
Robust Ranking Models using Noisy Feedback

Christian Pölitz and Ralf Schenkel

Saarland University, Germany

Abstract. Direct feedback of users of search engines by click informa-
tion is naturally noisy. Ranking models that integrate such feedback in
their training process must cope with this noise. In worst case such noise
can lead to large variance among the results for different queries in the
resulting rankings. We propose to integrate model averaging like bagging
and random forest methods to reduce the variance in the ranking mod-
els. We perform an experimental study on different noise levels using a
state of the art ranking model.

1 Introduction

Modern search engines collect large amounts of user feedback from the interac-
tions with the search interface. Such feedback is being more and more used for the
generation and the maintainance of ranking models [6]. There have been differ-
ent approaches to integrate the feedback directly into a ranking model. Joachims
for instance showed in [8] how to extract preference information from query logs.
Such preferences represent for a given query that a certain url, and hence the
corresponding content, is preferred over another url. Important aspects are the
ranking quality and the robustness of the ranking models when trained merely
or mostly on user feedback data. W.r.t. these aspects we investigate ranking
models that are purely trained on noisy user feedback.

Due to the very nature of click data it highly consists of noise. Such noise
comes from many sources, for instance from the unpredictability of human be-
havior or different usage of search results. It is worth mentioning that we do
not treat biases of the interaction with search engine as noise, like that the user
almost surely clicks on the first results regardless of the relevance, as described
by Joachims in [9]. We consider noise as a deviation from the distribution of the
relevance information from the click information from users. Considering the
preferences used in our approach, this means some preferences result only from
the noise in the feedback. Hence such noise will introduce more variance in the
training data for the ranking model and hence introduce variance in the ranking
results.

Conceptionally there are at least two ways to cope with noise. First we can
try to eliminate or reduce the noise before presented to the ranking model for
training. Second, we can directly handle the noise in the ranking model while
training. This paper is about the second approach. We investigate machine learn-
ing methods that inherently can reduce such noise.



II

More concrete, we integrate bagging methods [2] and random forest meth-
ods [3] in state of the art ranking models. This is potentially helpful since such
methods reduce the variance and hence reduce noise by aggregating and averag-
ing over many models. We use GBrank [11] as ranking model, since it directly
uses preference information as described above to find a good ranking.

The main contribution of this paper is to study how noise in feedback influ-
ences ranking models that use them for training. We especially investigate how
noise can degenerate the prediction capability of ranking models over different
queries. We analyze how the quality of rankings is influenced by different levels
of noise. Finally we show how bagging and random forest methods can reduce
the effects of the noise.

In contrast to our approach, Carvalho et al. explain in [4] a method to reduce
noise of a linear ranking model. In a two step optimization they propose to use the
output of a linear model to train a second linear ranking model that uses a more
stable loss function to reduce the influence of noise. Unfortunately this methods
works only for linear models, but the most successful ranking models are non-
linear [5]. Another drawback is that this approach can not distinguish between
noise from the training data and noise that comes from the first ranking model.
This model can be badly trained or be inadequate for the task. Concerning this,
it is not clear if the results they name are really from data noise reduction or
from model refinement.

2 Feedback data

The user interactions with the results of search queries provide valuable informa-
tion of how satisfied the users are with the results. As investigated by Joachims [8]
such information can by derived from the set of interactions with the users. By
this, it is possible to properly integrate the feedback in the training of a ranking
model.

We can use the user feedback for the training of the ranking model either
indirect, direct but delayed or direct. Indirectly integrating the feedback in the
training means we simulate the necessary training data and present it to the
ranking model. This simulation can be based on heuristics or machine learning
using the feedback from the users for training as in [6]. We can also collect a
certain amount of user feedback, aggregate and average it as in [1]. Here the
feedback is used directly but with a delay. This can be used to reduce noise
before presented to the training of the ranking model. Finally, we can directly
use the preference information for the training without previous aggregation,
smoothing, other inputs from other machine learning models or any heuristic.
The only preparation is to derive the preference information as proposed by
Joachims [8] from the feedback. This can be easily done on the fly.

We use the following preference information directly derived from the implicit
user feedback. Given a query qj there are features vectors fi,j for each url ui
summarizing statistics of the query, the url and similarity of the query and the
url. Possible features include tf-idf scores, BM25 scores or the page rank [10].



III

These features are usually generated from the search engine and then fed into the
ranking model to find an ordering of the urls with the most likely relevant urls
at the beginning. Using the approach from Joachims we can use the click data to
directly generate preference information in the following format: ({fi,j}, {fi′,j}),
for a given query qj and a url i that is preferred over url i′.

