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Abstract

While knowledge transfer (KT) between object classes
has been accepted as a promising route towards scalable
recognition, most experimental KT studies are surprisingly
limited in the number of object classes considered. To sup-
port claims of KT w.r.t. scalability we thus advocate to eval-
uate KT in a large-scale setting. To this end, we provide an
extensive evaluation of three popular approaches to KT on a
recently proposed large-scale data set, the ImageNet Large
Scale Visual Recognition Competition 2010 data set. In a
first setting they are directly compared to one-vs-all classi-
fication often neglected in KT papers and in a second setting
we evaluate their ability to enable zero-shot learning. While
none of the KT methods can improve over one-vs-all clas-
sification they prove valuable for zero-shot learning, espe-
cially hierarchical and direct similarity based KT. We also
propose and describe several extensions of the evaluated
approaches that are necessary for this large-scale study.

1. Introduction

Inspired by the success of recent object class recogni-
tion on individual classes, the simultaneous recognition of
many classes has become an active research area. Scaling
recognition to larger numbers of classes poses challenges
with respect to the expressiveness and learnability of ob-
ject models as well as the need for increasing amounts of
training data. Knowledge transfer between object classes
has been advertised as a promising route towards scalable
recognition, by efficiently re-using acquired knowledge in
the context of newly posed, but related recognition tasks.
While experimental studies connected to knowledge trans-
fer have shown promising results they are often limited w.r.t.
the size of employed data sets.

As a consequence, it remains unclear whether the ben-
efits demonstrated in small-scale experiments considering
only a few classes really take effect in large-scale settings.
In fact, Deng et al. [6] found that the relative performance of
different recognition methods can change when increasing
test database size by an order of magnitude. The major con-
tribution of this paper is therefore to revisit three recently
proposed knowledge transfer approaches and to evaluate

them in a truly large-scale setting, effectively starting where
previous evaluations have left off. We evaluate knowledge
transfer on the recently proposed ImageNet data set [7],
specifically, on the associated ImageNet Large Scale Visual
Recognition Competition 2010 (ILSVRC10) subset [2]. It
consists of over 1.2 million images of 1000 object classes,
providing a currently unparalleled test bed for vision algo-
rithms in terms of both scale and diversity. Being based on
WordNet [18] synonym sets, ImageNet offers the additional
advantage of providing a hierarchical organization of object
classes according to hypernym/hyponym relations, lending
itself to knowledge transfer using object class hierarchies.

Our experimental study follows three prominent direc-
tions in knowledge transfer, which have proven effective
for comparatively small numbers of object classes. The first
direction imposes a hierarchical structure on the space of
object classes, according to the general-to-specific ordering
defined by the data set [12, 17, 32]. The second direction
is based on representing object classes relative to an inven-
tory of generic visual attributes [8, 14, 22], where classes
are characterized by distinct patterns of attribute activations.
The third direction is based on direct similarities to rela-
ted classes effectively using the classifiers of most similar
classes [1, 10, 22]. For all three directions we go far be-
yond previous studies in terms of data set size, and evaluate
knowledge transfer in the context of both traditional multi-
class classification and zero-shot recognition.

Our paper makes the following contributions: First, to
the best of our knowledge, we are the first to provide an
in-depth study of knowledge transfer in a truly large-scale
setting. Second, we compare three different approaches to
knowledge transfer: one based on an object class hierarchy,
one based on attributes, and one based on direct similar-
ity. Third, we contrast knowledge transfer with the tradi-
tional approach of one-versus-all classification [21], which
is often neglected in previous knowledge transfer work.
Fourth, we challenge fully unsupervised transfer in a zero-
shot recognition task aiming to recognize 200 unseen test
classes. Fifth, we propose technical modifications to seve-
ral approaches making them applicable to large-scale data1.

Sec. 1 discusses related work. Sec. 2 introduces the dif-
ferent knowledge transfer approaches. Sec. 3 motivates our
setup for the experiments in Sec. 4 and 5.
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Figure 1: ISVLRC10 subgraph. Leaf (blue), inner nodes (green).

Related work Knowledge transfer for object class recog-
nition comes in different flavors, such as joint learning of
multiple classes [28] or transferring object class priors [9].
Recently, three lines of research have gained particular pop-
ularity due to their potential scalability.

