The Light-Weight Semantic Web: Integrating Information
Extraction and Information Retrieval for Heterogeneous
Environments

Jens Graupmann
Max-Planck-Institut fur Informatik
Saabricken, Germany

graupman@mpi-inf.mpg.de

ABSTRACT

Today’s Web, large intranets and even the documents col-
lected by a single user are enormous sources of distributed,
heterogeneous information that cannot be easily mastered.
Syntactical and semantical differences as well as missing se-
mantic annotations make effective query evaluation on such
corpora a hard task. The Semantic Web aims at providing
a standard for semantic annotations, but has not yet made
large progress in the real world.

This paper presents a light-weight version of the Semantic
Web. We advocate the use of Information Extraction tools
to automatically detect and annotate important classes of
information that are frequently used in queries, like loca-
tions and dates. We propose a query language that can
exploit the extra annotations and allows novel range and
join conditions.

1. INTRODUCTION

1.1 Motivation

The World Wide Web of today is a steadily growing col-
lection of information. Unlike the early days when HTML
pages dominated the Web, information is available in a ple-
thora of different formats, with PDF and Word documents,
the diversity of XML documents, form interfaces to struc-
tured databases, images and even multimedia data as promi-
nent, but by far not exhaustive examples. A similar situa-
tion arises in intranets of large companies with information
stored in different formats and in different places, and even
a user’s personal data on her own computer forms a hetero-
geneous collection of documents in diverse formats.

The heterogeneous and distributed nature of information
opens two difficult research problems that must be answered
in order to effectively answer queries in such a setting:

e Information is stored in semantically different forms
and most often without any semantic annotation at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

Ralf Schenkel
Max-Planck-Institut fir Informatik
Saabricken, Germany

schenkel@mpi-inf.mpg.de

all. How can a search engine map a query (e.g., ask-
ing for cheap books about XML) to documents where
information is available, but not explicitly annotated?

e The result of a query may be distributed across sev-
eral documents that may or may not be explicitly con-
nected with a hyperlink. How can a search engine
identify such a distributed result?

The Semantic Web [4, 14] aims at solving the first problem
in the Web environment with semantical annotations that
facilitate intelligent query processing using inference mech-
anisms and large handcrafted ontologies. However, while
the Semantic Web standards are available today, hardly any
page in the Web provides explicit annotations, and it is not
foreseeable that annotations will become more popular in
the near future. It should be questioned anyway whether an
approach based on manual annotations is feasible at such
large scale as the Web. The second problem has just re-
cently got the attention of the research community with the
upcoming graph-based query models [5, 19], but it remains
unclear if and how these techniques can be applied when ex-
plicit links are not available (e.g., when two pages deal with
the same topic, but are not linked).

To overcome the problems imposed by the heterogeneity
of data, we propose a light-weight version of the Semantic
Web. Instead of advocating rich, manual annotations like
the real Semantic Web, we use automatic Information Ex-
traction tools to detect and annotate important classes of
information that are frequently used in queries, like loca-
tions, dates, and persons. Documents that are found on the
Web are automatically tagged with such meta information.
Additionally, we propose a query language that can exploit
the extra annotations for more precise queries with novel
range and join conditions.

1.2 How IE Helps - an Application Scenario

We show the benefit from integrating Information Extrac-
tion techniques and IR using an application scenario familiar
to most researchers. Let’s assume that a researcher wants to
plan her trip to Salvador, Brazil in order to attend SIGIR
2005. Some queries (or, to be more precise, information
needs) that may arise in this context are the following:

bear this notice and the full citation on the first page. To copy otherwise, to (I1) What are cheap, but not shabby hotels (i.e., with prices

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGIR Worksho[2005
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

between $40 and $80 per night) within 5km distance of
the Pestana Bahia Hotel in Salvador (where the con-
ference takes place)?

(I2) Which rock concerts take place within a distance of
50km of Salvador in the week after SIGIR (from Au-
gust 20 to August 26)7

(I3) Which researchers that do research about XML have a
paper at SIGIR 2005, so it’s likely that I'll meet them?

Such queries should be evaluated on the Web, possibly an
intranet (e.g., containing travel regulations), and local doc-
uments (like mails or downloaded documents) on the user’s
computer. The documents involved can be rather structured
(like flight or train schedules), unstructured (like informa-
tion about hotel descriptions and cultural events in plain
HTML files), or semi-structured (like travel guides in XML
or PDF documents).

Keyword-based queries, the smallest common denomina-
tor used by all of today’s Web search engines, are by no
means sufficiently expressive. As an example, consider in-
formation need (I1): It is not enough to simply find a hotel
(which could be done with a keyword-based query), but its
distance to the conference hotel has to be computed and its
price has to be in a certain range. For (I2), the date of an
event has to be detected and compared to a given range. At
first sight it seems that such complex information needs can
be satisfied only by complex and highly specialized ques-
tion answering systems that incorporate Natural Language
Processing (NLP) techniques.

