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ABSTRACT

More and more semantic information has become available
as RDF data recently, with the linked open data cloud as a
prominent example. However, participating in the Semantic
Web is cumbersome. Typically several steps are involved
in using semantic knowledge. Information is first acquired,
e.g. by information extraction, crowd sourcing or human ex-
perts. Then ontologies are published and distributed. Users
may apply reasoning and otherwise modify their local on-
tology instances. However, currently these steps are treated
separately and although each involves human effort, nearly
no synergy effect is used and it is also mostly a one way
process, e.g. user feedback hardly flows back into the main
ontology version. Similarly, user cooperation is low.

While there are approaches alleviating some of these lim-
itations, e.g. extracting information at query time, person-
alizing queries, and integration of user feedback, this work
combines all the pieces envisioning a social knowledge net-
work that enables collaborative knowledge generation and
exchange. Each aforementioned step is seen as a particular
implementation of a network node responding to knowledge
queries in its own way, e.g. by extracting it, applying reason-
ing or asking users, and learning from knowledge exchanged
with neighbours. Original knowledge as well as user feed-
back is distributed over the network based on similar trust
and provenance mechanisms. The extended query language
we call for also allows for personalization.

1. INTRODUCTION

With more and more information becoming available on
the Web, the question arises how to efficiently use this global
source of knowledge in an automation friendly way. The so-
lution offered by the Semantic Web is to convert all infor-
mation in machine-readable formats, such as the Resource
Description Framework (RDF) and offer access over stan-
dardized interfaces, e.g. via a file or a SPARQL interface.

Although this may sound like the perfect solution, it only
addresses one part of the problem, namely how to standard-
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ise information access. Other problems are addressed inde-
pendently. Focusing on RDF and SPARQL, for instance,
today’s research already proposes strategies for efficient dis-
tributed query processing [8,12, 13,20, 21], source selec-
tion [1, 10, 26], reasoning [15, 18], ontology alignment [24],
and semantic heterogeneity and query rewriting [7]. There
are first approaches combining the steps of information ex-
traction and query processing instead of considering them
as strictly consecutive steps [11]. Furthermore, provenance
provided by extraction systems can be used to retrieve fur-
ther information [16]. Similarly, there is ongoing work into
answering knowledge queries using crowd sourcing [6, 22].
And finally, distributed search based on peer-to-peer net-
works has been studied for a while as well [14,17].

In the current Semantic Web typical tasks, e.g. informa-
tion extraction, data distribution, reasoning, querying etc.,
are treated as independent. This leads to certain problems
and inefficiencies. For instance, most components rely on
human experts and demand high manual effort to be set up
and operated efficiently, while synergy effects between com-
ponents are rare and collaboration between different users
is rather limited. For instance, humans need to identify and
preselect reliable information sources, manage crowd sourc-
ing jobs or an extraction system, set up a reasoner etc.

Users may apply reasoning to logically enhance a down-
loaded data set, e.g. by adding derived information or ensur-
ing consistency or they may gather local feedback to improve
the quality of the data. All modifications a user makes, how-
ever, are restricted to her local repository. Corrections, for
instance, only find their way into the public release version,
if a user manually contacts the original publisher and the
publisher accepts the corrections.

Another problem is information freshness. In a typical
scenario, information is harvested once, then stored as RDF
data and published, and only rarely replaced with a new ver-
sion. For instance, YAGO [23], a general purpose Wikipedia-
based ontology, was last fully generated from a Wikipedia
dump nearly two years ago (August 2010). While smaller
updates appear irregularly every couple of months, it needs
human effort to identify updated portions. Similar consid-
erations hold for publishing data via SPARQL endpoints,
although first approaches such as LiveDBpedia [2]1 try to
counteract the problem of outdated data by constantly re-
extracting and providing a live view onto the current data.
Still, for highly dynamic data such as stock prices this might
not be enough and in general, a user has no influence on the
update rate and thus no guarantee how fresh the data is.

"http://live.dbpedia.org/LiveStats/



While the upcoming SPARQL version includes update func-
tionality, these updates follow a database approach, and do
not differentiate between different users and types of up-
dates. In particular, a publisher would not want to provide
external users the right to simply override their data by al-
lowing them to execute such update queries.

In a bid to piece together several partial solutions into
a general framework, this paper outlines Colledge (short
for Collaborative Knowledge), a vision of a collaborative
knowledge network. By modelling knowledge seekers and
providers as cooperative agents acting within a social trust
network our vision resembles a college, where students gain
knowledge by accessing information from their teachers and
information media such as books, exchange what they have
learned enriched with their own modifications amongst them-
selves, which increases the trust they have in their knowl-
edge, and finally may also feed back corrections and exten-
sions to their teachers and the broader public.

