the same variables which appear in the formulas. Thus the labels and formulas can
share variables. We can form declarative units of the form t1(y) : ∃xA(x, y). When y is assigned a
value y = a, so does the label and we get t1(a) : ∃xA(x, a). The labels should be viewed as more
information about the formulas, which is not coded inside the formula, (hence dependence of the
labels on variables x makes sense as the extra information may be different for different x). A
formal definition of an algebraic LDS system will be given later, meanwhile, let us give an informal
definition of an LDS system and some examples which help us understand what and why we would
want labels.11

11The idea of annotating formulas for various purposes is not new. A R Anderson and N. Belnap in their book
on Entailment, label formulas and propagate lables during proofs to keep track of relevance of assumptions. Term
annotations (Curry–Howard formula as type approach) are also known where the propagation rules are functional
application. The Lambek Calculus and the categorial approach is also related to labelling. What is new is that we
are proposing that we use an arbitrary algebra for the labels and consider the labelling as part of the logic. We
are creating a discipline here of LDS and claiming that we have a unifying framework for logics and that almost
any logic can be given an LDS formulation. We are claiming that the notion of a logic is an LDS. This is not the
same as the occasional use of labelling with some specific purpose in mind. We are translating and investigating
systematically all the traditional logical concepts into the context of LDS and generalising them.

I am reminded of the story of the Yuppy who hired an interior decorator to redesign his sitting room. After much
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Definition 2.1 [Prototype LDS System] Let A be a first order language of the form A = (A,R1, . . . , Rk,
f1, . . . , fm) where A is the set of terms of the algebra (individual variables and constants) and Ri
are predicates (on A, possibly binary but not necessarily so) and f1, . . . , fm are function symbols
(on A) of various arities. We think of the elements of A as atomic labels and of the functions as
generating more labels and of the relations as giving additional structure to the labels. A typical
example would be (A,R, f1, f2) where R is binary and f1, f2 are unary.
A diagram of labels is a set M containing elements generated from A by the function symbols
together with predicates of the form ±R(t1, . . . , tk), where ti ∈ M and R is a relation of the
algebra.
Let L be a predicate language with connectives ♯1, . . . , ♯n, of various arities, with quantifiers and
with the same set of atomic terms A as the algebra.
We define the notions of a declarative unit, a database and a label as follows:

1. An atomic label is any t ∈ A. A label is any term generated from the atomic labels by the
functions f1, . . . , fm.

2. A formula is any formula of L.

3. A declarative unit is a pair t : A, where t is a label and A is a formula.

4. A database is either a declarative unit or has the form (a,M, f), where M is a finite diagram
of labels, a ∈ M is the distinguished label, and f is a function associating with each label t
in M either a database or a finite set of formulas.

Definition 2.4.1 is simplified. To understand it intuitively, think of the atomic labels as atomic
places and times (top of the hill, Jan 1st 1992, etc.) and the function symbols as generating more
labels, namely more times and more places (behind(x), day after(t) etc.). We form declarative
units by taking labels and attaching formulas to them. Complex structures (M, f) of these units
are databases. This definition can be made more complex. Here the labels are terms generated by
function symbols from atomic labels. We can complicate matters by using databases themselves as
labels. This will give us recursively more complex, richer labels. We will not go into that now. The
first simplification is therefore that we are not using databases as labels. The second simplification
is that we assume constant domains. All times and places have the same elements (population) in
them. If this were not the case we would need a function Ut giving the elements residing in t, and
a database would have the form (A,M, f , Ut). This point will be taken up in a later section.

Example 2.2 Consider a language with the predicate VS900(x, t). This is a two sorted predicate,
denoting Virgin airline flight London-Tokyo, where t is the flight date and x is a name of an
individual. For example VS900 (Dov, 15.11.91) may be put in the database, denoted that Dov is
booked on this flight scheduled to embark on 15.11.91.
If the airline practices overbooking and cancellation procedures (whatever that means), it might
wish to annotate the entries by further useful information such as

• Time of booking;

• Individual/group travel booking;

• Type of ticket

• ± VIP.

This information may be of a different nature to that coded in the main predicate and it is therefore
more convenient to keep it as annotation, or label. It may also be the case that the manipulation
of the extra information is of a different nature to that of the predicate.

study, the decorator recommended that the Yuppy needed a feeling of space and so the best thing to do is to arrange
the furniture against the wall, so that there will be a lot of space in the middle. The cleaning lady, when she first
saw the new design was very pleased. She thought it was an excellent idea. ‘Yes’, said the Yuppy, ‘and I paid £1000
for it’. ‘That was stupid’, exclaimed the cleaning lady, ‘I could have told you for free! I arrange the furniture this
way every time I clean the floor!’.

Of course she is right, but she used the idea of the new arrangement only as a side effect!
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In general, there may be many uses for the label t in the declarative unit t : A. Here is a partial
list

• Fuzzy reliability value:
(a number x, 0 ≤ x ≤ 1.) Used mainly in expert systems.

• Origin of A:
t indicates where the input A came from. Very useful in complex databases.

• Priority of A:
t can be a date of entry of updates and a later date (label) means a higher priority.

• Time when A holds:
(temporal logic)

• Possible world where A holds:
(modal logic)

• t indicates the proof of A:
(which assumptions were used in deriving A and the history of the proof). This is a useful
labelling for Truth Maintenance Systems.

• t can be the situation and A the infon (of situation semantics).

Example 2.3 Let us look at one particular example, connected with modal logic. Assume the
algebra A has the form (A,<), with a set of atomic labels A, no function symbols and a binary
relation <. According to the previous definition, a diagram of labels, would contain a (finite) set
M ⊆ A, together with a set of pairs of the form {t < s}, t, s,∈ M . A database has the form
(a,M, f), where M is a finite diagram and f is a function, say giving a formula At = f(t), for each
t ∈M .

The perceptive reader may feel resistence to the idea of the label at this stage. First be assured
that you are not asked to give up your favourite logic or proof theory nor is there any hint of a
claim that your activity is now obsolete. In mathematics a good concept can rarely be seen or
studied from one point of view only and it is a sign of strength to have several views connecting
different concepts. So the traditional logical views are as valid as ever and add strength to the new
point of view. In fact, manifestations of our LDS approach already exist in the literature in various
forms, they were locally regarded as convenient tools and there was not the realisation that there
is a general framework to be studied and developed. None of us is working in a vacuum and we
build on each others work. Further, the existence of a general framework in which any particular
case can be represented does not necessarily mean that the best way to treat that particular case
is within the general framework. Thus if some modal logics can be formulated in LDS, this does
not mean that in practice we should replace existing ways of treating the logics by their LDS
formulation. The latter may not be the most efficient for those particular logics. It is sufficient
to show how the LDS principles specialise and manifest themselves in the given known practical
formulation of the logic.

The reader may further have doubts about the use of labels from the computational point of
view. What do we mean by a unifying framework? Surely a Turing machine can simulate any logic,
is that a unifying framework? The use of labels is powerful, as we know from computer science.
Are we using labels to play the role of a Turing machine? The answer to the question is twofold.
First that we are not operating at the metalevel, but at the object level. Second, there are severe
restrictions on the way we use LDS. Here is a preview:

1. The only rules of inference allowed are the traditional ones, modus ponens and some form of
deduction theorem for implication, for example.

2. Allowable modes of label propagation are fixed for all logics. They can be adjusted in agreed
ways to obtain variations but in general the format is the same. For example, it has the
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following form for implications:
Let LDS� be a particular LDS system with labels A, and with � a special implication
characteristic to this particular LDS system. Then there exists a fixed set of labels Γ, which
can characterise � as follows. For any theory ∆ (of labelled wffs) we have:
∆ proves (A � B) with label t iff ∀x ∈ Γ [If A is labelled x then B can be proved from ∆
and x : A with labels t+ x],
where Γ is a set of labels characterising the implication in that particular logic. For example
Γ may be all atomic labels or related labels to t, or variations. The freedom that different
logics have is in the choice of Γ and the (possibly not only equational) properties of ‘+’. For
example we can restrict the use of modus ponens by a wise propagation of labels.

3. The quantifier rules are the same for all logics.

4. Metalevel features are implemented via the labelling mechanism, which is object language.

The reader who prefers to remain within the traditional point of view of:

assumptions (data) proving a conclusion

can view the labelled formulas as another form of data.
There are many occasions when it is most intuitive to present an item of data in the form t : A,

where t is a label and A is a formula. The common underlying reason for the use of the label t is
that t represents information which is needed to modify A or to supplement (the information in) A
which is not of the same type or nature as (the information represented by) A itself. A is a logical
formula representing information declaratively, and the additional information of t can certainly
be added declaratively to A to form A′, however, we may find it convenient to put forward the
additional information through the label t as part of a pair t : A.

Take for example a source of information which is not reliable. A natural way of representing
an item of information from that source is t : A, where A is a declarative presentation of the
information itself and t is a number representing its reliability. Such expert systems exist (eg
Mycin) with rules which manipulate both t and A as one unit, propagating the reliability values ti
through applications of modus ponens. We may also use a label naming the source of information
and this would give us a qualitative idea of its reliability.

Another area where it is natural to use labels is in reasoning from data and rules. If we want
to keep track, for reasons of maintaining consistency and/or integrity constraints, where and how
a formula was deduced, we use a label t. In this case, the label t in t : A can be the part of the
data which was used to get A. Formally in this case t is a formula, the conjunction of the data
used. We thus get pairs of the form ∆i : Ai, where Ai are formulas and ∆i are the parts of the
database from which Ai was derived.

A third example where it is natural to use labels is time stamping of data. Where data is
constantly revised and updated, it is important to time stamp the data items. Thus the data items
would look like ti : Ai, where ti are time stamps. Ai itself may be a temporal formula. Thus there
are two times involved, the logical time si in Ai(si) and the time stamping ti of Ai. For reasons
of clarity, we may wish to regard ti as a label rather than incorporate it into the logic (by writing
for example A∗(ti, si)).

To summarise then, we replace the traditional notion of consequence between formulas of the
form A1, . . . , An ⊢ B by the notion of consequence between labelled formulas

t1 : A1, t2 : A2, . . . tn : An ⊢ s : B

Depending on the logical system involved, the intuitive meaning of the labels vary. In querying
databases, we may be interested in labelling the assumptions so that when we get an answer to a
query, we can record, via the label of the answer, from which part of the database the answer was
obtained. Another area where labelling is used is temporal logic. We can time stamp assumptions
as to when they are true and query, given those assumptions, whether a certain conclusion will be
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true at a certain time. Thus the consequence notion for labelled deduction is essentially the same
as that of any logic: given assumptions does a conclusion follow.

Whereas in the traditional logical system the consequence is defined using proof rules on the
formulas, in the LDS methodology the consequence is defined by using rules on both formulas
and their labels. Formally we have formal rules for manipulating labels and this allows for more
scope in decomposing the various features of the consequence relation. The meta features can be
reflected in the algebra or logic of the labels and the object features can be reflected in the rules
of the formulas.

The notion of a database or of a ‘set of assumptions’ also has to be changed. A database
is a hierarchical configuration of labelled formulas. The configuration depends on the labelling
discipline. For example, it can be a linearly ordered set {a1 : A1, . . . , an : An}, a1 < a2 < . . . < an.
The proof discipline for the logic will specify how the assumptions are to be used. See for example
the logic programming case study.

We summarise our current position on what is a logical system. A logical system is a pair
(|∼,LDS|∼), where |∼ is a consequence relation between labelled databases ∆ and declarative units
t : A and LDS|∼ is an algorithmic system for |∼.

We need one more component to the notion of a logical system. In previous subsections, a
logical system was presented as (|∼,S|∼), where |∼ is a structured consequence relation satisfying
Identity and Surgical Cut and S|∼ is an algorithmic proof system for computing |∼. We are now
saying that we need to refine this notion and deal with Labelled Deductive Systems, where |∼ is
a consequence relation between labelled databases ∆ and declarative units t : A and that S|∼ is
replaced by some specific LDS discipline (algorithm) for computing the above. We need to be able
to retrieve the old notion i.e. (|∼1,S|∼1

) from the new notion (|∼2,LDS |∼2
). In other words, we

must add into LDS the capability of proving and reasoning without labels. To achieve this we
can first reason with labels and then strip the labels and give a conclusion without labels. The
additional algorithm which we can use to strip the labels is called flattening. Thus a labelled
theory ∆ may prove ti : A and si : ¬A, with many different labels ti and si, depending on various
labelling considerations and proof paths. The flattening algorithm will allow us to decide whether
we flatten the pair of sets ({ti}, {si}) to + or - i.e. whether we say ∆|∼A or ∆|∼¬A.

For example, if the labels represent moments of time or priorities, we may say the value is + if
max {ti} ≥ max{sj}. Or we may interlace the flattening with the deduction itself.

Thus, given a structured theory ∆ (without labels) and a candidate A, we can have the following
procedure, using LDS, of deciding whether ∆|∼?A.

• Label the elements of ∆ with completely different atomic labels, representing existing struc-
ture in ∆.

• Use the LDS machinery to deduce all possibilities ∆|∼ti : A and ∆|∼si : ¬A.

• Flatten and get A (or interlace with flattening and get A).

Example 2.4 Here is an example of interlacing. The database has

t1 : A
t2 : ¬A
t3 : ¬A→ B
t4 : A→ ¬B.

Assume priority is t1 < t2 < t3 < t4, and assume a flattening process which gives higher priority
rules superiority over low priority rules and similarly for facts but gives lexicographic superiority
for rules over facts. Thus t4t1 is stronger than t3t2. If we deduce and then flatten, we get

t4t1 : ¬B
t3t2 : B

The flattening process would take ¬B.
If we pursue an interlace argument, we first flatten the premisses and take ¬A and then perform
the modus ponens and get B.
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2.5 Aggregated systems

So far all our logical systems either proved or not proved a conclusion A. There was no possibility
of aggregating arguments in favour of A as against arguments in favour of negation of A. The lack
of aggregation is a basic characteristic which currently separates the symbolic qualitative school
of reasoning from the numerical, quantitative one.

There are many systems around (many are recognised as probabilistic systems, expert systems,
fuzzy systems) which attach numerical values to assumptions and rules, use various functions and
numerical procedures to manipulate these values and formulas and reach conclusions.

In many cases we get systems which give answers which seem to make sense, which can be very
successfully and profitably applied but which cannot be recognised or understood by traditional
logic. The main feature common to all of these numerical systems (which is independent of how
they calculate and propagate their values) is that their ‘proofs’ aggregate. They can add the
numbers involved and thus aggregate arguments. The spirit is: Five good rumours are better than
one proof.

To further illustrate, consider the following example

Example 2.5 The assumptions are:
t1 : A→ C
t2 : B → C
t3 : A
t4 : B
t5 : D → ¬C
t6 : D

Here we can conclude C in two different ways and conclude ¬C in one way.
Non monotonic systems like defeasible logic will not allow us to draw any conclusion unless one
rule defeats all others. If we had a numerical evaluation of the data, say ti are numbers in [0 1],
then we could aggregate our confidence in the conclusion. Thus we get:

(t1 · t3 + t2 · t4) : C
t5 · t6 : ¬C

the two numbers can be compared and a conclusion reached.

If we operate in the context of LDS, we can use the labels to aggregate arguments. Any
conclusion is proved with a label indicating its proof path. These can be formally (algebraically)
added (aggregated) and an additional process (called flattening) can compare them.

In consequence relation terms, the property of aggregation destroys the cut rule. The reason
is as follows:

Assume ∆, A |∼ B. This now means that the aggregated proofs in favour of B are stronger
than the aggregated proofs in favour of ¬B. Similarly Γ ⊢ A would mean the balance from Γ is in
favour of A.

If we perform the cut we get
∆,Γ |∼?B

∆ and Γ may interact, forming new additional proofs of ¬B, which outweigh the proofs for B.
Cut is a very basic rule in traditional logical systems and can be found in one form or another

in each one of them. Thus it is clear that aggregation of arguments is a serious departure from
traditional formal logic. Yet, it cannot be denied. In practical reasoning we do aggregate arguments
and so logic, if it is to be successfully applied and be able to mirror human reasoning, must be
able to cope with aggregation. Classical logic, if it is to be a universal language, must also be able
to deal naturally with aggregation.

One form of cut is still valid. The unitary cut.

∆ |∼ A;A |∼ B

∆ |∼ B
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This holds because there is nothing for ∆ to interact with.
We thus require from our reasoning system to satisfy only Identity (A|∼A) and Unitary Cut.
To show how real and possibly destructive aggregation can be, consider the example of Prince

Karlos and Princess Laura.

Example 2.6 The prince and princess are separated. Both made it clear to the press that no
third parties were involved and the separation was purely due to a personality clash. However,
the editor Mr Angel of the Daily Tabloid, thought otherwise. First he observed that after her
separation the princess moved to a house very near the Imperial Institute of Logic, Language and
Computation. This in itself did not mean much, because both the Institute and the residence were
in the centre of town. However, Mr Angel further found out that in the past two years, whenever
the princess went on a European holiday, there was an Esprit project meeting in the same hotel,
and surprisingly all projects involve a certain professor from the Institute. Again, this could be
a coincidence, because it is a well known fact that Esprit project consortia find it most inspiring
to be in the most expensive holiday resorts in Europe and it is equally well known that certain
dynamic professors participate in many such projects.
However the plot thickens when the princess, as part of her general social activity seems to actively
support the new logics for computation. This could also be a coincidence because after all, this
subject is going to transform the nature of our society. The various little arguments do seem to be
aggregating, though not conclusively enough to risk an article in such a responsible paper as the
Daily Tabloid. The situation changed when it became known that the princess actively supports
Labelled Deductive Systems and the Universality of classical logic. Under this aggregation of
arguments an obvious conclusion could be drawn!

2.6 Practical reasoning systems

Our discussion so far generalised the notion of a deductive system, namely, given a database ∆ and
a formula Q, we ask the basic question, does ∆ prove Q? The various concepts we studied had to
do with what form do ∆ and Q take and what kinds of consequence relations |∼ and algorithmic
systems S|∼ are involved.

In practical reasoning systems, the deductive question is but one of many which interest us.
Other operations such as updating, abduction, action, explanation are also involved. If we rethink
of Q as an input, we can partially list the kind of of operations which may be involved. These
operations are performed using algorithms which accompany the deductive component. We refer
to them as mechanisms.

• The input Q is a query from ∆. We are interested in whether ∆ |∼ Q and possibly ask what
proofs are available.

• The input Q is an update. We want to insert Q into ∆ to obtain ∆′. We may possibly have
to deal with inconsistency and restructuring of ∆.12

• The input Q is an abductive stimulus (goal). We are interested in ∆′ such that ∆ + ∆′ |∼ Q.
Where + is a symbol (to be precisely defined) which ‘adds’ or ‘joins’ ∆ and ∆′ to ‘combine’
their declarative information.

The + operation may or may not be the same as update. The abductive question is to find
(possibly the minimal) ∆′ which helps prove the input.13

• The input Q may be a stimulus for action on the database outputting a new database or
outputting an explanation or any other output of interest.

12Such a view has been presented in Chapter 13 of Bob Kowalski’s book [1986]. The systematic study of updates
and theory change was initiated in [Alchourrón et al., 1985].

13For a given system (|∼,S|∼), the abductive mechanism is usually dependent on S|∼, the particular algorithmic

proof system involved. Different applications might require different abductive procedures.
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The new possibilities of a formula Q interacting with a database ∆, (via action or abduction
or other mechanisms.) allow for a new way of answering queries from ∆. To see this, consider the
query ∆?Q. In the declarative aspect, we want an answer, namely we are asking whether ∆|∼Q.
This can be checked via S|∼,or semantically. Q does not act or change ∆ in any way. In the
interactive case, we trigger an action. Q acts on ∆ to produce a new ∆′ Q is read imperatively.
We can write ∆!Q to stress this fact. The result of the interaction is ∆′. Thus ∆!Q = ∆′. Thus
given a ∆ and a Q, we have two options. We can ask whether ∆ |∼ Q (written ∆?Q, with |∼
implicit) or we can let Q act on ∆, written ∆!Q, where ! denotes the action. When an action ! is
given, it is possible to derive a consequence relation |∼ dependent on the action ! (really we should
write |∼!). The new |∼ is defined by ∆ |∼ Q iff ∆!Q = ∆. This view was particularly put forward
by F. Veldman and pursued by J. van Benthem.

To summarize this section, our current last word about the question of what is a logical system
is the following:

Definition 2.7 [Current tentative view of logical system]
A logical system has the form (|∼,S|∼,Sabduce,Supdate, . . .) where |∼ is a labelled consequence
relation, S|∼ is a Labelled Deductive System with Flattening procedures and Sabduce,Supdate etc are
mechanisms which are parasitic (make use of ) S|∼.

3 How to construct a logic for an application; the case
studies

Let us see at what stage of The Debate we now stand. We have discussed the notion of a logical
system and have seen the place of classical logic in the family of logics. We must now examine
some case studies in detail to see how classical and non-classical logics compare. For a reader who
agrees with our view of logic (Logic = LDS + mechanisms), the question is whether classical logic
can do the job that LDS + mechanism can? For other readers the question is whether classical
logic can successfully handle the case studies which motivated us to introduce LDS + mechanism.
One way or another, we want to see classical logic in action! This brings us to the present section.

The purpose of this section is to present and evaluate the options available to a practically
minded researcher wishing to use logic for the representation, reasoning and computation in his
application area. This evaluation will provide us with a case study for comparing the merits in
using classical logic vs a specialised non classical logic for the application. It will demonstrate for
a specific application both the mathematical and conceputal options that are involved.

We begin by listing the properties of classical logic against the (non-classical representation
and reasoning) needs of a typical case study.

The basic notions involved in classical logic are the following:

1. The notion of a well formed formula, which is the basic declarative unit available for the
representation of the knowledge of the case study.

2. The notion of a database ∆ or a theory, which is the aggregation of declarative units. In this
case it is a set of wffs.

3. The consequence relation |∼ of the form ∆ |∼ A between databases and declarative units.
This can be presented in various forms, semantically, proof theoretically, etc. Some systems
are formulated using consequence relations between two databases ∆ |∼ Γ. This notion for
arbitrary Γ can be defined in some cases from the fragment consequence where there is a
single declarative unit in Γ.

Different logics, such as intuitionistic or many valued logics, share with classical logic the notions
of a declarative unit and a database, but differ on the consequence relation.

In contrast to the above, a typical case study may indeed have identifiable basic semantic
declarative units, but these declarative units are naturally organised in a structure. This struc-
ture is external to the declarative units. Thus the notion of a database as a set is not found in
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applications, but rather the notion of a database as a structured constellation/network of formulas
seems more appropriate. The following are examples of sources of structures imposed natrually on
declarative units of application areas:

• Time stamps, earlier-later relations among data items.

• Sources of the data. The structure is inherited from the social relationships among the
sources.

• Causal relations among data (in e.g. medical networks).

• Accessibility relations among formulas holding in different possible worlds.

• Priorities among data.

• Artificial structuring among data clauses for the purpose of efficient computation.

• Numerical stamps, giving reliability or plausibility. The structure is induced from numerical
relationships.

The above are enough widespread examples to justify focussing our discussion on a typical case
study where the declarative units are structured, say in a graph form with nodes and several types
of edges. Fig 1 illustrates such a structure.

B(x, y)

s

t

A(x)�����������������: q
q

Figure 1:

t and s are two nodes and the arrow is one relation between them. A(x) and B(x, y) are semantic
declarative units associated with t and s, involving the objects x and y. We are ‘semantic’ because
we are not yet committed to how we formalise this situation.

We need a logic to describe and reason about the above structure. Suppose we choose to use
classical logic to represent the knowledge in A and B. So assume that A and B themselves are
already in classical logic. How do we represent the structure of t and s? In the case of classical
logic we need to be able to talk directly about t and s. Thus we need to add a new slot to any
predicate P (x1, . . . , xn) of classical logic, for the sort of t, s, turning it into P ∗(t, x1, . . . , xn) and
represent the nodes t : A(x) and s : B(x, y) as A∗(t, x) and B∗(s, x, y) respectively. We need to
represent by a special predicate tRs the relation ‘arrow’ between the nodes. Thus the situation in
Fig 1 becomes the following database: {tRs,A∗(t, x), B∗(s, x, y)}. We need the following features:

1. Augment classical logic into two sorted logic. A new first coordinate is added to each atom
to allow for the node elements.

2. Introduce new predicates to express relationships among nodes.

3. Extend classical proof theory to such two (or many) sorted systems.

The many sorted logic is no longer classical logic but a classical logic look-alike. It has more
convenient expressive power14 and seems ideal for our purposes. It has many advantages:

14I suppose the sorts can be expressed by unary predicates and domain axioms and so mathematically we remain
within first order logic. However sublanguages of classical logic become more expressive when sorts are allowed,
while their ‘spirit’ is maintained. The full generality of the many sorted translation is studied in a later section on
Linked Predicate Languages.
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• We can use the power of the quantifiers to express relationships among the nodes such as

∀s(tRs→ ∃x(A∗(s, x)) ∧ ∀u(tRu ∧ sRu→ ∃yB∗(u, x, y))).

• We can use existing powerful classical theorem provers to get (either directly or after modi-
fication) automated deduction for the new two sorted logics. Special unification algorithms
can also be used.

• The logic is familiar in principle, being a variant of classical logic.

• The method can act as a universal method for many application areas.

At this stage, it looks like that we have answered the question in the title of this section and we
can therefore conclude the paper and proceed to give the references. Unfortunately this is not the
case. To explain the flaw in this rosy picture, let us examine and analyse a particular temporal
example.

3.1 Case study 1: temporal logic in two-sorted classical logic

We consider a linear flow of time (T,<) with predicates of the form A(v1), B(v1, v2). < is irreflexive,
transitive and linear. We pass into two sorted predicate logic with A∗(t, v1), B∗(t, v1, v2). We
translate the basic declarative statements of temporal logic as follows:

1. A(v1) holds at t is translated into A∗(t, v1).

2. Relations among points t, s are expressed directly using < and the quantifiers and connectives
of classical logic.

3. Properties of (T,<) are expressed in classical logic.

4. Reasoning is done in classical logic.

The case study considers two databases. The database of Figure 2 which is a pure temporal
database and is studied in detail and the database of Figure 3 which is a modal temporal database
and is not studied in detail, but is presented as another example to illustrate the complexity of the
translation into classical logic. We use the letters t, s as variables of the ‘possible world’ sort and
v0, v1, . . . as variables of the ‘element inside possible worlds’ sort. x, y, z are general metavariables
which can be either sort. So there is a little abuse of notation here.

Figure 2 represents a typical temporal database.

J∧ Past (E ∧M) → Future C

J

E∧ Future J →M

E
s

t

�����������������: q
q

Figure 2:

Dictionary
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E = Institute doing well in publications
J = John McCarthy visits Institute
M = Institute gets lots of funds
C = Institute holds an international conference

The translation of the above into two sorted classical logics yields the following in Horn clauses
(variables are universally quantified, u0 is a Skolem constant):

1. E∗(t)

2. E∗(t) ∧ t < y ∧ J∗(y) →M∗(t)

3. J∗(s)

4. J∗(s) ∧ x < s ∧ E∗(x) ∧M∗(x) → s < u0

5. J∗(s) ∧ x < s ∧ E∗(x) ∧M∗(x) → C(u0)

6. t < s

7. x < y ∧ y < z → x < z

8. ∼ (x < x)

9. x < y ∨ x = y ∨ y < z

Clauses 1–6 describe the database and clauses 7–9 are axioms for the linearity of time.
Consider the query ? Future C, asked at time t. In classical logic (Horn clause) we are asking

?∃s(t < s ∧ C(s))

The computation will proceed along Prolog lines and will probably terminate. The computation
follows a machine oriented depth first strategy.

How would a human reason in such a situation?
Let us write t : A to mean A holds at time t.

1. t : Future J (because t < s and s : J)

2. t : E (as given)

3. t : E ∧ Future J →M (as given)

4. t : M (by modus ponens)

5. t : E ∧M (by Adjunction)

6. s : J (as given)

7. s : Past (E ∧M) (because t < s and t : E ∧M)

8. s : J ∧ Past (E ∧M) → Future C (as given)

9. s : Future C (by modus ponens)

10. So for some u0 such that s < u0 we must have u0 : C.

11. Since t < s < u0 and u0 : C, we get t : Future C.

Note that we reason locally and separately in each node, together with the mechanism of passing
formulas (information) from one node to the other.

Another major approach to temporal and modal reasoning recognises the need for a more
intuitive compatibility of the reasoning process. It allows for the use of temporal connectives
representing patterns relative to a temporal point where the reasoning is located. Such patterns
are expressed in natural language by words like Tomorrow, Since, Until, Will, Was, etc.
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r4 : C

r3 : D
r2 : B

r1 : A
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z : C

t : α
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Figure 3:

The pattern of Figure 2 can be expressed as:

E ∧ (E ∧ FJ →M) ∧ F (J ∧ (J ∧ P (E ∧M) → FC))

from the point of view of the point t. The query at t is ?FC.
If we adopt the view of doing temporal reasoning in the actual world (i.e. the world where the

reasoner is located) using the above patterns15, we need a proof system in that language. Such
systems exist., A Hilbert system for linear temporal logic for F and P has the following axioms
and rules, (with G =∼ F ∼ and H =∼ P ∼):

1.

⊢ A

⊢ GA
,

⊢ A

⊢ HA
,

⊢ A,⊢ A→ B

⊢ B

2.

GA→ GGA
HA→ HHA

3.

A→ GPA
A→ HFA

4.

FA ∧ FB → F (A ∧B) ∨ F (A ∧ FB) ∨ F (FA ∧B)
PA ∧ PB → P (A ∧B) ∨ P (A ∧ PB) ∨ P (PA ∧B).

15Such patterns can be quite complex. Figure 3 represents a structure around the world which the reasoner
inhabits, involving modality and time.

The double arrow connection is temporal and the single arrow is modal. The notation t : A means that A holds

at t and the notation t

A︷︸︸︷
−→ s means that A holds at all points between t and s. If the actual world (point where

the reasoner stands) is a, then the above pattern can be expressed as:

S(α ∧♢C, β) ∧♢(B ∧♢C ∧♢D) ∧♢A

If modal connection t ; s is expressed by tRs and temporal connection by t < s, then the patterns F, P,♢, S are
as follows:

• FA holds at t means: (∃s > t)A∗(s)

• PA holds at t means: (∃s < t)A∗(s)

• ♢A holds at t means: ∃s(tRs ∧A∗(s))

• S(A,B) holds at t means:
∃s < t[A∗(s) ∧ ∀u(s < u < t → B∗(u))]

• A (atomic) holds at t is represented by A∗(t).
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5.

G(A ∧B) ↔ GA ∧GB
H(A ∧B) ↔ HA ∧HB.

6.

FFA→ FA
PPA→ PA

The deduction of the case study is valid if we can prove in the above system that

⊢ E ∧ (E ∧ FJ →M) ∧ F (J ∧ (J ∧ P (E ∧M) → FC)) → FC

We need to show that 1 ∧ 2 ∧ 3 ⊢ 4 below, where

1. E

2. E ∧ FJ →M

3. F (J ∧ (J ∧ P (E ∧M) → FC))

4. FC

To prove this we need several lemmas

• ⊢ F (α ∧ β) → Fα

• ⊢ FFα→ Fα

• ⊢ Gα ∧Gβ → G(α ∧ β)

• ⊢ α→ β implies ⊢ Fα→ Fβ

Thus from 3 we can get FJ which together with 1 and 2 yields E ∧M .
Since E ∧M → GP (E ∧M) we get GP (E ∧M)
Also since ⊢ J ∧ (J ∧ P (E ∧M) → FC) → P (∧M) → FC we get from 3 that

F (P (E ∧M) → FC).