Luckily, large classes of information needs can be answered
with much less effort. The key issue for our examples is find-
ing information of certain classes (like persons, locations,
prices, and dates) in documents and using them when an-
swering the queries. We propose to use well-established In-
formation Extraction tools for this task, together with addi-
tional external knowledge about certain classes of informa-
tion (like coordinates of locations, exchange rates for curren-
cies etc.). Using type-specific wrappers, documents encoun-
tered by the search engine are first fed into an information
extraction engine that automatically annotates a predefined
set of information classes before the extended document is
added to the index. Figure 1 shows an overview of our sys-
tem’s architecture. Note that the system can be easily ex-
tended with new wrappers and new information classes.

Once we have additional (light-weight) annotations, we
can exploit them to identify relevant answers to queries; de-
tails of our query language are presented in Section 4. For
our example (I1), once a document describing a hotel is
found, the corresponding price is extracted (using the an-
notation for prices) and compared to the price in the query
(possibly after converting one of them). Additionally, its
location is extracted and compared to the location in the
query by converting both locations to their corresponding
coordinates using external information and comparing the
coordinates).

If the answer to a query is distributed over several docu-
ments, annotations alone are not enough. However, they can
help identifying pages that are “semantically” connected,
but don’t have an explicit link. As an example, consider
(I3): We can get all people with a paper at SIGIR 2005
from the conference’s homepage, but that does not include
links to the researchers’ homepages where we would expect
information about their research areas. If we annotate per-
sons (which basically corresponds to names) and do some
data cleaning, we can detect that another page contains the
same person as the paper list and therefore add a ‘virtual’

w)

> |SearchEngine | >

N

(

Location= Salvador
Price =89 §

Date = 15-18 August |
Event=SIGIR

Location= Frankfurt
Location=Salvador ~[
Time = 13:15

Annotation Module|[Annotation Module Annotation Module
DATE PRICE IE Processor LOCATION

i [i [

Web Portal ‘ Web Adapter ‘ XML EMail
Adapter — Adapter Adapter
SIGIR
Hotel Website - = 5]
Flight T Tourist
;
Guide
Schedule Graupmann
= (XML) Personal
EMail

Ne—

Figure 1: Architecture of an integrated IE-IR sys-
tem

link between the two pages, enabling us to answer the query.

Note that any automatic annotation must include an in-
herent risk of missing or erroneous annotations. Even though
this risk is noticeably small for state-of-the-art annotation
engines, we take it into account by maintaining a confidence
level for each annotation that corresponds to the estimated
probability that the annotation is correct.

1.3 Related Work

Information Extraction has been an active research area
in Natural Language Processing for quite some time ({8,
18]). However, despite all this work, the integration of IE
with classical information retrieval is still not very deep ([2]).
Additionally, data integration based on NLP techniques has
not attracted much attention; only recently some heavy-
weight approaches have been proposed [23, 27].

Information extraction from text and HTML data is an
area with intensive work. The approaches mostly follow
a rule-based paradigm [3, 10, 16, 25], or employ learning
techniques and/or linguistic methods [2, 9, 11, 13]. But
actually using automatically converted and “semantically”
enhanced Web data in a search engine has not been pursued
in the literature on information extraction.

Ranked retrieval over graph-structured data has been pur-
sued in [5, 19]. The graphs studied there are derived from
foreign-key relationships in relational databases and are quite
different from the settings of the current paper. Queries
in this prior work were limited to keyword search on at-
tributes scattered across different tables. Chakrabarti [7]
names vague search over graph structures as one of the ma-
jor open challenges in areas where database and information
retrieval technologies meet.

Integrating information from heterogeneous and usually
distributed sources is the primary task of federated infor-

mation systems (see, e.g., [26]) that apply system-specific
wrappers and an integrated global schema. Unlike these
systems, we propose a ad-hoc, light-weight integration of
heterogeneous data sources that focuses on selected informa-
tion types. Furthermore, we do not need strict correctness
guarantees like distributed transactions, as we only provide
unified read-only access and our snapshot of the Web data
is not time-synchronous anyway.

1.4 Outline of the Paper

This paper shows the benefits of integrating information
extraction techniques with information retrieval as a form
of light-weight data integration. Furthermore we show how
these technique facilitate the integration of distributed het-
erogeneous data sources and information system not only by
providing a unified query interface but also by the integra-
tion of and connection by “virtual links”.