In principle, our network consists of nodes that imple-
ment one or several components of today’s semantic web,
e.g. information caching, extraction or reasoning. Each
node implements an extended query interface that allows for
personalization, constraints etc. and returns a result along
with meta-information such as provenance. Additionally,
each node accepts incoming knowledge and may use this to
optimise its own data or its processes to obtain knowledge,
e.g. tuning an extraction engine.

From a user’s perspective knowledge shall be distributed
over this network similar to files over a file-sharing network,
thus knowledge discovery is integrated into the network ar-
chitecture, i.e. node discovery, and the query processing
over the network. In order to automatise the selection of
trusted quality information sources, a trust network is sug-
gested and leveraged to enable a global confidence measure
integrating trust into information sources and confidence of
sources in their own data.

The remainder of this paper is structured as follows. While
Section 2 gives more details on the current state of the
art, Section 3 outlines the envisioned knowledge network,
and Section 4 highlights different aspects of the system and
problems to overcome. Note that an extended version of
this paper (as originally submitted) is available at http:
//www.mpi-inf.mpg.de/ " smetzger/.

2. THE STATE-OF-THE-ART

As an example, let us assume a startup company wants
to create a website about local cinemas and the movies they
show. Instead of modelling everything themselves, the com-
pany decides to use an RDF-based representation and tries
to find appropriate existing ontologies.

Although the Semantic Web provides several search en-
gines [3,4,9,19] that might help locate relevant existing
ontologies, the process of finding interesting sources, judg-
ing their quality and choosing the most relevant and use-
ful ontologies involves a high degree of human interaction.
Additionally, a human needs to check the accuracy of data
used or trust the publisher of the data. For large publish-
ers of general-domain information, like mainstream movies,
this might be relatively simple, but it needs an expert for
less well known domains, like independent French movies,
or highly specialised domains, like quantum physics.

Let us assume the company has found a set of ontolo-
gies that cover most of the required information. The first

obstacle is that RDF data is provided in different ways on
the Web, e.g., SPARQL endpoints, RDF dumps, derefer-
enceable URIs, web services, etc. Some approaches offer a
way to query the data on the Web without the need for a lo-
cal component, e.g., SPARQL endpoints or SWSE [9], which
crawls all the data and stores it into a repository that can be
queried. When using such services, however, it is impossible
to make corrections to the data or change it in any way, nor
are guarantees for data freshness or correctness provided.

Assume, for instance, while the publishers of the original
data might find it correct to place the “Lord of the Rings”
movies into the horror genre, the company might disagree
and change the genre accordingly. Even if the publishers ac-
cept bug fixes, they would not adapt their data according to
the company’s needs. Thus, for the company personalizing
the ontology is a hard task if the data is not stored locally,
e.g., when using remote SPARQL endpoints. If the data
comes from different ontologies the company may need to
merge the contained information exploiting rdf : sameAs links
and applying techniques originating from ontology align-
ment, entity consolidation, and reasoning. Most of these
aspects require significant effort. For instance, there are sev-
eral reasoning frameworks available, which provide different
benefits and have their own drawbacks. A user first needs
to get a deep understanding in reasoning aspects in order to
choose the system that fits her needs and then configure it
accordingly.

Another issue is data freshness, e.g. the company may
need to make sure that it has information on current movies
as well as the schedule and number of free seats at local
cinemas. Using a SPARQL endpoint view onto a regularly
updated dataset may alleviate some of the update prob-
lems, although it makes integrating local adaptations only
harder, but the update rate is totally up to the data pub-
lisher. While movie information will not change that often
the company might want to be sure free seat informations
are really up-to-date. In a SPARQL live-view there is no
inbuilt possibility to negotiate the update strategy with the
publishing node. Even more critical, the user might not even
know how recent information retrieved is.

However, the company might decide to employ their own
information extraction system instead to read information
directly from the cinemas’ online booking systems. Addi-
tionally, the company might provide suggestions of similar
older movies on their web page along with links to buy these
old movies. In order to establish movie similarity links,
the company might decide to use crowd sourcing tasks. In
both cases, the company would need to implement the corre-
sponding components and integrate them. It would be hard
to share the implementation as it would be designed to fit
into the company’s framework. Similarly sharing (partial)
results would mean additional effort to publish the data and
make it known to the outside world.

Even if the company decides to return some of the addi-
tional value it created in fixing and extending the base on-
tologies to the community that offered these so generously
for free, the only way is to communicate with the publishers
and explicitly report modifications.

The whole process outlined here is a tedious task done by
many users over and over again because there is no straight-
forward way to share the result with other users.



3. ENVISIONED ARCHITECTURE

So far, in the Semantic Web there is basically no interac-
tion or feedback between publishers and consumers. This is
different in social networks where we have all become used
to facebook-style “like” flags and the possibility to comment
on any content. Furthermore, the recent success of cloud
applications in the private sector has shown that complex
processes can be made available to a broader user commu-
nity if their complexity is hidden behind a common interface.