A first line of research exploits the hierarchical structure
of the object class space imposed by a general-to-specific
ordering, either based on an existing hierarchy [17, 32] or
learned from visual features [12]. Scalability is achieved
by associating classifiers to each hierarchy node, allowing
for classification in a divide-and-conquer fashion. Our hi-
erarchical classification is closest to [7], combining classi-
fier scores of distinct subgraphs to yield final classification
scores. [6] follows a different route by forming a weighted
average of all classifiers in a hierarchy for classification.
While the latter two approaches report multiclass classifica-
tion results on (subsets of) the ImageNet data set, our study
additionally considers zero-shot recognition.

A second line of research uses an intermediate layer of
descriptive attributes to represent object classes [8, 14, 22],
encoding high-level visual properties that can be shared
among object classes, hence promoting scalability. Our
attribute-based object class model is inspired by [14],
and uses linguistic knowledge bases to determine both
an attribute inventory and the associations between object
classes and attributes fully automatically [22].

A third line of research uses direct similarities between
object classes. [1] encodes instances of previously un-
known classes as collections of “familiar” classifier re-
sponses, i.e., similarities to known classes, and applying
a nearest-neighbor scheme for classification. While most
work based on similarity between classes [1, 10] require a
few training samples for new classes, we employ our un-
supervised approach [22] where class similarities are mined
automatically using semantic relatedness measures with lin-
guistic knowledge bases like Wikipedia or web search.

2. Knowledge transfer approaches
In this paper we explore two distinct settings for know-

ledge transfer. In a first experiment (Sec. 4) we assume that
training data is available for all classes. In this setting know-
ledge can be transferred (or shared) among all classes and
thus may lead to better classification performance. This set-
ting is called knowledge sharing in the following. In the
second experiment we assume that training data is avail-
able for a subset of known classes and that no training data

is available for the remaining unseen classes. This setting
is called zero-shot recognition and described in Sec. 5. We
have chosen these two distinct settings as they represent two
extreme cases for knowledge transfer.

The following gives an overview of the different know-
ledge transfer approaches explored in our study. Sec. 2.4
then describes how semantic relatedness is used to enable
unsupervised attribute- and direct similarity-based know-
ledge transfer.

2.1. Hierarchy-based knowledge transfer

We exploit the hierarchical structure of the ILSVRC10
to train two types of classifiers (see for a small sample sub-
graph Fig. 1). We train classifiers for leaf nodes zl by us-
ing training images of that node as positive samples and all
other images as negative samples. Additionally we train
classifiers for inner nodes yi using all images associated
to hyponyms of yi as positive and all images outside the
subtree rooted at yi as negative examples. Fig. 1 shows
an example, where a classifier for solanaceous vegetable
uses French fries, mashed potato, bell pepper, pimento, and
jalapeno images as positives as well as parsnip and turnip
images as negative examples. We exclude the root and any
trivial nodes (with only a single hyponym), as they do not
provide additional information, resulting in a total of 370
inner node classifiers.

We distinguish three approaches. First, for scoring im-
age x according to a leaf class zl, we average over all classi-
fier scores s(yi|x) of hypernymsHzl

of zl (for a bell pepper
classifier we thus use the pepper and solanaceous vegetable
classifiers), which we denote the inner WordNet nodes
model:

sinn(zl|x) =

∑
yi∈Hzl

s(yi|x)
|Hzl
|

(1)

Second, since this model is not capable to distinguish
among leaf classes zl that share the same hypernyms, such
as French fries and mashed potato, we also include leaf
node classifiers in the all WordNet nodes model:

sall(zl|x) =
s(zl|x) +

∑
yi∈Hzl

s(yi|x)
1 + |Hzl

|
(2)

The third approach is based on the hierarchical cost sen-
sitive classifier proposed by [6]. This formulation ties to
optimize for the hierarchical error, defined in Sec. 3.2. To
estimate the score of a certain class zl we use cost-weighted
classifier probabilities of all leaf nodes Zl, cost sensitive to
the cost czl

zi
between nodes zi and zl which is equivalent to

the hierarchical error:

scost(zl|x) = −
∑

zi∈Zl

czl
zi
p(zi|x) (3)

The hierarchy-based model allows for a flexible combi-
nation of leaf and inner node classifiers. In the knowledge
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Figure 2: Example part attributes (orange), object classes (blue).

sharing case the inner and leaf node classifiers are trained
on training data from all classes. In the zero-shot case only
those leaf node classifiers can be trained for which training
data is available and the inner node classifiers are trained on
the known classes only. Fig. 4 gives an example for trans-
ferring knowledge using leaf, inner, and all WordNet nodes
models accordingly for the zero-shot case.