We start with a short summary on the background of
information extraction techniques in Section 2. In Section
3 we introduce a data model for documents that captures
annotations. Section 4 presents our query language that
can exploit the extra annotations and provides novel range
and join conditions. Section 5 gives details on the necessary
preprocessing and data cleaning, and Section 6 shows how
new annotation types can be integrated.

The ideas and concepts presented in this paper have been
implemented in and evaluated with the SphereSearch En-
gine [17], but can be easily adapted to other engines. The
original SphereSearch paper [17] presented the big picture
of the engine and its evaluation; this paper complements it
with a thorough discussion of the use of information extrac-
tion techniques.

2. INFORMATION EXTRACTION BASICS

Information Extraction (IE) is a subfield of Natural Lan-
guage Processing (NLP), which is itself a subfield of com-
puter science and computer linguistics that deals with the
problems inherent in the processing and manipulation of
natural language. Information Extraction consists (accord-
ing to the leading forum for this research, the Message Un-
derstanding Conferences [12, 22]) of five main types (also
called IE tasks):

e Named Entity recognition (NE) finds and classifies names,

places, etc.

e Coreference resolution (CO) identifies identity rela-
tions between entities in texts.

e Template Element construction (TE) adds descriptive
information to NE results (using CO).

e Template Relation construction (TR) finds relations
between TE entities.

e Scenario Template production (ST) fits TE and TR
results into specified event scenarios.

According to Gaizauskas et al. [15], Information Extrac-
tion (IE) techniques “process a document to identify pre-
specified entities and the relationships between them and
then fill in a [...] ‘template’ with the identified informa-
tion”, while Information Retrieval (IR) aims at “identifying
documents from a larger collections which are (hopefully)

relevant with respect to some query”. They state that the
combination of IE and IR “has the potential to create a
powerful tool in text processing”.

The <company>Pelican Hotel</company> in
<location>Salvador</location>, operated by
<person>Roberto Cardoso</person>, offers
comfortable rooms starting at

<price>$100</price> a night, including

breakfast. Please check in before <time>7pm</time>.

Figure 2: Result of annotating a hotel description

In this work we concentrate on using Named Entity Recog-
nition to identify predefined categories such as the names
of persons, organizations, locations, expressions of times,
quantities, monetary values, percentages, etc. in texts. Fig-
ure 2 shows an example where the annotations created by
Named Entity Recognition are integrated as XML-like tags
into the existing description of a hotel.

One of the most popular tools for Natural Language Pro-
cessing is GATE [12, 11] (General Architecture for Text
Engineering) and its integrated Information Extraction sys-
tem ANNIE. ANNIE (a Nearly-New Information Extraction
System) consists of different modules that form a pipeline.
After some basic steps like part-of-speech tagging (e.g., for
noun phrases, temporal adverbial phrases etc) and lookups
in lists by the Gazetteer module (e.g. for locations or cur-
rency symbols) the Sematic tagger is executed. The seman-
tic tagger uses rules which exploit annotations assigned in
earlier steps to produce annotated entities. It is based on
the JAPE Transducer, that provides finite state transduc-
tion over annotations based on regular expressions. ANNIE
can be easily extended by providing additional dictionaries
and rules.

Although tools like GATE have been available for some
years they have only recently been integrated in the area of
information retrieval which is still dominated by statistical
and probabilistical measures.

Another important class of algorithms for information ex-
traction uses probabilistic and statistical methods, most no-
tably Hidden Markov Fields (e.g., [24]). Such algorithms
could be easily integrated into our approach, but we have
concentrated on rule-based systems like GATE so far.

3. COMBINING INFORMATION EXTRAC-
TION AND RETRIEVAL

In this section we propose a foundation for a search engine
that integrates IR and IE techniques. We introduce versatile
data model, a query language that can exploit annotations,
and a scoring model.

3.1 Data Model

Since a classical bag-of-words representation ignores the
structure of a document, but annotations and links are bound
to specific parts, a search engine that combines IE and IR
has to use a more appropriate data model. We propose
a graph-based document model as it preserves the original
document structure and can easily represent annotations as
well as links between documents.

We consider the whole collection of documents known to
the search engine as a single, huge graph. Nodes represent
substructures of documents (like elements in XML docu-
ments), each node stores its textual content and has as-
signed at least one type (e.g., denoting if its an XML ele-
ment or a textual node). Edges connect two nodes and are
either intra-document, corresponding to the internal doc-
ument structure, or inter-document, representing links be-
tween documents. The upper part of Figure 3 shows an
example for a collection of two documents. In this model, a
potential result of a query is a subgraph of the whole graph.
Such a potential result can consist of fragments belonging
to different documents.