We envision a system that allows users to ignore technical
details and that incorporates the interactive nature of social
networks for knowledge harvesting and exchange. Similar
to file sharing networks, the system is based upon a self-
organizing peer-to-peer network, where each node serves as
information provider and seeker while nodes are expected
to cooperate to answer particular information needs. Com-
ponents of the Semantic Web as e.g. extraction systems,
reasoners, query engines etc., are assumed to participate in
the network by implementing standardized query and com-
munication interfaces, thus, typically complex tasks can be
provided over a unified interface and be partially automa-
tised. Additionally, steps typically seen as consecutive are
interleaved and may benefit from one another as well as
different users accessing the system can benefit from re-
sults retrieved for others or from modifications suggested
by other users. Basically interaction with the network con-
sists of three steps, asking a query, retrieving the results and
possibly providing feedback. Each of these steps is broad-
cast throughout the network and each node on the way may
learn from information passed to or through it. This basic
layout and interaction model is outlined in Figure 1.

When a user issues a query, a single node might not be able
to answer it with locally available information. Therefore,
during query processing, the node might decide to apply dis-
tributed query processing techniques (cost model, indexing,
statistics, query optimization, etc.) to optimize queries over
multiple sources.

In contrast to existing systems, there are no restrictions
on the way how (sub)queries are answered at each node,
e.g., over a local triple store, using a wrapper for a rela-
tional database, involving further nodes, web services, ap-
plying a reasoning system, extracting information on-the-fly
from the Web or a local corpus, as a crowd sourcing task,
etc. Thus, ontological knowledge published by running a
knowledge network node, similar to a SPARQL endpoint, is
accessible in the same way as information acquired at query
time, e.g. by a node employing information extraction or
crowd sourcing methods.

Similar to social networks, the system considers and ex-
changes feedback on its content and its own components. A
user, for instance, can give explicit or implicit feedback on
the quality of a query result. This feedback is not only useful
to improve the node’s locally stored data, but can be shared
with other nodes to improve their knowledge bases. Addi-
tionally nodes can employ user feedback to improve their
knowledge acquisition methods, e.g. to tune an informa-
tion extraction system or to adjust the trust in a particular
worker when a crowd sourcing approach is used.

Also similar to social networks, the system needs to con-
sider the concept of “friends” or trust, respectively. Not all
the sources can be trusted, neither in the data they pro-
vide nor in their feedback. Hence, nodes need to provide a
trust evaluation and a trust network needs to be established.

> query
m=—=D> answer Database
> feedback Wrapper | Information

Extractor

Reasoner

Triple Store
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Figure 1: Network Architecture Outline

Sources: User clipart symbol from OpenCliparts.org (public domain)

Thus, when answering queries, provenance is an essential as-
pect. Provenance information can be used, first, to establish
whether information received is trustworthy, and second to
find original source nodes that provide interesting informa-
tion to the network. This way, high quality nodes can be
found and be queried directly in the future. However, for
basic network exploration, nodes will also need to provide
meta-information about themselves, similar to the voID on-
tology descriptions used for linked open data? allowing other
nodes to decide whether they might be interested in a node’s
information services. Additionally nodes can offer update
subscriptions to deal with dynamic data.

From a user’s perspective, the system is similar to a so-
cial file sharing network, where all users can participate in as
soon as they know any node that already participates. Ide-
ally, the user formulates a query and the system does every-
thing automatically — it identifies relevant sources, rewrites
and extends the query, considers mappings between ontolo-
gies, applies reasoning to derive further information etc.

The system also allows a user to restrict and personal-
ize a query based on her own beliefs, e.g., if aliens exist or
not. On the other hand, a user might want to test her be-
liefs by issuing a consistency query, that explicitly aims to
find indications that contradict her basic beliefs. Therefore,
the system also incorporates reasoning as well as reasoning
nodes so that a user does not need to find, install, and con-
figure a reasoning framework herself.

In order to help the user formulate structured queries,
the system can make use of approaches that map natural
language queries into structured queries. In addition, the
system is interactive, i.e., in case of ambiguities with respect
to query interpretation, the system will ask the user and
learn from her responses.

Let us consider the application scenario from Section 2,
where a company builds a website about local cinemas, pro-
viding information such as their location, which movies are
shown and how many places are left for a particular showing.

With Colledge, the company first sets up a node within
the network or accesses an existing one. This will require
some effort the first time it is done, but that node can be
reused for multiple applications.