2.2. Attribute-based knowledge transfer

We adopt the probabilistic direct attribute prediction mo-
del (DAP) introduced by Lampert et al. [14]. The DAP rep-
resents object classes zl relative to an inventory of descrip-
tive attributes am, realized as probabilistic attribute clas-
sifiers p(am|x). In the knowledge sharing case these are
trained on all classes whereas in the zero-shot case these
are trained on known classes only. Once trained, the at-
tribute classifiers can be flexibly combined to recognize pre-
viously unseen classes in the zero-shot setting or to recog-
nize known classes in the knowledge sharing case. The as-
sociation between object classes zl and attributes am (see
Fig. 2 for an example) is controlled by a matrix of indicator
variables azl

m. Assuming mutual independence of attributes
and uniform priors p(am) = 0.5 yields the following prob-
ability estimate of class zl being present in image x [22]:

pattr(zl|x) ∝
M∏

m=1

(2 ∗ p(am|x))a
zl
m (4)

For efficiency reasons, we propose the following non-
probabilistic sum formulation, which replaces calibrated at-
tribute probabilities p(am|x) by zero-boundary attribute de-
cision scores s(am|x):

sattr(zl|x) =
∑M

m=1 s(am|x)a
zl
m∑M

m=1 a
zl
m

, (5)

Although this formulation does not require calibrated prob-
abilities, it does require normalized scores. We found em-
pirically that a simple z-score is sufficient.

In order to validate the sum formulation, we compare its
performance to the probabilistic formulation in Tab. 1 for
both error measures (see Sec. 3.2 for details). The impor-
tant observation is that the sum formulation outperforms the
probabilistic formulation.We thus use the sum formulation
in the following.

Dataset & Approach Error Product Sum

ILSVRC 10, inner nodes Top 1 93.5 90.9
ILSVRC 10, inner nodes Top 5 80.1 71.6

Table 1: Evaluation of the probabilistic product model suggested
by [14] vs. our sum model, see Sec. 2.2. Error in %.

2.3. Direct similarity-based knowledge transfer

Motivated by its superior classification perfor-
mance [22], we also include a direct similarity based
approach. This can be defined as a modification of the
attribute-based model that represents object classes relative
to a set of K semantically related reference classes zk,
implemented by classifiers s(zk|x):

sdir(zl|x) =
∑K

k=1 s(zk|x)
K

, (6)

Direct similarity is used only in zero-shot experiments as
the most related known class in the knowledge sharing set-
ting is always the class itself.

2.4. Semantic relatedness for attribute- and direct
similarity-based approaches

The attribute–based approach relies on an association
matrix between a set of attributes and the object classes.
The ILSVRC10, however, is neither provided with a set
of attributes nor with manual class-attribute associations.
Therefore we rely on part attributes mined from WordNet
to generate an inventory of attributes for all classes [22]. In
total we mine 811 part attributes. An alternative to mine at-
tributes would be to use WordNet’s synset definitions [24].

For these mined attributes we use semantic relatedness
measures in connection with linguistic knowledge bases to
automatically determine associations between the attributes
and object classes. While in [22] each class and attribute is
associated with one term, the classes and attributes in this
work refer to WordNet concepts, called synsets, which are
represented by several terms. As the semantic relatedness
measures are based on terms rather than semantic concepts
we take the median over all possible term combinations for
a specific association.

For mining class-attribute associations we choose the
best performing measures [22, 23] which are applicable
to large scale: (1) the explicit semantic analysis based on
Wikipedia [26]; (2) Yahoo Holynyms which is based on hit-
counts and uses specific part queries such as “the wheel of
the car”; (3) Yahoo Image which is based on image-search
hitcounts; and (4) Yahoo Snippets which is based on web
page summaries returned by the search engine. For the di-
rect similarity based approach we replace Yahoo Holonyms
with simple Yahoo Web queries as it is not applicable for
direct similarity. For improved robustness of the attributes
we also compute a class level fusion over all attributes.
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Learning Total Err. top
Model Descriptor method dim. 5 1

BoW [2] Sift LibLinear 1,000 80 91
BoW Sift MeanSGD 1,000 72 86
BoW + SPM rgSift MeanSGD 8,000 59 76
LLC + SPM rgSift MeanSGD 21,000 50 69
Fisher vector rgSift MeanSGD 32,768 43 61
LLC+SPM, Fisher rgSift MeanSGD 53,768 38 57
Fisher+SPM [25] Sift, Color SGD 262,144 34 –
LLC,SVC+SPM [16] Hog, Lbp ASGD 1,179,648 28 47

Table 2: One-vs-all performance of different methods on
ILSVRC10. BoW: bag of visual words, SPM: spatial pyra-
mid matching [15], LLC: locality-constrained linear coding [30],
Fisher vector [19], SVC: Super-Vector Coding [31], Lbp: local
binary patterns, SGD: stochastic gradient decent [3], ASGD: aver-
aging SGD [16].