[DOC] www.cnn.com

O [Type1:conf,Type2:conf,]
N CEos <NODE_VALUE>
[DOC] www.cnn.com/SHOWBIZ

Type: Type of node

[TAG] News
conf: Confidence value for type
[TAG] ltem [TAG] ltem
[TEXT] Why NBC ... [TEXT] Pink Panther delayed to 2006
ﬂ IE & Tranformation
Doc 1 [DOC] www.cnn.com
Doc 2

[DOC] www.cnn.com/SHOWBIZ
[TAG] News

[TAG] Item [TAG] ltem

[TEXT] [NAME:0.7,TEXT] [TEXT] [PERSON:0.8,TEXT] [TEXT] [DATE:0.8,NUMBER:1,TEXT]
Why NBC Pink Panther ~ delayed to 2006

Figure 3: Document representations before (top)
and after (bottom) annotation

IE and other techniques can be seamlessly integrated as
the results of annotation steps (e.g., Named Entity Recogni-
tion) are simply added to the internal graph-based represen-
tation as types. If an annotation applies only to a part of a
node’s value, the node is split up into sibling nodes. Figure
3 shows the graph-based representation of two linked docu-
ments before and after annotation. The leaf text nodes are
split up into sibling nodes with different annotated types,
but the original information is still retained.

As most annotation techniques are to a certain extent
error-prone, information added by annotation steps includes
a certain amount of vagueness. We reflect this in our model
by attaching a confidence weight to each annotation that
reflects the probability that this annotation is correct. In
Figure 3 this confidence weight is shown after each type
that has a confidence value lower than one.

Formally, for a collection X = (D, L) of documents D
together with a set £ of (href, Xpointer, XLink, virtual,
...) links between their elements, we maintain the element-
level graph Gg(X) = (Ve(X), Eg(X)) that has the union
of the elements of all documents as nodes and undirected
edges that correspond to parent-child edges and links. Note
that we intentionally dropped the direction of edges from

the model as it is easier to phrase queries if the user does
not have to think about the direction of links.

For each element z € Vg(X), val(z) denotes the node’s
value, type(x) denotes the set of the node’s types and conf(z, t)
denotes the confidence value (a nonnegative weight between
0 and 1) for type ¢ of node z.

For an XML or HTML document the type of a node may
be Tag, Processing Instruction or Text; for an email it may
be Sender, Subject, Message or Text. The confidence value
for an element’s base type provided by the original docu-
ment is always 1, for an annotation it reflects the expected
correctness of this annotation.

A node can have multiple types for different reasons. First,
different annotation steps could add different annotations to
the same node, e.g., person and researcher. Second, types
can be derived from other types, e.g., the base type of the
type person is always the type name; the base type of name
is string.

Two nodes with the same type t are compared with a type-
specific comparator function ¢;. As an example, to compare
two nodes of type location, a location comparator is used
that compares the geographical position of both locations
(that is available from external data sources). If two nodes
with differing types are compared, the comparator of the
least common basetype of both types is applied. As an ex-
ample, a location and a person node are compared to each
other using the comparator for string, which could apply
string edit distance to compare the values of the nodes.

The choice for the weight conf(z,t) for a type assignment
that reflects the probability of its correctness can be deter-
mined in different ways. If an annotation technique, like
algorithms based on Hidden Markov Models [24], provides
a confidence value by itself, this should be used. Unfortu-
nately, many techniques do not provide a confidence, like
most rule-based approaches, e.g. the Jape-Transducer used
in GATE/ANNIE. In this case, a useful value can be the sta-
tistical correctness of the technique based on a fixed traininig
set. For ANNIE experiments have been published showing
that 89% of all person annotations are correct [21]. Thus a
value for 0.89 of conf(z, person) will be assigned to any per-
son node added by ANNIE’s annotation component. If the
same annotation is generated by different tools, the confi-
dence for this type can be computed by building the average
or the maximum of the different confidence values.

Each edge e is assigned a nonnegative weight weight(e),
which is 1 for parent-child edges contained in the original
document and has a fixed value A for standard links. For
virtual links (that are introduced in Section 4) weight(e)
reflects the strength of the connection. The distance func-
tion dx(x,y) takes two elements as input and computes the
weight of a shortest path (i.e., a path from z to y where the
sum of edge weights is minimal) in Gg(X) between them.

3.2 Queries

In this section we propose a query language that can take
advantage of the link structure of the document collection
and utilize additional annotations. A key concept of the
query language is to group query conditions that refer to
the same entity, i.e., an (intuitively defined) object of the
real world.