From the last two we get
F (P (E ∧M) ∧ (P (E ∧M) → FC))

which yields FFC which yields FC.
Again the above proof is not completely intuitive, since all reasoning steps have to be done at

the actual world and propagated to far away worlds. Serious difficulties arise in predicate logic
where Skolemization is not possible in the actual world for formulas with modalities governing
nested quantifiers. Such an example is ∀xG∃y(A(x, y)). The quantifier ‘∃y’ depends not only on
the ‘∀x’ but also on the ‘G’, because for different worlds there may be a different y.

It is obvious that we naturally think in terms of worlds and event time points (for example
at the hospital when my first baby was born) and imagine at any given step of reasoning some
layout or graph of such points, with different formulas holding at these points (for example, on the
way to the hospital, after the baby was born but before he had the operation). Thus some events
(time points) are memorable enough to be used as milestones, to have certain predicates holding at
some temporal patterns around them, and some have no patterns, but are simply ordinary dates.
Natural language is very revealing of how we perceive time. A sentence like ‘since 1981 I have not
had a holiday’ uses both temporal patterns (‘since’) and specific date points.

In terms of patterns around the actual world, we can say that we allow several worlds to act as
‘local’ actual worlds and express patterns around them. An additional graph shows the temporal
relationship of these local actual worlds.
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A typical pattern is three worlds d, r, s with r < s, d < s. r, s are variables. d a constant.
Consider them as possible worlds. Call this pattern D. With each t ∈ D, we associate a formula
At which is supposed to hold in the world. Formally this is given by a function f(t) = At. These
worlds have elements, say people ‘living’ in them. Suppose c lives at world s (c for Carl). It is
important to know where Carl was born. Suppose he was born at world t. We write this as c(t).
So all elements living anywhere are represented by functions of where they were born. If c(t) now
lives at s, we write c(t) ∈ Vs, Vs is the set of all elements residing at s. Of course c(t) may reside
in several places, e.g. c(t) ∈ Vd, etc.

So we are adopting a compromise position. We accept the local point of view of describing
patterns around an actual world, except that we want to allow for several ‘local’ actual worlds. The
relationships between the local actual worlds is described in classical logic. This is a compromise
between the two approaches. If we have only one actual world we have the modal approach, but
if we have enough ‘actual’ worlds with only atomic (patterns) formulas describing them, we would
be back in the classical logic approach. It is hoped that reasoning with such mixed representation
will have the benefits of both approaches without their problems.

The following is a possible definition.

Definition 3.1 1. A Future-past temporal language KV (K for the fact that the underlying
temporal logic is Kt. V for the fact that we use variables and non constant domain) has
its well formed formulas built up from the classical connectives and quantifiers, predicates,
variables and constants and the temporal connectives P and F (with G =∼ F ∼ and H =∼
P ∼).

2. Let D be a finite directed graph i.e. D is a set of points connected by directed edges. Let
c1(t), c2(t), . . . be a list of one variable function symbols. t ranges over D. If s1, s2 ∈ D are
connected, we can write s1ρs2. ρ a formal binary predicate.

3. A temporal KV theory is a tuple τ = (D, f , d, U) where D is a graph, d ∈ D, f a function
associating with each t ∈ D a formula of the temporal logic Kt, f(t) = At, and U is a function
associating with each t ∈ D a set of closed terms Ut. c(s) ∈ Ut means that the constant
c(s) exists at the node t in the graph D. the label s in c(s) is supposed to mean that c was
‘created’ at label (world) s.

So for example at time t John may love a woman called c(s). This woman was born at time
s. She may or may not exist at t. If she exists at t (she may have died but John still loves
her) we write c(s) ∈ Ut.

John may love an imaginary woman whom he introduces at time s. This means that we
reserve the right to allow that c(s) ̸∈ Us. We have no committment at this stage.

d is the global actual world, as opposed to the other elements of D which are local actual
worlds.

4. Let (S,R, a, V, h) be a Kripke model, that is S is a non empty set, a ∈ S,R ⊆ S × S and
for each element s ∈ S, Vs is a non empty domain. h assigns to each atomic predicate Q of
arity n and each t a subset h(t, Q) ⊆ V nt , and for each variable or constant x an element
h(x) ∈

∪
t∈S Vt. h can be used to define satisfaction for all wffs in the usual way:

s � ∃yA(y) iff ∃y ∈ Vs such that s � A(y)
s � FA iff ∃s′(sRs′ and s′ � A)
s � PA iff ∃s′(s′Rs and s′ � A).

We say (D, f , d, U) holds at a Kripke model (S,R, a, V, h) iff there exists functions g1 : D → S
and g2 : U → V such that (g1 says which worlds in the Kripke possible world model each
element of D is supposed to be, while g2 says which element of the universe V of the Kripke
model each name from U is supposed to be)

(a) g1 is one to one with g1(d) = a
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(b) If x and y are directionally (not) connected in D, i.e. ∼ xρy in D, then (not) g1(x)Rg1(y)

(c) If f(x) = A(u1 . . . , uk) then g1(x) � A(g2(u1), . . . , g2(uk)) (i.e. if A is the wff labelled
by x ∈ D then g1(x) � A in the model).

The meaning of the definition is that we want the ‘configuration’ τ to be realised in the
model.

5. Let τ1 = (D1, f1, d1, U1) and τ2 = (D2, f2, d2, U2) be two configurations. We write τ1 � τ2 iff
for all Kripke models (S,R, a, V, h) and all g11 : D1 → S, g12 : U1 → V for which τ1 holds at
(S,R, a, V, h) we have that for some extensions g21 : D1 ∪ D2, g22 : U2 → V the database τ2
holds in (S,R, a, V, h, g21 , g

2
2).

In other words, in any model in which the configuration τ1 holds the configuration τ2 can be
made to hold.

6. We say τ is valid iff {d : ⊤, Ud} � τ , where d is the actual world of τ .

Example 3.2 Let τ1 be as in Fig. 4. and let τ2 be d2 : FA

s : ⊤

t : A

d1PPPPPPPPPq

������1

Figure 4:

Clearly τ1 � τ2.
However there is no way in which any wff B can have d2 : B ⊢ τ1.
If we choose B to be FA ∧ F ⊤, we cannot force s ̸= t. What we need is a 2nd order wff B of the
form

B = ∃Q[F (A ∧Q) ∧ F ∼ Q].

It seems that modal logic and labelled databases can express second order notions. One example
of that is the present one. Another is any modal logical system complete for non first order class
of frames. For example, the logic G of provability, being the extension of modal K with

�A→ ��A
�(�A→ A) → �A

This logic is complete for the class of finite partially ordered sets. This class is not first order
describable. Thus we cannot directly fully translate this logic into first order logic. Another such
logic is the extension of K with the McKinsey axiom

�♢q → ♢�q.

This is complete for a second order condition on the possible worlds and not first order. This
has bearing to the universality of first order logic. The fact is however, there are functional
translations into classical logic which can capture second order properties. This happens in the
case of the McKinsey axiom, though we need an infinite first order theory of axioms to ensure the
correctness of the translation. So the situation is not so simple. The basic mechanisms operating
here are the following:

• What is higher order in one language can become lower order in a language with more symbols
(e.g. function symbols)
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• Translations into (first order) classical logic may use additional symbols. The application
areas of logic as well as the automated reasoning machinery is not sensitive (stringent, puts
costs on) to additional symbols.

Remark 3.3 [Consequence and proof theory] The reader may wonder what is the consequence
relation associated with the previous definitions. In ordinary modal logic, a theory ∆ is a set of
formulas, for example the formula expressing the pattern of Figure 3. The consequence relation is
between a theory ∆ and single wffs A. ∆ � A means in every Kripke model in which all wffs of ∆
hold at the actual world, A also holds in the actual world.
Our new notion of ‘theory’ is a diagram (D, f , d, U). This is a diagram of wffs which can hold in
a Kripke model if it can be ‘embedded’ in it as in definition 3.1.1. The notion of conseqence can
then be defined as in 3.1.1. The reader may ask, is a ‘new theory’ a set of such diagrams? The
answer is that there is no need for such sets because any finite set of diagrams can be incorporated
into one big diagram (in fact in traditional logic any finite set of formulas can be incorporated into
one big conjunction formula).
What about proof theory? In classical logic and modal logic we have rules for manipulating
formulas. In our case we have rules for manipulating diagrams. These are described in the next
section, on algebraic LDS.

3.2 Case study 2: priority logic and Prolog

Our second case study involving structure is propositional Horn clause computation without nega-
tion by failure. This case study is not semantically based. It is based on prioriized proof theory and
is a typical challenge to translate to classical logic. Here LDS can help. If ∆ is a set of Horn clauses
and q an atom then the non-deterministic procedural interpretation of ∆?q should mean ∆ ⊢c q,
where ⊢c is provability in classical logic. Thus since the database {q, q → q} proves q, the compu-
tation of ?q from this database should succeed. In practice, i.e. in any Prolog implementation,
for this simple example, the database is represented as a list, i.e. either ∆1

1. q

2. q → q

or ∆2

1. q → q

2. q

and the computation is deterministic, searching the list either top down or bottom up, unifying
with the head of a clause asking for the body. Thus if the implemenation scans the clauses top
down, we have that ∆1?q succeeds while ∆2?q loops.

Can we characterise the notion of ∆?q = success for the top down interpretation?
We can enumerate the database ∆2 but obviously a translation into classical logic like the one

of the modal logic case is not easily available.
It is no use translating ∆2 into {q(1) → q(1), q(2)} and trying to figure out a truth table for

→ much in the same way we did for ♢ in the previous case study. I don’t think we can find some
natural translation. Of course one can always translate into classical logic using meta predicates
like database (‘∆’), succeed (‘∆’, ‘A’) etc. but this is not a direct translation. To make our case
study more tractable let us change slightly the way the computation works. This will no longer
yield computation but another familiar logic. The reason for doing so is simply that at this stage
I do not know how to handle the Prolog case. There is, however, a Gentzen system for it by J.
van Benthem [1992]. The change we make is that we ask the pointer to continue moving in one
direction only. Thus ?q from

1. q → q

2. q
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succeeds, because after clause 1 the pointer continues to clause 2.
On the other hand ?q from

1. p→ q

2. r

3. r → p

fails, because the pointer, having passed clause 2, cannot go back to it.
I am using the word ‘pointer’ without due explanation. Use your own intuitions. In more

complex Prolog programs execution is much more complex using stacks and several pointers.
This database and query has only one goal done in sequence. So it is easy to explain the ‘pointer.

Let ∆ be a database in the form of a list of clauses ∆ = (A1, . . . , An). The pointer is just a
number 1 ≤ k ≤ n. We query the pair (∆, k) i.e. (∆, k)?q. To search for a solution we try and
resolve with heads of the clauses (Ak, Ak+1, . . .). Once we resolve with clause j, we ask for the
body of the clause. The computation must tell us for each k and j what is the new pointer. This
we call the strategy of the pointer. For example if the pointer always goes back to r = j − k, we
get that ((q → q, q), 1)?q loops, while ((q → q, q), 2)?q succeeds.

The above discussion presented an example where the database was a list. The list was needed
for technical reasons, having to do with the implementation strategies of Prolog interpreters.
There is a rich family of systems which require priorities among the data. Among them are
defeasible logics, cumulative defaults, Lambek Calculus, truth maintainance and belief revision.
They all share the feature that they have no semantics but the data is organised according to
priority or some network hierarchy and computation depends on this structure. The structure
may come from the application area (defeasible logics, default) or be purely technical (maintaining
consistency). This subsection deals with list structure. We would like our case study to be based
on an application where the list structure in the database comes intuitively and naturally and has
an obvious meaning. We find such a case in legal reasoning.

Consider the area of Esprit projects with which we are all familiar. There are rules for claiming
expenses following an Esprit project meeting. These rules may vary slightly from country to
country and from university to university. A typical rule could be of the form

C(x, d) → S(x, d, 50)

which reads:

x spent the day d at a conference →
x gets subsistence of DM 50 for d

This is a time dependent rule in the sense that it is valid at any time s after it was introduced.
Thus if the rule was introduced at time t, we can put it at the database as

t : C(x, d) → S(x, d, 50)

If Dov has been to a conference at time s then the database will contain

s : C(Dov, d)

To ask the query ?S(Dov, d, 50) we resolve with the first clause and get ?C(Dov, d). However we
can use the clause s : C(Dov, d) only if t < s.

The above control mechanism is not temporal control (as was the case in the previous case study)
but rather prioritized control,16 and although the priorities come from temporal considerations, the
time does not enter into the computation, only the control strategy of the ‘Prolog pointer’. In

16Again, we are not being precise. What is a ‘prioritized’ system? As a first approximation, say that a labelling
system is a priority system if the atomic labels form a partially ordered set (T,≤) and the label generating function
is concatenation. i.e. the labels are finite sequences of elements of T . The ordering ≤ on T is used to define some
priority ordering on the sequences. This priority ordering is then used in all proof theoretical rules.
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fact there are cases where exceptions are made by the commission allowing to claim for conferences
before the start time of the rule. In terms of labelled deduction, the rule is that to perform modus
ponens on t : A → B with s : A, we must have t < s, i.e. the ‘fact’ must come after the ‘rule’,
where ‘after’ is not necessarily real ‘after’ but virtual ‘after’ including special permission.

Turning back to the application at hand, obviously we are supposed to claim expenses only
once for each conference we attend. Thus if there is another rule, say university rule, introduced
at time t′ which says:

t′ : C(x, y) → UP (x, y, 150)

where UP (x, y, 150) means university participation of DM 150, we are not expected to use both
rules and get a total of DM 200. Either we claim from Esprit or we claim from the university.

The system may be flexible enough to allow us to claim DM 50 from Esprit and get the rest
(DM 50) from the university, but not all systems are like that. The important point is that the
assumption s : C(x, d) can be used only once in the computation.

Let us summarise the properties we have so far:

• The database is structured with labels which are ordered.

• Modus ponens is allowed only when the ticket (i.e. the implication) is earlier than the minor
premiss (i.e. the fact)

• Minor premisses (facts) can be used at most once.

Let us now consider another complication arising in the application area. The above rules are only
valid for conferences held in European Community countries. For a conference in America, one
needs permission from the project coordinator in Brussels. So we can write a more accurate rule:

t′′ : AC(x, d) ∧ Per(x, d) → S(x, d, 100)

x participates at an American conference at day d and x has permission then x can get DM 100.
The problem with the above is that Brussels insists that permission be asked before confer-

ence participation, and not after the event. Thus to represent the rule we cannot use ordinary
conjunction, but we need the ‘first A then B’ connective, which we denote by A ⊗ B. Our rule
becomes

t′′ : Per(x, d) ⊗ C(x, d) → S(x, d, 100)

Consider the query ?S(a, d, 100). We resolve with the above rule and get the query ? Per(a, d)⊗
C(a, d). To succeed with that query we need to look at facts after t, succeed with Per(a, d) first
and then succeed with C(a, d) with label bigger than that of Per(a, d).

We thus get the following additional property for our system

• To show A⊗B we must succeed with A and with B, but must show A from an earlier part
of the database than B.

So far, we made a distinction between ‘facts’ and ‘rules’. In a full scale logic (not Horn clause)
a rule can serve as a ‘fact’ for another rule. Take for example, the following:

t2: If subsistence per day is only DM 50, we must appeal to the commission.

This has the form

t2: ∀x[C(x, d) → S(x, d, 50)] → q

If t < t2 then the rule can be used to derive q. At time r, how do we know whether the antecedent
of t2 holds? In our case it is explicitly stated as a rule, but in general it may be derivable from
a group of rules. How do we check the implicational goal r : ∀x[C(x, d) → S(x, d, 50)]? We have
to use hypothetical reasoning. We add C(x0, d0) to the database and try and derive S(x0, d0, 50),
with x0 and d0 a new Skolem constants. We thus get an additional principle.

There are two questions to be settled. First is when we add C(x0, d0), i.e. with what priority
(time) label? Intuitively the answer is at r, i.e. we add r : C(x0, d0). This is not so simple. In
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general we may be checking r : A → B and so we want to add r : A, but A may have the form
A1 ⊗A2. Do we add r : A1 ⊗A2 or do we add r1 : A1, r2 : A2, with r1, r2 new priority points with
the restriction r < r1 < r2. It makes sense to choose the latter, in which case, if r < s do we also
require r2 < s. (i.e. do we put r2 immediately after r but before anything which comes after r?)

The second question is how do we compute with the additional r : A? Do we use the part of
the database after r : A? or do we say that since our purpose was to determine r : A → B then
‘future data’ is not relevant. The validity of r1 : A→ B now means that data up to now together
with r must yield B?. These issues we leave for later.

Meanwhile note that rules can be used at any time after they are introduced, and as many times
as necessary, while facts (in this particular Esprit example, though not necessarily in general) can
be used only once. Thus the rule A(x) → B(x) can be used as often as needed, but the fact A(d)
can be used only once. This is a bit misleading because we can regard the rule as a family of rules
for each instantiation of x. Thus we could write a family of rules.

A(d) → B(d)
A(e) → B(e)
...

If A(d) as a fact can be used only once and A(d) → B(d) can be fired only with A(d) then the
rule can be used only once anyway. We get

• Without a real loss of generality we can assume that propositional instances of rules can be
used at most once

We are now ready for an example

Example 3.4 [Esprit Travel Expenses]
Database

t1 : ∀x, d[ Per(x, d) ⊗ C(x, d) → S(x, d, 200)]
s1 : Per(Dov, date)
s2 : C(Dov, date)
t′ : ∀x, d[C(x, d) → UP(x, d, 150)]
t2 : ∀x, d[C(x, d) → S(x, d, 50)] → q

Priority
t1 < s1 < s2 < t′ < t2.

Computation Pointer
At any time the pointer resides at some priority label r, i.e. the basic computation structure is
(∆, r)?t : G. The label r is the pointer. The compuation rules tell us which rules we can use
to resolve with G. In our particular example we can resolve with any rule with label s. The
computation then continues with the new pointer label max(r, s). Formally (we leave the pointer
implicit):

• ∆?t : q succeeds if s : q ∈ ∆, t = s.

• ∆?t : q succeeds if for some s : A→ q ∈ ∆, s < t and ∆?t : A succeeds.

• ∆?t : A→ q succeeds if ∆ ∪ {t : A}|?t : q succeeds.

• ∆?t : A⊗B if for some s2 > s1 > t,∆?s1 : A and ∆?s2 : B succeeds.

Let us ask the query ?s : q, with t2 < s. We can thus unify with rule t2 and ask ?C(x0, d0) →
S(x0, d0, 50). We add to the database s : C(x0, d0) and ask ?s : S(x0, d0, 50). This unifies with t1
and we ask ?s : Per(x0, d0) ⊗ C(x0, d0). The last query fails.
If at some future time a general permission is given, then of course the computation will succeed.
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It is possible to develop the model further. One can add integrity constraints, to make the
database more realistic. Once we have integrity constraints we can deal with conditions ?t : A→ B
as a goal is computed by letting t : A into the database, which may violate integrity constraints,
so some truth maintenance has to be done. We will not go into the details of all our options. A
Martelli, L Giordano and I have a paper on this [Gabbay et al., ]. Our purpose here is just to
illustrate a realistic use of labels which is purely syntactical. For this purpose our discussion so far
is quite sufficient.

Let us give a simplified version of the computation so far in the form of propositional directional
N-Prolog. The version is a stylised, simplification of the above legal database problem, but it also
happens to be a fragment of the Lambek calculus, exactly suited for linguistic application and
implemented by Esther Köning [1992].

Definition 3.5 [Directional N -Prolog] Let our language contain ⊗ and →.

1. Clauses and Goals

(a) A is a clause if A is an atom

(b) A is a body if A is an atom

(c) If Ai are clauses and q an atom then (A1 ⊗ . . . ⊗ An) → q is a clause with body
A1 ⊗ . . .⊗An and head q

Note that ⊗ need not be commutative

(d) A database is a list of clauses. We present a database ∆ as
t1 : A1, . . . , tn : An, t1 < t2 < . . . < tn. Ai are clauses. ti are priorities and hence < is
strict. In case t1 = t2, we can simply write t1 : A1 ∧A2.

2. Let ∆ be a database and B a goal. We recursively define the notion of ∆ ⊢ α : B where α is
a sequence of elements from {t1, . . . , tn}.

(a) ∆ ⊢ α : B if B is atomic and α : B ∈ ∆

(b) ∆ ⊢ α : B1 ⊗ . . .⊗Bk → q iff the database

∆;x1 : B1, . . . xk : Bk ⊢ α ∗ β : q

where ∗ is concatenation and where t1 < . . . tn < x1 < . . . < xk and β is a subsequence
of (x1, . . . , xk).

(c) ∆ ⊢ α : B iff B is an atomic q and for some

ti : Ai ∈ ∆, we have Ai = C1 ⊗ . . .⊗ Ck → q

and α = (ti) ∗ α′ and

{ti+1 : Ai+1, . . . , tn : An} ⊢ α′ : C1 ⊗ . . .⊗ Ck

(d) ∆ ⊢ α : C1 ⊗ . . . ⊗ Ck iff ∆ can be partitioned into k segments ∆ = ∆1 ∗ . . . ∗ ∆k and
∆j ⊢ αj : Cj and α = α1 ∗ . . . ∗ αk

Example 3.6

t1 : A→ B
t2 : C
t3 : A
t1 < t2 < t3

proves t1t3 : B
Note that we require the pointer to continue to go in the same direction. Thus

s1 : A
s2 : A→ B
s1 < s2

does not prove B.
We need not use all clauses.

31



Example 3.7 [Translation into classical logic] It is possible to represent the above databases and
reasoning structures in classical logic by introducing a new sort for the priority labels and describe
the computation in classical logic. It might be rather unnatural. The translation is the following.
We need predicate logic with two sorts of variables. The first sort, the t1, t2, s2, s2, . . . , type of
variables, range over an algebra (A, ∗, <), where ∗ is concatenation, and < is a irreflexive and
transitive ordering. The other sort are x, y, x1, x2, . . . , type of variables, which are the ordinary
predicate calculus variables. Atomic predicates have the form Q∗(t, x1, . . . , xn) where n ≥ 1, t is
the algebra sort variable and xi are ordinary predicate sort variables. We now translate into this
two sorted predicate logic, the Directional N-Prolog clauses as follows (τ is the translation):

• We associate with each atomQ(x1, . . . , xn) of Directional N-Prolog a predicateQ∗(t, x1, . . . , xn)
of the two sorted predicate logic.

• τ(α : Q(x1, . . . , xn)) = Q∗(α, x1, . . . , xn) where α is a label from the algebra.

• τ(α : A⊗B) = ∃t1t2(α = t1 ∗ t2 ∧ t1 < t2 ∧ τ(t1 : A) ∧ τ(t2 : B))

• τ(α : A→ q) = ∀t[τ(t : A) → ∃s (s subsequence of t ∧ τ(α ∗ s : q)).

The notion of subsequence must be definable in the two sorted classical logic.

The following can be proved

Lemma 3.8 1. If t : A ∈ ∆ then ∆ ⊢ t : A

2. If ∆ ⊢ t : A and ∆ ⊆ ∆′ then ∆′ ⊢ t : A

3.

s < t
∆ ⊢ t : A

∆′ ⊢ s : A→ B

∆′ + ∆ ⊢ s ∗ t : B

Lemma 3.9 Let DH be the Hilbert system with the following axioms and rules

A→ A
(A→ B) → ((C → A) → (C → B))
A→ (B → A)

MP
⊢ A,⊢ A→ B

⊢ B

RT
⊢ A→ B

⊢ (B → C) → (A→ C)

Then t1 : A1, . . . , tn : An ⊢ α : B for some α, which is a subsequence of (t1, . . . , tn) iff

DH ⊢ A1 → . . .→ (An → B).

4 Algebraic LDS: a unifying solution:

The previous section presented two case studies, one strongly semantical and one strongly syntacti-
cal, where non-classical logic was used. We saw that classical logic can handle the case studies but
the representation was not the most natural. In both cases it seems that a discipline for reasoning
and propagating structures with labels is helpful. Let us develop such a discipline, which will be
useful for many case studies and then check its relationship with classical logic. Thus our strategy
with respect to the universality of classical logic is that we develop what seems to us to be the
best system for the job (LDS) and then show that it can be translated to classical logic.
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The reader may have his own opinions about the best logic for the case studies. Our argument
for the universality of classical logic is not affected. LDS is complex enough that if it can be
reduced to classical logic, the chances are that the reader’s system can as well. The point is that
some reasonably good system should be reduced in full technical details to classical logic.

This section will formally define the notions of algebraic LDS, its semantics, and labelled proof
rules.

Definition 4.1 1. A labelling algebra is a first order theory in a language with function symbols
f1, . . . , fk with respective arities and relation symbols R1, . . . , Rm with respective arities, and
with constants t1, t2, t3, . . ., and variables x1, x2, . . ..

We call such a language an ‘algebra’ because its role is mainly algebraic in our conceptual
framework.

2. A (finite) diagram D of the algebra is a set containing terms of the algebra and (finite) atomic
expressions of the form ±Ri(t1, . . . , tk) where ti are terms.17

3. Let D be a diagram and ψ a closed formula of the language of A. We say that ψ holds at D
iff D ⊢ ψ in classical logic.

4. A logical language L is a predicate language with variables and predicates, a set of connectives
♯1, . . . , ♯n with appropriate arities and the quantifiers ∀ and ∃. The notion of a wff with free
variables is defined in the traditional manner. The language may also contain function sym-
bols e1, e2, . . . of various arities, and constants. The language shares the variables x1, x2, . . .
with the labelling algebra. The constants of the langauge L are not atomic constants but
are generated from special unary function symbols in the following manner. We assume we
always have a sequence c1(x), c2(x), . . . of terms made of function symbols with one variable
(for elements for the domains associated with labels). If t, s are labels s : c1(t) means that
c1(t) is an element created (Skolemized) at label t but now residing at s. Thus the terms
of L are generated by first generating the labels from the atomic labels and the labelling
algebra function symbols f1, . . . , fk. Then we apply c1, c2, . . . to generate the constants of L
and then we apply the function symbols of L, e1, e2, . . . to generate the full range of terms of
L. Such terms we denote by α1, α2, . . ..

5. The language of an algebraic labelled deductive system is a pair (A,L) where A is an algebra
and L is a logical language. The algebra and the language share the set of free variables and
may share some of the constants and function symbols.

6. A declarative unit is a pair t : A, where t is a term of the algebra and A is a wff of the logic.
t and A may share free variables and constants. A labelled term has the form s : α, where s
is a label and α is a term of L.

7. A database is a tuple τ = (D, f , d, U) where D is a diagram of the labelling algebra, and
f and U are two functions, associating with each term in D a wff At = f(t) and a set of
terms Ut. Ut is the set of L terms residing at label t. The functions f and U can also be
displayed by writing {t : A, t : ci(x)}, t ∈ D. Note that D may contain also some relations
±R(t1, . . . , tn). d ∈ D is the ‘actual’ world of D.

Example 4.2 A possible world LDS language can be as follows. The language is the first order
language of modal logic with connectives � and ♢. The labelling algebra is the first order language
of a binary relation R. We have no function symbols in the algebra but we do have an infinite
stock of constants. The modal language contains the functions c1(t), c2(t), . . . , t ranges over labels,
generating the terms of the modal language. A diagram D has the form {t1, . . . , tn,±R(si, sj)}
where si, sj are from among t1, . . . , tn which are terms in D. This can be graphically displayed as
a proper geometric diagram such as where arrows display the relation R. Thus D in this case is

17Compare with Definition 3.1.1, where these concepts were given for modal logic. Since in modal logic the
relation symbol R is used for the posisble world relation, we used the symbol ρ. We shall here abuse the notation
and use R.
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Figure 5:

{t1, t2, t3, R(t1, t2), R(t1, t3), R(t3, t3), R(t2, t2)}.

A database is a tuple (D, f , d, U), where d ∈ D and f associates with each term t ∈ D a wff
f(t) = At of predicate modal logic, and Ut is a set of terms of the modal language of the form
{ci(sj)}, for t ∈ D. The following Figure 6 displays a database based on the diagram of Fig. 5.

t3 :∼ C; t3 : c2(t3)

t2 : B ∧ ♢B; t2 : c1(t1)

t1 : �A
t1 : c1(t1)

�

���
��

��
��

PPPPPPPPq

���������*

Figure 6:

Definition 4.3 Let X be a first order language. Let Monadic(X) be the language X enriched by
an infinite number of new monadic predicate symbols. If ψ is a formula of the monadic language
with exactly the new monadic predicates Q1, . . . , Qk and exactly the free variables x1, . . . , xm, we
write ψ(x1, . . . , xm, Q1, . . . , Qk) to indicate this fact.

Definition 4.4 [Semantics for algebraic LDS] Let (A,L) be an LDS language. Let ♯1, . . . , ♯n be the
connectives of the language, with arities r(i), i = 1, . . . , n respectively. A possible world semantical
interpretation for (A,L) has the form I = (τ, ψ1, . . . , ψn, ψ) where τ is a theory (axioms) in the
language of A and each ψi is a wff of the monadic extension of the language of A, containing r(i)
new monadic predicates and one free variable x, and ψ is a closed wff of the language with one
monadic predicate and the constant a. Recall that A is based in first order logic.
A structure of the semantics has the form (M, a, V, h) where M is a classical model of the theory
τ of the algebra A, Vm,m ∈ M is a nonempty domain and h is an assignment associating with
each n-place atomic P of L and each m ∈ M a subset h(m,P ) ⊆ V nm, a ∈ M and where M is the
domain of M.
Satisfaction �h can be defined for arbitrary wffs of L via the inductive clauses and the usual ‘abuse’
of notation, (V =

∪
m∈M Vm)

0. m � P (b1 . . . , bn) iff (b1, . . . , bn) ∈ h(m,P ), bi ∈ V
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1. m � ¬A iff m ̸� A

2. m � A ∧B iff m � A and m � B

3. m � ♯i(A1, . . . , Ak) iff M � ψi(m,Q1, . . . , Qk), with Qi = {n | n � Ai}

4. m � ∃yA(y) iff for some y ∈ Vm,m � A(y).

5. We say that the structure (M, a, V, h) satisfies a formula A of L iff
M � ψ(Q1, . . . , Qk), with Qi = {m | m � A}.

6. A database τ = (D, f , d, U) is said to hold at a structure (M, a, V, h) iff there exist functions
g1 : D → M and g2 : U → V such that g1 validates the diagram D in M, g1(d) = a, and for
every t : A(x1, . . . , xn) in D we have g1(t) � A(g2(x1), . . . , g2(xn)).

7. We say τ1 � τ2 iff for every structure and every g11 , g
1
2 which validate τ1 in the structure,

there exists extensions g21 and g22 of g11 and g12 respectively, which validate τ2.

8. We say the model validates τ iff f{d : Ud} � τ , for d ∈ τ .

We are now in a position to translate any algebraic LDS into many sorted classical logic. The
definition is straightforward but has consequences for the question of universality of classical logic.
An algebraic LDS has the form (A,L), where A is the algebra of labels and L a predicate language
with non-classical connectives. To be specific, assume the labelling algebra is generated by one
binary function symbol * and that the logic is generated by one binary connective ⇒ and has no
function symbols.

Thus the declarative units have the form t : A where t is an expression built up from atomic
labels c, d, . . . variables x, y, z, . . . and the operation *, and A is a formula built up from atomic
formulas Q(x), P (x), R(x, y) . . . . The terms and the formulas share the variables. Here is an
example:

y ∗ ((c ∗ d) ∗ z) : (Q(y) ⇒ P (x)) ⇒ R(x, y).

To translate the above into classical logic we associate with each atomic predicateQ(x), P (x), R(x, y),
an atomic formula Q∗(t, x), P ∗(t, x), R∗(t, x, y) of many sorted logic with one more sort t for terms.

An atomic declarative unit of the form say

(y ∗ c) ∗ d : R(x, y)

can be translated as
R∗((y ∗ c) ∗ d, x, y).