Robust associations for large scale. In contrast to prior
work we have a significantly larger amount of potential
classes associated to each attribute. To learn precise at-
tribute classifiers we use only the most likely classes as
positives and least likely as negatives, leaving out the poten-
tially noisy middle part. For the attribute backrest in Fig. 2
we would thus use wheelchair and armchair as positives,
bike and husky as negatives, and not use the classes shop-
ping cart and passenger car which are uncertain in respect
to the attribute backrest.
Parameter selection. For attribute- and direct similarity-
based knowledge transfer, continuous semantic relatedness
measures have to be discretized to yield binary associations
between attributes and object classes and in between object
classes, respectively, by thresholding. Since we found large
performance differences depending on thresholding [23],
we determine threshold values on the validation set, and
fix them for the rest of the experiments. In particular,
for attribute-based knowledge transfer, we set the threshold
such that, on average, 3% of all attributes are active for a
given object class. For the direct similarity based approach,
we set the threshold such that theK = 5 most related object
class models are considered.

3. Experimental setup
Evaluating and comparing the different knowledge trans-

fer approaches of Sec. 2 in a large scale setting requires
careful design of the experimental setup. The following de-
tails and argues for our choices concerning data set, image
representation, and learning methodology.

3.1. Dataset

The number of available datasets containing more than
a few hundred object classes with sufficiently many images
per class is still limited. Caltech256 [11] is frequently used,
however, it consists only of 256 classes and 30k images.

NUS-WIDE [5] is significantly larger with 270k images and
over 5k unique tags but contains ground truth for only 81
categories. The tiny image data set [27] (80 million images,
loosely labeled with 75,062 WordNet nouns) provides a sig-
nificantly larger number of images but is mostly restricted
to 32x32 pixel images.

Recently, Deng et al. proposed ImageNet [7] (3.2 million
images of 5247 WordNet synonym sets) as a resource for
truly large-scale experimentation. Based on this dataset the
ImageNet Large Scale Visual Recognition Challenge 2010
(ILSVRC10, [2]) has been introduced. We have chosen this
subset for large-scale experiments as it is a well-defined
subset of 1,000 object classes (1.2 million images, divided
into distinct portions for training, validation, and test) for
classification experiments, suggesting this benchmark to be
the de-facto choice for large-scale experiments in the near
future.

3.2. Performance measures

ILSVRC10 [2] introduced and defined the following per-
formance measures used throughout the paper. Performance
is measured as the top-n error rate (the n most confident
classification hypotheses are considered as potentially cor-
rect) and distinguishes two error measures. The first is a
flat measure which equals 0 if the test class is predicted cor-
rectly within the n most confident hypotheses, and 1 other-
wise. The second is a hierarchical measure, which equals
the minimum height of the lowest common ancestors be-
tween true and hypothesized classes. As suggested in [2]
we report top-n errors for n = 5 and n = 1, which corre-
sponds to 1-accuracy. In order to avoid fitting the test data,
we use the provided validation set for preliminary experi-
mentation and parameter selection (Fig. 3a and 3b, Tab. 1
and 2). The final results (Sec. 4 and 5, Fig. 3c, Tab. 3 and 4)
are obtained on the test set.

3.3. Image representation

In order to allow for a sufficient range of experiments on
the ILSVRC10 dataset, we require an image representation
that is both powerful enough to achieve good performance
and reasonably sized to support efficient learning. We thus
base our choice on the outcome of the ILSVRC10 compe-
tition, which we recapitulate in part in Tab. 2, and seek to
find a compromise between performance and manageable
runtimes.