As a simple example, consider the query

(hotel, location=Salvador)

that asks for hotels in Salvador. This query consists of a sin-
gle group and exploits the annotation of locations by using
an exact-match condition on the location. If two or more
groups are used in a query, they are labeled like in the fol-
lowing example:

A(hotel, location=Salvador)
B("air condition" shower telephone)

Here, the second group states properties of rooms. FEach
group is evaluated independently. The result for the whole
query are subresults that are compact, i.e., whose distance
in the graph is small, so good results would be hotels that
have rooms with the requested properties. The rationale be-
hind this is that elements that are close to each other are,
with a high probability, related to each other as well. While
this works only for elements that are linked in the original
documents, specifying an additional join condition allows
relating elements from unconnected documents. As an ex-
ample, the following query phrases the information need (I3)
from the introduction:

A(researcher, XML)
B(SIGIR 2005 paper)
A.person=B.person

Formally, a query S = (@, J) consists of a set Q = {Q1,
.., Qg} of one or more nonempty query groups and a (pos-
sibly empty) set J = {J1,...Jm} of join conditions. Each
query group Q; consists of a (possibly empty) set of keyword
conditions ¢} .. .t};i and a (possibly empty) set of annotation-
based conditions that are detailed in the following section.

Additionally, exact-match or similarity joins can be speci-
fied between query groups. A join has the form Q;.v = Q;.w
for exact-match joins and Q;.v ~ Q;.w for similarity joins,
where Q;,Q); are query groups and v,w are annotation types
like date, location etc.

Please notice that this internal representation of the query
should never be shown to the user. Instead, a query inter-
face for end users could be fully graphical or provide another
kind of query language that is transformed into this repre-
sentation later on.

3.3 Scoring

As a result of a query is a subgraph, different results not
only differ in their scores for matching nodes but also in the
size of the subgraph. More compact subgraphs are prefer-
able as the contained information is more strongly connected
and therefore, with a high probability, more highly related.

A score s of a potential answer N to a query @ is a
weighted combination of the scores of the nodes n; that
match conditions of Q and the overall compactness C' of
the potential answer:

s(N,Q) = BC(N) + (1= 5) Y s(na)

i=1

Here, the weight § adjusts the ratio of compactness to
scores, and the compactness C' is the inverse of the sum of
weights of edges in N. The score for a node n; is defined as
the sum of the scores for all matching subconditions ¢ of @

s(ni) =) se(ni)
ceS

The score for a subcondition depends on the condition
type. For a simple keyword query it is a standard IR-type

tf/idf based weight. For other subqueries the score compu-
tation is described in the next section.

3.4 Data model, queries, scoring — summa-
rized

The following facts summarize our data model:

e The whole data collection is internally represented as
one huge graph structure

e Every element (text, annotation) is a node with (pos-
sibly multiple) types and corresponding weights mea-
suring the confidence for this type assignment.

e The results of a query is a subgraph, possibly consist-
ing of connected nodes of different documents.

e Queries consist of groups that are independently eval-
uated.

e The score for a potential result is based on the scores
of subresults and the compactness of the result.

4. ANNOTATION-AWARE QUERIES

In this section we show how to efficiently use annotations
for information retrieval. We assume that all annotated in-
formation data has been converted to a standard represen-
tation and is therefore readily available for evaluation; we
show details of the necessary preprocessing in the following
section. We introduce different kinds of annotation-aware
queries, sketch their evaluation and describe their scoring.

4.1 Exact-Match Annotation-Based Queries

The simplest form of an annotation-aware query is an
exact-match annotation-based query. It can help disam-
biguating query terms that are ambigous. As an exam-
ple, consider the query for the politician Condoleezza Rice.
A simple keyword query (american, politician, rice)
leads to poor precision as many documents about rice farms
in the USA are found. Disambiguating the term rice by
denoting that it should describe a person, i.e., rephrasing
the same query as (person=rice, politician, american)
drastically increases precision. Further examples are
date=1980 or money_amount=10999.

Formally, an exact-match annotation-aware query condi-
tion (of a query group) has the form ¢; = v; with an anno-
tation type ¢; and a required value v;. A node n; matches
the condition ¢; = v; if value(n;) = v; and ¢; € type(n;). As
this is an exact-match condition, the score for the match is
defined as the confidence of the annotation:

Sev(ni) = conf(n;, ¢;)

4.2 Range Queries

For any numeric annotation type, range queries are obvi-
ously applicable and useful. A query to find cheap, but not
shabby hotels, i.e., hotels with a price between $50 and $80,
in Salvador would read

(hotel location=Salvador $50<=price<=$80)

To find rock concerts between August 20 and August 26,
a query like (rock concert 08-20-05<=date<=08-26-05)
could be used. Ranges can also be open on one side, e.g.,
price<$80. The implementation for such numerical range

conditions is straightforward. If the system was based on
a relational database, a range condition could be directly
transformed to an SQL-query with a range condition on a
numerical column containing all money amounts or dates.