The first coordinate of R∗ is for the label and it accepts terms from the labelling algebra A.
The rest of the coordinates are for the variables and constants of R from L.

The problem arises when we want to translate a more complex formula such as

(y ∗ c) ∗ d : Q(y) ⇒ Q(x).

If we abbreviate Q(y) ⇒ Q(x) as E(x, y) then we would like to translate

(y ∗ c) ∗ d : E(x, y)

as
E∗((y ∗ c) ∗ d, x, y).

We cannot do that becasuse E is not atomic and we do not know what E∗ is. We thus need a
translation for ‘⇒’ which will allow us to find [A⇒ B]∗ from A∗ and B∗ by structural induction.

This is possible to do if we know what ⇒ means. If ⇒ has a semantical interpretation, then
the semantics can help and if ⇒ has a proof theoretic presentation then the proof rules might help.
For example if we read ⇒ as concatenation implication then we can translate

(♯) [A⇒ B]∗(t) = (definition) ∀y(A∗(y)) → B∗(t ∗ y)
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where * is the algebra function symbol, and → is classical implication.
According to (♯) the translation of

(y ∗ c) ∗ d : Q(y) ⇒ Q(x)

is
∀z(Q∗(z, y)) → Q∗(((y ∗ c) ∗ d) ∗ z, x)

which is a formula of two sorted classical logic.
The translation of

y ∗ ((c ∗ d) ∗ z) : (Q(y) ⇒ P (x)) ⇒ R(x, y)

is
∀u[[Q(y) ⇒ P (x)]∗(u) → R∗((y ∗ (c ∗ d) ∗ z) ∗ u, x, y)]

which is
∀u[∀w(Q∗(w, y) → P ∗(u ∗ w, x)) → R∗((y ∗ (c ∗ d) ∗ z) ∗ u, x, y)]

This should be compared with Example 3.2.4.
If we have a semantical interpretation for ⇒, say as strict implication, then we can use that in

our translation. If < is the possible world relation we get

(♯♯) [A⇒ B]∗(t) = definition ∀y[t < y ∧A∗(y) → B∗(y)]

We can understand < as
x < y iff ∃z(x ∗ z = y)

and assume * is associative.
In which case

[A⇒ B]∗(t) = ∀y[A∗(t ∗ y) → B∗(t ∗ y)]

and the translation of
y ∗ c ∗ d ∗ z : (Q(y) ⇒ P (x)) ⇒ R(x, y)

is

∀u[∀w(Q∗(y ∗ c ∗ d ∗ z ∗ u ∗ w, y) → P ∗(y ∗ c ∗ d ∗ z ∗ u ∗ w, x)) → R∗(y ∗ c ∗ d ∗ z ∗ u, x, y)]

In summary, we need to know how to translate the connectives. Also note that although we
introduced labels to help us with structuring the data, when we translate, we lose the structure
because we have to translate the connective.

This has a bearing on the debate. Take the case of modal logic. We compromised between the
pure modal language and the pure translation into classical logic by allowing for labelled wffs t : A,
where t is a world. When we translate t : A as A∗(t) and translate the modality:

[�B]∗(t) = def ∀s(tRs→ B∗(t))

we lose the structure of the labels and we are back to the option of expressing the modal phenomena
inside classical logic. The difference is in use. We translate only when we need to interface modal
formulas with non modal formulas or we want to perform heavy duty automated deduction!

We now give a general definition of semantic translation.

Definition 4.5 [Semantic translation of algebraic LDS into classical logic] Let (A,L) be an LDS
as in definition 4.0.1. Let I = (τ, ψ1, . . . , ψn, ψ) be a semantical interpretation for (A,L) as in
definition 4.0.4. Note that ψi, ψ are wffs in the monadic extension of the language of A. Thus
from the point of view of two sorted predicate logic, the ψi and ψ are acceptable as formulas with
pure sort variables and so are the A predicates appearing in ψ. In a sense the languages of A and
L become linked by adding a sort in L for the terms of A. This will be done systematically in
Section 7.
We define a translation * into two sorted classical logic of (A,L), relative to L as follows:
With each atomic predicateQ(x1, . . . , xn) of L associate a two sorted classical predicateQ∗(t, x1, . . . , xn),
where the first coordinate accepts the sort of terms from the algebra A.
We now need the inductive definition of how to translate declarative units and databases.
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1. The translation of t : Q(x1, . . . , xn), Q atomic is Q∗(t, x1, . . . , xn).

2. [t : ¬A]∗ = ¬[t : A]∗

3. [t : A ∧B]∗ = [t : A]∗ ∧ [t : B]∗

4. [t : ∃yA(y)]∗ = ∃y[t : A(y)]∗, y not in t.
[t : ∀yA(y)]∗ = ∀y[t : A(y)], y not in t.

5. Let ♯ be any connective of L and ψ be its truth table:

[t : ♯(A1, . . . , Ak)]∗ = ψ(t, λy[y : Ai]
∗)

where λy[y : A]∗ is the predicate [y : A]∗ as a predicate of y, where y does not appear in A.

We now translate LDS theories into many sorted logic. A database can be displayed as a set of
expressions of the form {±R(t1, . . . , tn), t : ci(x), t : A} where R is a relation of the language of A,
t a label, x a variable or a term (label), ci a term function(as in 4.0.1 item 1). We need a predicate
E(t1, t2) of the algebra sort in classical logic to translate t : ci(x) meaning the term ci(x) created
at label x exists at label t. Thus we have:

[t : ci(x)]∗ = E(t, ci(x))

A database τ is translated as
∧
E(t, ci(x)) ∧

∧
t : [A]∗ ∧

∧
±R(t1, . . . , tn), for t : ci(x), t : A, and

±R(t1, . . . , tn) in τ .

The above definitions of semantics for LDS and a semantical translation into classical logic cover
the modal and temporal case study. The second case study, deals with a priority LDS which has
only (syntactical) proof theoretic operational semantics (definition 3.2.2). We now need to define
what kind of proof rules are available for LDS and how we can translate a proof theoretic LDS
into classical logic.

The definition of semantics for LDS also defined logical consequence between two databases τ1
and τ2 (see Definition 4.0.4 and compare with Remark 3.1.3). We could define syntactical opera-
tions π on τ1 which can transform it to τ2 (notation τ1 |∼π τ2) and possibly prove a completeness
theorem, for any τ1, τ2.

τ1 � τ2 iff τ1 |∼π τ2.

Presenting such a set of rules π would be considered as a proof system. The discipline of such rules
is a proof theory for algebraic LDS. The basic declarative database is an algebraic constellation of
labelled formulas. The rules allow us to manipulate one constellation into another constellation.
The general form of such rules if given in definition 4.0.8 and discussed there. We shall see later that
having a convenient proof theory for an LDS, allows us to translate it into second-order classical
lgoic, without using any semantics. Thus for an arbitrary logic L, if it can be formulated as an
algebraic LDS system and provided with a proof theory, then it can be translated into classical
logic.

We begin our presentation of the proof theory discipline with the case study of modal logic.
This case can help clarify all concepts. Recall that a modal logic constellation might have the form
in Fig. 7.

s : ♢Bt : �A
q-q

Figure 7:

The modal axioms and the meaning of � dictate to us that in the constellation displayed in
Fig. 7,, A must hold at s. Further the meaning of ♢ tells us that there should exist a point r with
s < r such that r : B.
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We can thus state two rules for manipulating modal databases.

(∗1)
t : �A; t < s

s : A

and

(∗2)
s : ♢B

create r, s < r and r : B

using the first rule we manipulate the constellation displayed in Fig. 7 into the one of Fig. 8 and
using the second rule we further manipulate it into that displayed in Fig. 9 and Fig. 10.

s : A

s : ♢Bt : �A
q-q

Figure 8:

r : B

-

s : A

s : ♢Bt : �A
q-q

Figure 9:

The second rule is good for modal logics like K, S4, etc.
The axiom of Löb:

�(�A→ A) → �A
corresponds to the modification rule

(∗3)
s : ♢B

create r; s < r and r : B ∧� ∼ B

thus in the logic with the Löb axiom we get from the configuration of Fig. 7 to the configuration
in Fig. 10.

r : B ∧� ∼ Bs : A ∧ ♢B

-

t : �A

q-q

Figure 10:

It is clear now how the rules work. They allow us to move from one configuration to another
and the consequence relation is between configurations. For example, we have Fig. 7 � Fig. 9, in
modal K and with Löb’s axiom we have Fig. 7 � Fig. 10.

The above rules are elimination rules. We still need introduction rules

(∗4)
s : A; t < s

t : ♢A
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Table 1:
Axioms LDS Features

K axioms The notion of basic constellation
�(A→ B) → (�A→ �B) or a diagram, as in Definition 4.0.1 (2.)
⊢ A⇒⊢ �A Note that in the modal case the relation R
♢A = def¬�¬A in the diagram is binary. The LDS

formulation contains also some simple
rules for � and ♢ some of which were
shown in the figure above, rules (*1), (*2)

�A→ ��A Transitivity of R in the constellation

�(�A→ A) → �A In modal semantics the axiom has no
first order condition. It corresponds
to the finiteness of the frame. In LDS
it corresponds to the modification rule (*3).

♢A ∧ ♢B → Corresponds to the linearity
♢(A ∧B) ∨ ♢(A ∧ ♢B) of the relation R. This affects the
∨♢(B ∧ ♢A) basic rule (*2) as explained in Remark 4.0.6

(∗5)

create an arbitrary s; t < s
and show s : A

t : �A

Example for � introduction:
Given t : �(A→ B) ∧�A
Create s, t > s
Show s : B
Deduce t : �B

The picture however is not as simple as it seems. In the usual formulations of modal logics,
axioms correspond to conditions on the possible world relation.

In our presentation, axioms correspond to any one of a variety of features. Table 1 below offers
a selection.

We see here how a second order axiom, i.e. the axiom of Löb, which corresponds to a second
order semantical condition, can become a simple movement in LDS. When LDS is translated into
two sorted classical logic, the function symbols generating the labels may allow us to reduce the
second order condition into first order, as is the case with McKinsey axiom ♢�q → �♢q, when
added to K without transitivity.

Remark 4.6 Suppose we deal with the modal logic for linear frames. Then the configuration in
Fig. 11. can be expanded in three ways.
By rule (*2) we can create a point u : A, with t < u. In a non linear modal logic such as K, S4,
etc. this would lead us to the configuration of Fig. 12.
one more step would allow us to have u : A ∧B and hence by ♢ introduction we get t : ♢(A ∧B).
However in the case of linear modal logic, Fig. 12. is not allowed. We need to consider five
possibilities.

1. t < u < r < s

2. t < u = r < s
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t : �B
r : Bs : Bt : ♢A

q - q-

Figure 11:

u : A

�����*

s : Br : B

t : �B
t : ♢A
q - q-

Figure 12:

3. t < r < u < s

4. t < r < u = s

5. t < r < s < u

If, as a result of each of these possibilities, we end up with t : ♢(A ∧ B) then we can conclude
t : ♢(A ∧B).
We have to do that because our databases are linear and the above five configurations are all the
minimal possible extensions in which u can be accommodated.

We thus have to modify all the rules with ‘create’ in them to mean:

Given initial configuration

Split proof into n branches according to all
minimal allowed extensions in which the created u

can be accommodated.

(*3) becomes (**3)

(∗ ∗ 3)

t : ♢A in a configuration

create u, consider all allowed minimal
extensions of D with u in them. Put
u : A in and branch the proof. The ultimate
goal of the overall proof must succeed in
all branches

The above is computationally very expensive. In the example previously given, we need to go
to five configurations in order to make the simple move

(∗6)
t : �A ∧ ♢B
t : ♢(A ∧B)

However our LDS proof discipline does not stop us from adopting (*6) as a rule. Recall that the
LDS discipline tries to enjoy both worlds – the classical world through the labels and the special
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non-classical world through the language of the formulas in the labels. For each appliction, desired
balance can be sought.

We now come to quantifier rules. We have already assumed that different labels will have
different sets of elements in them. To appreciate what this means, we take our clue from modal
logic. Consider Fig. 13.

s : ∃xB(x)t : ∃x♢A(x, y)

-

Figure 13:

At the label t, an x exists such that t : ♢A(x, y) holds. This x depends on t and on y. We
therefore need a Skolem function ct(y). The index t is read to mean that ct was created at t.18

We thus get t : ♢A(ct(y), y). Hence we can create a node s : A(ct(y), y). We also must indicate
whether ct(y) ‘exists’ at the node s. If it does exist at s (probably because of some rules) then we
write s : ct(y). The difference comes out in existential introduction. Suppose we have s : E(ct(y)),
can we infer s : ∃xE(x)? The answer depends whether ct(y) exists at s or not. Here are some rules

(∗7)
s : c; s : E(c)

s : ∃xE(x)

(∗8)
t : ∃xA(x, y1, . . . , yn)

t : A(ct(y1, . . . , yn), y1, . . . , yn); t : ct(y1, . . . , yn)

(∗9)
t : ∀xA(x)

ut is a universal constant
t : A(ut); t : ut,

(∗10)
s : ut; s : A(ut); s : cr

s : A(cr)

ut is a new universal constant, r is arbitrary

(∗11)
t : cr; s : A(ut)

ut a universal constant
s : A(cr)

(∗12)
s : ut; s : A(ut)

ut a universal constant
s : ∀xA(x)

Rule (*9) is analogous to the classical logic rule which allows us to replace ∀xA(x) by A(u),
where u is a universal constant, i.e. u is arbitrary. At any stage later in a classical logic proof,
we can pass from B(u) to ∀uB(u) provided we discharged all additional assumptions. We can
certainly pass from B(u) to B(c), c any constant. The same considerations apply to the labelled
case except that we have to watch for the added complication that elements created in one label
(world) (e.g. cr, ut) may not exist in another label (world). Imagine we have t : ∀xA(x), this means
A holds for all elements existing at t. We use rule (*9) and represent t : ∀xA(x) by a universal
constant ut, i.e. we have now t : ut and t : A(ut). Suppose for some proof theoretical reason,

18To be consistent with the notation of Definition 3.1.1 and Definition 4.0.1, we should write c(t). It is more
convenient for the case of Skolem functions which involve other elements y, to push the t to be superscirpt. y itself
may be a cs. Thus ct(cs) is clearer than c(t, c(s)), especially when embedded inside formulas.
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s : A(ut) is obained. Thus we really have that A holds at s for an arbitrary element existing at t.
Suppose now that we know that the element cr created at r, exists at t. This is written as t : cr.
Then we can deduce s : A(cr). This is rule (*11).

We now explain rule (*10). Start with t : ∀xA(x), this by rules (*9) and (*12) is equivalent
to having t : ut and t : A(ut). Suppose that by some proof manipulation we end up with s : ut

and s : A(ut). This means that the universal constant ut is in label s and so is s : A(ut). We
understand that as a proof of s : ∀xA(x) from t : ∀xA(x) and so we allow ourselves to deduce
s : ∀xA(x). Therefore for any cr, which exists at s displayed as s : cr, we get A(cr) at s, i.e.
s : A(cr). This entire chain is summarised as rule (*10).

So far these rules assume that somehow an element ct created at t ends up available at label
s, i.e. s : ct holds. How do elements move around? We need special rules for that and they differ
from system to system. In other words the logic must tell us how elements skolemised in one
label can be transported to another label. These are called visa rules. Here are two sample rules
corresponding to the Barcan and converse Barcan formulas:

(b1)
t : xr, t < s

x either a constant c or a universal constant u
s : xr

(b2)
t : xr, s < t

x either constant c or a universal constant u
s : xr

Example 4.7 [Barcan Formula] Use (b1) to show that

t : ∀x�A(x) ⊢ t : �∀xA(x)

1. Start t : ∀x�A(x)

2. ∀-Elimination at t yields t : �A(ut), t : ut

3. Create an arbitrary s, t < s.

4. s : A(ut), s : ut by � elimination rule and visa rule (b1).

5. s : ∀xA(x), by (*12)

6. t : �∀xA(x), since s was arbitrary.

The discussion so far presented proof rules for the modal case study of Section 3. Here the
labels clearly mean possible worlds and so the Skolem constants ct(x), had the natural meaning
of elements existing at t, for example friend of x at time t. Our other case study was prioritised
logic. It has no semantics. The proof theory and Skolemization rules and visas apply equally well
to this case. It is interesting to see what meaning we can give to our Skolem and visa system when
the labels are priorities.

Consider t : ∃xA(x). We Skolemise and get A(ct) with t : ct. If we allow ct to exist in s : ct, for
s higher priority, we will get s : ∃xA(x) by ∃ introduction and the priority of ∃xA(x) will go up.

We thus have

• In prioritised logics, all elements are dependent on a priority (or labelled with priority).
Elements of lower priority do not exist at higher priority.

So for example the statement

t: Every homeless person is to have a home in an Estate

Write it as
t : HL(x) → ∃y[Home(x, y) ∧ Estate(y)]

Skolemise and get t : ct(x), where ct is the home of x. Its existence depends on the priority factor
of the statement above.
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Suppose we have
s : Estate(z) → ∃u Janitor(z, u)

meaning:
with priorty s, every Estate home has a Janitor.

Skolemising we get ds(z). Thus by putting both arguments together (assuming x is homeless),
we get ds(ct(x)). This means that we have people walking around not with passports, indicating
as to where they were born (as is the case in modal logic) but with a priority label indicating to
which priority they exist (or if we take a clue from modern society, how important they are).

We have finished our preliminary case study examples of how to introduce proof rules into LDS.
We are now ready for the formal definition of proof theory for LDS.

Definition 4.8 [Proof Theory for Algebraic LDS] Let (A,L) be an algebraic LDS.

1. Elimination Rules
An elimination rule for a connective ♯(A1, . . . , An) has the form

φ; t1 : B1; . . . , tn : Bn; s : ♯(A1, . . . , An)

ψ; r1 : C1, . . . ; rm : Cm

The terms r1, . . . , rm are new atomic constants.

Where φ(t1, . . . , tn, s) is a formula of A called the pre-condition for the (firing of the) rule
and ψ(t1, . . . , tn, s, r1, . . . , rm) is a formula of A called the post condition. ψ may contain
equality.

The rule is to be understood as saying:

If we have proved the wffs above the line with labels satisfying φ then we can
create new labels and deduce the formulas below the lines and the new and old
labels satisfy ψ. ψ may contain equality just in case we want to say the new labels
are equal to some old ones.

2. Introduction Rules
Introduction rules in LDS are defined in terms of elimination rules and hence need not be
introduced separately. Their use will be properly defined when we give the notion of a proof.
Intuitively, when we are in the middle of a proof and we want to introduce a connective
t : ♯(A1, . . . , An) with label t, we are really saying ‘we already have this connective’. If this is
indeed true, then for an aritrary elimination rule of this connective (e.g. like in (1) above), if
we assume the antecedent, without the connective, we must be able to prove the consequent
of the rule. If we can demonstrate this capability for each elimination rule, then we can
introduce the connective. Take for example

A;A→ B

B

we show we already have A → B (i.e. introduce A → B) by showing we can assume A and
get B. Another example is A∧B

A
A∧B
B . To introduce A ∧ B we must show we can get the

conclusions of each rule, without the connective, namely Assume ∅ and get A and assume
∅ and get B.

3. Quantifier Rules
These include the usual classical quantifier rules and visa rules

(a)
t : ∀xA(x)

t : A(ut); t : ut, ut a new universal constant

(b)
t : ∀xA(x); t : cs

t : A(cs)
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(c)
t : cs; t : A(cs)

t : ∃xA(x)

(d)
t : ∃xA(x, y)

t : A(ct(y), y); t : ct(y)

t : ct(y) is optional in (d). It may not be adopted in modal logic but may be adopted in
numerical or priority logics.

(e) To introduce t : ∀xA(x) we prove t : A(ut0), for any arbitrary new constant ut0. Some
important side conditions may be involved.

4. Visa Rules
These have the form

ti : Ai, ti : csi , rj : Bj , ψ(ti, si, rj)
j = 1 . . . k and i = 1, . . . , n

rj : cs
′
j

where s′j ∈ {si | i = 1, . . . n}, for j = 1, . . . , k..

The meaning of the visa rule is that if csi exist at ti where Ai holds and if ψ holds and Bj
holds at rj then cs

′
j exist at rj .

• Sample visa rule from modal logic:

t : cs; t < r, r : �⊥

r : cs

The rule says that if cs exists at t then it exists at any endpoint above t. It happens to
correspond to the following refinement of the Barcan formula.

∀x�A(x) → �(�⊥ → ∀xA(x)).

5. A proof π0 of level 0 from a database (D, f , d, U) is a sequence of labelled databases (Dn, fn, d, U)
and justification function J0 satisfying the following:

4.1 (D0, fo, d, U0) = (D, f , d, U) and J0(0) = ‘assumption’.

4.2 (Dn+1, fn+1, d, Un+1) is obtained from (Dn, fn, d, Un) by applying an Elimination rule
and adding the consequent of the Elimination rule to (Dn, fn, d, Un) to obtain (Dn+1,
fn+1, d, Un+1). The elimination rule is applicable iff Dn ⊢ φ in which case J0(n+ 1) =
name of the elimination rule.

We write (D, f , d, U) ⊢0 (D′, f ′, d, U ′) iff there exists a proof π0 of level 0 leading from
one to the other.

6. A proof of level ≤ n has the form of linked sequences of databases with a main sequence π,
and justification function J. The first element of the main sequence π is (D, f , d, U). Each
element of the sequence is obtained from a previous one either according to one of the cases
of a proof of level 0 or according to the following case

Introduction Case
For some connective ♯(A1, . . . , An) let

φj ; t
j
1 : Bj1, . . . , t

j
n(j) : Bjn(j); sj : ♯(A1, . . . , An)

ψj ; r
j
1 : Cj1 , . . . ; r

j
m(j) : Cjm(j)

j = 1 . . . k, be all the elimination rules involving ♯. Suppose we also have that for some s, we
have that for each j there is a proof πj of level ≤ n− 1 of each (Dn, fn, d, Un) + {ψj , rji : Cji }
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from (Dn, fn, d, Un) + {φj , tji : Bji } (i.e. we can prove the consequent of each rule from the
antecedent of the rule without the use of s : ♯(A1, . . . , An), as if we already have it) then
the introduction step allows us to move onto (Dn+1, fn+1, d, Un+1) = (Dn, fn, d, Un) + {s :
♯(A1, . . . , An)}, we link the proofs πj into the proof π at line n, via the justification function,
J(n+ 1) = {proofs (Πj ,Jj)}.

We write (D, f , d, U) ⊢n (D′, f ′, d, U ′) if there is a proof of level ≤ n of the consequent from
the antecedent. We write (D, f , d, U) ⊢ (D′, f ′, d, U ′) if there is a proof of any level of the
consequent from the antecedent.

7. For the sake of tractability we can also assume that in the elimination rule the complexity of
B1, . . . , Bn and C1, . . . , Cm is strictly less than the complexity of ♯(A1, . . . , An). We should
assume some suitable complexity function. So for example the ⇒ elimination rule, modus
ponens

t : A; s : A⇒ B

f(t, s) : B

is acceptable because A,B are subformulas of A ⇒ B. However, the classical disjunction
elimination rule, written in traditional form

A ∨B
A . . . C
B . . . C

C

where X . . . Y means there exists a (inductively simpler!) proof from X to Y , is not in
acceptable form. We can rely, however, on the deduction theorem for ⇒, when we do have
it and write the rule as follows

t1 : A⇒ C; t2 : B ⇒ C; s : A ∨B

f(t1, t2, s) : C

where C is a wff with less nested disjunctions than A ∨B.

In this case the complexity function is lexicographic on two parameters: the maximal number
of nested disjunctions and the ordinary structural complexity of wffs. This is still unsatis-
factory! On pure proof theoretical grounds we want C to be a subformula of A or B.

Later on in this section we are going to translate any proof theoretical LDS into classical
logic. For that purpose we need assume a stronger control on complexity. Let us say at this
point that we want any elimination rule to reduce some global complexity.

We are now in a position to define a proof theoretic translation of any LDS into classical logic.
The definition is the same as in the semantical case except that we use the eliminaton rules for
any connective ♯ to reduce the translation of t : ♯(A1, . . . , An). Also compare with example 7.0.7
Section 7, which studies the general framework for this type of translation.

Definition 4.9 [Proof theoretical translation of Algebraic LDS into classical logic] Let (A,L) be
a proof theoretic LDS as in definition 4.0.8. We define a translation * into two sorted predicate
logic, relative to the elimination rules of the LDS as follows:
With each atomic Q(x1, . . . , xn) we associate a two sorted classical predicate Q∗(t, x1, . . . , xn).
The first coordinate accepts terms of the sort of the algebra A. The inductive definition of the
translation [t : A]∗, for an arbitrary wff A and label t is as follows:

1. [t : Q(x1, . . . , xn)]∗ = Q∗(t, x1, . . . , xn), Q atomic.

2. [t : ¬A]∗ = ¬[t : A]∗

3. [t : A ∧B]∗ = [t : A]∗ ∧ [t : B]∗
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4. [t : ∃yA(y)]∗ = ∃y[t : A(y)]∗, y not in t.
[t : ∀yA(y)]∗ = ∀y[t : A(y)]∗, y not in t.

5. Let ♯ be any connective of L whose elimination rules are

φj , t
j
1 : Bj1, . . . , t

j
n(j) : Bjn(j); sj : ♯(A1, . . . , An)

ψj , r
j
1 : Cj1 , . . . , r

j
m(j) : Cjm(j)

Then
[t : ♯(A1, . . . , An)]∗ = (definition)∧

j [∀t
j
1, . . . , t

j
n(j){

∧n(j)
i=1 [tji : Bji ]

∗ ∧ φj →
∃rj1, . . . , r

j
m(j)(ψj(sj/t) ∧

∧m(j)
i=1 [rji : Cji ]∗)}]

where (sj/t) means substitute t for sj .

Note that we need to assume in the introduction rules that some complexity goes down. Unlike
the semantic translations, Bji and Cji are not necessarily subformulas of ♯(A1, . . . , An) and so if
some complexity goes down we end up with a finite number of steps with several formulas of the
form s : Q, Q atomic.
The translation of a database is done as in definition 4.0.5.

Remark 4.10 [Concluding Remarks] We now summarise and evaluate the evolution steps in our
thinking.
1. The need for Labelled Deductive Systems

• The first step was the realisation that practical applications which lend themselves to possible
logical analysis, contain several independent and related structures. These structures must
be recognised by any logic which we use to describe and reason about the application.

• The second step is that we have an option, either to use classical logic to represent these
structures or to use specialised logics. Careful analysis of two case studies shows conceputally
we might wish to use specialised logics, but computationally we are better off with classical
logic.

• The third step is to look for a good framework which could give us the kind of logics we
want for applications. The proposed framework was Labelled Deductive Systems, where the
declarative units are of the form Labels: Formulas. The technical details are developed in
a book on the subject [Gabbay, 1992d] . The important intuitive point is that we agree to
manipulate the existing natural structures of the application together, side by side, without
reduction or translation.

Our case studies showed that additional structure can come from semantics (bringing semantics
into the logic, as in the case of temporal logic) or from resource or proof theoretic considerations
(bringing priorities as labels). In either case the formalism (Algebraic LDS) is very similar. In
fact, some successful wide spread formalisms such as the A-Box reasoning of KL-one is already a
example for an LDS in our sense. Therefore we propose to use this formalism (LDS) in application
areas where logic is needed. The practical usefulness and applicability of such a program can be
demonstrated. We are currently trying to do exactly that. The reader can reflect upon his own
personal experience to see how useful the labels can be. The relevance of LDS to the question of
the universality of classical logic is that any LDS, either syntactically presented or semantically
presented can be translated into classical logic.
The perceptive and critical reader may have already asked himself why do we need to present and
use LDS as an intermediate step in the translation of a logic L into classical logic. Semantical
translations are known, and given a semantics for the logic, we can translate the semantics directly
into classical logic and thus obtain a translation. This can certainly be done for many modal
and temporal systems. We need not formulate these systems as LDS and then translate the
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LDS into classical logic. However, LDS is necessary for the translation of logics which have no
known semantics, for example, any logic formulated proof theoretically through Elimination and
Introduction rules. We need to take the following steps:
Step 1: Formulate the logic proof theoretically as an algebraic LDS of the kind described in this
section (especially note that the introduction rules depend definitionally on the elimination rules,
which may not be the case in the original logic).
Step 2: Translate the LDS formulation into classical logic.
The perceptive reader might continue to ask that once we manage to produce the LDS in Step 1
above, do we not now have a semantics? I.e. a term semantics arising from the rules? The answer
is that it is not necessarily the case. In a proper semantics the semantical value of ‘♯(A1, . . . , An)’ is
reduced to the values of ‘Ai’. We allow Elimination rules which reduce a formula to other formulas,
not necessarily subformulas of it, as long as some general measure of complexity is reduced and
a very long path involving all connectives may be involved in the reduction. It is not at all clear
that any semantics can be extracted out of this reduction. More on these points will be given in
Section 10.
2. Advantages of LDS
The advantage of LDS is that it is a natural and adaptable way of doing logic. We consider a logical
system as basically a discipline for databases and labels, giving structures and mechanisms for
deduction. The mechanisms could be either proof theory or other mechanisms, such as abduction
or circumscription, or explanation, etc. This scenario is very natural and can be adapted to a
variety of application areas. To use LDS in an application area we need to

1. Recognise underlying structures in the application. These include

(a) the declarative information to be manipulated and reasoned with.

(b) The units (objects) to be manipulated and their relative structure. (e.g. semantic objects
such as worlds or individuals, syntactic objects such as priorities or probabilities).

(c) Recognise any compatibility or conflict in natural manipulative movement between (a)
and (b).

2. Having recognised in (1) the natural components of the system, we devise an LDS to represent
and reason about them. Note that LDS is not a single logic, but a family of logics.

The above process needs to be applied anyway for any use of traditional logic. What I am saying
to the reader is that he should not approach the problem with a pre-determined pre-fabricated
logic (such as the logic of his youth) and therefore be compelled to force all representation into it.
In fact, what many researchers often do in parctice is to use labels as side effects (implementation
tricks) to retain distinctions that their (favourite) logic forces them to abandon.19

Once we adopt the discipline of LDS, we see that there are other advantages.

• The labels can be formally used to bring into the object level metalevel features of the logic.
A simple example would be to use the labels to trace the proof of the current goal. Conditions
on the label can restrict the next move. These conditions are basically metalevel, but such
metalevel features can be incorporated into an object level algebraic labelled proof rule.

• LDS allows for a uniform method for bringing the semantics into the syntax. See my paper
[Gabbay, 1992d] as a striking example of that, with a connection with situation theory.

• LDS is a unified framework for monotonic and non-monotonic logics.

19My favourite analogy is that of a person who has a wife (husband) and a mistress (lover). Obviously they are
there for a reason and may have considerable influence (good or bad)! There may be a need for them much in
the same way that there is a need for the label. Rather than supress them and treat them as a side effect, I am
proposing that we bring them forward into the open, and recognise their influence. We should openly declare that
a declarative unit is a formula and a label (or several labels) and analogously in some societies it may be better to
admit (the unfortunate fact) that a ‘family’ unit is a husband/wife and a mistress/lover (read Balzac!). We should
recognise the structure involved so that we can handle it better.
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• LDS is more computationally transparent (through the labels) and hence more receptive to
meaningful optimisations.

• The proof theory of LDS can be more flexible. In classical logic, there is proof theory and
there are tableaux systems which can be considered as model building systems. One is syntax
based and the other is semantically based. In LDS, a tableaux procedure is just another LDS.
The basic notion of consequence in LDS is that of a database proving a labelled formula for
example t1 : A1, t2 : A2 . . . ⊢ s : B. A tableaux refutation for an LDS consequence relation
will start with

True [ti : Ai], False [s : B]

and manipulate that. But such a system is just another LDS!