We observe that the performance ranges from 80% top-
5 error rate for a BoW Sift baseline (Tab. 2, first row) to
an impressive performance of as low as 34% and 28% top-
5 error of the best performing approaches (Tab. 2, last two
rows). In an attempt to regulate the performance-runtime
tradeoff, we explore different combinations of techniques
used by the best performing approaches [25, 16] such as
spatial pyramid matching (SPM [15]), locality-constrained

1644



0 5 10 15 20
40

45

50

55

60

Number of epochs

T
o

p
−

5
 e

rr
o
r 

in
 %

 

 

SGD, λ=10
−5

MeanSGD, λ=10
−5

SGD, λ=10
−6

MeanSGD, λ=10
−6

SGD, λ=10
−7

MeanSGD, λ=10
−7

SGD, λ=10
−8

MeanSGD, λ=10
−8

(a) Convergence of SGD and MeanSGD for diffe-
rent step sizes λ on ILSVRC10 (one-vs-all, Fisher
vector, rgSift).

20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  

100	
  

1,000	
   10,000	
   100,000	
   1,000,000	
  

To
p-­‐
5	
  
Er
ro
r	
  i
n	
  
%
	
  

Feature	
  dimension	
  (log	
  scale)	
  

One-­‐vs-­‐all	
  
Hierachical	
  (inner	
  nodes)	
  
A?ributes	
  (all)	
  

(b) Error vs. number of feature dimensions (for
details see Tab. 2)

20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  

100	
  

10	
   100	
   1,000	
  

To
p-­‐
5	
  
Er
ro
r	
  i
n	
  
%
	
  

Number	
  of	
  training	
  images	
  (in	
  thousands,	
  log	
  scale)	
  

One-­‐vs-­‐all	
  
Hierachical	
  (inner	
  nodes)	
  
A?ributes	
  (all)	
  

(c) Error vs. number of training images

Figure 3: Performance vs. (a) number of epochs, (b) feature dimensionality, and (c) number of training images.

linear coding (LCC [30]), and the Fisher vector [19] (we
adapted the implementation of [13]), in connection with the
color sift variant rgSift [29] (Tab. 2, rows 2 to 6).

As can be seen from Tab. 2 and Figure 3b (blue dots)
the performance increases monotonically with descriptor
dimensionality. While the last two approaches perform best
they use feature vectors of several 100k and over 1Mio
dimensions, resulting in prohibitive runtimes for our pur-
poses. For this paper, we opted for the Fisher vector and
LLC+SPM representation as a sensible compromise be-
tween performance (38% top-5 error rate, Tab. 2, row 6) and
runtime. For combining the two representations we simply
average their scores. We fix this representation for all re-
maining experiments.

3.4. Learning method

Motivated by the potential of stochastic gradient-based
optimization for rapid convergence, and in line with the
two best performing ILSVRC10 approaches, we use lin-
ear SVM classifiers, trained using stochastic gradient de-
scent (SGD) [3]. Similar in spirit to averaging SGD
(ASGD) [20, 16], we average the SVM’s weight and bias.
However, in contrast to [16] we do not average after each
step, but take the mean of the results after each epoch (one
pass over the data). More specifically, we save the weight
vector wi and bias bi after each epoch i (the data is ran-
domly reordered before each epoch). While the score of the
normal SGD after n epochs only depends on the weights
and bias after the final epoch

fSGD(x) = 〈wn, x〉+ bn, (7)

we compute the mean over all epochs in MeanSGD:

fMeanSGD(x) =
∑n

i=1〈wi, x〉+ bi
n

(8)

(where 〈w, x〉 is the scaler product of w an x).
As can be seen in Figure 3a, using MeanSGD (solid

lines) instead of SGD (dashed lines) significantly speeds up
convergence and improves performance. We use hinge loss

and fix, according to Figure 3a, the step size λ to 10−7 and
the number of epochs n to 20 epochs.

In order to benefit from modern multi-core hardware,
we further implemented a parallelized version of MeanSGD
based on Bouttou’s SGD [4], exploiting data parallelism. It
requires about 20 hours (including file and network I/O) for
training all 1,000 one-vs-all classifiers with 20 epochs us-
ing the 53,768 dimensional Fisher vector on a 32-core ma-
chine. The code including a Matlab wrapper is available on
our webpage.

4. Large scale knowledge sharing

As motivated in Sec. 2, in a first set of experiments we
consider the knowledge sharing case where we assume to
have training samples for all classes.

Tab. 3 gives results for classifying all test images of the
ILSVRC10 data set into 1000 classes, using the provided
training set for training. Performance is measured in terms
of the corresponding flat and hierarchical (in brackets) vari-
ants of top-5 and top-1 error (see Sec. 3.2). The table com-
pares the performance of standard one-vs-all classification
(part 1 of Tab. 3, using leaf node zl classifiers only), hierar-
chical models (part 2), and attribute-based models (part 3).