Even for non-numerical annotations like locations range
queries are useful as long as the annotated values can be
mapped to a numerical domain. As an example, locations
can be mapped to their geographical coordinates using addi-
tional external information, we show details in the following
section. Once we have this mapping, we can answer range
queries on locations, like the following for information need
(I1) from the introduction:

(hotel location-Salvador<=5km $50<=price<=$80)

This location-based range query implies that Salvador is a
location and asks for locations within a distance of 5km of
Salvador. A query can also specify a range that is limited
by two fixed locations, e.g.:

(rock concert Salvador<location<Rio)

Figure 4 visualizes the query by showing the geographical
rectangle spanned by the coordinates of Salvador and Rio; to
qualify as a result, a location must be within this rectangle.

Recife,

Long: 38.3 Lat: 13.0
Salvado

SILIA

lelo

Corumba__ 5 {orizonte
Sao *Vitdria
Paulo, ,
Santos” 0 de
Janeiro
Ml Long: 43.1 Lat: 22.5]
Portd South Atlant

Alegre

Al A

Figure 4: A range query with two fixed locations

In an implementation, this query could be evaluated as
follows:

1. The coordinates for Salvador (38.3 longitude, 13.0 lati-
tude) and Rio (43.1 longitude, 22.5 latitude) are looked

up.
2. Locations in the geo-database (see Section 5.3) are

looked up that fulfill the conditions 38.3<longitude<43.1
and 13.0<latitude<22.5.

3. Pages in the index are looked up containing ’rock con-
cert’ and one of the locations determined in the previ-
ous step.

Formally, range queries exist in three variations:

e open range queries where only one boundary is fixed,
like in date=>1980, money_amount=>10000

e closed range queries where both boundaries are fixed,
like in 1980<date<=1985

e center queries where the range is an equi-sized interval
around a center, like in date-1980<=5

A node n; matches a condition ¢; = v; if value(n;) € Set(v;)
and ¢; € type(n;) =. Here, Set(v;) is the (possibly infinite)
set containing all values contained in the range v; of type
¢;. The score is then computed in the same manner as for
exact-match queries:

Sev(ni) = conf(ng,ci)

4.3 Similarity queries

Similarity queries of the form type=~ value can be seen
as implicit center queries type-value<=e with a query-specific
center value and a predefined range €. In contrast to ordi-
nary’ center queries, matches with a value 'nearer’ to the
specified center are preferable and should therefore be ranked
higher.

The main problem is to determine an appropriate value
for € and a damping function that provides a score that de-
creases with increasing distance to the center value. Both
may be application specific as the following examples demon-
strate: For the query (gotic church date~1400), the range
1300 <date< 1400 may be appropriate, but for a query
(rock concert date~06-01-2005), a range of 100 years is
obviously inadequate. As it is almost impossible to deter-
mine the appropriate similarity range for each query only
based on the query itself, an adjustment based on user feed-
back seems to be best suited. As values for each named
entity can be shown in the result list, the user can provide
feedback without inspecting the documents itself. Such a
feedback can be type-specific, e.g., too late/too early for
dates, too far for locations, etc.

Formally, for each datatype dt a similarity function

simg, (value, center, €)

computes the degree of matching of a node with a certain
value to a center query with the given center and e. A node
n; matches a condition ¢; =~ wv; if value(n;) € Set(~ v;)
and ¢; € type(n;). Here, Set(~ v;) is the (possibly infinite)
set containing all values contained in the range [v; — €, v; + €]
of the domain of ¢;. The score for a similarity condition sc
is computed as follows:

sse(ni) = conf(n;, ¢;) * sime, (value(n;), vi, €)

A simple implementation of the similarity function return-
ing a score reciprocal to the distance to the optimal value is
the following:

. 1
sim(value, center, €) = fcenter — value £ 1

4.4 Link/Join queries

The most powerful variant of annotation-aware queries
are join queries. As an example, consider again information
need (I3) from the introduction. Based on the annotation
of persons, this query can be formulated similar to an SQL-
query in a relational database setting using the annotation
type as join attribute:

A(researcher, XML)
B(SIGIR 2005 paper)
A.person=B.person

This query tries to match the terms researcher and XML on
page A, the terms SIGIR, 2005 and paper on page B and
returns a pair of pages containing the same person (which
is likely to be the author of one of the SIGIR papers).

Besides such exact-match join queries, it is possible to
specify similarity joins. As an example, consider a query
asking for a German and a French composer that were born
on almost the same date:

A(composer French)
B(composer German)
A.date~B.date

A join condition is differently evaluated compared to the
conditions shown before, because it does not change the
score for a node. As a result of a join condition a virtual
link is generated whose weight reflects the similarity of its
endpoints, so a join condition connects matching nodes.