Thus we have: ∆1 ⊢LDS1
α : A iff in the tableaux system ∆2 ⊢LDS2

‘closed’ where LDS2 is
an LDS system dealing with signed labelled formulas.

• The devices of labelled Skolemization and visas across worlds are very powerful tools of LDS.

• Different worlds can have different reasoning systems (time dependent reasoning).

• We can reduce higher order properties to lower order.

3. Limitations of LDS
The main limitation is that an LDS logic needs to commit itself. Take for example S4. This
logic has one modality which is reflexive and transitive. Presented as a Hilbert system, we write a
certain number of axioms:

�A→ A
�A→ ��A
�(A ∧B) ↔ (�A ∧�B)
⊢ A⇒⊢ �A

The above system is not committed to any interpretation. �A means any of the following:

• A holds in all accessible worlds.

• A is a set in the Euclidean plane and �A is its topological interior.

• A is provable

• � represents the progressive of English (e.g. if A is ‘John walks’, then �A is ‘John is walking’).

• � can mean some algebraic operation.

In any LDS interpretation, we need to identify the labels, in order to state what the declarative
units are. The nature of t, the algebra of t, will commit us to some - if not exactly one - of the
possible interpretations. We thus loose generality. We gain power, but we have to sacrifice our
semantic options. When we are applying LDS, we may not mind that because the application area
already dictates the interpretation. Thus we must be careful to choose the right level of labelling.
Not too detailed to be able to remain within the realm of logic, avoiding turning the system into
an implementation.
This argument can be used against the universality of classical logic. To translate a specific logic
into classical logic, such as the S4 necessity �, we need to commit its interpretation. Some appli-
cation areas, such as legal reasoning, may not allow us to commit the interpretation. Furthermore,
such an application area may not be particularly interested in the computational advantages offered
by the translation and may be more sensitive to the naturalness of the representation.
By the way, this limitation is equally valid when we translate into or use directly classical logic. �
has to be translated into classical logic and the translation requires commitment, (unless we use
the term translation).
4. Conclusion, Relation to The Debate
We conclude with further comparison with classical logics.
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• Any LDS system can be translated into classical logic, in a technical sense. Take two sorted
classical logic with one sort for the algebra of labels and turn t : A into A∗(t). This is
the same process as the translation of modal logic. Thus the support for the universality
of classical logic comes from the generality and unifying role of LDS and the fact that we
need not have a semantical interpretation for the translation. The argument also inherits its
limitation. To translate into classical logic, we need to commit the interpretation, even in
the proof theoretic case, because the commitment is in the choice of the algebra of labels.
Of course there is always the term translation, which does not commit to anything, but this
translation is not conceputal and is good mainly for automated deduction purposes. More
on this in Section 10.

• It is an interesting mental exercise to realise that classical logic itself can be turned into an
LDS in a non trivial way. Take any predicate of classical logic, say Q(x, y, z) and imagine
a classical theory τ for Q. Examining the classical models of τ , we might find that most
of the models of τ may have some distinguished elements in them in terms of which Q can
be described. It may be worth our while perception-wise to write x : Q∗(y, z) instead of
Q(x, y, z) and bring out semantically this special structure. This process is inverse to the
translation method of (1) and intends to stress the semantical properties of the x coordinates.
The x-labels will be manipulated separately, according to the model theory, and may result
in a proof theory for τ which is much clearer. This would be an LDS formulation of τ .

This construction shows how to bring (even in classical logic) the semantics into the syntax.
Use the elements of the model as labels, or as a special sort. I think we can dispense with
model theoretic semantics altogether. The correct notion of semantics in my view is sound
translation. Given two system L1 and L2, L2 can serve as semantics for L1 if L1 can be
soundly translated into L2. What corresponds to a completeness theorem is the faithfulness
(also called completeness) of the translation. There are such semantics in the literature.
Famous among them are the Gödel Dialectica interpretation, Boolos translation of modal G
into Peano arithmetic and the multitude of ‘operational semantics’ in theoretical computer
science.

5 Reductions to classical logic: the options

There exist in the literature several translations of modal and temporal logic into the classical
predicate calculus. The previous two sections applied these methods to several case studies and
discussed the reductions both conceptually and mathematically. These translations can be used
not only as mathematical and conceptual reductions but also as computational reductions into the
Horn clause fragment of classical logic.20 Through these reductions, classical logic was playing the
role of a metalanguage. Although this role is intuitively clear, there is a lack of proper analysis
of the language - metalanguage capabilities of classical logic and there is a need in general for a
framework for clarifying the notion of what we might call object language implementation of meta
language concepts.

The purpose of this section is to fill this gap, and clarify the fundamental concepts involved
in the relationship between metalanguage and object language features. We will also study in

20If a logic L can be translated into classical logic, then we can identify the sublanguage LHorn of all formulas
of L whose target translation is a Horn clause. This fragment can be expected to be the ‘computable part’ of L
and perhaps algorithmic procedures can be developed directly for this fragment. Consdier for example modal logic.
Consider the modal labelled formula t : Q(x) ∧♢R(x, y) → P (y). When translated into classical logic semantically
it becomes

Q∗(t, x) ∧ ∃s(t < s ∧R∗(s, x, y)) → P ∗(t, y)

which is equivalent to
Q∗(t, x) ∧ t < s ∧R∗(s, x, y) → P ∗(t.y)

The above is a classical many sorted Horn clause.
Thus we know that we can apply♢ into ‘bodies’ of clauses and remain in the ‘Horn fragment’. Similarly♢A → �B

is in the ‘Horn fragment’ if B is a ‘Horn clause’ and A is a ‘Horn body’. This approach is systematically investigated
in [Gabbay, 1987] and [Gabbay, 1990].
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more detail a metalanguage HFP, presented in a later section, and examine the claim that it can
function as a general purpose metalanguage. Our conceptual framework will revolve around two
pure notions. The notions of a proper metalanguage and that of an object language L1 implementing
metalanguage features for a language L2.

Given a language L, we understand by a proper metalanguage M to the language L, any
language which is able to name every well formed symbol of L and to describe all the logical
operations of L. Thus formulas φ of L become terms tφ of M and logical relations of L become
predicates in M. M must have axioms to ensure that every interpretation of M gives rise, through
the embedding of L in M, to an interpretation of L. For a given L, M is not unique. Many languages
can serve as a metalanguage for L, provided they are strong enough. In computer language terms,
any strong enough language, eg Basic, can be used to write an interpreter for any other language.
In such a case one simulates one language in another. The other pure notion of one language, L1,
serving as an object language, L2, is more difficult to explain. Consider the relationship between
L and M. L is a sublanguage of M in a very strong sense. M has names for everything in L and
axioms about L. Imagine a more equal relationship between two languages. Suppose L1 and L2

are both sublanguages of a language L1,2. L1,2 is not a metalanguage to L1. It is just a richer
language. For example, classical predicate logic, L1, augmented with additional dummy predicates
being the language L2 gives us L1,2 which is certainly not a metalanguage. Consider L1,2 and
consider some mixed axioms ∆1,2 in L1,2 affecting both L1 and L2. Any interpretation of L1,2

satisfying the mixed axioms, will induce an interpretation on L1 alone. Similarly, we can consider
a proper metalanguage M1 of L1, with names for L1 symbols, etc. as discussed before. In the
language M1 we can write axioms ∆M1

about L1, restricting its possible interpretations. It may
be the case that the family of possible pure interpretations of L1 allowed by ∆1,2 (as induced from
interpretations of L1,2 satisfying ∆1,2) are the same as the possible interpretations of L1 allowed
by ∆M1

(as induced from interpretations of M satisfying ∆M1
). In this case we say that L1,2

and ∆1,2 is an object language inplementation of ∆M1
. The justification for ‘object language’ is

that L1,2 is not meta to L1, it is just an extension. Consider for example two interpreters L1 and
L2 which are linked in some way. Thus each interpteter has its allowable options of how to run.
However, since they are linked, not all of these individual options can be realised. L2 can choose
to run in certain ways which will limit the options of L1 because they are linked. Suppose we use
a proper metalanguage M1 to talk and describe the options of L1 and suppose further that we
express, through a wff φ1 of M1 our wish to have L1 run only in certain ways. So φ1 (if true)
limits the runs (or options) of L1. There is another way of limiting the runs of L1, through its
linkage with L2.

It may be that L2 can be restricted by condition δ1 so that L1 (when linked with L2 satisfying
δ1) can run exactly in a way which satisfies φ1. If this is the case, then we say that L2, through
its object language restriction δ1 and its linkage with L1, can implement φ1, ie implement the
metastatement φ1. It may be that for each φn of M1, there exists a way of restricting L2 by δn
which through the link with L1, allows L1 to run only in a way which satisfies φn. In that case we
have object language implementation of the set {φn} of the language M1.

To make these concepts more concrete, think of an LDS system. The logic L of the formulas
is L2 and the algebra A of labels is L1. When linked together they form an LDS system. The
metalanguage M is a language capable of talking about the proof theory of the logic L. Here is a
concrete example: let L be intuitionistic implicational logic. Let the proof theory for L be given
using modus ponens (A,A → B ⊢ B) and → Introduction (to show A → B, assume A and show
B). M will be a metalevel language capable of talking about proofs of L, containing predicates
which can describe how many times an assumption A was used in a given proof of B. Let φ be a
formula of M saying that each assumption is used at most once. Some proofs satisfy φ, some do
not. We can add a labelling algebra (A,∪) where A is a set of atomic labels and ∪ is a multiset
union of atomic labels and use the labels to keep trace exactly which assumptions are used in the
proof. The system becomes:

• Label all assumptions by different atomic labels
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• Formulate modus ponens as

α : A;β : A→ B and α ∩ β = ∅

α ∪ β : B

• Formulate → introduction as the following:
to show α : A→ B assume x : A with a new atomic label x and show α ∪ {x} : B.

• Say ∆ ⊢ B if we label all wffs of ∆ with different atomic labels we can prove α : B with α a
subset of the set of these labels.

This LDS system implements the metalevel condition φ on the proofs.
Another example is from resolution in classical logic. Suppose we have a classical language

L1 and a set ∆ of clauses which is inconsistent. The resolution machinery may derive the empty
clause but may not be equipped to give a set of substitutions into the clauses of ∆ which can yield
propositional inconsistency. Let M1 be a metalanguage in which we demand this set. This demand
can be implemented by adding a dummy predicate Q(x1, x2, . . .) with the appropriate variables
(language L2) as a disjunct to all clauses of ∆. The resolution machine can stop when unable to
eliminate Q and from the various instantiations of Q the substitutions can be obtained.

The reader should note that the concept of L2 acting as an object level implementation of some
metalevel statements {φn} of L1 is a relative one. Because L1 an L2 are linked, we can equally
say that L1 is an object level implementation of some metalevel statements {φ′

n} of L2 in some
language M2. Thus the concept is relative to a metalevel set of sentences ∆.

Of course the above pure concepts have to be formally defined. This may not be easy. We
prefer at first, to illustrate the two pure concepts for one specific example, namely a temporal logic
L, and examine in depth the possibilities of using a metalanguage M for talking about time and
about the formulas of L which hold at each moment of time. Such a metalanguage must be able
to name the moments of time and the earlier later relation <, and we also need names and proof
predicates for formulas of the temporal logic L.

Let ‘t’ name the moment of time t and ‘<’ name <. Let ‘φ’ be the name of φ. Let Hold(‘<’,
‘t’, ‘s’) be the metapredicate saying t < s. Let Data(‘t’, ‘φ’) be the metapredicate saying φ holds
at t. Let Prove(‘t’, ‘Ψ1’, ‘ψ2’) be the predicate indicating that Ψ1 =

∧
s,φ Data (‘s’, ‘φ’) ⊢ Data

(‘t’, ‘ψ2’). Note that Ψ1 is a conjunction of sentences of the form Data(‘s’, ‘φ’) and therefore
Prove is meta to Data.

The following is a formal metalanguage system containing the above predicates.

Definition 5.1 The metalanguage M

1. Let M be a predicate meta-language with predicates Hold(x, y, z), Data(x, y) and Prove(x, y, z).
The language is sorted. The sorts are as follows:

(a) x in Hold is a relation name (<).

(b) y, z in Hold and x in Prove and x in Data are time points names.

(c) y in Data is an object language relation name.

(d) y and z in Prove are Data relation names. y is ‘higher’ than z but in M they are all
just terms for data. Thus Prove is a metapredicate to Data.

2. The language M also has function symbols fProve, fHold, fData, f∧, f∨, f∼, f→, fF and fP
satisfying the following:
f∧ (‘φ’, ‘ψ’) = ‘φ ∧ ψ’
f∨ (‘φ’, ‘ψ’) = ‘φ ∨ ψ’
f→ (‘φ’, ‘ψ’) = ‘φ→ ψ’
f∼ (‘φ’) = ‘∼ φ’
fF (‘φ’) = ‘Fφ’
fP (‘φ’) = ‘Pφ’
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fData (‘t’, ‘A’) = ‘Data (‘t’, ‘A’)’

fHold (‘<’, ‘t’, ‘s’) = ‘t < s’
fProve (‘t’, ‘Ψ’, ‘φ’) = ‘Prove ( ‘t’, ‘Ψ’, ‘φ’)’
The following axioms hold in M.

(a) Prove(‘t’, ‘φ’, ‘A ∧B’) ↔ ( Prove( ‘t’, ‘φ’, ‘A’) ∧ Prove(‘t’, ‘φ’, ‘B’))

(b) Prove (‘t’, ‘φ’, ‘A ∨B’) ↔ Prove( ‘t’, ‘φ’, ‘(A→ ⊥) → B’)

(c) Prove (‘t’, ‘φ’, ‘A→ B’) ↔ Prove( ‘t’, f∧ (‘φ’, fData(‘t’, ‘A’)), ‘B’)

(d) Prove (‘t’, ‘φ’, ‘⊥’) → ∀x Prove (‘t’, ‘φ’, x)

(e) Prove (‘t’, ‘φ’, ‘FA’) ↔
∃xHold (‘<’, ‘t’, x) ∧ Prove (x, ‘φ’, ‘A’)

(f) Prove (‘t’, ‘Data’ (‘t’, ‘A’), ‘A’)

(g) Prove (x, y, z) → ∀y′ Prove (x, f∧(y, y′), z)

(h) Prove (x, y, z)∧ Prove (x, y, f→(z, z′)) → Prove (x, y, z′)

(i) Prove (x, y, f∼(z)) ↔ Prove (x, y, f→(z, ‘⊥’))

(j) Prove(x, f∼(f∼(y)), y).

Example 5.2 Consider the following system Fig. 14. At time 1 A holds, at time 2 P (A∧FB) →

21

A P (A ∧ F B) → C

-

Figure 14:

C holds. We query at time 1 the formula Q = FB → FC. We will argue informally. The actual
proof is the formalization, in the metalanguage, of our informal proof.

1. Assume FB at time 1 and below we show FC at time 1.

2. If FB holds at time 1 then P (A ∧ FB) holds at time 2 and hence C holds at time 2.

3. If C holds at time 2 then FC holds at time 1.

4. From (1) - (3) it follows that FB → FC holds at time 1.

Note that the above reasoning is proof theoretic and not model theoretic. In other words we assume
we know that certain formulas hold at a certain configuration of points and we reason using the
proof theoretic properties of the connectives that more formulas hold at some other points. This
is done in L. The metalanguage M can represent or formalise this reasoning.

The next question to ask ourselves is, can classical logic itself, which is used as the underlying
logic of M, be used as the metalanguage M itself. This means that we do not use naming functions
but represent the system, directly in classical logic. Actually one needs exact definitions of the
concept ‘using classical logic directly’, which is not easy to give.

Our task in this section is to examine to what extent predicate logic itself, without any addi-
tional connectives (for time) can handle adequately all temporal phenomena within itself. This we
want to accomplish through explicit reference in predicate logic to time points and intervals and
events by special time variables and predicates.

We must analyse the temporal expressive power of first order predicate logic, and indicate how
it can be used effectively and correctly.
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This problem has two aspects. First is the mathematical aspect, namely, are there temporal
logics defined using new special connectives and axioms, which cannot mathematically be presented
in first order predicate logic? Are there such logics which are intuitive and arise in applications?
One such candidate is the modal logic of provability which is characterised by finite flows of time.
There are other such logics. The second aspect is not mathematical, but the aspect of style and of
the naturalness of the representation. Can the presentation within classical logic cater for all the
natural features and non-mathematical properties of temporal logics arising in application areas?

One needs to make the above vague notion of ‘naturalness’ more precise. We know for example,
that in classical logic with ∼ and ∨ , implication A→ B is definable as ∼ A∨B. Thus the logic of
∼ and → is reducible to (or can be represented within) the logic of ∨ and ∼ by a simple translation.
It can also be described in predicate logic by first Gödel numbering all wffs with → and ∼ then
using a proper proof predicate. This is a roundabout way of doing a simple reduction of → and ∼
to ∨ and ∼ but it is mathematically valid. Yet, we intuitively know that the reduction

A→ B ≡∼ A ∨B

is a more direct one and indeed a better one.
There are more examples where the representation may be on the borderline of being natural.

Our task is therefore to attempt to make our intuitions more precise. In algebra for example, it
is generally accepted, that although a finite dimensional vector space V is isomorphic both to its
dual V ∗ and to its dual V ∗∗, it is the latter isomorphism V ↔ V ∗∗ which is the ‘natural’ one. The
attempts to make this notion more precise led to the development of category theory.

The best way of dealing with our problems is first to translate some temporal logics into the
predicate calculus and then, in the light of what we have done, examine the general notions of
reduction and translation involved. We need to perform some translations first, to see some of
our mathematical options. For this purpose we have to build up some extensions of the predicate
calculus i.e. by adding temporal connectives to predicate logic. We also look at temporal logics
built (or simulated) within predicate logic. We need a notation system which will help distinguish
between these two approaches. We thus write TL1, TL2, . . . to name temporal logics using
temporal connectives. Technically these are proper extensions of predicate logic and write PC1,
PC2, . . . to name two sorted systems of predicate logic with a special sort for time. Schematically
we want to check whether, and how, we can say that: PC=TL.

In the terminology of this section, TL is the object language L and PC is a corresponding
object language implementation of metaproperties of L, ie PC is meta to TL in the second object
level sense.

Let us first see how the PC languages can be built. We begin by isolating from among the
predicates and variables of the general predicate calculus some special symbols which will have
temporal meaning. These symbols become distinguished in the same way that the equality symbol
= is distinguished in predicate logic. These include:
a unary predicate T for the flow of time,
a transitive binary relation < for the earlier-later ordering of time.

We thus have a two sorted predicate logic with special predicates, terms, and variables for each
sort.

Example 5.3 (a) The property that time is linear can be written as:
(∀t, s)(t < s ∨ t = s ∨ s < t)

(b) ‘John loves Mary at time t’ can be written as:
Love(t,John,Mary)

(c) The truth table for ‘A will be true’ is represented by the formula ψwill(t,Q1) = definition ∃s >
t Q1(s)
Where Q1 is supposed to be {s′ | A is true at s′}

(d) The truth tables for Since and Until, ψS and ψU are
ψS(t,Q1, Q2) = (definition) ∃s < t(Q1(s) ∧ ∀u(s < u ∧ u < t→ Q2(u)))
ψU (t,Q1, Q2) = (definition) ∃s > t(Q1(s) ∧ ∀u(t < u ∧ u < s→ Q2(u)))
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Example 5.4 Assume we want to formalise the properties of the English progressive tense, say in
the context of a natural language processing model which can recognise certain temporal features,
such as the difference between:

1. ‘John walks to school’,
and

2. ‘John is walking to school’.

The TL (temporal logic) way of talking about the progressive is to add a new unary connective
Nq to the language of predicate logic and represent ‘John is walking’ as:
N Walk(John).
The properties of the progressive can be captured by the axioms below:

1. Nq → q
If John is walking around now, then he is actually walking now.

2. Nq → NNq
The above axiom really says that if John is walking now, then he has been walking a little
bit before now, and will be walking a little bit after now.

3. N(p ∧ q) ↔ Np ∧Nq
John is walking and drinking now, if and only if John is walking now and is drinking now.

4. ⊢ q ⇒⊢ Nq
For example, If we are walking at all times then we are walking around at any time.

Axiom 2 is needed because we want to force Nq to mean what it means and we want to use axioms
involving only N .
If we allow the connectives Since and Until, we can define N in terms of S and U by:
Nq = (definition) q ∧ S(⊤, q) ∧ U(⊤, q).
But then of course we need axioms on S and U .
The PC representation of the progressive is to associate with it the formula N(t,Q) of predicate
logic where:
N(t, Q)= (definition) ∃t1∃t2(t1 < t < t2 ∧ ∀s(t1 < s < t2 → Q(s)))
The nature of the progressive is determined by this formula. This formula N is said to be the table
for N in the terminology of of the definitions in section 6 below.
The axioms for N given in the TL style of presentation are all valid and follow in predicate logic
from N. In other words, the interpretation from the modal language into the language of classical
logic which translates �q into N(t, Q) is sound relative to all axioms of the modal logic, namely,
all of these axioms are translated into theorems of classical logic. In fact the translation is also
complete, namely if a modal formula is translated into a classical logic theorem then the modal
formula is provable from the modal axioms. However the condition of completeness of the axioms
does not determine the translation formula N uniquely. Imagine reading Nq as N1q below:
N1q = q is true from now onwards.
N1 satisfies the same axioms as N . The PC presentation of N1 is N1, namely:
N1(t, Q) = (definition) ∀s(t < s→ Q(s)).
It can be mathematically proved that over e.g. rational numbers (or real numbers) flow of time, N
and N1 satisfy the same logical axioms. Over the integers time, q becomes q i.e. N(t,Q) = Q(t)
while N1(t, Q) is not Q(t). Thus we see that the two methods of representation, i.e. TL and PC
are really stylistically different. There are more examples in the next section.

The moral of the N,N1 example is that the axiomatic presentation of the connective N (or N1)
does not admit a unique meaning and allows for a family of meanings in one axiomatic presentation.
To present N or N1 within classical predicate logic we have to use one of its meanings. We thus
lose the other meanings. Of course one can always use predicate logic as a proper metalanguage
(use Gödel numbers for naming) or just term translation and simulate the axiom system for N (or
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N1). This will indeed yield the axiomatic system for N (or N1) exactly, but it is wrong to say that
we have ‘expressed’ N or N1 in predicate logic (in the object level). We use predicate logic instead
of English to describe the system for N1. We use no properties of predicate logic to give meaning
to the modal connectives. Although such term translations are used, they are useful mostly for
automated reasoning purpose, where the classical resolution machine is helpful.

We are going to translate the metalanguage predicates defined in 5.0.1 into classical logic. We
associate for each n-place atomic predicate formula A(x1, . . . , xn) of the temporal logic, a 2 sorted
formula A∗(t, x1, . . . xn) of classical logic, where t ranges over a new sort for time. We also allow
for the predicate < to be binary over the time sort. Other formulas of this two sorted logic are
built as usual from atoms of the form t < s,A∗(t, x1, . . . , xn) the connectives and the quantifiers
on each sort.

Definition 5.5 We now translate the metapredicates Data(‘t’, ‘A’),
Hold(‘<’, ‘t’, ‘s’) and Prove as follows:

1. Data(‘t’, ‘A(x1, . . . , xn)’)∗ = A∗(t, x1, . . . , xn) where ⊥∗ = ⊥.

2. Data(‘t’, ‘A♯B’)∗ = Data(‘t’, ‘A’)∗♯ Data (‘t’, ‘B’)∗ where ♯ is any of the connectives
∧,∨,→.

3. Data(‘t’, ‘GA’)∗ = ∀s(t < s→ Data (‘s’, ‘A’)∗)

4. Data(‘t’, ‘HA’)∗ = ∀s(s < t→ Data (‘s’, ‘A’)∗)

5. Data(‘t’, ‘FA’)∗ = ∃s(t < s ∧ Data (‘s’, ‘A’)∗)

6. Data(‘t’, ‘PA’)∗ = ∃s(s < t ∧ Data (‘s’, ‘A’)∗)

7. Hold (‘<’, ‘t’, ‘s’)∗ = (t < s)

8. Prove (‘t’,’Ψ’, ‘φ’)∗ = (Ψ∗ → φ∗(t))

Note that in (8) φ∗(t) is really Data(‘t’, ‘φ’)∗.

The importance of (8) is that the translation of ‘Prove’ is the classical implication ‘→’.
It is easy to show that the translation ‘→’ of ‘Prove’ satisfies the properties listed under

Definition 5.0.1.
We have seen above two ways of representing our temporal logic L in another language M (func-

tioning as a metalangauge). One was pure meta, through the predicates Hold, Data and Prove
and one was an object level ‘meta’, through classical predicate logic. We need to systematise and
formally develop machinery for both approaches. For the first approach, the proper metalanguage
approach, we offer the language HFP, to be studied later in this paper. For the predicate logic
approach, we must give the proper definitions of how predicate logic can be used. We begin with
predicate logic in the next section.

6 Translations into classical logic: technical case study

We saw in the previous section that predicate logic can be used to represent temporal connectives
by dedicating a special sort variable t for moments of time and using it to either represent the truth
table of the temporal connectives or to represent the proof theory of the connective. This section
gives precise definitions of how this is done. The basic idea of the translation can be explained by
example as follows.

Let L be any logic with connectives ♯i, i = 1, . . . , n which is complete for a possible world se-
mantics. Assume the basic models have the form (see 6.0.12 for details) (S,Ri(t1, . . . , tr(i)), a, h,D)

where a ∈ S is the actual world, Ri ⊆ Sr(i) is the possible world relation, D ̸= ∅ is a domain and
for each k-place atomic Q,h(Q) ⊆ Sr(i) ×Dk and where Ri, i = 1, . . . , n satisfy some conditions
and the assignment h satisfies some restriction. For example modal propositional logic has seman-
tics of the form (S,R, a, h), with R ⊆ S2, R transitive and h possibly satisfying some restriction
such as, the condition
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• for all atomic q, t ∈ h(q) and tRs imply s ∈ h(q).

We consider the classical theory of a general (S,Ri, a, h) without any restrictions. Then a non-
classical logic can be characterised by the following parameters

• The restrictions on Ri (reflexivity, seriality, etc) and S via a formula R. R is a formula
involving the predicates S(t) and Ri(t1, . . . , tr(i)), i = 1, . . . , n. It expresses properties of these
predicates. Given any classical model of R with domain M , the extension ofthe predicate
S gives us the set of possible worlds and the extensions of Ri restricted to S give us the
relations on S. In case of temporal logic, where the possible world relation is already agreed
to be just a partial order, the main use of R is to characterise the domain S. For example,
R may say ∀t[t ∈ S → t ≥ 0].

• Restrictions on h (via a formula H).

• Truth tables for the connectives i.e. t � ♯i(A1, . . . , Ar(i)) iff some formula
ψi(t,Q1, . . . , Qr(i), R1, R2, . . .) holds, where Qi is intended to denote the set {s | s � Ai}. The
table ψi is written using S, R1, . . . , Rn. Usually only Ri, and S are used for ψi, i = 1, . . . , n.

So given a logic L with semantics characterised by H and R and a φ of L we can write
H ∧R → φ∗ in classical logic, where φ∗ is the translation of φ. This says ‘φ holds in all models’
i.e. L ⊢ φ.

This section defines the above for temporal logic, where (S,Ri) is obtained from a partial
order, denoted by (T,<). This is a simplification but not mathematical weakening, since arbitrary
relations can be coded in partial orders and thus Ri can be suitably retrieved. However, instead
of evaluation in one dimension (t � φ) we have m dimensions ((t1, . . . , tm) � φ).

Definition 6.1 [General form of the language PC] We define the fragment PC of classical logic
capable of handling time as follows. We augment classical logic into two sorted language. The
pure flow of time sort, containing the binary predicate t < s, the unary predicate T (s) and S(s).
The variables t, s will belong to the flow of time sort. We also have mixed predicates of the form
Q(t1, . . . , tm, x1, . . . , xn). k ≥ 1. the first m co-ordinates take the time sort, the others take the
object (other) sort. (In the propositional case the object sort is not needed, i.e. we have predicates
of the form Q(t1, . . . , tm)).

(a) The atomic predicates of the fragment have the form given by a1 or a2 but not a3, below.

(a1) Q(t1, . . . , tm, x1, . . . , xn), where Q is an atomic symbol, x1, . . . , xn are object (non -time)
variables and ti are time variables. t1 must appear in Q. x1, . . . , xn may not appear in Q
(i.e. Q = Q(t1) is allowed). Q is a two sorted predicate.

(a2) t < s, t = s, for t, s time variables

(a3) t < x, t = x, x < y, x < t,are not allowed, for x, y object variables.

(b) the fragment is closed under ∧,∨,∼,→ and under quantification ∀ and ∃ .

Example 6.2 [An m-dimensional propositional table with restriction R] Consider a k place con-
nective ♯(q1, . . . , qk). Since we are dealing with m-dimensional semantics, the possible world models
for ♯ have the form (S,R1, . . . , Rn, a, h), where n is the number of connectives of the language and
Ri are relations with the appropriate number of places on S. m-dimensional satisfaction is defined
for sequences (t1, . . . , tm) from Sm. Thus the extension of ♯(q1, . . . , qk) is a set Q ⊆ Sm, comprising
all tuples (t1, . . . , tm) such that (t1, . . . , tm) � ♯(qi, . . . , qk). This set must be obtained in some first
order way from the extensions of q1, . . . , qk.
If we let

Qi = {(s1, . . . , sm) | (s1, . . . , sm) � qi}
then Q is obtained from Qi via a formula ψ♯.
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The formula ψ♯ has m free variables and is built up from m-place predicates Q1, . . . , Qk, the
domain predicate S(t), the relations Ri. S,Ri must satisfy the restriction formula R. In the case
of temporal logic, S and Ri are all generated from the temporal flow (T,<), and ψ♯ can be directly
built up from Q1, . . . , Qk, <. The restriction formula R need only define S (the part relating to
Ri is absorbed into ψ♯). We can thus view R as a one place formula restricting S. We can thus
define:
Any Wff built up from atoms of the form S(s), where s is a time variable, and Qi(t1, . . . , tm), i =
1 . . . k, using quantifiers over t ∈ T only, and containing m free time variables is called an m-
dimensional table for a k-place connective with a parameter S.

Definition 6.3 (the general form of the language TL) Let ♯1, . . . , ♯k be symbols form1, . . .mk

- place connectives. The syntactical temporal extension of predicate logic with the connectives
♯1, . . . , ♯k is defined as follows. It is called TL(♯1, . . . , ♯k).

(a) Any predicate Wff is a temporal Wff.

(b) If A1, . . . , Ami , are temporal Wffs, so is ♯i(A1, . . . , Ami).

(c) The set of temporal wffs is closed under the classical connectives and quantifiers.

Example 6.4 The first-order semantical presentation of any propositional TL logic of the syn-
tactical form TL(♯i) (as defined above) is obtained by associating with each ♯i a table ψi with a
parameter S in the sense of Example 6.0.2. The tables should all be of the same dimension m and
for a connective ♯i the table is mi place. The semantics we are giving in this case is m-dimensional.
Thus with each ♯i we associate a formula ψi(t1, . . . , tmi , S,Q1, . . . Qmi).

Example 6.5 Consider the following connective F ∗ . The dimension is 2. the number of places
is 1. The table for F ∗ has the form:

ψF∗(t, s,Q1) = [t = s ∧ (∃t′ > t)Q1(t′, s)] ∨ [t > s ∧Q1(t, t)]

∨[t < s ∧ ∀t′(t < t′ < s→ Q1(t′, t′))]

Here we do not use the parameter S.

Definition 6.6 (a) The axiomatic presentation of an TL(♯i) logic is obtained by writing axioms
and rules for the connectives {♯i}.