We proceed by examining Tab. 3 from top to bottom.
First, we observe that the standard one-vs-all approach
(Tab. 3 part 1) achieves a remarkable top-5 error rate of
37.6% with a hierarchical error rate of 2.91.

In contrast, the hierarchical model using only inner
nodes (Tab. 3 part 2) performs relatively poorly (top-5 er-
ror of 71.3%, hierarchical error 7.31). This drop is under-
standable, considering the much smaller number of avail-
able inner node classifiers (370 compared to 1,000 leaf node
classifiers). Adding the leaf nodes boosts the performance
of the hierarchical model by more than 20% w.r.t. the flat
top-5 error rate (50.4%, hierarchical error rate 5.49). Sur-
prisingly, the resulting performance is still slightly worse
than one-vs-all – the effect of adding confusion by adding
more uniformly weighted classifiers is apparently more pro-
nounced than added discriminative power. When examining
the results more closely we find that the performance of the
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inner leaf node classifier does not correlate with the level
of abstraction in the hierarchy. However, we find that it
strongly depends on the semantic grouping, e.g. the cat-
egory flower which is associated with 87 leaf nodes can
be very well separated from other nodes in contrast to the
class node described with the synset {fastener, fastening,
holdfast, fixing}, which has 10 visually diverse and difficult
child nodes such as button, hair slide, knot, and screw.

The hierarchical approach based on [6] uses one-vs-all
leaf nodes, but makes them sensitive to the hierarchical cost
(see Sec. 2.1). With 48.6% top-5 error (Tab. 3 part 2) it
clearly outperforms the hierarchical approach using only
inner WordNet nodes (by 23%) and slightly all WordNet
nodes (by 2%). However, compared to plain one-vs-all the
flat top-5 error increases by 11% and even the hierarchical
error by 1.8. The main reason for this less discriminant hi-
erarchical classifier seems to be that this approach uses all
classifiers but the one trained for the specific class to be de-
tected.

The last line of Tab. 3 part 2 gives the results for a
stacking-based combination of inner and leaf node classi-
fiers. We use a SVM (MeanSGD) stacked on top of the
scores of all nodes and both features to learn the relative
importance of the nodes, i.e. we learn one-vs-all classifiers
which use the classifier scores as feature vectors. In contrast
to the the previous hierarchical approaches the trained SVM
now correctly attenuates the influence of weak (inner) nodes
and achieves a top-5 error of 36.8% which is even slightly
better than one-vs-all.

Tab. 3 part 3 gives results for attribute-based models us-
ing different semantic relatedness measures for determin-
ing object class-attribute associations. On average, using
single measures (Wikipedia, Yahoo Holonyms, Image, or
Snippets) performs in the same order of magnitude as inner
WordNet nodes. When combining all attribute-classifiers
from the different measures we improve performance by
more than 10% to 56.4% top-5 error (15% lower than inner
WordNet nodes). However, this cannot compete with the
hierarchical approaches including the discriminative leaf
nodes.

In the same fashion as for all WordNet nodes we can
also stack a SVM on top of the different attribute classifiers
to learn an optimal weighting between them. This results
in a significant reduction in error by 13% to 43.8% top-5
error, which is, however, still 6% higher than one-vs-all or
7% higher than the stacked hierarchical approach.

Influence of feature representation and amount of train-
ing data. In this experiment we further analyze the depen-
dency with respect to the number of feature dimensions and
the amount of available training data. In addition to one-vs-
all we pick the best approach for both knowledge transfer
settings which is not based on one-vs-all leaf nodes: inner
WordNet nodes for hierarchical setting and all attributes.

Approach Top 5 Error Top 1 Error

1. One-vs-all
(=leaf WordNet nodes) 37.6 (2.91) 57.2 (5.77)

2. Hierarchical
inner WordNet nodes 71.3 (7.31) 90.7 (8.69)
all WordNet nodes 50.4 (5.49) 67.9 (7.54)
leaf nodes, cost sensitive 48.6 (4.71) 60.2 (5.66)

SVM stacking, all nodes 36.8 (2.84) 56.3 (5.59)

3. Attributes
Wikipedia 63.7 (5.21) 81.5 (8.52)
Yahoo Holonyms 68.7 (5.61) 87.1 (9.24)
Yahoo Image 74.0 (5.80) 90.6 (10.28)
Yahoo Snippets 67.2 (5.33) 84.6 (8.55)
all attributes 56.4 (4.63) 75.9 (7.32)