Analogously to a similarity query, an implicit range ¢ and
a damping function have to be specified. A new edge — a
virtual link — between two nodes n; and n; is generated if
|ni — nj| < §. The weight of the new edge e = (n;,n;) is
computed as follows:

w(e) =1/(conf(n;,c;)
- conf(n;, ¢;)
- simj¢(value(n;), value(n;), d))

If such a join on the same annotation is regularly evaluated
it could be advisable to precompute this join on the whole
data collection (if possible) once and store the generated
virtual links in the engine’s index.

5. PREPROCESSING

Before extracted information can be used for query evalua-
tion, data cleaning and integration tasks have to be applied.
These precomputations and normalizations are necessary to
map different representations of information into a canonical
format.

We exemplarily show these precomputations for some kinds
of named entities (dates, money amounts and locations).
These normalizations should facilitate two aspects: First,
identical entities should be identified as identical, e.g., the
entity “NY state” should be identical to “New York state”.
Second, entities of the same kind should be comparable: 17
March ’04 is smaller than 15.04.2003.

5.1 Dates

The canonical format of a date is a simple numerical rep-
resentation that is computed with the following formula:
date_value = year*10000+month*100+day (for appropriate
values of year, month, and date). It would be easy to inte-
grate time values in this representation if they are needed.
The correct recognition and segmentation of a date into year,
month and day is the task of the IE component.

5.2 Money Amounts

Money amounts are more than just simple numbers as
they have a currency assigned that has to be taken into
account when normalizing them. As exchange rates between
most currencies are varying over time, it is impossible to
use a single currency as basis and transform each money
amount into this currency when it is annotated. However,
using a single currency for all amounts is a good idea as

it facilitates an easy comparison. We propose to externally
maintain a current list of exchange rates and transform all
money amounts in the index to the reference currency on a
regular basis, e.g., weekly.

5.3 Locations

Compared to dates and money amounts precomputations
for locations are much more laborious. To efficiently use
locations during query evaluation we externally maintain a
location database to look up detailed properties for each lo-
cation. For this purpose we imported some gazetteer lists
comprising locations, corresponding abbreviations and their
type (city, country, mountain etc). Like dates and money
amounts, which are inherently of a numerical nature, we
want to compare locations in a similar way. A natural way of
comparing locations is their distance and their relative geo-
graphical position. To connect locations to numercial values
we imported data containing geographical coordinates (lon-
gitude and latitude) [1], yielding a list comprising names
of locations, abbreviations and their corresponding coordi-
nates. Tablel shows an excerpt of this list. During query
evaluation, locations are mapped onto corresponding loca-
tions in our geographical database.

Full Name Abbreviation | Type Long Lat

New York NY 3 -73.96 40.6983
Los Angeles LA 3 -118.6306 | 33.7433
Saarbriicken SB 3 7.0 49.2333

Table 1: Location list

6. EXTENSIBILITY

As not every application domain benefits from location
and date annotations, but has its own highly specialized
annotation types, a system implementing such techniques
should be designed in a modular way that allows an easy
extension with additional annotation modules. Using the
GATE/ANNIE framework, the implementation of exten-
sions for the annotation component is fairly simple based
on its open modular architecture.

An annotation module (comprising all components for the
support of a new annotation type) for a type cx (roughly)
consists of the following parts:

e The annotator takes as input a graph structure and
adds annotations of type cg.

o A domain function dom, (n;) returns a boolean value
indicating whether n; is an instance value of the do-
main of ci.

o A similarity function sim., (valuel, value2, range_size)
returns a number in the interval [0, 1] measuring the
similarity of the instance values valuel and value2 in
the domain of ci.

e For some annotations, like locations, additional exter-
nal data about the domain is needed.

Examples for additional annotations are specific invoice
or identification numbers.

7.

CONCLUSION

This paper presented a systematic integration of informa-
tion extraction techniques into information retrieval, based
on a formal data model. It covered the whole lifetime of data
from annotating them over preprocessing and using them in
queries. The paper introduced a query language that allows
to exploit notations for novel range and join queries that
were not available in IR systems before.

8.
1]

2]

8]

[10]

[11]

[12]

[13]

REFERENCES

D. Ancona, J. Frew, G. Jane, D. Valentine: Accessing
the Alexandria Digital Library from Geographic
Information Systems. ACM/IEEE Joint Conference on
Digital Libraries, (JCDL 2004), Tuscon, USA

M. Abolhassani, N. Fuhr, and N. Govert. Information
extraction and automatic markup for XML
documents. In Blanken et al. [6], pages 159-174.