(b) In case we can prove that an axiomatic TL presentation and a semantical TL presentation
define the same logic (i.e the same set of valid Wffs) then we say we proved the completeness
of the axioms for the semantics. Note that we haven’t yet precisely defined the notion of
valid sentences.

Example 6.7 Consider the example Nq of the progressive from the previous section. There are
four temporal logics involved with this connective:

(a) An axiomatic presentation:

(1) Nq → q

(2) Nq → NNq

(3) N(p ∧ q) ↔ Np ∧Nq
(4) ⊢ q ⇒⊢ Nq

(b) A first-order semantical presentation via the table:

N(t,Q) = ∃t1, t2(t1 < t < t2 ∧ ∀s(t1 < s < t2 → Q(s)))
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(c) A first-order semantical presentation via the table:

N1(t,Q) = ∀s(t < s→ Q(s)).

(d) A topological semantical presentation as follows:
Let each atom q get a set in a topological space. Let Nq mean
Nq=(definition) the topological interior of q.
Thus the table N2 for N is:
N2(t,Q)iff t ∈ Interior(Q).
The table is not even first order and involves a topology over sets. This topology may be
connected with some natural ordering on the topological space.

I don’t think there is any sense in saying that the above four logics for the connective N are the
same. It is true that the set of valid sentences in all four logics is the same, but this is all they
have in common.

Thus to represent the axiomatic presentation (a) above in first order logic, we have to use one
of its interpretations (eg (b) or (c)). We are thus forced to commit ourselves to one interpretation,
while the TL axiomatic presentation gives no committment. This is a similar situation to what we
have in logical representation of legal rules. The presentation (translation) of the rules into logic
already imposes a reading on them and thus depriving the rules from any other interpretation.
One’s tendency in the legal context is not to translate.21

To further see the difference between the logics, try and see what is the meaning of some
extensions of each logic in terms of the other logics. Consider the following:

Example 6.8 (a′) Extend the logic (a) of the previous example with the axiom of Dummett as
simplified by Geach:

N(N(q → Nq) → q) → (∼ N ∼ Nq → q)

This axiom makes sense in terms of axioms and rules but what does it mean in terms of
tables or topologies?

(b′, c′) Add the condition that the flow of time is dense and linear, to (b) and (c) of the previous
example. Does this correspond to an axiom? How does it affect the table N2 in case the
topology is obtained from some natural ordering.

(d′) Add the condition that the topological space of (d) is discrete. Does this have any counterpart
in the other systems?

(e′) Suppose we restrict our atomic formula q to being true only at a finite set of points or
its complement (i.e. give them finite sets or complements of finite sets in the topological
interpretation). What is the effect of this restriction on the various logics?

Exercise 6.9 The reader may wish to figure out what is the effect of conditions (a′) . . . (e′) on
the respective logics.

Given the topological interpretation of N , it is obviously not first order. It has the same valid
theorems as the logic (6.0.7b) and (6.0.7c), which obviously can be represented as first order. Do
we choose one of them, say (6.0.7b) and claim that we have represented the logic (d′) within the
framework of the predicate calculus? Haven’t we represented something completely different?

We need standards and protocols for translations from one language to another. The definitions
below give a standard translation of semantically presented temporal logics whose table is first
order. Such examples are (b) and (c) of the previous example 6.7.

We saw that an TL(♯i) logic can be presented semantically via a table. The table does not yet
define the logic uniquely, it just defines the meaning of the connectives. Thus the table N for N

21Legal texts have (1) syntactic ambiguity and (2) open textured terms. We are disregarding (1) and referring to
(2).
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defines one logic for the case that time is the rational numbers but reduces to Nq = q in the case
that time is the integers. Thus to completely define the set of valid sentences of a logic presented
to us we must also specify exactly the class of temporal models for this logic. The relevant notions
will be defined later in this section. We have enough information in our disposal to be able to
reduce semantically defined TL logics to PC, provided the TL tables are first order formulas.

Definition 6.10 We define a translation ∗ from any m-dimensional semantical (1st order) pre-
sentation of an TL(♯i) logic for ♯i into PC as follows:

(a) Any atomic Q(x1, . . . , xn) of TL is reduced to Q∗(t1, . . . tm, x1, . . . , xn) of PC. (i.e. time
co-ordinates are added). In the propositional case, the atom q will translate into q∗ = Q.

(b) The translation ∗ commutes with the classical connectives and quantifiers.
(A ∧B)∗ = A∗ ∧B∗

(A ∨B)∗ = A∗ ∨B∗

(∼ A)∗ =∼ A∗

(∀xA(x))∗ = ∀xA∗(x)
(∃xA(x))∗ = ∃xA∗(x)

(c) The m-dimensional connective ♯i(A1, . . . , Ami) with table ψi is translated using the table:

♯i(A1, . . . , Ami)
∗ = ψi(t1, . . . , tm, S, A

∗
1, . . . , A

∗
mi

)

Example 6.11 The translation of N(Nq → q) of the previous Example 6.7 with table:

N(t, Q) = ∃t1, t2, (t1 < t < t2) ∧ ∀s(t1 < s < t2 → Q(s))

is:
∃t1, t2(t1 < t < t2) ∧ ∀s(t1 < s < t2) → [Nq → q] ∗ (s)

where
(Nq → q)∗(s) = (Nq)∗(s) → q∗(s) = ∃x1, x2(x1 < s < x2

∧∀y(x1 < y < x2 → Q(y)) → Q(s))

Thus the translation is:

(∃t1, t2)[(t1 < t < t2)] ∧ ∀s[t1 < s < t2] → (∃x1, x2)((x1 < s < x2))

∧∀y(x1 < y < x2 → Q(y)) → Q(s)

The semantical presentation of definition 6.0.6 and the translation of definition 6.0.10 are good for
any flow of time. To define any specific temporal logic, we need to fix the flow of time. Thus we
are led to the following:

Definition 6.12 (a) An TL semantical presentation of an m-dimensional temporal logic with
constant domains and with connectives ♯1, .., ♯k,is determined by the following components:

(a1) m-dimensional tables ψi for each connective ♯i, i = 1, . . . , k. ψi is a formula
ψi(t1, . . . , tm, S,Q

∗
1, . . . , Q

∗
mi

) where ♯i is mi-placed. S is unary and Q∗
1, . . . , Q

∗
mi

are m-place
predicates.

(a2) A family K of flows of time of the form (T,<, S), with S ⊆ T . The flows of time in
K must satisfy the restriction R. Consider the first order language with the predicate <
(binary) S, T (unary) and Q∗

1, . . . , Q
∗
n (m-place). By abuse of notation, <, T, S represent <

and T and S of the flow of time with S ⊆ T and Q∗
i can range over the sets of the form

∥A∥h = {(t1, . . . , tm) | (t1, . . . , tm) � A, for some wff A of TL}. H and R are in the above
language. R restricts the model (T,<, S) and H restricts the assignment h to the atomic
wffs A(x1, . . . , xn) to sets of the form ∥A∥h which satisfy H.
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(b) A temporal model has the form (T,<, S, h,D) ∈ K where S and h satisfy the restric-
tions H and R. D is the non-empty domain of the model and h is an assigment giving
for each t1, . . . tm ∈ T and each n-place atomic predicate Q of the temporal language a
subset h(t1, . . . , tm, Q) ⊆ Dn. (D,h) must satisfy the restriction H and R for (T,<, S, h) .

(c) The truth set ∥B∥ of each formula B(x1, . . . , xn) of the temporal language is defined by
induction, for each substitution xi/yi ∈ D (i.e. we are defining ∥B(y1, . . . , yn)∥ for each
yi ∈ D):

(1) ∥Q(yi)∥ = {t|(y1, . . . , yn) ∈ h(t,Q), where t = (t1, . . . , tm)}.

(2) ∥(B1 ∧B2)∥ = ∥B1∥ ∩ ∥B2∥
(3) ∥(∼ B)∥ = Tm − ∥B∥
(4) ∥(B1 ∨B2)∥ = ∥B1∥ ∪ ∥B2∥
(5) ∥(B1 → B2)∥ = (Tm − ∥B1)∥ ∪ ∥B2∥
(6) ∥(∃xB1(x))∥ = {t| for some d ∈ D, t ∈ ∥B1(d)∥, t = (t1, . . . tm)}
(7) ∥∀xB1(x)∥ = {t| for all d ∈ D, t ∈ ∥B1(d)∥, t = (t1, . . . , tm)}.
(8) ∥♯i(B1, . . . , Bmi)∥ = {t|ψi(t, B1, . . . , Bmi) holds in (T,<, S, h,D)}
(9) We say a formula B(x1, . . . , xn)) holds at (T,<, S, h,D) iff its universal closure holds,

i.e. for any d1, . . . , dn ∈ D, ∥B(d1, . . . , dn)∥h ⊇ Sm.

(10) We say B(x1, . . . , xn) is valid in the logic if B(x1, . . . , xn) holds at any (T,<, S, h,D),
for which h and D satisfy the restrictions H,R.

Example 6.13 (a) Take the connective N with the table of Example 6.0.7(a) and a constant c.
Take as the flows of time in K all linearly ordered (T,<). Take a subset C ⊆ T as a truth
table subset for c. Take as restrictions H,R the condition H(Q) for any atom Q, and R(t)
below:

Let for atomic q which is not the constant c (i.e. predicate Q (associated with q) which is
not the predicate C associated with c):

(1) H(Q) = ∃t∀x(∀s > t)(Q(s, x) ↔ Q(t, x)), for Q ̸= C( ie q ̸= c).

(2) H(C) = ∃t ∼ C(t) ∧ ∃tC(t) ∧ ∀s, s′(C(s) ∧ s < s′ → C(s′))

(3) Let R(D) say that D = {t |∼ C(t)}.
Thus H(Q) says that after some time t,Q keeps on giving the same values to any
x. H(C) says that C is initially false and then becomes true. R says the domain is
determined by C being false.

(b) Take as flows of time all finite chains for the connective N of 6.0.7a, which is the same
connective taken in (a) above, (without c). Take no restrictions H or R.

One can show that the logic of the connective Nb (i.e. N of 6.0.7b above) is related (can
be translated) into the logic of the connective Na of 6.0.7a by the (more or less) following
translation:

Nbq ≡∼ c ∧Na(q ∨ c)

We can now say what it means, as a first approximation, for a temporal logic to be 1st order
expressible in PC. The temporal logic must have tables ψi for its connectives ♯i and 1st order
conditions defining the class K of flows of time and first order conditions defining the restrictions
R,H on the assignment. If a logic L1 is defined by other means, not by semantical means, then we
can say that if the set of valid theorems of this logic is the same as the set of another logic L2 which
is expressible in PC then L1 is also considered expressible in PC. We are not ready yet to give
the above as formal definition, partly because we are going to reject it, as it is too restrictive and
misses out on some intuitions. The reader is referred to the case studies for examples of different
translations and their discussion.
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7 Linked predicate languages: classical logic as a target
for translation

The previous sections discussed to various degrees of detail, three seemingly independent families
of concepts:

• We discussed the proposed LDS discipline.

• We discussed at the beginning of Section 5 the possibility of two languages L1 and L2 being
linked in some way and through that link one can implement some metalevel features of the
other. This was shown to be a way of looking at LDS, namely that we are linking the labels
of the algebra with the formulas.

This linkage of A and L can be done for any two predicate systems within predicate logic.

• Section 6 showed how temporal connectives can be ‘talked about’ from within predicate logic.
The temporal meta predicate ‘A(x1, . . . , xn) holds at time t’ is translated into predicate logic
as A∗(t, x1, . . . , xn), where A∗ is a two sorted n+ 1 place predicate, with t a variable of the
time sort and x1 . . . xn of the element sort. The relation < on time also has to be introduced
as well as suitable axioms to ensure that the interpretation of the temporal system within
predicate logic functions properly.

We also saw how an LDS system say (A,L) can be translated into two sorted classical logic,
with two sorts, one for the labels and one for formulas. We thus have t : A(x) is translated
into A∗(t, x). t is a term in A, A a wff in L. The sort t is from the algebra and so has an
algebraic language for manipulating it. A∗ is a predicate of two sorts.

There is a more general way of looking at what we are doing, which is quite independent of the
above particular examples. It has to do with linking two languages via the sharing of variables.
The task of this section is to develop this theme.

We show how to prepare (separate, present) classical logic as a two sorted system so that it can
serve as a target for translation. For this we need to ‘link’ predicate languages, which we denote
by G and L to emphasise the complete generality.

Obviously a lot depends on the mechanism of ‘linking’. We are going to clarify this notion
for the case of two predicate logic theories. This will suffice for the handling of reduction of LDS
or temporal logic into classical logic. G acts as object level language implementing metalevel
restrictions on L.

Consider the first order language G with a binary relation < and variables {t, s, . . .}. Think of
it as a theory of the flow of time. Consider the predicate language L, with variables {x1, x2, . . .}
and predicates A(x1, . . . , xn), B(y1, . . . , ym). The formal operation of what we have done was to
‘combine’ these two languages by replacing L by L∗, where L∗ is a two sorted language, with
variables {t, s, . . .} and {x1, x2, . . .} and taking as atomic predicates the two sorted predicates
A∗(t, x1, . . . , xn), B∗(s, y1, . . . , yn), etc.

We allow for common quantification and mixed wffs. Thus we can write for example the mixed
formula φ(t)

φ(t) = ∀s(t < s→ A∗(t, x1, . . . , xn))

which you will recognise as the truth table for ‘GA(x1, . . . , xn) holds at t’.
Formally φ is just a formula in the mixed language. Let us give a quick definition to clarify

our concepts before we continue our discussion.

Definition 7.1 The two sorted language L∗
k(G). Let L and G be the two languages. Both

L and G have atomic predicates. Let L∗
k be obtained from L by replacing each atomic predicate

R(x1, . . . , xn) of L by R∗(t1, . . . , tk, x1, . . . xn) where ti are variables of a new sort. Thus the
resulting L∗

k is a two sorted language, with the new sort for t-variables. We allow quantification
over t-variables. The intention is that the t-variables will be from the language G.
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1. The atomic wffs of L∗
k(G) are of the form R∗(t1, . . . , tk, x1, . . . , xn), where R(x1, . . . , xn) is an

atomic wff of L and t1, . . . tk are terms of G, or of the form Q(t1, . . . , tm), where Q(t1, . . . , tm)
is an atomic wff of G.

2. If φ and ψ are wffs of the language with t free in φ and x free in φ then φ ∧ ψ,φ ∨ ψ,φ →
ψ,∼ φ, ∀tφ,∀xφ,∃tφ,∃xφ are wffs of the language.

Example 7.2 1. Let G be the language of order < and let L be classical predicate logic. L∗
1(G)

gives a language with atoms R∗(t, x1, . . . xn), which we used in the previous example to mean
‘R is true at t’.

2. The language G can be a metalanguage. Consider a propositional language, eg the proposi-
tional language with ¬,∧,∨ and →. For each wff A of the propositional language introduce
a constant τA. Introduce the operations f∼(τA) = τ∼A f∧(τA, τB) = τA∧B and similarly f∨
and f→. Let G be the language with τA as terms and {f∼, . . .} as functions. The language
L∗
1(G) talks about the formulas of the propositional language as labels R∗(τA, x1, . . . xn)

represents A : R(x1, . . . xn), where A acts as a label.

The above linkage is still not the most general case. To get an idea of what we need, consider the
following set-up. Consider a distributed system of stations s1, s2, s3, . . . related in some manner.
Each station has its own internal structure and language L. Assume they all use the same language
and logic. We also need a global configuration language to describe how these stations are related.
This language denoted by G (for global) need not be the same logic as L. For example G can
be based on intuitionistic logic, while L is based on classical logic. L may be a Horn clause logic
programming language while G could be a form of Petri net langauge. The stations si need to
communicate, so they would have output and input ports which can be accessed by the other
stations. For simplicty assume that there are some variables x1, . . . , xk which can be accessed by
the stations. This means that the language G can talk about xi.

If we want to link these two languages into one, we can form the syntactic combination L∗
k(G)

of the previous definition. The additional feature to worry about is that the logic of G and L may
not be the same. Consider the following cases: (A∗(t, x) could mean ‘at station t mailbox x is
down’, and B∗(t, x) can mean ‘at station t printer x is down’.)

1. A∗(t, x) → B∗(s, y)

2. A∗(t, x) → B∗(t, y)

3. A∗(t, x) → B∗(s, x)

4. A∗(t, x) → B∗(t, x)

In cases 2 and 4 we can say that this is an internal statement of station t and hence the
implication follows the logic of L. In case 3 we can use the logic of G as this is a relation between
stations.

What do we do in case 1?
The simplest course of action is to understand it as a relationship between stations and hence

use the logic of G. We thus have a simple rule. Any formula with different station constants in it is
to be manipulated logically according to G but if the constants are equal, it is to be manipulated
according to L. In fact once we agree to that, different stations can have different logics, Lt. They
must all be based on the same language.

We have one restriction on the system, that is the configuration logic must be sound with
respect to the station logics. In symbols, ∆ ⊢G A in the configuration logic implies ∆ ⊢L A in
the station logic. The reason for that is unification. We must be able to reason about two possibly
different stations in G and if we identify them our reasoning (now in L) must still be valid.

We now consider the Horn clause fragment of L∗
k(G). The modal and temporal logics of the

case studies used the language G with <, the linking of classical predicate logic with the theory
of order <. In fact, we were operating in the Horn clause fragment of L∗

1(<). We should therefore
define the Horn clause fragment of L∗

k(G) in general.
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Definition 7.3 The Horn clause fragment of L∗
k(G).

1. Any atom of the form R∗(t1, . . . , tk, x1, . . . , xn) of L∗
k and Q(t1, . . . , tm) of G is in the Horn

clause fragment and in the generated body fragment.

2. If A and B are in the Horn clause fragment or in the generated body fragment then so are
A ∧B, ∀xA,∃xA,∀tA, ∃tA.

3. If A is in the generated body fragment and B is in the Horn clause fragment then A→ B is
in the Horn clause fragment.

Example 7.4 1. If A(t, x), B(s, y) are atomic, then A′ = ∀t∃xA is in the atomic fragment and
C = A′ → ∃s∀yB is in the Horn clause fragment. In classical logic, one can write C as:

∃t∀x∃s∀y(A→ B)

because we can pull the quantifiers to the front and hence the previous definition can be
simplified. In intuitionistic logic this is not possible and so we need clause 3 of the previous
definition and the notion of atomic fragment, in order not to be committed to classical logic.

2. Notice that for k = 1 and G the theory of order <, the Horn clause fragment of L∗
1(<) gives

us the Horn fragment for temporal logic.

The above discussion about linking two languages L and G is a general discussion of how
a language G can be linked to a language L and ‘influence it’ by forming L∗

k(G). We gave no
particular meaning to this operation beyond the ‘metalevel’ one. We did see that this linkage did
generalise the special construction of PC in the previous section. G corresponded to the time
order relation < and L corresponded to the predicate logic. The linkage formulated in definition
7.0.1 allows for linking arbitrary G and L.

Can we give modal or temporal meaning to L∗
k(G) for arbitrary G and L?

Furthermore, we have the following diagram, which we want to generalize:

? ?

semantics with <
Possible world

G(with <)

First order language

where L= predicate logic

PC = L∗
1(<)

Logic TL

Temporal

� -

-�

We want to complete the following diagram:
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predicate logic

G an arbitrary

L= predicate logic

L∗
m(G)

to G

semantics corresponding
Is it Modalm(L,G)

What language?

? ?

Possible world

� -

-�

What would be the counterpart of TL for arbitrary G and L?
Obviously we must generalise the notion of a temporal connective based on time ordering < to

some general modal connective based on some language G.
We are now ready to define a modal logic Modal(L,G) of L and G. To explain our options,

let us reconsider the basic temporal connectives F and P . The truth table for FA(x) is:
FA(x) is true at t iff for some s > t,A(x) is true at s.

If A(x) is atomic, we translate it into A∗(t, x), understanding A∗(t, x) as ‘A(x) is true at t’ and
thus we get:

FA(x) is true at t iff ∃s(t < s ∧A∗(s, x))

or
(FA(x))∗t = ∃s(t < s ∧A∗(s, x))

In L∗
1(<), < is the atomic relation of the order. A∗(t, x) is an atomic relation of L∗

1. ‘F ’
represents the existential quantifier on the variable s in t < s ∧ A∗(s, x) and it is denoted by ‘F ’.
The existential quantifier on t would be ∃t(t < s ∧A∗(t, x)) and that would correspond to ‘P ’.

Let us generalise this situation to L∗
1(G). Here the atoms A∗(t, x) are still the same, but the

atoms of G could be any Q(t1, . . . , tm). The parallel construction would be:

∃ti(Q(t1, . . . , ti, . . . , tm) ∧A∗(ti, x))

We could introduce for each atom Q(t1, . . . , tm) of G and each 1 ≤ i ≤ m the existential
connective ♢Q,iA(x) to mean

(♢Q,iA)∗t = (def) ∃ti[Q(· · · ti · · ·) ∧A∗(ti, x)]

Similarly we can define �Q,iA

(�Q,iA)∗t = (def) ∀ti[Q(· · · ti · · ·) → A∗(ti, x)]

These correspond to ‘G’ and ‘H’ of temporal logic. To summarise we have:

�<,2 = G
�<,1 = H
♢<,2 = F
♢<,1 = P

Let us consider what Since(A,B) does in this context.
S(A,B) is true at t iff ∃s < t[A is true at s and ∀y(s < y ∧ y < t implies B is true at y)].
Let ψS be the following formula in a language with < and the two new monadic predicates Q1

and Q2.
ψS(t,Q1, Q2) = (def) ∃s < t[Q1(s) ∧ ∀y(s < y ∧ y < t→ Q2(y))]
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Then we have S(A,B) is true at t iff ψS(t, A∗, B∗), where A∗, B∗ are considered monadic
predicates in the G sort.

To generalise the above, let G+
1 be the extension of the language of G with new monadic

predicates {Q1, Q2, . . .}. Let ψ(t,Q1, . . . , Qn) be a formula of G+
1 with 1 free variable t and the n

new monadic predicates. Let A∗
1, . . . , A

∗
n be n formulas of L∗

1, which can be considered monadic in
the sort t. We can introduce the n place connective ♯(A1, . . . , An) with the truth table

♯(A1, . . . , An) true at t iff ψ(t, A∗
1, . . . , A

∗
n).

We will now give the general definition and an example. Further mathematical study of these
concepts can be found in my book [Gabbay et al., 1993].

Definition 7.5 Let G, L be two languages. We construct the modal language Modalm(L,G) as
follows:

1. Let G+
m be the language G supplemented with an infinite sequence of new m place atomic

predicates {R1, R2, . . .}.

2. Let L∗
m(G) be the language obtained from L as in definition 7.0.1. We can regard each

atomic formula A∗(t1, . . . , tm, x1, . . . , xn) as m-place atomic in the variables t1, . . . , tm.

3. Let G be any model of G. We regard G as a model of possible worlds. With each t1, . . . , tm ∈ G,
associate a model L(t1,...,tm) of L. Assume all the L(t1,...,tm) models have the same domain D
(constant domain semantics). We refer to (G,L(t1,...,tm)) as a modal model.

4. For each wff ψ(t1, . . . , tm, R1, . . . , Rn) of G+
m with ti free and Ri new atomic predicates,

associate a n place connective ♯ψ. The full modal language Modalm(L,G) is L ∪ {♯ψ | ψ ∈
G+
m}.

Definition 7.6 Given a modal model (G,L(t1,...,tm)) and an assignment h of L into D, a model

Gh of G+
m is induced on G as follows.

Let A∗(t1, . . . , tm, x1, . . . , xn) be an atom of L∗
k. It can be viewed, for x1, . . . , xn fixed, as an

atomic predicate of G+
m. Let the extension of this predicate in G be {(t1, . . . , tm) | L(t1,...,tm) �

A(h(x1), . . . , h(xn))}.
We define the notion of a formulaA(x1, . . . , xn) of Modalm(L,G) holding at the indices (t1, . . . , tm),
notation ∥A∥ht1,...,tm = 1, as follows:

1. ∥A∥h(t1,...,tm) = 1 iff (def) Lt1,...,tm � A(h(x1), . . . , h(xn)).

∥A∥ht1,...,tm = 0 otherwise.

2. ∥A ∧B∥h = 1 iff ∥A∥h = ∥B∥h = 1

3. ∥ ∼ A∥h = 1 iff ∥A∥ = 0.

4. ∥∃xA(x)∥h = 1 iff for some d ∈ D, and h1, such that h1(x) = d and h1 agrees with h on all
other variables we have ∥A(x)∥h1 = 1

5. ∥♯ψ(A1, . . . , An)∥ht1,...,tn = 1 iff G+
m � ψ(t1, . . . , tm, Q1, . . . , Qn)

where G+
m is the extension of G to a model of the language G+

m by the assignment
Qi = {(t1, . . . , tm) | ∥A∥ht1,...,tm = 1}.

6. Let K be a class of G models (G, (s1, . . . , sm)) with a distinguised seqeunce of si ∈ G. Let
φ be a formula of Modalm(L,G). We say K � φ iff for all models (G,L(t1,...,tm)) and all

h, ∥A∥hs1,...,sm = 1

Example 7.7 To show the generality of the previous definition, we give an example from another
area of logic. Let G be a commutative semigroup with multiplication ∗ and a unit 1. That is, we
have the axioms:

1. ∀xyz((x ∗ y) ∗ z = x ∗ (y ∗ z))
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2. ∀xy(x ∗ y = y ∗ x)

3. ∀x(1 ∗ x = x)

Let L be classical propositional logic. Consider the formulas ψ(t,Q1, Q2) and φ(t,Q1, Q2) where:

ψ(t, Q1, Q2) = def ∀y[Q1(y) → Q2(t ∗ y)]

φ(t,Q1, Q2) = def ∃xy[Q1(x) ∧Q2(y) ∧ t = (x ∗ y)]

Then the logic with the connectives ♯ψ(A,B) and ♯φ(A,B) is linear logic with linear implication
and external conjunction.

♯ψ(A,B) = A( B

♯φ(A,B) = A⊗B

The semantics induced on these connectives by the general definition can be directly defined as
follows.
The set of possible worlds is a semigroup G. The propositional assignment h gives a truth value
to every atom at a point ie h(t, q) ∈ {0, 1} for t ∈ G, q atomic. The truth conditions for ( and ⊗
are as follows:

∥A( B∥ht = 1 iff ∀y(∥A∥hy = 1 implies ∥B∥ht∗y = 1)

∥A⊗B∥ht = 1 iff for some x, y we have ∥A∥hx = 1 and ∥B∥hy = 1 and t = x ∗ y.

We have � A iff for all G and all h, ∥A∥h1 = 1.

We will not pursue further these topics. See my forthcoming books on Labelled Deductive
Systems and Temporal Logic [Gabbay, 1994] and [Gabbay et al., 1993].

8 The metalanguage HFP: computational classical logic

The previous two sections studied first the possiblity of classical logic serving as a metalanguage,
and second the general mechanism of linking two languages G and L, so that the linkage can
implement metalanguage features of the modal system based on G. In both cases our examples
used classical logic for L. Since different languages G seem to serve as the object language which
implements the meta features involved turning classical logic L into different new logics L∗

1(G),
we ask ourselves, is there a convenient general purpose language M which is specially suited for
expressing meta language features, and which will contain all the L∗

1(G)?
The answer is yes. The language we have in mind is the language HFP.22

The relevance of the existence of HFP to the Debate is as follows. We claim that classical logic
or its variants are universal languages at least from the point of view of automated deduction. So
given for example an arbitrary logic N we can translate it into L∗

k(G), for some suitable G (usually
obtained from the semantics or equivalent LDS proof theory of N), an appropriate dimension k
and classical logic L. This method suffers from some disadvantages. The target system is many
sorted and may be computationally inconvenient. We also get for different N1,N2, . . . different
target many sorted languages L∗

k(i)(Gi), i = 1, 2, . . .. We would like one very nice language which
is convenient and can serve any logic N. We propose the language HFP and we will show at the
end of this section how any logic N and any L∗

k(G) can be nicely translated into HFP.
We begin by describing the intuition behind the language HFP. Consider first propositional

temporal logic, formalised in the usual way, via the addition of extra connectives to classical
propositional logic. Assume the connectives are FA and PA, ‘A will be true’ and ‘A was true’
respectively.

In symbols:

22In fact, the Logic Programming Community, when working in extensions of logic programming, are actually
working in HFP, more specifically in Horn clause HFP which, you will be surprised to learn, is essentially Micro-
PROLOG. Unfortunately, no one uses Micro-PROLOG anymore.
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∥FA∥t = 1 iff ∃s > t ∥A∥s = 1

∥PA∥t = 1iff ∃s < t ∥A∥s = 1.

Suppose we want to choose the first moment s0 such that s0 > t and ∥A∥s0 = 1, assume such
a moment exists. This moment is a function of t and A. Let us denote it by s0 = f11 (A, t). Here
f11 is a two place function, taking a formula and a point and yielding a point.

Consider now the connective F itself, this connectives takes a formula A yields a formula FA,
thus its function is R1

0(A).
The functionality of f11 and R1

0 can be described set theoretically. If X is the set of all points
in which A is true, we get

f11 (X, t) = min (X ∩ {s | s > t})

R1
0(X) = {s | ∃t ∈ X(s < t)}

In general we can have general connectives and functions of the form fmn , R
m
n , taking m formulas

and n points and yielding a point or a formula repsectively.
To give another example, consider the connective S(A,B). Its meaning is that since a point

in the past where A was true, B has been true all the time. We can now form a new connective
Sxy (A,B) reading since a point t in the past which is different from x in which A is true, B has
been continuously true at all points since which are greater than y. This connective has the form
S(A,B, x, y).

The language HFP is a general language in which tables and connectives can be described. It
allows for predicates Rmn and function symbols fmn to take both formulas and terms as arguments.

The use of HFP is not restricted to the metalevel of modal and temporal languages. It is also
the metalanguage of actual Prolog programs. Although officially logic programming deals with
the Horn clause fragment of classical logic (possibly with negation by failure), namely with clauses
of the form ∧

Ai → B

where Ai and B are atoms, in practice the Prolog programmer uses HFP as the language.
(Negation by failure can be incorporated using a metalevel failure predicate).

Expressions like Hold(A,B) Demo(A(x), B(y)) are written in Prolog. The above are expres-
sions of HFP. It may be thought that Demo and Hold are metapredicates. This is partially correct.
They have special properites. The variables x and y in Demo(A(x), B(y)) can be quantified and
unified. Thus Demo is not like the general metapredicates of a pure metalanguage M but rather
special and we claim it is like in HFP. (We shall see later in this Section how to quantify on
seemingly object level variables occurring in a metalevel predicate.)

We see in definiton 8.0.3 below that HFP is given modal semantics. So the question is whether
this semantics is adequate for the way Prolog uses the language. We will be in a better position
to answer in the next section. The answer in general is no, Prolog predicates are not in general
modal connectives, but under certain restrictions they can be viewed as such though this is not
the most convenient way of looking at them.

We are now ready to define the general metalanguage HFP, of Hereditarily Finite Predicates.

Definition 8.1 (The Language HFP)
The language contains the classical connectives ∼,∧,∨,→ and the variables {x, y, z, . . .} for terms
and variables {X,Y, Z, . . .} for formulas, and the quantifiers ∀ and ∃. There is a list of atomic
predicates Rmn allowing us to form Rmn (ψ1, . . . , ψm, x1, . . . , xn), where ψi are formula variables or
formulas and xj are term variables or terms . There are function symbols fmn allowing us to form
fmn (ψ1, . . . , ψm, x1, . . . xn), where ψi are formula variables and xj are term variables. We define
now the notions of a wff and a term of the language HFP.

1. ⊤ is a formula with no free variables.