SVM stacking, all attributes 43.8 (3.38) 63.5 (6.34)

Table 3: Large scale knowledge sharing results. Shown is flat error
in % (hierarchical error)

In Figure 3b we plot the error versus the feature dimen-
sionality of the approaches listed in Tab. 2. We observe
that for all approaches the performance increases logarith-
mically with increased feature dimension. From the SIFT
representation (1,000 dimensional) to the combined LLC
and Fisher vector (53,768 dimensional) the error decreases
the most for one-vs-all by 34%, but still strongly by 29%
for attributes and 21% for inner WordNet nodes. The rel-
ative performance difference between the approaches re-
mains mainly stable across the different features representa-
tions which indicates that relative results of the approaches
are independent of a specific feature representation.

In Figure 3c we show results for a reduced amount of
training data per class to 10, 25, and 100 samples. The first
observation is that the hierarchical and the attribute-based
knowledge transfer schemes degrade less (17% and 25%,
respectively) than the one-vs-all (46%) scheme. However,
the relative ordering remains the same for 100 and 25 sam-
ples per class. Only for the rather extreme case of only 10
training samples the attribute-based approach slighly out-
performs one-vs-all classification by 1.7%.

Summary. We conclude that the benefit of knowledge
transfer is in fact limited for this knowledge sharing and
standard multiclass classification setting and becomes ap-
parent only in the stacking-based approaches. In case of
limited feature representation or reduced training data the
absolute performance differences between the approaches
decrease, but one-vs-all remains among the best. The hi-
erarchical based approaches only show reasonable perfor-
mance when leaf nodes are included. As concerns attribute-
based approaches, we observe that using all attribute-
classifiers based on multiple semantic relatedness measures
significantly improves performance.
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Figure 4: Zero-shot recognition using hierarchies. Unseen object
classes (red) mashed potato / jalapeno can be recognized using
neighboring leaf node (French fries / bell pepper, pimento), inner
node (potato / pepper), or all (the respective unions) classifiers.

5. Large-scale zero-shot recognition

In this section, we apply the knowledge transfer ap-
proaches of Sec. 2 to a zero-shot recognition setting, in
which the sets of object classes of training and test are dis-
joint. We hence denote training object classes as known, and
test classes as unseen. In order to solve the zero-shot recog-
nition task, knowledge obviously has to be transferred be-
tween training and test classes. Lampert et al. [14] provided
a first benchmark for zero-shot recognition in the form of
the Animals-with-Attributes (AwA) data set, consisting of
approximately 30,000 images, divided into 40 known ani-
mal classes for training and 10 unseen animal classes for
testing. In the present experimental study, we lift zero-shot
recognition to another level both in terms of data set scale
and diversity, by applying it to almost two orders of magni-
tude more images. In particular, we divide the ILSVRC10
data set randomly into two disjoint sets of object classes,
one assumed known (800 classes), and one assumed un-
seen (200 classes)1. In all experiments, we further maintain
the original split into training and test data defined by the
ILSVRC10 data set, meaning that we train on the known
(800 class) fraction of the original training set (1,005,761
images), and test on the unseen (200 class) fraction of the
original test set (30,000 images).

Results. Tab. 4 gives results for zero-shot recognition,
comparing hierarchical (part 1), attribute-based (part 2), and
direct similarity-based (part 3) models. In analogy to Tab. 3,
the table further distinguishes among hierarchical models
using leaf, inner, and all hierarchy nodes, as well as among
different semantic relatedness measures for attribute-based
and direct similarity-based models. As the relative ranking
of the methods is nearly identical between the different er-
ror measures (top-5, top-1, flat and hierarchical error) we
use the flat top-5 error as the basis for our discussion.

On average, we observe a significant amount of error
across the compared approaches. We stress that this can be
expected, since the zero-shot recognition task is of consid-
erable difficulty, and cannot be solved without transferring
knowledge between potentially unrelated object classes.

1We provide code, settings, and intermediate results on our web pages
to facilitate further research and comparison on large-scale knowledge
transfer.