A. Arasu, H. Garcia-Molina: Extracting structured
data from Web pages. ACM SIGMOD International
Conference on Management of Data (SIGMOD 2003),
San Diego, USA, 2003.

T. Berners-Lee and E. Miller: The Semantic Web lifts
off. ERCIM News 51, Oct. 2002.

G. Bhalotia et al.: Keyword searching and browsing in
databases using BANKS. 18th International
Conference on Data Engineering (ICDE 2002),San
Jose, USA, 2002.

H. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors. Intelligent Search on XML Data,
volume 2818 of LNCS. Springer, Sept. 2003.

S. Chakrabarti: Breaking through the syntax barrier:
Searching with entities and relations. 15th European
Conference on Machine Learning (ECML 2004), Pisa,
Italy, 2004.

F. Ciravegna, Y. Wilks: Designing Adaptive
Information Extraction for the Semantic Web in
Amilcare, in S. Handschuh and S. Staab (eds),
Annotation for the Semantic Web, in the Series
Frontiers in Artificial Intelligence and Applications,
I0S Press, Amsterdam, 2003.
W. W. Cohen, S. Sarawagi: Exploiting dictionaries in
named entity extraction: combining semi-markov
extraction processes and data integration methods.
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2004) ,
Seattle, USA , 2004.
V. Crescenzi, G. Mecca, P. Merialdo: RoadRunner:
Automatic data extraction from data-intensive Web
sites. ACM SIGMOD International Conference on
Management of Data (SIGMOD 2002), Madison,
USA, 2002.
H. Cunningham: GATE, a general architecture for
text engineering. Computers and the Humanities, 36,
223-254, 2002.
H. Cunningham, D. Maynard, K. Bontcheva, V.
Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL’02).
Philadelphia, July 2002.

O. Etzioni et al.: Web-scale information extraction in
KnowlItAll (preliminary results). 3th international

conference on World Wide Web (WWW 2004), New
York, USA, 2004.

D. Fensel, W. Wahlster, H. Lieberman, J. Hendler:
Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential. MIT Press, 2003.

R. Gaizauskas, A. Robertson: Coupling information
retrieval and information extraction: a new text
technology for gathering information from the Web,
Computer-Assisted Information Searching on Internet
Conference(RIAO 1997), Montreal, Canada, 1997.

G. Gottlob et al.: The Lixto data extraction project -
back and forth between theory and practice. ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 2004), Paris, France,
2004.

J. Graupmann, R. Schenkel, G. Weikum: The
SphereSearch Engine for Unified Ranked Retrieval of
Heterogeneous XML and Web Documents, 31st
International Conference on Very Large Databases
(VLDB 2005), Trondheim, 2005

J. Hobbs et al. FASTUS: a cascaded finite-state
transducer for extracting information from
natural-language text. In E. Roche and Y. Schabes,
editors, Finite State Devices for Natural Language
Processing. Cambridge MA: MIT Press, 1996.

V. Hristidis, L. Gravano, Y. Papakonstantinou:
Efficient IR-style keyword search over relational
databases. 29th International Conference on Very
Large Data Bases (VLDB 2003), Berlin, Germany,
2003.

W. Kent. Limitations of Record-Based Information
Models, in ACM Transactions of Database Systems, 4,
1979.

D. Maynard, K. Bontcheva, H. Cunningham. Towards
a semantic extraction of named entities. Recent
Advances in Natural Language Processing (RANLP
2003), Bulgaria, 2003

Proceedings of the 7th Message Unterstanding
Conference (MUCT). Fairfax, USA, 1998

Pathak et al.: INDUS: A System for Information
Integration and Knowledge Acquisition from
Autonomous, Distributed, and Semantically
Heterogeneous Data Sources, Intelligent Systems for
Molecular Biology (ISMB 2005), Michigan, USA, 2005
S. Ray and M. Craven: Representing sentence
structure in hidden Markov models for information
extraction. 17th International Joint Conference on
Artificial Intelligence (IJCAI 2001), Seattel, USA,
2001.

A. Sahuguet, F. Azavant: Building light-weight
wrappers for legacy Web data-sources using W4F'.
25th International Conference on Very Large Data
Bases (VLDB 1999), Edinburgh, UK, 1999.

A.P. Sheth, J.A. Larson: Federated Database Systems
for Managing Distributed, Heterogeneous, and
Autonomous Databases. ACM Computing Surveys
22(3), pages 183-236, 1990.

D. Williams, A. Poulovassilis: Combining Data
Integration with Natural Language Technology for the
Semantic Web, Workshop on Human Language
Technology for the Semantic Web and Web Services at
ISWC’03, Sanibel Island, USA 2003