2. x is a term with x free. Y is a formula with Y free.
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3. If ψi(x
i
1, . . . x

i
k(i)), i = 1, . . . ,m, are formulas with free variables

{xi1, . . . , xik(i)} and Fj(x1, . . . , xr(j)), j = 1, . . . , n, are terms with {xj1, . . . , x
j
r(j)} as free vari-

ables and Rmn is a predicate symbol with (m,n) places and fmn is a function symbol with
(m,n) places then:

(a) Rmn (ψ1, . . . , ψm, F1, . . . , Fn) is a formula with the above free variables, namely (xij , x
t
s), i =

1, . . . ,m, j = 1, . . . , k(i), t = 1, . . . , n, s = 1, . . . , r(t)}.

(b) fmn (ψ1, . . . , ψm, F1, . . . , Fn) is a term with the same free variables as in (a).

The free variables mentioned can be either term or formula variables.

4. If ψ1, ψ2 are wffs, then so are ∼ ψ1, ψ1 ∧ ψ2, ψ1 → ψ2, ψ1 ∨ ψ2. ∼ ψ1 has the same free
variables as ψ1, and ψ1 ∧ ψ2, ψ2 ∨ ψ2 and ψ1 → ψ2 have a set of free variables which is the
union of the sets of free variables of ψ1 and ψ2.

5. If ψ(x, yi) is a formula with free variables {x, yi} being either term or formula variables then
∀xψ,∃xψ are formulas with the free variables {yi}.

Example 8.2 To give some examples consider the Hold predicate. This has the form Hold (ψ, t)
= ‘ψ is true at time t’.
We can now write Hold(Hold(ψ, t), s)

‘At time s it was true that ψ was true at t’;

compare this sentence with Thought(Thought(ψ, 0), 5)

‘At time 5 people thought that at time 0 it was thought that ψ was true’;

consider Thought-F(ψ, t) which reads:

‘At time t, ψ was considered true in the future’.

Thus we can write a rule: If at any time you expect to get a budget for a Research Assistant, then
hire one. (It may be that you never get the budget!).

∀t[Thought-F(budget, t) → Hire(t)].

We now define several types of models for this language.

Definition 8.3 (Modal Semantics)
Let D be a nonempty set. A function h is an assignment for HFP iff the following holds:

1. If x is an individual term variable then h(x) ∈ D. If x is a formula variable then h(x) ⊆ D.

2. If Rmn is a predicate symbol then h(Rmn ) is a function with domain (2D)m ×Dn and range
2D

3. If fmn is a function symbol then h(fmn ) is a function with domain (2D)m ×Dn and range D.

4. Given a formula ψ(x1, . . . , xn) with free variables x1, . . . xn and a term F (x1, . . . , xn) with
free variables x1, . . . , xn we define the value h∗(F ) ∈ D and h∗(ψ) ⊆ D as follows:

(a) h∗(x) = h(x)

(b) h∗(⊤) = D

(c) h∗(Rmn )(ψ1, . . . , ψm, F1, . . . , Fn) =
h(Rmn )(h∗(ψ1), . . . , h∗(ψm), h∗(F1), . . . , h∗(Fn))

(d) h∗(fmn (ψ1, . . . , ψm), F1, . . . , Fn) =
h(fmn )(h∗(ψ1), . . . , h∗(ψm), h∗(F1), . . . , h∗(Fn))
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(e) h∗(∼ φ) = D − h∗(φ)
h∗(φ ∧ ψ) = h∗(φ) ∩ h∗(ψ)

(f) h∗(∀xψ(x)) =
∩
d∈D h

∗
x/d(ψ(x))

where hx/d is the function which differs from h only by having hx/d(x) = d.
ie
hx/d(y) = h(y) for y ̸= x
hx/d(y) = d for y = x
Similarly
h∗(∃xψ(x)) =

∪
d∈D h

∗
x/d(ψ(x)).

5. (a) A model is a domain and an assignment, (D,h).

(b) A formula ψ holds in a model if h∗(ψ) = D

(c) A formula ψ is valid if it holds in all models.

Example 8.4 1. Consider classical propositional temporal logic. We can associate with any
atomic proposition q a 0-place predicate Q of HFP. The domain D is time and assume an
order < on D. Q is a (0, 0) predicate. Let F be the (1, 0) predicate F(Q). Let h<(F)(Y ),
for Y ⊆ D be the set Y + = {s | ∃y ∈ Y s < y}. Then if h<(Q) is the set where q is true then
h∗<(FQ) is the set of points where Fq is true.

2. Consider the example in (a) above and consider the connective (predicate) F(Q, x). F is a
(1, 1) predicate. It corresponds in the propositional temporal logic to a labelled connective
F xq. We may have for example F xq true at t iff t < x and q true at x. In HFP the
assignment would be:

h<(F)(Y, x) = {t | t < x and x ∈ Y }

3. Notice that the Hold predicate of 8.0.2 should be of type Hold1
0, ie Hold(A) if the modal

semantics associates a set with it. Thus Hold(A) ≡ A, ie h(Hold) ≡ identity.

The above discussion gave to HFP modal semantics. This semantics is adequate for describing
the modal and temporal applications of HFP, as it talks about truth conditions of connectives.
However, it does not seem satisfactory in explaining the way HFP predicates are used in practical
Prolog programs. Whenever we write in Prolog a clause of the form

Hold(Demo(A(x), B(y)) ∧A(z)) → B(z)

We are using HFP expressions involving predicates of predicates. Sometimes we even write clauses
of the form

X → P (X)

which play an important role in metaprogramming.
For example the clause

Hold(φ) if φ

may look more familiar to the reader.
The logical status of these phrases and their semantics have to be explained. The main charac-

teristic feature of such use is that the variables in the clauses can unify and change value. Thus it
is not immediately obvious whether one can say that in the expression φ(A(x), x), A(x) is a name
of a formula. If A(x) represents the wff A(x) (ie what we really have is φ(‘A(x)’, x), then the ‘x’
in A(x) cannot change or unify, certainly not in uniformity with the other x. In practice of course
when ‘x’ is unified to be ‘a’, we get φ(A(a), a) and not φ(‘A(x)’, a).)

We thus need to explain the above for the case of HFP, because like in Prolog, HFP allows
for x to be free in φ(A(x), x) in both places.

Notice that in the modal semantics the above are interpreted as connectives. So for example
φ(B, y) can be interpreted as the connective saying: B will always be true but not later than time
y, and A(x) can be interpreted as saying: Time x is in the future (of now). Together we form

69



φ(A(x), x) to mean: Time x will always be in the future but not later than time x, which is really
a temporal tautology.

We now proceed to give the metalevel semantics for HFP, as opposed to the modal semantics.
Our strategy is to begin with ordinary predicate logic, describe a metalanguage M for it and
identify HFP as part of the metalevel description of predicate logic in M.

Definition 8.5 [Term translation] Let L be predicate logic with predicate symbols {Pi, i = 1, 2, 3, . . .}
which are ni place; variables {xi, yi, . . .} and constants {ai, bi, . . .}. The language L may con-
tain the classical connectives and in general a stock of m-place connectives of the general form
♯(A1, . . . , Am). We refer to L as the object language. A language M is said to be a metalanguage
for L if it is capable of naming the symbols of L and contains the following representing terms
(this translation is referred to as term translation):

1. For each symbol of L there exists a possibly unique name which is a term of M. The naming
function is denoted by quotation marks.

• variables xi are named ‘xi’

• constants ai are named ‘ai’

• predicate symbols Pi are named ‘Pi’

2. For each Pi, which is ni place predicate, there exists a function fi of the metalanguage M,
satisfying the following:
fi(‘Pi’,‘t1’, . . ., ‘tni ’) = ‘Pi(t1, . . . tni)’
In fact, we can take the above as a definition of the name of
Pi(t1, . . . , tni).

3. There exist functions f∧, f∨, f→, f∼, f∀ and f∃ and f♯ for each m-place connective, satisfying
equations as follows:

• f∧ ( ‘A’, ‘B’ ) = ‘A ∧B’

• f∨ ( ‘A’, ‘B’ ) = ‘A ∨B’

• f→ ( ‘A’, ‘B’ ) = ‘A→ B’

• f∼ (‘A’) = ‘∼ A’

• f∀ (‘A’, ‘x’) = ‘∀xA(x)’

• f∃(‘A’, ‘x’) = ‘∃xA(x)’

• f♯ (‘A1’, . . . , ‘Am’) = ‘♯(A1, . . . , Am)’

4. There are functions Sub, s and n satisfying the following, for terms t:
n(t) = ‘t’
s(‘t’) = t
Sub (‘A(x)’, ‘x’, n(t)) = ‘A(t)’
where t is any term and ‘t’ is its name.

Note that Sub is a substitution function. We can assume that f♯, fi, f∧, f∨, f∼, f∃ and f∀ are actual
function symbols of M and thus actually define the terms which name the formulas. Sub cannot
be assumed as a function symbol because then a formula might have several names. In general
metalevel language with functions representing substitution, the names will not be unique. Several
function symbols including the substitution function symbol can combine to yield names for a
formula in several different ways. If we choose a unique name via our formula construction functions
as we did, the substitution function may not be representable.

So we have to assume that Sub is somehow definable in M. An alternative is to take Sub as
a function symbol and add axioms to M to make things right.

Lemma 8.6 Let φ(x1, . . . , xn) be a formula, then there exists a term
fφ(x1, . . . ,xn) of M with free variables x1, . . . ,xn (ranging over names) such that
fφ (‘a1’, . . ., ‘an’) = ‘φ(a1, . . . , an)’
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Proof. By induction on the structure of φ. For atomic φ = Pi(x1, . . . xni), we have

fφ = (def) fi(‘Pi’,x1, . . . ,xni).

If there exist terms fA and fB for A and B then fA♯B = f♯(fA, fB) for ♯ standing for ∧,∨,→ and
similarly for ∼ and for a general m-place ♯.

Let φ = ∀xψ(x). Let fψ be given. Then fφ = f∀(fψ, ‘x’). Similarly for φ = ∃xψ(x). <

Definition 8.7 [Metalevel semantics] Let M be a model of M. Let Hold be a unary predicate of
M. We can derive from M and Hold a model A of L by defining

A � P (a1, . . . , an) iff (def) M � Hold(‘P (a1, . . . , an)’)

We called Hold a Hold predicate because we expect that for any
φ(a1, . . . , an) we have;

A � φ(a1, . . . , an) iff M � Hold(‘φ(a1, . . . , an)’)

This will not be the case unless we require axiomatically in M that Hold satisfies some axioms
for example:

Hold(‘A’) ∧Hold(‘B’) ↔ Hold(f∧(‘A’, ‘B’))

and similarly for the other connectives and quantifiers.
Note the quantifier axioms are:

∀xHold(fφ(x)(x)) ↔ Hold(f∀xφ(x))

∃xHold(fφ(x)(x)) ↔ Hold(f∃xφ(x))

Remark 8.8 Note that if we have Sub then we can define the diagonal function by:
Diag (‘A(x), ‘x’) = def Sub (‘A(x)’, ‘x’, f∼ (‘A(x)’))
Recall that using the Diag function one can prove Tarski’s inconsistency theorem, that there exists
no truth predicate for M in M. Thus we cannot have a Hold predicate satisfying the axiom
Hold (‘A’) ↔ A
and allow Diag to apply to Hold as well, because these conditions yield Tarski’s inconsistency
theorem. We need not worry however about this aspect. First, our aim is to provide semantics for
HFP and Prolog practice in order to do our ‘computational classical logic’, rather than construct
self reflective languages which have their own truth predicates. So we do not mind to have the
Hold predicate not to apply to itself. See the Perlis papers [Perlis, 1985, Perlis, 1988] for a good
coverage of the subject. Second, in the Horn clause fragment of HFP negation is not available and
it is possible to have a truth predicate in the object level for the object language itself, without
leading to contradiction. The worst we can get are loops, if we use negation as failure. We cannot
diagonlise with A(‘¬A’), with ¬ being negation as failure because its meaning is procedural. Even
when it is given a declarative semantics, say sem(A), we will get the formula A(∼ sem(‘A’)) which
is not a direct diagonalisation. More directly we can define a fail connective via a program ∆,
then we can only have fail∆ as a connective and we get A(‘fail∆A’) for the diagonal function. In
this case we get stratification of fail and we do not have a universal object level diagonalisation.
We shall not pursue this topic any further, and will continue with the business at hand.

We are now in a position to explain what a formula of HFP stands for. We refer to the
interpretation presented in the sequel as the term interpretation for HFP. Compare with definition
8.0.5. The object language L of that definition is HFP and the metalanguage M of the definition
is classical logic. Note that since HFP extends classical logic we can say we are translating it into
itself.

Suppose we name each letter x, Pi, a by itself. This can technically mean that we identify L as
part of M. Thus Pi, xi and ai are already terms of M. We let ‘ai’= ai, ‘Pi’ = Pi and ‘x’ = x in
M, for these particular symbols. We can define predicates Pred(t), Term(t), Var(t), Wff(t) and
Free of M with the axioms:
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• Term (ai), i = 1, . . .

• Var (xi), i = 1, . . .

• Pred (Pi), . . .

• Wff (fi(Pi, a1, . . . , ani)

• Wff (fi(Pi, x1, . . . , xni))

• Wff (fi(Pi, α1, . . . , αni
), where αi are metalinguistic variables representing a choice of either

a variable x or a term a of L. So for each such choice we get an axiom of M.

• Free (fi(Pi, α1, . . . , xj , . . . , αni
), xj)

• Wff (A) ∧Wff(B) → Wff(f♯(A,B))

• Wff (A) ∧ Free(A, x) → Free(f♯(A,y), x)
where y is a metavariable and ♯ is one of ∧,∨,→,∼.

• Wff (A) ∧ Free(A, x) → Wff(f∀(A, x))

• Wff(A) ∧ Free(A, x) → Wff(f∃(A, x))

• Wff(A) ∧ Free(A,y) ∧ x ̸= y → Free(f∀(A, x)),y)
where y is a metavariable, i.e. a variable of M.

Having named formulas by themselves we can essentially regard the functions fi(Pi, x1, . . . xni), f∧, f→
etc to be the connectives themselves, taken as functions. So fφ(‘x1’, . . . ‘xn’) will be ‘φ(x1, . . . , xn)’
which is φ(x1, . . . , xn).

If we consider fφ(x1, . . . ,xn) with xi metavariables ranging over names, then in the convention
of expressions of L naming themselves we get that it is equal to

φ(x1, . . . ,xn)

Thus we can unify and change xi since they are metavariables.
Consider φ(x,y). This is really a term of M. We can certainly substitute in it the term A(y).

We thus get φ(A(y),y) which is an expression of HFP. It really stands for the term fφ(fA(y),y)
of the metalanguage.

Satisfaction in a model A of φ(A(y),y) means according to the metalevel semantics the satis-
faction in a model M of:

Hold(fφ(fA(y),y))

Since the metalanguage is classical logic, the above term will look more familiar if we write it
as f1(f2(y), y)), using two unary Skolem functions, f1 = fφ and f2 = fA. Clearly in classical logic we
can have unary predicates such as Q(x). We can consider the formulas Q(f2(y)) and Q(f1(f2(y), y)).
These are two non-equivalent formulas of classical logic. In an arbitrary model, one formula may
be true while the other may be false, unless we have the equality axiom f2(y) = f1(f2(y), y).

We need one more definition to clarify our metalevel concepts. Let Q be a classical unary pred-
icate and let g(x1, . . . , xn) be an n-place function. Let M be a model of classical logic with domain
D. Define the Q denotation of g in M to be {(d1, . . . , dn) | di ∈ D and M � Q(g(d1, . . . , dn)}.

For the case where Q = Hold, and f2, f2 are as above we can examine more closely the con-
nection between the satisfaction of A(d) and φ(A(d), d). The model A has as its domain D terms
of the metalanguage M which are names of wffs of L. A(d) holds in A iff Hold(A(d)) holds in M.

The set {d ∈ D | M � Hold(A(d))} is the denotation of ‘A’ (i.e. of fA) and is a subset of the
domain D. The denotation of ‘φ’ (i.e. fφ) is similarly a subset of D×D. For d0 ∈ D, fA(d0) = A(d0)
‘A(d0)’ is a term in D. A � A(‘A(d0)’) may or may not hold, ie M � Hold(A(A(d0))) may or may
not hold. There is no connection in general between the denotation of ‘A’ and the term ‘A(d0)’.
We do not necessarily have fA(d0) ∈ {d ∈ D | M � Hold(fA(d))}.
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Thus in the model M and consequently in A the predicate ‘A’ has three ‘manifestations’ or
‘footprints’, one as {d ∈ D | M � Hold(A(d))} one as a function symbol fA and one as a term ‘A’
in D (i.e. the name of fA). Hold (‘A’) also has a value in M, so does Hold(‘A( ‘A’)’) etc. These
values are all independent. An HFP axiom of the form X → B(X) for X formula variable can
be taken to mean in M the axiom Hold (X) → Hold(B(X)), which is a connection axiom of the
Hold in M. For example the axiom

Hold(A(y)) → Hold(A(A(y))), means Hold(fA(y)) → HoldfA(fA(y)).
We can in M read ‘A’ as representing the set {y | A ⊢ A(y)}. Terms of the form fφ(‘A’,y) can be

written in the metalanguage and we can understand them in the object language as φ(λxA(x), y).

Example 8.9 The modal and temporal semantics provides us with examples of the above situa-
tion. A formula may be true at points of the interval t = [1, 2] of time but whether it is true at
the interval itself is another matter. For example, it is not true that one crossed the Atlantic at
any moment at the interval [1, 2] but one may crossed the Atlantic at [1, 2]. Connections between
values at intervals and values at points are usually given as persistence criteria. For example, the
criterion if φ holds at an interval it holds at all subintervals, can be expressed using our language,
through axioms like:

φ(‘A’, y) → ∀x ⊆ y φ(‘A’, y)

or
∀x(A(x) → B(x)) → [φ(‘B’, y) → φ(‘A’, y)]

where ‘A’ is the name of the predicate ‘cross the Atlantic’ and ‘B’ is the name of ‘sail a boat’ and
φ is some metapredicate, for example φ =Hold.

The above freedom we still have with terms allows us to extend the expressive power of HFP.
First let us take any binary atomic predicate of HFP, let us call it P (X,Y ) where X and Y are
formula variables.

Form the formulas
P 2(A1, A2) = (def) P (A1, A2)

Pn+1(A1, . . . , An+1) = (def) P (Pn(A1, . . . , An), An+1)

In the language M, there are no axioms connecting Hold(P (X,Y )) with Hold(P (P (X,Y ), Z))
and so in M, Hold(Pn(X1, . . . , Xn)) has no connection with Hold(Pm(X1, . . . , Xm)) for m ̸= n.
However, this trick allows us to regard ‘P ’ as a sequence predicate (ie without a fixed number of
places) with P (X1, . . . , Xn) holding in A, iff Hold(Pn(X1, . . . , Xn)) holds in M.

We can thus write our predicate as a set of sequences (P,X1, . . . , Xn), where n is arbitrary.
We can similarly treat function symbols f and write (f, x1, . . . , xn). If we do the above for any

pure formula predicate of the language HFP, we can identify the following Lisp-like fragment of
HFP.

Definition 8.10 The sublanguage HFPLisp

The sublanguage contains formula variables X1, X2, . . ., term variables and Lisp-predicate letters
P1, P2, P3, . . ..
The general notion of a wff of HFPLisp, with free variables is defined in the same way as in the

case of definition 8.0.1 of HFP, except that we replace the formation rule for atoms 8.0.1(3) by
the following formation rule (3Lisp): If n is arbitrary and φ1, . . . , φn are formulas, or predicate

letters or formula variables and P is a predicate letter then (P,φ1, . . . , φn) is a formula. We allow
the case n = 0 in which case (P ) is a formula.

The reader should note the translation ∗ from HFPLisp into HFP. Each P of HFPLisp is

read in HFP as a binary predicate.
(P )∗ = P (truth, truth)

(P,φ)∗ = P (truth, φ∗)
and

(P,φ1, . . . , φn)∗ = Pn(φ∗
1, . . . , φ

∗
n).
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HFP can be translated into a fragment of HFPLisp, via the translation ♯:

P (φ1, . . . , φn)♯ = (P,φ♯1, . . . , φ
♯
n).

We are now interested in defining the Horn-clause fragment of HFP and of HFPLisp.

Definition 8.11 Horn Clause fragment of HFP.
We follow closely the defining clauses of 8.0.1 and of 8.0.10. Read ‘Wff’ as ‘Wff in the the Horn
fragment’:

1. Same as in 8.0.1

2. Same as in 8.0.1

3. or 3Lisp. Same as in 8.0.1 and 8.0.10 with the restriction that the formulas involved (i.e.

φ1, . . . , φn, ψ1, . . . , ψm, F1, . . . , Fn) are all taken from the Horn fragment.

4. 1. If ψ1 and ψ2 are in the Horn fragment, so is ψ1 ∧ ψ2.

2. If ψi, φ are atomic ie the result of applying clause (3) or (3Lisp) respectively,

then ∧ψi → φ is in the Horn fragment.

5. Same as in 8.0.1 and 8.0.10

The next question to ask is:

Do we have an implementation of the Horn fragment?

The answer is surprisingly yes, we do have in fact an old implementation, as the next remark
shows.

Remark 8.12 The reader can see Clark and McCabe’s book on Micro-PROLOG. Chapter 9
describes exactly the Micro-PROLOG system language which is the Horn clause fragment of
HFPLisp. Thus there exists implementations of the Horn clause fragment of this language.

Micro-PROLOG on the IBM PC gives access to this language. Later versions of LPA-Prolog
concentrated on supporting Edinburgh syntax and therefore the original Micro-PROLOG syntax
has been suppressed in these later versions. Another implementation for the full HFP is essentially
the rewrite language PLL of E Babb, [1990].

The discussion of the section so far showed that if we name in M elements of HFP by them-
selves, we get that all formulas of HFP are terms in M. The term functions fi, f∧, f∨, f→, f∀, f∼, f∃,
and Sub of 8.0.5 all become familiar operations:

1. The naming function λx‘x’ is the identity.

2. fi(Pi, t1, . . . , tni) = Pi(t1, . . . , tn)
Thus fi is the Pi application function.

3. f∧ is conjunction ∧
f∨ is disjunction ∨
f→ is implication →
f∼ is negation ∼
f∀ is universal quantification
f∃ is existential quantification.

4. Sub is the substitution function.
s, n are the identity function.
fφ for a formula φ becomes an application function for φ (just like fi is for Pi).
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The above functions however are functions in M and can therefore take any term of M. Assume
P and Q are two unary predicates of L. Their names in M are also ‘P ’ and ‘Q’. Given a term a
of L its name is also ‘a’. The application functions fP and fQ of M allow us to form:

fP (‘P ’, ‘a’)

and we are assured that:

fP (‘P ’, ‘a’) = ‘P (a)’ = P (a) = fP (P, a).

We can, however, formally obtain the following terms of M.

1. fP (‘Q’, ‘a’)

2. fP (‘P ’, ‘Q’)

We have no axioms in M to tell us what the above should mean. The Hold predicate of M
would be true or false of the above terms without any restrictions. We do have axioms on Hold
to assure us that e.g.

Hold(‘P (a)’ ∧ ‘Q(a)’) ↔ Hold(‘P (a)’) ∧Hold(‘Q(a)’)

but nothing more, except for some general properties of Hold.
To extend our semantic meaning to terms of the form (1) and (2) above, we can first say

that fP , fQ should be the same, namely Application Functions. We can thus replace the ni place
function fi by Appi and get

Appni
(‘Pi’, t1, . . . , tni) = ‘Pi(t1, . . . , tni)’

Thus all we need are the functions App1,App2, . . .. So both fQ and fP are App1. This view
allows us to ‘compare’ with general λ-abstraction languages.

Furthermore, one can code App3(x, y, z) as App2(App2(x, y), z) and thus all one needs is a
binary App function. Further, there is no reason why we cannot take application to be concate-
nation. Thus fi can be read as concatenation function. This also allows us to regard all predicates
as unary predicates. R(x, y) is understood either as R(x)(y) or as R((x, y)). Probably the former
is more convenient.

The above syntactical moves do not necessarily involve new semantical commitments. They
can be handled as just a matter of notation. We are still left with the problem of the semantical
meaning of P (Q) or P (P ). If we understand Q to name the set {x | Q(x)}, then we can understand
P (Q) as expressing a property of this set. We can now express persistence conditions like

P (Q) → ∀x(Q(x) → P (x))

In general, P (Q) is independent of P (ti), for ti such that Q(ti) holds. We can see however,
that we are touching on the problem of λ-calculus models.

We can still go on and ask what is the meaning of App(‘a’, ‘Q’). This question has now more
than one option, since we have already agreed to read ‘Q’ as a name for {x | Q(x)}. We can thus
read ‘a’ as a higher predicate on sets Q. It is true of Q iff it is an element of Q:

Hold(a(Q)) iff Hold(Q(a)).

‘a’ can thus be identified with the set of all its properties. This is similar to the Montague
semantics.

It is now up to us whether to allow in HFP (say in an extension which we can call HFP+)
formulas of the form P (Q) or not. If we do, we can still use the functions of the metalanguage M
but we would need a semantical interpretation, possibly some sort of λ-calculus model. We will
not pursue this line of research in this Chapter. Prolog practice, which uses HFP formulas, does
not frequently write expressions like:
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Demo (Demo, Demo).
Let ∆ be an HFP theory. Formally extend ∆ to a saturated theory ∆′. Thus whenever

∆′ ⊢ ∃xA(x) then for some terms t,∆′ ⊢ A(t) and whenever ∆′ ⊢ A ∨ B then either ∆′ ⊢ A or
∆′ ⊢ B. We can now define Hold∆′(A) iff A ∈ ∆′ and get a model for the Hold predicate of M
as applied to the wffs of HFP regarded as M terms.

The term interpretation of HFP can be understood in another way, as notation for generating
predicates. To illustrate our view, consider conjunction. It can generate predicates by letting
[P ∧ Q](x) mean P (x) ∧ Q(x). This is done in the same way that [∼ A](x) is ∼ A(x) and
[�A](x) = �A(x).

If we push this point of view further we can regard any formula φ(x, y) of HFP as a functional
λxyφ which takes formulas A,B to form a new formula φ(A,B). This view, although mathemat-
ically compatible with the term semantics, is not conceputally compatible with the intuitive way
we read Prolog. For example, we read Demo(A,B) as B can succeed from A and regard Demo
(Demo, x) as meaningless.

Example 8.13 We can now show how an arbitrary LDS can be translated into the Horn clause
fragment of HFP. Assume the languages G and L of LDS are distinct. Consider a version of HFP
based on the union of the languages of G and L together with the additional predicate Label(x, y).
we translate α : A as Label(α,A) and all axioms and rules are translated as is. For example

α : A, β : A⇒ B

β ∗ α : B

is translated as
Label(α : A)∧ Label (β,A⇒ B) → Label (β ∗ α,B).

9 Semi-algebraic semantics for propositional logics

Previous sections discussed translations of logics into classical logic, translating of modal and
temporal logics through their possible world semantics. Many logics do not have clear possible
world semantics. Since we want to be able to translate almost an arbitrary logic into classical
logic, we must develop semantic or proof theoretic methods for such logics which will help us with
the translation. It seems that many logics are best presented through their algebraic semantics.
A typical example is many valued logics, where the algebraic presentation is the most natural.
Thus if we want to claim that a general logic can be translated into classical logic in a nice way,
we must investigate a suitable general algebraic semantics. We do not want to use classical logic
as a sledgehammer metalevel language. We are restricting ourselves to propositional algebraic
semantics for two reasons. First because almost all known and useful non-classical logics use the
usual quantifiers ∀ and ∃ and differ in their propositional part. Second we find it too difficult and
complex to handle general non-standard quantifiers.

We begin by describing what we mean by algebraic semantics for a logic. We want a very
general definition that would equally apply to many systems, whether they are monotonic or non-
monotonic. There are many systems which have none of the classical connectives and which satisfy
only some very restricted proof theory. There is no agreed standard definition of what is algebraic
logic or semantics. Our primary concern in this Chapter is translation into classical logic, so any
good definition will do. As it turns out our definitions are of independent interest. The new notion
of algebraic logics for general consequence relations will be studied in [Gabbay, 1993b].

Logics can be identified via a general consequence relation ∆ |∼ A. This consequence relation
will in general be non-monotonic. So we may not know, or have much to say about their conse-
quence relation. We need minimal conditions on |∼ to enable us to define a reasonable algebraic
semantics for the logics which will allow us to define good translations into other logics.

Experience leads us to the following definition (which should be compared with more traditional
definitions).

Definition 9.1 Let L be a language with atomic propositions and connectives.
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1. A unitary consequence relation is a relation |∼ between finite (including empty ∅) sets of
wffs ∆ and single wffs A, which satisfies the following:

• Identity

A |∼ A

• Unitary Cut

∆ |∼ A;A |∼ B

∆ |∼ B

Note that we do not require reflexivity (∆, A |∼ A) nor do we require any full version of cut
such as:

∆ |∼ A; Γ, A |∼ B

Γ,∆ |∼ B

Also note that we need not have substitutivity of equivalents, namely A |∼ B and B |∼ A
need not imply φ(A) |∼ φ(B), for arbitrary wff φ(q). Many modal systems fail to have this
property, as well as intuitionistic systems with Nelson’s strong negation.

We call the consequence relation unitary because we allow for unitary cut, the ‘unit’ being the
single A in the rule A |∼ B,∆ |∼ A implies ∆ |∼ B. Also ∆ being a set of single, unannotated
formulas which is unstructured, as opposed to ∆ being a list of wffs or a network of wffs etc.

2. A Hilbert consequence relation is a relation defined only for ∅ |∼ A. A singleton consequence
relation is a relation defined only for ∆ |∼ A, where ∆ = {B} or ∆ = ∅.

3. Logical systems are usually formulated either as a Hilbert consequence, in which case we
have only the notion of ∅|∼A but not A|∼B, or as a singleton or unitary consequence. When
a Hilbert |∼1 is given, there exists the smallest and biggest singleton |∼2 which agrees with
it, (i.e. ∅|∼1A iff ∅|∼2A, for all A). This will be proved later.

Many nonmonotonic logics do not satisfy transitivity and unitary cut. We need to weaken
these notions. Here is an example of a more general consequence relation in a language with
→ which satisfies the following rule in addition to identity but is not required to satisfy
unitary cut or transitivity

A |∼ B → C
X |∼ B

A |∼ X → C

Definition 9.2 1. A logic algebra is any algebra of the form a = (A, fi,
≤, T ), where A is a non-empty set (corresponding to the formulas of the logic) and fi, i =
1, . . . , k, are functions on A, with arity ni (corresponding to the connectives of the logic) and
≤ is a reflexive and transitive relation on A (corresponding to the converse of the consequence
relation of the logic) and T ⊆ A, T ̸= ∅ is a subset of distinguished elements (corresponding
to the theorems of the logic) satisfying:

(∗) ∀x, y ∈ A [y ∈ T and x ≤ y implies x ∈ T ]

2. A subset F ⊆ A is a filter if F ̸= ∅ and for all x, y (x ∈ F and x ≤ y implies y ∈ F ).

3. A function f(x1, . . . , xn) in a logic algebra is extensional iff

xi ≤ yi ∧ yi ≤ xi, i = 1, . . . , n imply f(x1, . . . , xn) ≤ f(y1, . . . , yn).

4. A function f(x1, . . . , xn) in a logic algebra is directional if it is either monotonic up or down
in each of its variables.
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5. An algebra is directional if all of its functions are directional.

Definition 9.3 1. A connective ♯(A1, . . . , An) is extensional iff the following holds

xi |∼ yi, yi |∼ xi, i = 1 . . . n

♯(x1, . . . , xn) |∼ ♯(y1, . . . , yn)

2. A connective ♯(A1, . . . , An) is directional in A1 iff either

(a) Upward monotonicity

p |∼ q

♯(p,A2, . . .) |∼ ♯(q, A2, . . .)