On 200 unseen classes
Approach Top-5 Error Top-1 Error

1. Hierarchical
leaf WordNet nodes 72.8 (4.72) 91.3 (11.73)
inner WordNet nodes 66.7 (4.20) 88.7 (11.16)
all WordNet nodes 65.2 (4.10) 88.4 (11.24)
2. Attributes
Wikipedia 80.9 (5.17) 94.5 (11.69)
Yahoo Holonyms 77.3 (4.91) 94.0 (12.56)
Yahoo Image 81.4 (5.19) 95.5 (12.53)
Yahoo Snippets 76.2 (4.87) 93.3 (11.53)
all attributes 70.3 (4.57) 90.4 (11.62)
3. Direct Similarity
Wikipedia 75.6 (5.20) 91.8 (11.28)
Yahoo Web 69.3 (4.49) 89.7 (11.10)
Yahoo Image 72.0 (4.60) 90.7 (11.26)
Yahoo Snippets 75.5 (4.89) 91.6 (11.27)
all measures 66.6 (4.41) 88.4 (10.65)

Table 4: Zero-shot recognition. Flat error in % (hierarchical error).

Examining the performance of the hierarchical methods
(Tab. 4 part 1) we observe a top-5 error of 72.8% using leaf
WordNet nodes only. This is the closest setting examined
here to one-vs-all classification. It uses the WordNet hier-
archy to identify the most similar known leaf node classes
for an unseen test class (see Fig. 4). Using the inner Word-
Net nodes only, the performance improves to a top-5 er-
ror of 66.7%. This is remarkable, since, in comparison to
leaf node classifiers, only far fewer and less specific inner
node classifiers are used. Furthermore it is in contrast to re-
sults in the knowledge sharing experiment (using all classes
for training) where performance drops for inner nodes (see
Tab. 3): while we benefit from knowledge transfer through
the inner nodes for zero-shot recognition, we are loosing
precision compared to one-vs-all when sharing knowledge
in the inner nodes. The error can slightly be reduced to
65.2% using all WordNet nodes, effectively combining the
two previous settings.

Part 2 of Tab. 4 shows the results for attributed-based
models using the fully unsupervised mining of both at-
tribute inventory and object class-attribute associations.
Overall the obtained error rates for the individual related-
ness measures are not competitive to the ones obtained by
the hierarchical models. Yahoo Snippets performs best with
76.2% top-5 error. However, when combining all attribute
measures we achieve a top-5 error of 70.3% which lies be-
tween the performance of leaf and inner WordNet nodes.

On the other hand, the direct similarity-based models re-
ported in part 3 of Tab. 4 obtain as low as 69.3% top-5 error
for Yahoo Web and competitive 66.6% when combining the
classifiers of all measures, which is only slightly worse than
the best performance obtained by a hierarchical method (all
WordNet nodes with 65.2%).

The slightly favorable role of direct similarity compared
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to attribute-based models is consistent with our previous
findings [22]. It can be explained by both the limited qual-
ity of the automatically mined part attribute inventory and
by having one vs. two potential sources of introducing la-
bel noise into the system by means of semantic relatedness
(mined object class-attribute associations).

The strong performance of hierarchical models can be at-
tributed to the increased amount of supervision given by the
hierarchy, while the attribute- and direct similarity-based
models are fully unsupervised.

6. Conclusion
This paper explored knowledge transfer (KT) in a truly

large-scale setting, going far beyond experimental studies of
prior work in KT w.r.t. data set scale, diversity, and range
of tested methods. Our evaluation is based on a recently
proposed large-scale data set (ILSVRC10, [2]) and includes
three prominent approaches to knowledge transfer1.

For the fully supervised knowledge sharing experiment,
the hierarchical approach using the inner or all node clas-
sifiers obtained inferior performance to the leaf nodes only,
corresponding to the one-vs-all classifiers. Only when lear-
ning a stacked one-vs-all SVM on top, the hierarchical ap-
proach could slightly surpass performance of the one-vs-all
classifiers. In the zero-shot recognition setting however, the
hierarchical approaches obtained overall best performance
of the explored KT methods.

The attribute based KT methods, in their fully unsu-
pervised incarnation as explored in this paper, consistently
produced higher error rates than the hierarchy and direct
similarity-based KT methods. As pointed out before this
reduced performance can be – at least partly – explained by
the limited nature of attributes used here that were restricted
to automatically mined part attributes. It remains an open
research question how to obtain an inventory of representa-
tive and descriptive attributes for this kind of approach.

The direct similarity based KT method performed on a
similar level as the hierarchical methods. This is remarkable
as this approach is fully unsupervised using semantic relat-
edness to automatically find the most related known classes.
This is in contrast to the hierarchical methods that require
additional information given as a hierarchy.
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