3 Ranking Models

We concentrate on ranking models that can directly use the feedback from users,
with GBrank [11] as a concrete example. This ranking model uses preference data
as explained above.

GBrank uses a gradient boosting method to minimize wrong preference pre-
diction. Gradient boosting [7] is an optimization method to minimize (or max-
imize) a loss function L by gradient descent. A gradient descent is an iterative
method that estimates a sequence of gradients for the loss function to succes-
sively approximate a minimum (or maximum). Concretely, we walk through the
function space by the following iteration:

Ft+1 = Ft − γt · ∇L(F ) (1)

The gradient ∇L(F ) can be a simple model like a regression, we will use
regression trees. To integrate the preference data, GBrank minimizes the num-
ber of wrong preference predictions. This means for preference data (fi,j , fi′,j)
we want that F (fi,j) > F (fi′,j). To achieve this goal, GBrank minimizes the
following loss function that accounts for wrong predictions:

L(F ) =
1

2
·
∑
i

(max {0, F (fi′,j)− F (fi,j)})2 (2)

We extend this ranking model with bagging and random forest to reduce
the variance and hence the noise. Bagging trains multiple models over different
bootstrap samples, drawn with replacement, of the training data. For prediction
the results of all models are averaged. Random forest trains multiple trees over
different samples of the training data and further samples the features to be used
for the tree induction. Both models show a reduction in the variance in many
experiments. Conceptionally we simply use multiple regression trees for each
stage of the gradient boosting. This means the gradients are averaged gradients
resulting from multiple trees.

4 Evaluation

For the evaluation we use LETOR a standard learning to rank data set [10].
The data set contains a set of queries and resulting urls with gradual preference
information by labels. These labels indicate how relevant certain urls are w.r.t. a
query. We use this to simulate preference data. This is done by building pairs of
urls (i, i′) for each query j s.t. the label for url i is larger than the label for url i′.



IV

The pair of urls is transformed as pair of features (fi,j , fi′,j) for the training of
the ranking model. Further we integrate different levels of noise in the preference
information. For this we simulate noise by varying the preference information
with a certain probability . Hence, (fi′,j , fi,j) instead of (fi,j , fi′,j). We simulate
different levels of noise with different probabilities. We use probabilities from
0 to 40 percent. To show the benefit of bagging and random forest we train
models with 1 to 50 trees per iteration. Further we use GBrank as ranking
model. The standard GBrank model uses only one tree in each iteration to
model the gradient. A model with n trees at each iteration uses n different trees
over different sample. Hence, in each iteration the gradient is modeled by an
average of these trees.

Since we optimize for a minimum of wrongly predicted preferences we use the
following quality metric. The quality of a ranking model using an independent
test set S = {(fi,j , fi′,j)} is the ratio of the number of pairs in S with correct
predicted order, hence F (fi,j) < F (fi′,j), to the total number of pairs in the test
set S. Shortly we denote this metric as PR for prediction rate.

The first experiment investigates only bagging methods in the GBrank model.
We want to explore the influence of the number of trees for bagging on the
variance in PR over different queries.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

1 5 10 20 30 40 50

pr
ed

ic
tio

n 
ra

te

number of trees

variance

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40 50

pr
ed

ic
tio

n 
ra

te

number of trees

mean

Fig. 1. Variance and mean of correct prediction rate for data set NP2003.

In Figure 1 we display for different numbers of trees the mean PR (right) and
the variance (left) on the PR. The plots show the mean results over all tested
noise levels over different queries. Obviously the standard GBrank, using one
tree per iteration, has the largest variance. The more trees used per iteration,
the lower the variances gets, except some small jitter. For this data set the mean
PRs show that with more trees at each iteration only the variance reduces, the
mean PR itself does not change much. The improvements in the model influence
only the variance.

In Table 1 we show the variances (top) and the means (bottom) of the PR
for six different data sets from the used data collection. We see that, expect
for data set TD2003, the variance decreases with increasing number of trees for
bagging. Further the mean in PR increases with more trees. This means more
trees reduces the variances in the ranking results over different queries.