(b) Downward monotonicity

p |∼ q

♯(q, A2 . . .) |∼ ♯(p,A2 . . .)

3. A logic is extensional (directional) iff all of its connectives are extensional (directional, resp.)
in all their variables.

Example 9.4 1. Intuitionistic logic is directional. A→ B is directional up in B and down in A.
So are all known substructural implications such as relevant, linear and Lambek implications.

2. Extensionality allows us to give neighbourhood semantics for the logic or to give it a Lindebaum-
Tarski algebraic semantics. In the case of a language with one modal operator �, and the
classical propositional connectives ¬,∧,∨ and →, extensionality of � means we can give
� the usual neighbourhood semantics. Both � and ♢ are monotonic upwards but satisfy
different algebraic conditions.

3. Let ♯(x) be a connective and suppose it is both directional up and down in x. Then essentially
♯(x) does not depend on x.

To see this, assume we have either truth ⊤ or falsity ⊥ in the language. Then for any x we
have

⊥ |∼ x |∼ ⊤

Hence we get ♯(⊥) |∼ ♯(x) |∼ ♯(⊤) and ♯(⊤) |∼ ♯(x) |∼ ♯(⊥).

This means ♯(x) is independent of x.

In case neither ⊤ nor ⊥ are in the language, we can prove ‘equivalence’, namely ♯(y) |∼ ♯(x)
and ♯(x) |∼ ♯(y), only for x, y that are R-connected, where R is the transtive closure of ≤
and its converse. This is enough to allow us for definition 9.0.8, (1) to go through.

We now describe algebraic semantics for a logic L, with consequence relation |∼. The semantics
will be considerably simplified for the case of directional logics.

Definition 9.5 1. Let L be a logic with consequence |∼ and connectives ♯1, . . . , ♯k with arities
r1, . . . , rk respectively. Let a = (A, f1, . . . , fk,≤, T ) be an algebra with functions fi with
arities ri resp.

(a) An algebraic assignment for L into a is a function ha assigning for each atomic q an
element ha(q) ∈ A.

(b) ha can be extended to arbitrary wffs of L by

ha(♯i(A1, . . . , Ari)) = fi(h
a(A1), . . . , ha(Ari)).
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(c) We write (a, ha) � A iff ha(A) ∈ T . We write A �a,ha B iff ha(B) ≤ ha(A). In future
we omit the ‘a’.

2. An algebra is connected if any two elements are connected by the transitive closure of R =
(≤ ∪ ≥) (i.e. of ≤ and its converse). This condition relates to the connectivity mentioned in
Example 9.0.4 (3).

Theorem 9.6 [Completeness for general logics] Let |∼ be a consequence relation then A |∼ B iff
for all directional algebras a and all assignments ha, we have A �ha B.

Proof.

1. Soundness is immediate from the reflexivity and transitivity of ≤.

2. Completeness is obtained by taking the canonical algebra with A = set of all wffs and defining
x ≤ y iff y |∼ x. We let T = {B | ∅ |∼ B}. Let f♯(A1, . . . , An) = ♯(A1, . . . An) and let h be
the assignment giving h(q) = q.

One can prove by induction on A that h(A) = A. <

Theorem 9.7 Let |∼ be an extensional consequence relation. Then it is complete for the class of
all extensional algebras.

Proof. Immediate from the definitions and the canonical model of the previous theorem. <

Definition 9.8 1. Let L be a directional logic with consequence |∼ and connectives ♯1, . . . , ♯k
with arities r1, . . . , rk. Let a = (A, fi,≤, T ) be a connected logic algebra with function
symbols fi, i = 1, 2, . . . with arities r1, r2, . . . resp (same as the connectives). Let ha be
a function (assignment) assigning for each atom q of L a filter Fq ⊆ A. Assume fi are
directional in the same way as ♯i. We can extend ha to all wffs of L inductively as follows.
Let ♯j(A1 . . . , Anj , B1, . . . , Bmj ) be a connective monotonic down in Ai and monotonic up
in Bi. We let ha(♯j(A1, . . . , Anj , B1, . . . , Bmj )) = {y | for all x1, . . . , xnj such that xi ∈
ha(Ai) there exist yk such that yk ∈ ha(Bk), i = 1, . . . , nj and k = 1, . . . ,mj , we have
fj(x1, . . . xnj , y1, . . . , ymj ) ≤ y}.

If a connective is monotonic both up and down in a slot we regard it as monotonic down.
(We could regard it as montonic up—it does not matter.)

We show that the definition given here leads to the same assignment filter set no matter what
we choose.

Let ♯(A,B,C) be a connective where the B slot is directional both ways, up and down.

We have two options

(a) Taking B as directional up:
S1 = h(♯(A,B,C) = {y | for all x1, x2 such that x1 ∈ h(A), x2 ∈ h(B), there exists a
x3 ∈ h(C) such that f♯(x1, x2, x3) ≤ y}.

(b) Taking B as directional down:
S2 = h(♯(A,B,C)) = {y | for all x1 such that x1 ∈ h(A), there exists x2, x3 such that
x2 ∈ h(B), x3 ∈ h(C) such that f♯(x1, x2, x3) ≤ y}

We want to show that S1 = S2 under the assumption that the algebra is connected (as in
Definition 9.0.5).

First note that clearly if y ∈ S1 then y ∈ S2. Assume y ∈ S2. Show y ∈ S1. Since y ∈ S2

then for every x1 ∈ h(A), there are x2 = α(x1) ∈ h(B) and x3 = β(x1) ∈ h(C) such that
f♯(x1, α(x1), β(x1) ≤ y. We want to show that for every x1, x2, x1 ∈ h(A), x1 ∈ h(B) there
exists a γ(x1, x2) ∈ h(C) such that f♯(x1, x2, γ(x1, x2)) ≤ y. We let γ(x1, x2) = β(x1). we
must show that for all x1 ∈ h(A), x2 ∈ h(B), f♯(x1, x2, β(x1)) ≤ y.
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Since the second slot (x2 slot in f♯) is directional both up and down and since we assumed
the algebra is connected, we get in view of the discussion in Example 9.0.4 (3) that

f♯(x1, x2, β(x1)) ≤ f♯(x1, α(x1), β(x1)) ≤ y.

Thus we have shown that S1 = S2.

2. An algebraic model for |∼ is a pair (a, ha), as in 1. above. An algebraic semantics is a class
of algebraic models.

3. Let m = (a, ha) be an algebraic model and let A,B, ∆ be wffs, we write:

A |∼m B iff ha(A) ⊆ ha(B)
|∼ B iff ha(B) ⊆ T

∆ |∼m B iff
∩
A∈∆ h

a(A) ⊆ ha(B)

4. Let K be a class of algebraic models. We say

• A |∼K B iff A |∼m B for all m ∈ K.

• |∼K B iff |∼m B for all m ∈ K
• ∆ |∼K B iff ∆ |∼m B for all m ∈ K.

5. Let L be a language and |∼ a directional consequence relation. We define the canonical
algebra a|∼ as follows:

• A|∼ = the set of all wffs of L.

• f♯ for each connective ♯ of L is defined by

f♯(A1, . . . , An) = ♯(A1, . . . , An)

• A ≤ B is defined as B |∼ A.
T is {B | ∅ |∼ B}.

• Let ha(q) = {A | A |∼ q}. ha(q) is a filter because if A ∈ ha(q) (i.e. A |∼ q) and A ≤ B
(i.e. B |∼ A) then certainly B ∈ ha(q). Also ha(q) is non empty (since q |∼ q).

Definition 9.9 [Term translation for a consequence relation] Let L and |∼ be as in the previous
Definition. Let A be a wff of L with atoms q1, . . . , qn. Let z1, . . . , zn be variables of classical logic
associated with q1, . . . , qn. In fact, let q∗ be the variable associated with q. With each connective
♯ of L associate a function symbol f♯ of the same arity. We associate with any formula A a term
of classical logic A∗ by structural induction as follows:

• (qi)
∗ = zi

• (♯(A1, . . . , An))∗ = f♯(A
∗
1, . . . , A

∗
n)

Consider the classical language with the function symbols {f♯}, the binary relation symbol ≤ and
the unary predicate symbol T . Then the translation ∗ : A 7→ A∗, translates each formula A into
a term in this language. The consequence assertion A|∼B is translated into B∗ ≤ A∗ and the
assertion ∅|∼A is transated into A∗ ∈ T .
The consequence relation rules of the form

Ai |∼ Bi, i = 1, . . . , k

♯1(C1, . . . , Cn1) |∼ ♯2(D1, . . . , Dn2)

are transated into classical logic Horn clauses of the form

k∧
i=1

(B∗
i ≤ A∗

i ) → f♯2(D∗
j ) ≤ f♯1(C∗

j )

80



where ‘→’ is classical implication.
For example, axioms schema such as A⇒ (B ⇒ A) become expressions like

f⇒(x, f⇒(y, x)) ∈ T

Modus ponens becomes
x ∈ T ∧ f⇒(x, y) ∈ T → y ∈ T.

Lemma 9.10 [Completeness] In the canonical model,

ha(B) = {A | A |∼ B}.

Proof. By induction.

1. The lemma holds for atomic B.

2. Assume the lemma holds for A1, . . . , An, B1, . . . , Bm we show the lemma holds for

B = ♯(A1, . . . , An, B1, . . . , Bm)

We assume ♯ is monotonic down in Ai and up in Bk.

ha(B) = {y | for all X1, . . . , Xn, such that Xi |∼ Ai
there are Y1 . . . Ym, such that Yk |∼ Bk

we have y |∼ ♯(X1, . . . , Xn, Y1, . . . , Ym)}.

We want to show
ha(B) = {y | y |∼ ♯(A1, . . . , Bm)}

Assume that y ∈ ha(B) and show that y |∼ B. From the assumptions we see that for
Xi = Ai, there are Yi |∼ Bi such that

y |∼ ♯(Ai, Yi)

Since ♯ is monotonic up in Yi we get y |∼ B.

Assume y |∼ B, we show y ∈ ha(B). Let Xi be such Xi |∼ Ai, we need to find Yk such
that y |∼ ♯(Xi, Yk). Take Yk = Bk. We need to show y |∼ ♯(Xi, Bk). Since |∼ is monotonic
down in Ai, we get that Xi |∼ Ai yield ♯(Ai, Bk) |∼ ♯(Xi, Bk) and hence y |∼ ♯(Xi, Bk), by
transitivity

This completes the proof of the lemma. Note that we proved that each filter is generated by a
minimal element. <

Example 9.11 Let X � Y be a binary connective. Let |∼ be the smallest consequence relation
which makes � directional down in X and up in Y ,

X |∼ X ′

X ′ � Y |∼ X � Y

Y |∼ Y ′

X � Y |∼ X � Y ′

and the two standard conditions
•

A |∼ A

•

A |∼ B;B |∼ C

A |∼ C
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The semantics for this system involve algebras of the form a = (A, f�(x, y),≤, T, h) with the truth
condition on � being:
t � A� B iff for all x � A there exists a y � B such that f�(x, y) ≤ t.
We have A |∼ B iff for all a and all t ∈ Aa, t � A implies t � B.
This semantics should be compared with the more traditional semigroup semantics for substruc-
tural implications. A model has the form (A, ∗,≤, h) where (A, ∗) is a semigroup (associative?)
and ≤ an ordering. The clause for � is

t � A� B iff ∀x � A, t ∗ x � B.

The two semantics will coincide if we take ≤ as identity and let

f�(x, y) = (The z such that)(z ∗ x = y).

The previous definition of canonical model and the completeness theorem allow us to give a
semi algebraic possible world semantics for directional logics. The following definition establishes
the connection.

Remark 9.12 [A more general completeness theorem] The completeness theorem for Kripke like
semantics can be generalised. We need not assume the consequence relation be transitive. The
following conditions are sufficient:

• A |∼ A identity

• Directionality of all connectives (as in 9.0.3)

• Downward strengthening: Let ♯(q, . . .) be any connective which is downward monotonic in q,
then for any A and B

A |∼ ♯(q, . . .);B |∼ q

A |∼ ♯(B, . . .)

Let a be any algebra satisfying reflexivity, directionality and downward strengthening. Let t ∈ Aa,
define a semi-filter It to be the largest set Y satisfying (∗) below

(∗) ∀s ∈ A[s ≤ t iff ∀x ∈ Y (s ≤ x)]

clearly I0t = {t} is such a set and the family of such sets is closed under union.
Let h be an assignment. Require h to satisfy:

(∗∗) h(t, q) = 1 iff (∀s ∈ It)h(s, q) = 1.

Then in the canonical model, we have for such h and any A

t � A iff t |∼ A.

The proof is similar to that of Lemma 9.0.10. Downward stengthening plays the role of transitivity
in the proof. In fact, if |∼ is transitive then downward strengthening follows and each semifilter It
is equal to {s | t ≤ s}.

Definition 9.13 [Semi algebraic possible world semantics] Let L be a language with connec-
tives ♯1, . . . , ♯k with arities r1, . . . , rk respectively. A semi algebraic model for L has the form
(A,R1, . . . , Rk,≤, T, h) where A is a set of possible worlds, T ⊆ A, T ̸= ∅ and each R is a relation
on A of arity 1 + ri. h is an assignment from the atoms of the language into subsets of A. The
following must hold.

1. x ≤ y and y ∈ T imply x ∈ T .

2. t ∈ h(q) and t ≤ s imply s ∈ h(q).
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3. Each Ri is directional in all its variables, in the same way as ♯i, respectively, and Ri is
directional up in its first variable.

Note that for a connective ♯(X1, . . . , Xn, Y1, . . . , Ym) there corresponds a relation R♯(t, x1, . . . , xn,
y1, . . . , ym). The meaning of R♯ in terms of the algebraic function f♯(x1, . . . , xn, y1, . . . , ym) and ≤
is

R♯(t, x1, . . . , xn, y1, . . . , ym) iff f♯(x1, . . . , xn, y1, . . . , ym) ≤ t.

Note that R♯ satisfies that for each (x1, . . . , xn, y1, . . . , ym) there exists a minimal t such that
R♯(t, x1, . . . , xn, y1, . . . , ym) holds. Conversely, the function f♯ can be retrieved from such an R♯ in
the presence of ≤.
Thus if f♯ is monotonic up in yj and monotonic down in xi, then R♯ will be monotonic up in xi
and t and monotonic down for yj (inverse direction for xi and yj).
Define the following first truth table for the connectives ♯(X1, . . . , Xn, Y1, . . . , Ym) as follows: (♯ is
directional down in Xi and up in Yi):
t � ♯(X1, . . . , Xn, Y1, . . . , Ym) iff for all ti such that ti � Xi there exist sj such that sj � Yj such
that Ri(t, x1, . . . , xn, y1, . . . , ym) holds.
We say A |∼ B holds in the model if whenever t � A then t � B.
We say � A in the model if whenever t � A then t ∈ T .
Note that we can also assume that R♯ satisfies that for every t, x1, . . . , xn there exist unique
y1, . . . ym such that R♯(t, x1, . . . , xn, y1, . . . , ym). The reason being that the filters {y | y � Y } have
a minimal element and R♯ is monotonic down in yi. So R♯ holds for some y iff it holds for the
minimal y. This last statement entails that we can get completeness for R♯ and the following truth
table:
t � ♯(X1, . . . , Xn, Y1, . . . Ym) iff for all ti such that ti � Xi and all sj such thatR♯(t1, . . . tn, s1, . . . , sm)
we have for all j, sj � Yj .

Theorem 9.14 Let |∼ be the smallest directional consequence relation, then |∼ is complete for
the semi algebraic semantics.

Proof. Use the canonical model <

So far we have been mainly concerned with algebraic theorems preparing an almost arbitrary
logic for translation into classical logic, not with the theory of partially ordered algebraic logics
(cf. [Gabbay, 1993b, Gabbay, 1992b, Blok and Pigozzi, 1989]). We need the algebras as tools in
order to translate any general logic, about which we do not know much. We found it convenient to
apply our algebraic methods to singleton consequence relations |∼, i.e. the kind defined for A|∼B
and ∅|∼B, which give rise to the ordering relation ≤ in the logic algebra. Many logics, however,
are presented as Hilbert systems, and so we cannot apply our methods as we have only the relation
∅|∼1A, for A wff. Suppose we are given a Hilbert presentation of a logic L1. This means that we
are defining only the notion of ∅ |∼1 A (or just |∼1 A). We need to investigate a means of deriving
from |∼1 a consequence relation |∼2 such that A|∼2B is always defined and |∼2 is a conservative
extension, i.e. ∅|∼2A iff ∅|∼1A holds. In algebraic terms, given (A, fi, T ) can we define a suitable
≤ on A? In implicational logics with ⇒ satisfying the deduction theorem this can be easily done:
A|∼2B iff ∅|∼1A⇒ B.

Lemma 9.15 Let |∼1 be a Hilbert conseuence relation (i.e. defined for ∅|∼1A,A wff). Then there
exists the minimal |∼− and maximal |∼+ singleton consequence relations which agree with it.

Proof.

1. Let ∆|∼−B be defined by

∆|∼−B iff (1)∆ = ∅ and ∅|∼B
or (2)∆ = {B}.

We show |∼− is a consequence relation:
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• clearly A|∼−A holds

• assume ∆|∼−A and A|∼−B. By definition A = B and so ∆|∼−B.

We show |∼− is minimal. Suppose |∼1 agrees with |∼. We show ∆|∼−A implies ∆|∼1A. If
∆ = {A}, then clearly A|∼1A. If ∆ = ∅, again by agreement ∅|∼1A.

2. From (1) it is clear that the set of all singleton consequence relations agreeing with |∼ is
nonempty. Define |∼+ as follows.

A|∼+B iff there exist |∼0, . . . |∼k agreeing with |∼ and A1, . . . , Ak such that

A|∼0A1, A1|∼1A2, . . . , Ak|∼kB.

We show that |∼+ is a consequence relation:

• clearly A|∼+A because A|∼−A holds

• assume ∆|∼+B andB|∼+C we show ∆|∼+C. Then for some |∼0, . . . , |∼k and |∼k+1, . . . , |∼m+1

and A1, . . . , Ak, Ak+1, . . . , Am we have

∆|∼0A1, . . . , Ak|∼kB,B|∼k+1Ak+1, . . . , Am|∼m+1C.

But then by definition ∆|∼+C.

We now show |∼+ agrees with |∼

• Clearly ∅|∼B implies ∅|∼+B.

• assume ∅|∼+B and show ∅|∼B

Since ∅|∼+B, there exist A1, . . . , Ak and |∼0, . . . , |∼k such that ∅|∼0A1, . . . , Ak|∼kB hold.
We prove ∅|∼B by induction on k.

Case k = 0
In this case ∅|∼0B and since |∼0 agrees with |∼ we get ∅|∼B.
Case k > 0
Consider the initial sequence

∅|∼0A1 and A1|∼1A2.

Since |∼0 agrees with |∼ which agrees with |∼1, we get ∅|∼1A1 and hence by transitivity, we get
∅|∼1A2

We now have a shorter sequence

∅|∼1A2, A1|∼2A3, . . . , Ak|∼kB

Hence, by the induction hypothesis ∅|∼B.
This completes the induction. Clearly |∼+ is maximal. Hence, the Lemma is proved. <

The above considerations do not give us an algorithm for finding for a given Hilbert system
|∼1 a singleton consequence relation |∼2 which agrees with it. Of course, we can always take the

minimal one |∼−
1 , but the minimal one is not particularly infomative. The stronger the consequence

relation the better. One can try to find one using a theorem prover as the next example shows.

Example 9.16 Let L be a propositional language with some connectives and let H be a Hilbert
system for L with schematic rules of the form ρi, (i = 1, . . . ,m):

ρi :
|∼φi1; . . . ; |∼φiki

⊢ φi
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For example,  Lukasiewicz formulation of the implicational fragment of classical logic (using the
binary connective ⇒) is formulated by the schemas

ρi :
|∼P ; |∼P ⇒ Q

|∼Q

ρ2 :
∅

|∼((P ⇒ Q) ⇒ R) ⇒ ((R⇒ P ) ⇒ (S ⇒ P ))

We can systematically look (by complexity) for a formula Ψ(X,Y ) (binary) and try and prove
using the term translation of Definition 9.0.9 and a classical theorem prover, that the following
holds:

• |∼1Ψ(X,X)

• |∼1Ψ(X,Y ) and |∼1Ψ(Y, Z) imply |∼1Ψ(X,Z)

• |∼1X and |∼1Ψ(X,Y ) imply |∼1Y .

For a Ψ satisfying the above we can let

A|∼2B iff (definition) |∼1Ψ(A,B)

∅|∼2B iff |∼1B.

In fact, since singleton consequence relations are closed under intersection, if we have several such
Ψi we can let A|∼2B be

∧
i |∼1Ψ(A,B).

We now ask how do we find such a Ψ automatically? We can let Ψ range over all wffs of the
language in order of increasing complexity and then for this Ψ, using the term translation of 9.0.9
and a classical theorem prover see if each Ψ satisfies the required condition.
A good heuristic is to look at the Hilbert rules of the form

|∼1φ1; . . . ; |∼1φk

|∼1φ

and try and substitute into φi and φ some formula that will turn the above rule into the form

|∼1A; |∼1Ψ1(A,B); . . . |∼1Ψm(A,B)

|∼1B

We can now check whether the metapredicate

m∧
i=1

[|∼1Ψ1(X,Y ]

is transitive, in which case, we define

A|∼2B iff
m∧
i=1

|∼1Ψi(A,B)

∅|∼2B iff |∼1B.

Applying the above procedure to  Lukasiewicz logic, we immediately find that Ψ(A) = (def)A⇒ B
is a candidate. We need to check whether

• |∼1A⇒ B and |∼1B ⇒ C imply |∼1A⇒ C

• |∼1A⇒ A.

These can be checked using the term translation.
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Example 9.17 The previous example dealt with the problem of finding a singleton consequence
relation ∆|∼2B (∆ = {B} or ∆ = ∅} agreeing with a Hilbert consequence ∅|∼1B. We can continue
this line of thought and try to extend a singelton consquence ∆|∼2B to a unitary consequence
∆|∼3B, ∆, arbitrary which agrees with it.
Assume now that a proper |∼ is given, where A|∼B andn ∅|∼B are defined for arbitrary A and B.
The second concept we define is that of a theory. We defined a theory ∆ as a set of wffs and gave
the notion ∆ |∼ A the semantic meaning:
∆ |∼ A iff for all a and for all t ∈ Aa, if t � B, for all B ∈ ∆ then t � A.
There is a more general notion of a theory. Let Ψ(X,Y ) be formulas defined using the connectives
of the logic. Assume Ψ is monotonic down in X and up in Y . Using Ψ we can define the following
notion of a theory ∆.

• A theory ∆ is a sequence of formulas (A1, . . . , An)

• (A1, . . . , An) |∼ A = def ∅ |∼ Ψ(A1,Ψ(A2, . . . ,Ψ(An, A) . . .))

This definition gives the deduction theorem for |∼.

A1, . . . , An |∼ Ψ(A,B) iff A1, . . . , An, A |∼ B

Consider for example the connective � of example 9.0.11. We have

A1, . . . , An |∼ B iff ∅ |∼ A1 � (. . . ,� (An � B) . . .)

The notion of a theory can be generalised. Let τ = {♯1, . . . , ♯k} be a set of monotonic upwards
connectives of the language. Close τ under substitution. Let φ(x1, . . . , xn) be a wff generated from
τ with n-places. Then the formula expression [φ(A1, . . . , An)] is a φ-theory of (A1, . . . , An) with
φ[A1, . . . , An] |∼ B iff ∅ |∼ Ψ(φ(A1, . . . , An), B).
Other definitions of algebraic logics and theories existing in the literature do not use the partial
order but only the set of designated elements. One example is (a an algebraic model): ∆ �a A iff
for every assignment h, if h(B) ∈ T for all B ∈ ∆ then h(A) ∈ T .

We can now translate, through the semantics, any directional logic into classical logic. This is
the task of the next Section.

10 An automated universal translator into classical logic

The aim of this section is to show an almost algorithmic way of translating an arbitrary logic into
classical logic. The method is based on results of previous sections and on an algorithm called
SCAN for eliminating second order existential quantifers in classical logic. The SCAN algorithm
and examples will be given later in this section.

10.1 The translation steps

Let us now outline the steps in our automatic translation.
Step 1: Presentation
We assume a logic is given as a consequence relation, satisfying rules of the form:

Ai |∼ Bi, i = 1, . . . , n

C |∼ D

We assume |∼ is finitely schematically generated. This means that the set of rules can be recursively
presented (generated) on a computer. We assume we do not have fancy quantifiers but possibly ∀
and ∃. So the main features of the logic come from its connectives.

Such a presentation is still very general.
Any Hilbert presentation has the form
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1.

∅ |∼ A1, . . . ,∅ |∼ An

∅ |∼ B

2.

∅

∅ |∼ Axioms

Any Gentzen system can be regarded as a recursive inductive definition of |∼. Our subsequent
algebraic analysis and translations depend on the availability of the consequence relation |∼ for the
logic involved. If the logic, say L1, is presented as a Hilbert system, then we have available only
the fragment of |∼ for the form ∅|∼1A . In algebraic terms this means that instead of (A, fi,≤, T1)
we have only (A, fi, T1), (since A ∈ T means ∅|∼1A). We now have two options. The first is to
present methodologies for defining some useful ≤ which agrees with T1 (i.e. extend the provability
of the Hilbert system into a proper consequence relation, usually done by some form of a deduction
theorem. The second is to apply our algebraic analysis and translations directly to the Hilbert
consequence (i.e. consequences of the form ∅|∼A).

We shall opt for the first approach because it also shows how to find consequence relations (of
the form A|∼B) corresponding to Hilbert consequences. Examples 9.0.16 ad 9.0.17 show how one
might find such a consequence.

From now on we assume we are given a proper consequence A|∼B.
Step 2: Algebraic analysis
We need to find out whether |∼ is directional or not in all of its connectives. This is essential to
allow us to define a possible world semantics for |∼, using definition 9.0.13. In fact, we do not
necessarily need to show that the official connectives of |∼ are directional. It is sufficient to show
that there exists another set of connectives, definable in |∼ and capable of redefining the original
connectives of |∼, and this other set is directional. This will give semantics for the connectives of
|∼. We need to solve the following problem.
Problem 1
(a) Find an algorithm which for a given |∼ with connectives {♯i}, can determine the existence of
a mutually definable set of directional connectives {♯′j} and exhibit it.
(b) If |∼ is a Hilbert consequence, i.e. is known (or is given) only for the form ∅|∼B, then we need
an algorithm which can produce a conservative extension of |∼ also to the form A|∼B.
(c) Find an algorithm which can check whether {♯i} themselves are directional.

Problem 1(a) is open. Problem 1(b) can be overcome by methods indicated in Example 9.0.16.
Problem 1(c) can be checked by a resolution machine using the term translation (of definition
9.0.9) on the propositional part. We have assumed that there are no fancy quantifiers in our logic.
Step 3 Translation

1. Assuming |∼ is directional, we can give it semantics as in 9.0.13 with relations
R♯(t, x1, . . . , xn, y1, . . . , ym) associated with each connective ♯ and the truth condition
t � ♯(A1, . . . , An, B1, . . . , Bm) iff
∀t1, . . . , tn, s1, . . . , sm(

∧n
i=1 ti � Ai and R♯(t, t1, . . . , tn, s1, . . . sm) imply

∧m
j=1 sj � Bj).

2. Using the translations of definition 10.1.1 and Remark 10.1.2 below, we construct the follow-
ing reduction into classical logic:

A |∼ B holds iff ⊢classical ΨA,B , where ΨA,B is a second order formula defined in the
definitions and remark below.

SCAN Algorithm
We need an algorithm which will eliminate (if possible) the second order quantifiers in ΨA,B and
yield an equivalent first-order formula τΨ. Such an algorithm may not always terminate. We thus
need to solve the following problem.
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Problem 2
Let ψ(Q1, . . . , Qn) be a first-order formula with predicates Q1, . . . , Qn, among other predicates.
Consider the second-order formula

Ψ = (∀Q1, . . . , Qn)ψ(Q1, . . . , Qn).

Ψ is a second-order formula which is no longer dependent on Q1, . . . , Qn. find (if possible) a
first order formula B (not containing Qi but maybe containing the rest of the predicates from ψ)
such

⊢ B ↔ Ψ

in classical logic.
If we solve problem 1 and problem 2 we will have a completely automatic way of translating

an arbitrary logic |∼ (given to us recursively via its consequence relation) into first-order classical
logic. Of course, the algorithm may not always terminate.

We now proceed to present the translation as promised in Step 3.

Definition 10.1 [Translation into second-order classical logic]

1. Let |∼ be a directional logic, with connectives ⇒1, . . . ,⇒k presented through rules as in 9.0.3.
We display the connective ⇒i as

(X1, . . . , Xni) ⇒i (Y1, . . . , Ymi)

where ⇒i is directional down in the Xs and directional up in the Y s.

2. Consider a linked predicate language (G,L), where G contains function symbols fi(x1, . . . , xni ,
y1, . . . , ymi), i = 1, . . . k and the binary relation ≤ and L is ordinary predicate logic. Con-
sider L∗

1(G). This means that we turn L into a two sorted language L∗ associating with each
atomic Q(x1, . . . , xn) a predicate Q∗(t, x1, . . . , xn), where t ranges over terms of G.

We now translate every wff A of |∼ into a formula [A]∗(t) with free variable t of sort G as follows:

1. [Q(x1, . . . , xn)]∗(t) = defQ∗(t, x1, . . . , xn), Q atomic.

2. [(A1, . . . , Ani) ⇒i (B1, . . . , Bmi)]
∗(t) = def

∀t1, . . . , tni [
∧ni

j=1[Aj ]
∗(tj) → ∃s1, . . . , smi(fj(t1, . . . , tni , s1, . . . , smi) ≤ t ∧

∧mi

j=1[Bj ]
∗(sj))]

3. The theory τ of second-order classical logic which ensures the translation is correct is a
conjunction of the following

(a) ∀t, s, u[t ≤ s ∧ s ≤ u→ t ≤ u) ∧ ∀t(t ≤ t)].

(b) ∀Q∗∀t, s[Q∗(t) ∧ t ≤ s→ Q∗(s)].

(c) For each i and variables u1, u2

∀u1, u2[u1 ≤ u2 → fi(. . . u1 . . .) ≤ fi(. . . u2 . . .)]

If fi(. . . u . . .) is monotonic up in the variable u and otherwise replace u1 ≤ u2 by
u2 ≤ u1.

(d) For each rule of the form
A1 |∼ B1, . . . , Ar |∼ Br

C |∼ D

displaying the atomic formulas Q1, . . . , Qn, τ contains the second-order formula:

(∀Q∗
1 . . . Q

∗
n)[(

∧r
j=1 ∀t ∈ T ([Bj ]

∗(t) → [Aj ]
∗(t))) →

∀t ∈ T ([D]∗(t) → [C]∗(t))]

88



4. We have in second-order classical logic that A |∼ B iff the following second-order formula
ΨA,B is a theorem of second-order classical logic.

∀T (∀t, s[s ∈ T ∧ t ≤ s→ t ∈ T ] ∧ τ → ∀t ∈ T ([B]∗(t) → [A]∗(t)))

5. Some researchers translate rules of the form (d) above using a Hold predicate, namely (d) is
translated into

Hold(A1, B1) ∧ . . . ∧Hold(Ar, Br) → Hold(C,D)

where → is classical implication and the formulas appearing in Hold are representing them-
selves as terms. This translation is really an HFP translation. Compared with the translation
in 4 above, ‘Hold’ is really ‘<’ and τ will be represneted as meta-axioms on the predicate
Hold. T (x) can be represented as Hold(⊤, x).

We shall in Section 10.2 give an algorithm which in some cases reduces the second-order τ into a
first order one.

