Max-Planck-Institut für Informatik
max planck institut
informatik
mpii logo Minerva of the Max Planck Society
 

MPI-INF or MPI-SWS or Local Campus Event Calendar

<< Previous Entry Next Entry >> New Event Entry Edit this Entry Login to DB (to update, delete)
What and Who
Title:On algebraic branching programs of small width
Speaker:Christian Ikenmeyer
coming from:Max-Planck-Institut für Informatik - D1
Speakers Bio:
Event Type:AG1 Mittagsseminar (own work)
Visibility:D1
We use this to send out email in the morning.
Level:AG Audience
Language:English
Date, Time and Location
Date:Tuesday, 16 January 2018
Time:13:00
Duration:30 Minutes
Location:Saarbrücken
Building:E1 4
Room:024
Abstract
joint work with Karl Bringmann and Jeroen Zuiddam

In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e., the class of polynomials that can be approximated arbitrarily closely by polynomials in VP_e. We describe VP_e-bar with a strikingly simple complete polynomial (in characteristic different from 2) whose recursive definition is similar to the Fibonacci numbers. Further understanding this polynomial seems to be a promising route to new formula lower bounds.

Our methods are rooted in the study of ABPs of small constant width. In 1992 Ben-Or and Cleve showed that formula size is polynomially equivalent to width-3 ABP size. We extend their result (in characteristic different from 2) by showing that approximate formula size is polynomially equivalent to approximate width-2 ABP size. This is surprising because in 2011 Allender and Wang gave explicit polynomials that cannot be computed by width-2 ABPs at all! The details of our construction lead to the aforementioned characterization of VP_e-bar.

As a natural continuation of this work we prove that the class VNP can be described as the class of families that admit a hypercube summation of polynomially bounded dimension over a product of polynomially many affine linear forms. This gives the first separations of algebraic complexity classes from their nondeterministic analogs.

Contact
Name(s):Christian Ikenmeyer
Video Broadcast
Video Broadcast:NoTo Location:
Tags, Category, Keywords and additional notes
Note:
Attachments, File(s):

Created by:Christian Ikenmeyer, 01/09/2018 11:01 AMLast modified by:Uwe Brahm/MPII/DE, 01/16/2018 04:01 AM
  • Christian Ikenmeyer, 01/09/2018 11:01 AM -- Created document.