V

Number of trees per iteration

Data set 1 5 10 20 30 40 50

Variances in prediction rate

TD2003 0.1360 0.1334 0.1477 0.1467 0.1477 0.1348 0.1444

TD2004 0.1017 0.0918 0.0787 0.0870 0.0787 0.0776 0.0773

NP2003 0.2145 0.1573 0.1270 0.1375 0.1298 0.1453 0.1109

NP2004 0.2791 0.2160 0.2474 0.1617 0.2024 0.1877 0.1972

HP2003 0.1174 0.0624 0.0438 0.0329 0.0565 0.0538 0.0400

HP2004 0.1508 0.1214 0.1001 0.1041 0.0809 0.0842 0.0885

Means of prediction rate

TD2003 0.7648 0.7949 0.7986 0.7863 0.7986 0.7916 0.8034

TD2004 0.7878 0.7964 0.8096 0.8093 0.8062 0.8090 0.8087

NP2003 0.8311 0.8423 0.8310 0.8405 0.8315 0.8288 0.8388

NP2004 0.7730 0.8363 0.7901 0.7856 0.8124 0.7848 0.8214

HP2003 0.9143 0.9786 0.9858 0.9870 0.9822 0.9838 0.9874

HP2004 0.8459 0.8997 0.8812 0.8807 0.9165 0.8807 0.8795

Table 1. Variances and means for all data sets for different number of trees for bagging.

We further integrated the random forest method by performing samplings
over the features used in the trees. We tested different sampling rates from
using all features to using 50 percent of the features for GBrank with 20 trees
per iteration. Unlike the previous experiment we cannot find improvements for
variance or mean using different feature sampling rates. Table 2 summarizes
the corresponding results. From these experiments we have only evidence that
bagging can reduce variance and increase the mean PR.

5 Conclusion

The performed experiments showed that noisy feedback from users can be inher-
ently coped with within the ranking models. We showed that ensemble methods
like bagging can indeed reduce the influence of noise, by reducing variance. This
is especially important since usually these methods are only used to increase the
mean retrieval quality. This means integrating bagging into a ranking models
can make it more robust and stable over different queries. In the future we want
to further investigate how good state of the art ranking models can integrate all
kind of noisy feedback.

References

1. Eugene Agichtein, Eric Brill, Susan Dumais, and Robert Ragno. Learning user
interaction models for predicting web search result preferences. In SIGIR ’06,
pages 3–10, New York, NY, USA, 2006. ACM.

2. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.



VI

Feature sampling rate

Data set 100% 90% 80% 70% 60% 50%

Variances in prediction rate

TD2003 0.1330 0.1366 0.1449 0.1422 0.1368 0.1258

TD2004 0.0768 0.0816 0.0833 0.0879 0.0787 0.0815

NP2003 0.1124 0.1466 0.1160 0.1571 0.1259 0.1343

NP2004 0.2034 0.2129 0.1851 0.2626 0.1824 0.1917

HP2003 0.0918 0.0697 0.0962 0.0950 0.0675 0.0656

HP2004 0.0936 0.0899 0.1087 0.0693 0.0790 0.0997

Means of prediction rate

TD2003 0.8443 0.8442 0.8369 0.8394 0.8429 0.8504

TD2004 0.8020 0.8081 0.8206 0.8150 0.8169 0.8124

NP2003 0.8220 0.8254 0.8259 0.8195 0.8389 0.8259

NP2004 0.8911 0.8929 0.8934 0.8610 0.8980 0.8987

HP2003 0.9293 0.9519 0.9203 0.8992 0.9477 0.9348

HP2004 0.9032 0.8722 0.9167 0.9358 0.9409 0.8987

Table 2. Variances and means for all data sets for different feature sampling rates for
random forest.

3. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
4. Vitor R. Carvalho, Jonathan L. Elsas, William W. Cohen, and Jaime G. Carbonell.

Suppressing outliers in pairwise preference ranking. In CIKM, pages 1487–1488,
2008.

5. Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. Jour-
nal of Machine Learning Research - Proceedings Track, 14:1–24, 2011.

6. Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model for web
search ranking. In WWW ’09, pages 1–10, New York, NY, USA, 2009. ACM.

7. Jerome H. Friedman. Greedy Function Approximation: A gradient boosting ma-
chine. The Annals of Statistics, 29(5):1189–1232, 2001.

8. Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD
’02, pages 133–142, New York, NY, USA, 2002. ACM.

9. Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
Accurately interpreting clickthrough data as implicit feedback. In SIGIR ’05, pages
154–161, New York, NY, USA, 2005. ACM.

10. Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. Letor: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval,
13:346–374, 2010. 10.1007/s10791-009-9123-y.

11. Zhaohui Zheng, Keke Chen, Gordon Sun, and Hongyuan Zha. A regression frame-
work for learning ranking functions using relative relevance judgments. In SIGIR
’07, pages 287–294, New York, NY, USA, 2007. ACM.