Remark 10.2 If we use the relational R♯ semantics, with the second truth table of 9.0.13 then G
contains Ri instead of fi and the translation of ⇒i becomes:

[(A1, . . . , Ani) ⇒i (B1, . . . , Bmi)]
∗(t) = def

∀t1, . . . , tni , s1, . . . , smi [
∧ni

j=1[Aj ]
∗(tj) ∧R⇒i(t, t1, . . . , tni , s1, . . . , smi)

→
∧mi

j=1[Bj ]
∗(sj)]

Condition (c) in the definition of τ stipulates the monotonicity of R⇒i
.

Example 10.3 Consider the smallest directional logic for binary X � Y which is directional
down in X and up in Y , with the axiom A� A only.
This axiom has the form of the rule

∅

∅ |∼ A� A
.

Its translation to second-order logic becomes (using 9.0.16)

1. ∀A∗∀t ∈ T∀x∀y[A∗(x) ∧R�(t, x, y) → A∗(y)]
The other properties available are

2. ∀x, y[y ∈ T ∧ x ≤ y → x ∈ T ]

3. ∀A∗∀x, y[A∗(x) ∧ x ≤ y → A∗(y)]

4. R→(t, x, y) is monotonic up in t and x and down in y.

First note that (3) is not really second-order. If it holds for atoms it holds for the translation of
any wff. It is therefore equivalent to a first-order theory of its instances for atoms.
We now ask can we replace the second-order (1) by a first-order condition?
The answer is that we can impose further first-order conditions on R� which will be equivalnet to
the second-order (1). This is

(1*) ∀t, x, y[R�(t, x, y) → x ≤ y].

The next subsection gives an algorithm which can find such first-order equivalents in many cases.
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10.2 The SCAN algorithm

We saw in the previous subsection that any directional logic |∼ can be translated into second-order
logic through its semi-algebraic semantics. To reduce the translation to first order logic, we need
to solve Problem 2 mentioned above. This subsection shows how to achieve this end.

An algorithm is presented which eliminates second-order quantifiers over predicate variables in
formulae of type ∃P1, . . . , Pnψ where ψ is an arbitrary formula of first–order predicate logic. The
resulting formula is equivalent to the original formula – if the algorithm terminates. The algo-
rithm can for example be applied to do interpolation, to eliminate the second-order quantifiers in
circumscription, to compute the correlations between structures and power structures, to compute
semantic properties corresponding to axioms in non-classical logics and to compute model theoretic
semantics for new logics.

Several methods have been developed for computing from a given second–order formula an
equivalent first–order formula. These methods basically fall into two classes. The first class of
algorithms computes or guesses suitable instantiations for the second–order predicate variables
that are guaranteed to preserve equivalence [Ackermann, 1935a, van Benthem, 1984, Sza las, 1992,
Simmons, 1993]. The idea of the second class of algorithms is to compute sufficiently many
consequences from the formulae containing the second–order variables and then keeping from
the resulting set of formulae only those without the second–order variables [Ackermann, 1935a,
Bachmair et al., 1992]. The algorithm we are going to present falls into this second class.

The structure of the formulae our algorithm can handle is ∃P1, . . . , Pnψ where the Pi are
predicate variables for n–place predicates and ψ is an arbitrary first–order formula. Our al-
gorithm essentially normalizes ψ into clause form and generates all (constraint–) resolvents of
the clauses with the predicates Pi. It is shown that the subset of the generated clauses not
containing predicates Pi (which may be infinite) is equivalent to the original formula. Since
∀P1, . . . , Pnψ ↔ ¬∃P1, . . . , Pn¬ψ (↔ is the equivalence sign), the algorithm can of course also
handle universal quantifiers by reducing this case to the case with existential quantifiers. This al-
gorithm is simple and it can be realized easily with existing theorem provers, for example OTTER.

Let us illustrate the SCAN algorithm with some simple examples.
It is easy to see that

∃P
(

P ∨Q
¬P ∨R

)
is logically
equivalent to

Q ∨R

where Q ∨R is just the resolvent between the two clauses on the left hand side. The left-to-right-
direction of the above equivalance follows from the fact that Q ∨R as a resolvent is of course
implied by the original formula. To see the other direction, suppose Q is true in an interpretation.
In this case the assigment for P , which is existentially quantified, can be chosen to be true also,
making the existentially quantified formula true as a whole. If instead, R is true then P must be
chosen to be false and again the left hand side formula is true. Thus, the existentially quantified
P can be eliminated by just taking the single resolvent with P .

A slightly more complex example illustrates that in fact all (not redundant) resolvents with the
second–order predicate have to be generated.

∃P

 P ∨Q
¬P ∨R
¬P ∨ S

 is logically
equivalent to

(
Q ∨R
Q ∨ S

)
If Q is false in a model, it is necessary that R and S are both true in order to choose P such that
all three clauses on the left hand side become true. Falsity of Q enforces truth of both R and S
on the right hand side only if both resolvents are present.

In the presence of second–order predicates with arguments, the resolution rule has to be changed
slightly, as the third example demonstrates.

∃P
(

P (a) ∨Q
¬P (b) ∨R

)
is logically
equivalent to

a = b⇒ (Q ∨R)

Only in models of the right hand side where a and b are mapped to the same objects, it is
necessary that one of Q or R must be true in order to satisfy the left hand side. If a and b are
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interpreted differently, we may well choose both P (a) and ¬P (b) to be true. That means instead
of unification, just a constraint for the arguments of the resolution literals has to be generated.

Definition 10.4 [The SCAN Algorithm] Input to SCAN is a formula α = ∃P1, . . . , Pn ψ with
predicate variables P1, . . . , Pn and an arbitrary first–order formula ψ.
Output of the SCAN — if it terminates — is a formula φα which is classically logically equivalent
to α, but not containing the predicate variables P1, . . . , Pn.
SCAN performs the following three steps:

1. ψ is transformed into clause form using second order skolemization. That means the resulting
formula has the form:

∃P1, . . . , Pn∃f1, . . . , fnψ′

where the fi are the Skolem functions and ψ′ is a set of clauses. From the algorithm’s point
of view, the quantifier prefix can be ignored. Therefore ψ′ is treated as an ordinary clause
set with the usual Skolem constants and functions.

2. All C–resolvents and C–factors with the predicate variables P1, . . . , Pn have to be generated.
C–resolution (‘C’ for constraint) is defined as follows:

P (s1, . . . , sn) ∨ C P (. . .) and ¬P (. . .)
¬P (t1, . . . , tn) ∨D are the resolution literals
C ∨D ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn

and the C-factorization rule is defined analogously:

P (s1, . . . , sn) ∨ P (t1, . . . , tn) ∨ C
P (s1, . . . , sn) ∨ C ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn

.

Notice that only C-resolutions between different clauses are allowed (no self resolution). A
C-resolution or C-factorization can be optimized by destructively resolving literals x ̸= t
where the variable x does not occur in t with the reflexivity equation. C–resolution and
C–factorization takes into account that second order quantifiers may well impose conditions
on the interpretations which must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the clause
set have been generated (the literal is ‘resolved away’ because self resolution is not allowed),
the clause containing this literal must be deleted (purity deletion). If all clauses are deleted
this way, this means that α is a tautology.

All equivalence preserving simplifications may be applied freely. These are for example:

• Tautologous resolvents can be deleted.

• Subsumed clauses can be deleted.

• Subsumption factoring can be performed. Subsumption factoring means that a factor
subsumes its parent clause. This may be realized by just deleting some literals. For
example Q(x) ∨Q(a), where x is a variable, can be simplified to Q(a).

• Subsumption resolution can also be performed. Subsumption resolution means that a
resolvent subsumes its parent clause, and this again may be realized by deleting some
literals [Ohlbach and Siekmann, 1991]. For example the resolvent between P ∨ Q and
¬P ∨Q∨R is just Q∨R such that ¬P can be deleted from the clause. (An instance of
this operation is realized as so called ‘unit deletion’ in the OTTER theorem prover.)

If an empty clause is generated, this means that α is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the skolemiza-
tion. A method for reversing the skolemization in a set F of clauses is (1) to abstract all
arguments of all occurrences of Skolem functions by variables, i.e. f(s1, . . . , sn) is replaced
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with f(x1, . . . , xn) and additional literals xi ̸= si are added to the clause where the xi are
fresh variables and (2) to consistently rename all variables such that the arguments of all
occurrences of the Skolem function are the same. If this is possible and F [f(x1, . . . , xn)] is
the result then ∀x1, . . . , xn∃y F [y] is the solution. This process is repeated for all Skolem
functions.

If it is not possible to rename the variables consistently, the only chance is to take parallel
Henkin quantifiers [Henkin, 1961]

or leave the second–order quantification.

The next example illustrates the different steps of the SCAN algorithm in detail. The input is:
∃P ∀x, y ∃z (¬P (a) ∨Q(x)) ∧ (P (y) ∨Q(a)) ∧ P (z).

In the first step the clause form is to be computed:

C1 ¬P (a), Q(x))
C2 P (y), Q(a)
C3 P (f(x, y))

f is a Skolem function. The second–order quantifier prefix is therefore ∃P ∃f ∀x, y. But this is
only needed for the correctness proof below.

In the second step of SCAN we begin by choosing ¬P (a) to be resolved away. The resolvent
between C1 and C2 is C4 = Q(x), Q(a) which is equivalent to Q(a) (this is one of the equivalence
preserving simplifications). The C-resolvent between C1 and C3 is C5 = (a ̸= f(x, y), Q(x)). There
are no more resolvents with ¬P (a). Therefore C1 is deleted. We are left with the clauses

C2 P (y), Q(a)
C3 P (f(x, y))
C4 Q(a)
C5 a ̸= f(x, y), Q(x)

.

Selecting the next two P -literals to be resolved away yields no new resolvents. Thus, C2 and C3

are simply to be deleted as well. All P -literals have now been eliminated. Restoring the quantifiers
we then get

∀x ∃z Q(a) ∧ (a ̸= z ∨Q(x))

as the final result (y is no longer needed.)

Theorem 10.5 [Correctness of SCAN] If SCAN terminates for a formula α then α is logically
equivalent to SCAN(α)

Proof. The formulae under consideration contain a prefix of second–order existential quantifiers
over predicate and function variables as the only second–order component. In order to prove the
equivalence we can therefore take a standard first–order Tarskian model theory augmented with
assignments of n-ary relations to n-place predicate variables and n-ary functions to n-place function
variables.

Since we use second order skolemization, clause form generation as well as reversing the skolem-
ization are equivalence preserving. Adding a resolvent or a factor to a clause set is also equivalence
preserving. Therefore the only critical step in the SCAN algorithm is the purity deletion rule.

Removing a clause cannot make (in an interpretation) true clause sets false. Therefore every
interpretation satisfying the clause set before the deletion satisfies it also after the deletion.

What we are left with to prove is that an interpretation satisfying the clause set without the
pure clause also satisfies the clause set with the pure clause. And this turns out to be the really
hard part of the proof where we have to exploit the second order character of the problem. What
has to be exploited is that the predicate P is existentially quantified and therefore its interpretation
can be chosen appropriately.

Before we come to the proof for the general case, it is useful to make some conceptual simpli-
fications.
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• Exploiting the equivalence
(P (s1, . . . , sn) ∨ C) ↔ (P (x1, . . . , xn) ∨ C ∨ x1 ̸= s1 ∨ . . . ∨ xn ̸= sn) it can be assumed
that the predicate P which has been ‘resolved away’ in the pure clause C (C pure means
that it has no resolution partner other than possibly self resolution) has only variables as
arguments.

• The proof for an n-place predicate is not different to the proof for a one–place predicate.
Just read x in P (x) as a vector of variables. Without loss of generality we assume therefore
that P is a one–place predicate.

• Since purity deletion is done after all resolvents and factors with the pure literal are generated,
it can be assumed without loss of generality that there is only one resolution partner in the
clause set. If there are n resolution partners in the clause set then all proof steps below can
be repeated n times.

• The clauses containing no resolution partners do not contain complementary literals with the
predicate P . They are not touched during the purity deletion process. In the sequel they
can therefore be ignored.

• The variables in the clauses can be renamed such that different clauses share the same
variables.

There are two cases which have to be distinguished. The first case is that the predicate P
occurs in the pure clause C only with one sign, either positively or negatively. The second case is
that P occurs with both signs, i.e. C is self resolving. This is the case where SCAN may loop.

Let us now consider the first case and without loss of generality assume the predicate P occurs
only positively in C.

Thus, the situation before and after purity deletion looks as follows:

before:K =



P (x), C(x) (=def A)
Factors(A)
¬P (x1), . . . ,¬P (xn), D(x1, . . . , xn)
S(x1), . . . , S(xn), D(x1, . . . , xn)

...

after:K ′ =


Factors(A)
¬P (x1), . . . ,¬P (xn), D(x1, . . . , xn)
S(x1), . . . , S(xn), D(x1, . . . , xn)

...
where C and D denote the remaining literals. These literals may well contain additional

variables. For the purpose of this proof these variables can be ignored. C and D may also contain
additional positive literals with the predicate symbol P . S(x1), . . . , S(xn), D(x1, . . . , xn) stands for
the 2n− 1 resolvents which are possible between these two clauses. S denotes either ¬P or C. For
example if n = 2 there are three resolvents:

¬P (x1), C(x2), D(x1, x2)
C(x1),¬P (x2), D(x1, x2)
C(x1), C(x2), D(x1, x2)

If tautologies are automatically eliminated those resolvents which are either themselves tautologies
or which are derived from tautologies are not present. We shall see that the factors of A are
needed to take over the role of those clauses which are derived from tautologies. Subsumed clauses,
however, may be deleted without any effect on the proof.

Take any interpretation ℑ satisfying K ′ and mapping the symbol P to a predicate P and the
variable x to a domain element a. If ℑ satisfies C(x) or P (x) then ℑ satisfies K and we are done.
If ℑ falsifies both we move to an interpretation ℑ′ by changing the assignment of P to a predicate
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P ′ which is like P except that P ′(a) is true. Then ℑ′ satisfies P (x), C(x). We have to show that
ℑ′ still satisfies all the other clauses.

Assume ℑ′ maps the variables xi to some ai. Let J be the set of variables which are mapped to
a, i.e. xi ∈ J if ai = a. For these variables, the truth value of ¬P (xi) has changed from true under
ℑ to false under ℑ′. For all other variables nothing has changed. Therefore if ¬P (xj), j ̸∈ J is true
under ℑ, it is still true under ℑ′. In this case all clauses containing this literal are still true. Now
suppose ¬P (xj), j ̸∈ J are all false under ℑ. If for simplicity we assume J = {x1, . . . , xj}, there is a
clause M = C(x1), . . . , C(xj),¬P (xj+1), . . . ,¬P (xn), D(x1, . . . , xn) among the resolvents. In this
clause, all literals with predicate C and ¬P are false under ℑ. Since ℑ satisfies K ′, it must satisfy
D(x1, . . . , xn). The interpretation of D has not changed. Therefore ℑ′ satisfies D(x1, . . . , xn) as
well. Thus, ℑ′ satisfies all clauses in K.

It remains to be shown that in case of automatic tautology deletion the critical clause M is not
deleted. If M would either itself be a tautology or derived from a tautology, the clause A would
look like A = P (x), P (y), C ′(x, y). In this case the structure of M would be
M = P (y1), C ′(x1, y1), . . . , P (y1), C ′(xj , yj), ¬P (xj+1), . . . ,¬P (xn),
D(x1, . . . , xn). That means for example P (y1), C ′(x1, y1) would be false for all assignments of
y1, in particular for ℑ(y1) = a. This assigment would also falsify the factor P (x), C ′(x, x) of clause
A, which cannot be the case23.

From this we conclude that both ℑ′ and ℑ satisfy ∃P K.
The remaining case to be considered is the case where the clause C is self resolving. Schemat-

ically the situation looks as follows:

before:K =



P (x),¬P (y), C(x, y)
¬P (x), D(x)
¬P (y), D(x), C(x, y)
¬P (y), D(x), C(x, x′), C(x′, y)

... (possibly infinitely many resolvents)

after:K ′ =


¬P (x), D(x)
¬P (y), D(x), C(x, y)
¬P (y), D(x), C(x, x′), C(x′, y)

...
To simplify things, let us assume neither C(x, y) nor D(x) contain negative occurrences of P .

If in a given interpretation ℑ which maps x to some a0, D(x) is true, we can choose P (x) to be
true without further conflicts. If D(x) is false, but C(x, y) is true, where y is mapped to some a1,
ℑ satisfies K. If both D(x) and C(x, y) are false then the first resolvent enforces ¬P (y) to be true.
That means, P (a0) to be false enforces P (a1) to be false and therefore it has to be checked whether
the first clause still remains true under the assignment x 7→ a1 etc. With the same arguments as
in the base case this is proved with induction on n using the nth resolvent. That means that in
this case ℑ again satisfies ∃P K.

The case that C(x) contains further negative literals with P means that there is another
recursion loop which generates new branches of resolvents. Induction on the number of these
further literals proves the statement.

The case that D(x, y) also contains negative literals with P requires the integration of the
arguments we used to prove the first case into the proof for the second case. This is technically
complicated, but there are no further proof ideas needed.

Collecting everything together we can finally conclude α↔ SCAN(α). <

If the formula given to SCAN contains a cycle in the P -literals, SCAN may keep on producing
infinitely many clauses. In some cases the size of the clauses remains finite. According to a result
of Ackermann [1935a, 1935b] which can be adapted to our case, the (possibly infinite) conjunction
of the P -literal free clauses is a solution. It is one of the advantages of SCAN that in this case

23This argument does not imply that only binary factors are needed. Before the factor itself is operated on, its
factor has to be generated. That means all factors are needed.
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a subsumption test on the resolvents may terminate the process and thus compute a finite result
whereas otherwise only infinite junk would be produced.

As an example where this happens, apply SCAN to the formula:

∃P ∀x, y (P (x, y) → P (y, x)) ∧ (P (x, y) ↔ Q(x, y)).

Since the symmetry clause ¬P (x, y), P (y, x) contains only a trivial cycle which can easily be rec-
ognized, SCAN stops and returns as expected the symmetry of Q.

There is, however, no proof that SCAN stops in all cases where there is a finite solution. If this
were the case then it would be decidable whether a theorem ∃x P (x) has finitely many different
proofs or not.

As mentioned earlier, formulae with universal quantifiers have to be negated before giving
them to SCAN and the result has to be negated again. The question may arise whether there is a
possibility to treat universally quantified variables directly. Eliminating P from formulae ∀P F [P ]
in some sense means factoring out the tautological part of F [P ]. For example (∀P (P ∨ ¬P ) ∧Q)
is equivalent to Q, i.e. the P–part is tautologous. SCAN uses resolution as the basic operation,
and resolution is sensitive to contradictions and not to tautologies. Therefore it is resolution which
requires negation of the formula and elimination of the contradictory part.

In applications like circumscription, the structure of the formulae is ∀P ∗ Q[P ∗] ⇒R[P ∗] with
a large Q[P ∗] and a small R[P ∗]. In this case it is much more convenient to negate the formula
yielding ∃P ∗ Q[P ∗] ∧ ¬R[P ∗] because the big Q[P ∗] remains untouched.

There is a corollary derived from the proof of SCAN which may be of some interest. The proof
says that deleting a clause as soon as one literal is resolved away preserves equivalence. This may
be exploited to eliminate only certain unwanted formulae. As an example, consider a PROLOG
program containing a binary predicate P which is symmetric. Adding the symmetry clause to
the program clauses PROLOG to loop. The corollary allows to eliminate the symmetry clause by
generating all non redundant resolvents with the other PROLOG clauses. That means in this case
that all clauses containing some P (s, t) are duplicated with P (t, s) replacing P (s, t) in the copy.
For all queries not containing P , the new PROLOG program is equivalent to the old one together
with the symmetry clause.

Remark 10.6 [Comparison with other Methods] Wilhelm Ackermann gave two procedures for
eliminating existential quantifiers. Both eliminate only one quantifier at a time. The first one
requires to bring the formula into a form

∃P ∀x (A(x) ∨ P (x)) ∧ ∆[¬P ]

where ∆[¬P ] is a formula containing only negative occurrences of P (x). The result is then ∆[A],
i.e. all occurrences of ¬P (x) are replaced with A(x) in ∆. This method has difficulties in handling
problems with clauses containing several occurrences of P . For example

∃P ∀x, y (P (x, a) ∨ P (a, x) ∨ C(x)) ∧ (¬P (y, a) ∨ ¬P (a, y) ∨D(y))

falls into this problematic class. The SCAN–solution for this case, however, is simply C(a) ∨D(a).
In its kernel the second method of Ackermann is actually quite similar to SCAN. Although his
notation is very different to ours, it amounts to generating the conjunction of all P–free resolvents24.
It is, however, also restricted to one–place predicates. Literals
P (s1, . . . , sn) have therefore to be written as First(x, s1) ∧ . . . ∧ Nth(x, sn) → P ′(x) before this
method can be applied. This transformation blows up the formulae considerably. In fact, if SCAN
is reduced to formulae with one-place predicates where all arguments are variables and no further
simplifications of the resolvents are applied, you obtain Ackermann’s second method.

24Historical note: On page 401 of [Ackermann, 1935a] there is the definition of an operation

Ax1,...,xn,z
y1,...,ym ∧ Bp1,...,pn

q1,...,ql,z → Ax1,...,xn
y1,...,ym ∨ Bp1,...,pn

q1,...,ql

where the subscripts yi stand for P (yi) and the superscripts xi stand for ¬P (xi) in a clause containing also literals
A or B respectively. Thus, contraction on z actually means resolution between P (z) and ¬P (z). The step to full
resolution as we know it now is not that big.
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Since Ackermann does not use resolution as we do, it is very difficult to integrate optimization steps
like subsumption deletion etc. That means that his method would not terminate for the above
example with the symmetry clause. Therefore SCAN is much easier to handle and it behaves better
than Ackermann’s method in such pathological cases.
The idea of generating consequences of the formulae with P and then taking the subset of P–free
formulae is actually the kernel of other approaches to this problem. For example a theorem in
[Kreisel and Krivine, 1966] says that it is the set of all consequences you have to take. This is of
course too much to be of practical value. A minimal subset free of redundancies should be sufficient.
We showed that the set of resolvents without tautologies and subsumed clauses is sufficient. Bach-
mair, Ganzinger and Waldmann [Bachmair et al., 1992] have gone even one step further. Their
‘hierarchical theorem proving’ approach allows the formulation of redundancy criteria based on
term orderings. Furthermore they have incorporated equality reasoning by superposition princi-
ples. This mechanism can be used to get rid of existentially quantified predicate and function
symbols.

Example 10.7 [Interpolation] As mentioned in the introduction, the applications we have in
mind are classes of problems where formulae with the structure ∃P1, . . . , Pnψ or ∀P1, . . . , Pnψ
occur. This need not be second–order formulae in the first place. Even in standard first–order
logic there might be useful applications. Suppose there is an axiomatization of something in terms
of a predicate P and maybe some other predicates, and by some reason it is known that only
theorems not containing P are to be proved from these axioms. That means

Axioms(P ) ⇒ Theorem
iff ∀P (Axioms(P ) ⇒ Theorem)
iff (∃P Axioms(P )) ⇒ Theorem
iff SCAN(∃P Axioms(P )) ⇒ Theorem

i.e. SCAN can optimize the axioms with respect to the particular class of theorems not containing
P .
Actually the situation is a special case of interpolation. We have

∀Q,R [φ(Q,P ) ⇒ ψ(P,R)]
iff (∃Q φ(Q,P )) ⇒∀R ψ(P,R)
iff (SCAN(∃Q φ(Q,P ))) ⇒¬SCAN(∃R¬ψ(P,R))
iff φ′(P ) ⇒ ψ′(P )

i.e. SCAN does interpolation.

We are now ready to resume our disucssion of the translation into classical logic. The SCAN
algoirthm can help reduce the Ψ of Step 3 to a first-order formula if possible. Let us do one more
example

Example 10.8 [ Lukasiewicz formulation of the implicational fragment of classical logic]
The implicational fragment of propositional logic can be axiomatized by modus ponens: from P
and P ⇒ Q derive Q, and one more axiom ((P ⇒ Q) ⇒ R) ⇒ ((R⇒ P ) ⇒ (S ⇒ P )).
As a Hilbert system, we do not yet have a consequence relation of the form A|∼B but only of
the form ∅|∼B. Thus at this stage, our algebraic analysis and automatic translation methods
into classical logic cannot be applied. Assuming that we use the meothos of Examples 9.0.16 and
9.0.17, we are likely to automatically prove the deduction theorem and define A|∼B as ∅|∼A⇒ B.
Now we can continue with our analysis and translation. It is our aim to automate the move from
a Hilbert system to a corresponding conservative singleton consequence relation more effectively
than the rough search proposed in Example 9.0.16, which happens to give us a very good result
for this particular example.
The purpose of this example is to show that translation via SCAN is more transparent and effective
than term translation. For this purpose we can add the deduction rule to  Lukasiewicz system. This
will give us a proper consequence relation which is still not at all known to be classical implication.
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So the force of the example does not diminish. We now assume the strongest semantics of the
⇒–connective (material implication) is not yet known, but we do know that ⇒ is directional and
hence has a possible world semantics in terms of a ternary relation. We assume further that ≤ is
equality and T is truth.
The truth condition for ⇒ is:

x |= P ⇒ Q iff
∀y, z [R(x, y, z) and y |= P imply z |= Q].

We have seen how this semantics can be used to translate the above Hilbert axiom and modus
ponens into predicate logic. For example the translation of modus ponens yields

∀P,Q ∀x (P (x) ∧ ∀y, z (R(x, y, z) ∧ P (y) → Q(z)) → Q(x))

If we do this for the above axiom also, we get two second–order formulae from which SCAN can
eliminate the quantifiers. The result is:

SCAN(Modus Ponens) = ∀z ∃x, y R(x, y, z)
SCAN(Axiom) = ∀a, b, c, d, e, h, k

((R(a, b, c) ∧R(c, d, e) ∧R(e, h, k)) →
∃u, v (R(b, u, v) ∧R(d, v, k) ∧
∀x, y (R(u, x, y) → (k = x))))

It can now be proved with standard predicate logic means25 that the conjunction of these two
formulae is equivalent to

∀a R(a, a, a) ∧ ∀a, b, c [R(a, b, c) → a = b ∧ a = c]

That means the relation R collapses to a point relation. This fact is the key lemma from which it
is trivial to show that the ⇒ connective is actually material implication.
The above considerations mean that the semantic translation of  Lukasiewicz system reduces to the
following

x � P ⇒ Q iff (x � P → x � Q)

where → is classical implication. Thus the translation of P ⇒ Q into classical logic is ∀x[P ∗(x) →
Q∗(x)] and we have

⊢ A⇒ A iff ⊢ ∀x(A(x) → A(x)).

This semantic translation should be compared with the metalevel term translation of this logic.
The term translation into classical predicate logic uses one binary function symbol f⇒(x, y) and
one unary predicate T (x) (Theorem (x)). The following classical theory ∆ represents the logic:

• ∀x, y [T (x) ∧ T (f⇒(x, y)) → T (y)]

• ∀x, y, z, u T (f⇒(f⇒(f⇒(x, y), z), f⇒(f⇒(z, x), f⇒(u, x))))

To check, for example, whether ⊢ A⇒ A we check in classical logic whether ∆ ⊢ T (f⇒(x, x)).
Now let the reader consider whether there is anything to this ‘reduction’ beyond a ‘change of
notation’ and whether it can seriously be taken as supporting the universality of any logic? We
should, however, note that the step tansforming the Hilbert consequence into a singleton conse-
quence relied on the deduction theorem and was not automated. We hope to close this gap in the
future.
Of course the term translation does at least show that classical logic automatic reasoning machinery
can assist (blindly) in proving theorems for any logic.

That means using SCAN and standard predicate logic theorem proving, both of which can be
automatized, it is possible to analyze unknown logics and to find the strongest semantics. This
semantics (plus some further optimizations) in turn serve as a basis for a translation into predicate
logic.

25Thanks to Mark Reynolds who helped find the proof.
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11 Conclusion: the current state of the debate

The current state of the debate is that an almost arbitrary logic can be translated into classical
logic. This translation is more or less natural (not metalevel) and is beneficial from the automated
deduction point of view. We now need to put forward arguments relating to two points

• Explain why we limit our support for the universality of classical logic to the automated
reasoning aspect only.

• Even from the automated reasoning point of view, we do not yet have a conclusive argument
in favour of classical logic as a universal language for automated deduction because classical
logic itself can be translated into other logics, say intuitionistic logic or linear logic or even
modal logic. Why not use these logics as universal?

We first address the second point:
The main support comes, in my opinion, from the availability of much better and much more

effective automatic deduction methods in classical logic. By effective I do not only mean algo-
rithmically tractable (most theorem proving for non-classical logics are done on classical machines
via translation). I also mean that there are certain algorithms for eliminating quantifiers such as
SCAN as well as certain constructions which are logically meaningful and which can, at the current
state of knowledge, be carried out only in classical logic.

To explain this latter point, we take an example. Consider

φ = (A(z) ⇒ ∀x(B(x, y) ⇒ ∃yC(x, y)))

This formula, in an unknown implicational logic, has several problems associated with it, when
it comes to preparation for automated reasoning and the search for equivalent convenient normal
forms

• Quantifiers cannot be moved about

• Skolem functions cannot be introduced easily. In fact, the existential on y probably depends
not only on the nested arrows but also on the variable z, even though z is not in C at all.

• The subformula C is buried inside φ and is not accessible

• The rewrites allowed depend on the semantics and/or proof theory of ⇒.

Classical logic is the simplest and most convenient with respect to these points. All parts of φ are
accessible in classical logic on the surface via the prenex conjunctive normal form.

For application areas which use non-classical logic and which do not wish to translate into clas-
sical logic, still it is possible to perform automated deduction locally. The problem of Skolemization
can be solved by what we call ‘run time skolemization’. The computation proceeds and whenever
there is a need to skolemise in a context (label) t, one can introduce a constant ct, labelled by
the context. Visa rules must govern the process of transporting the constants from one context to
another. Such methods are natural in the framework of Labelled Deductive Systems and the rules
of the case studies of section 3 illustrate this. Note especially that LDS already uses the notation
t : c(s) to mean the contant c was created at label (context) s and is currently available at label
(context) t.

Although one may argue that linear logic also has a convenient normal form and enjoys a lot
more structure in its proof theory, the extra structure is actually a disadvantage. We can record all
the structure through our labels (or the term sort of the linked predicate languages), so we don’t
need this extra structure, which can only interact with the sort structure (if we were translating into
linear logic) and cause possible confusion. In fact, effective quantificational automated deduction
is a problem for the structurally richer logics and we do prefer the simplicity of classical logic. We
do want the lack of structure in the logic, because we want to use the sorts for that purpose and
use sort specific automated deduction.
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We now address the first question, seeking evidence that classical logic cannot conveniently
serve the role of a universal language beyond the aspect of automated reasoning. The main
obstacle for this role is structure. The non-classical connectives are usually tailored for natural
structure of the non-classical application and therefore there is a risk that when translated into
classical logic all structure be lost. The problem is particularly acute if the translation is proof
theoretically based and where the translation is not through subformulas. It may not matter if
all we want is automated reasoning but if we actually want to use the logic then we may have
to keep to the original non-classical presentation. In areas where logic is used for action (modal
action logic, linear logic) the need to keep the structure is crucial. There is some work by H.
J. Ohlbach [1993] on the functional translation which seems for the case of modal logic (binary
accessibility) to preserve structure and be computationally effective. It is not known at this stage
whether the functional translation can be automated and be kept structure preserving in general,
e.g. for ternary accessibility.

A metaleval transltion into HFP will also preserve structure, and this can be taken as another
‘good’ translation into classical logic.

To summarise, it seems that the question of whether many sorted classical logic can be universal
beyond the relam of automated deduction, depends very much on the state of the art of our
translation methods.
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