Once the node has run an initialization phase to discover
its neighbourhood, the company needs to manually find out
the best way to canonically formulate their queries and then
train the node for typical queries. However, instead of read-
ing ontology descriptions and searching for fitting ontologies,

*http:/ /www.w3.org/TR/void/



a human simply issues natural language queries and decides
whether the results fit her expectations. From the results she
can also derive typical entity and relation names to use in
the automatic query generation later employed by the web
application. For instance, a developer who wants to pro-
gram a method to retrieve all horror movies currently shown
in “Steve’s Cinema” might simply issue a natural language
query for “Steve’s Cinema shows what horror movies?”which
might be translated into a query with the SPARQL triple

patterns (cs:StevesCinema,cs:shows,?m).(?m,rdf : type,imdb:horror).

The system might then come up with triples of the form
(cs:StevesCinema,cs:shows,imdb:LotR).
(imdb:LotR,rdf : type,imdb:horror) at which point the devel-
oper can directly use canonic expressions to formulate the
query in the future. Note that the possible complexity of
the natural language interface depends mainly on the ca-
pabilities of the translation module, we are using a simple
example here.

Figure 2 outlines a possible distribution of the example
query through the network. Note, that several types of
nodes are involved (see Section 4.2). The query enters the
network at @), a simple relay node that separates the query
q into its two components gl and ¢2. An aggregator relay
node then retrieves answers for ¢l from two nodes offering
information on movies, while ¢2 is processed by a reasoning
node, which reduces ¢2 to ¢3 and ¢4, retrieved from an ag-
gregator memory node AG. This aggregator uses amongst
others an extraction node (SC) which regularly parses the
website of Steve’s Cinema and informs AG about updates.
Alternatively SC could not offer an update subscription,
but extract only at query time. However, in this example
the data should change at predictable times, thus a fixed
extraction schedule may be more plausible.

Once the answer is received, the company might flag the
answer or a particular triple as invalid, e.g. since the com-
pany does not consider “Lord of the Rings” an horror movie.
This feedback will be sent back to all nodes involved in re-
trieving the query answer and they may decide to accept or
ignore this opinion. If the source node accepts the feedback
as valid, the company’s query node will never see the an-
swer again. Even if the feedback is not initially accepted,
the query node will always filter this particular answer out,
either by placing it as a query constraint along with any
such query or by filtering the answers by comparing them
with the local user provided knowledge. In the next section
we shall discuss some aspects in more detail.

4. COLLEDGE CORE ASPECTS

In the following, we outline some of the core aspects con-
sidered by the envisioned framework and identify some of
the main challenges that remain to be solved.

4.1 Data and Query Model

While the proposed framework could be based on any data
model or query language, we focus on RDF and SPARQL
as these are the de facto standards used in the Semantic
Web. Thus, information is represented as RDF triples, i.e.,
s =(subject,relation,object) expresses that a specified rela-
tion holds between subject and object. In the following, we
refer to triples expressing certain information as facts and
to triples expressing uncertain information as statements.
Statements usually come with a confidence value conf(s)

8 g= (?m, type, Horror). (q1)

\ (StevesCinema,shows,?m) (qg2)
q2
[EETED rule:
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(?show,happensAt,?cinema) (q4)
- (?cinema,shows,?m)
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Figure 2: Query Example

Sources: User and website symbol from OpenCliparts.org (public domain)

€ [0, 1] indicating how likely the statement expresses a true
piece of information — facts are statements with con f(s) = 1.

With respect to SPARQL queries, we will often neglect
bindings of variables in the select clause that actually repre-
sent the result because from a system’s perspective, we are
more interested in the triples that led to the query result
with attached information about confidence and provenance.
Thus, we define the set of result triples as the set R of triple
subsets r producing the complete set of answers (bindings)
for the query g over a knowledge base K:

R := {r|r produces a valid answer for ¢} (1)

with r := {s1,...,s,} € K. For a query over the network,
K represents the set of all statements available in the net-
work.

In distributed systems, the terms query coordinator or
query origin denote the node in the network that issues a
query, i.e., the node at which a user (or any other software
running on the node) initiates the query processing. In the
following, we will use these terms to denote which node a
query originates from and therefore where the final result to
a query has to be available.

4.2 Knowledge Network and
Node Classification

Formally, a knowledge network can be defined as a set
of knowledge nodes N connected by a set of directed edges
E, where each edge from node n; to node no indicates that
n1 is aware of na’s existence and knows how to access n2’s
data. Each node n € N needs to implement a query and a
feedback interface so that it can receive and answer queries
and learn from feedback.

The query interface can be implemented on top of an ex-
tended SPARQL endpoint or in principle by any other kind
of service generating RDF data. Thus, from a technical
point of view, we distinguish three main categories of nodes:
(i) relay nodes, (ii) memory nodes, and (iii) generation nodes.

Relay nodes maintain indexes and operate as query re-
routers.

Memory nodes provide access to stored semantic data,
e.g. by masking an RDF triple store, reading an RDF file
or wrapping another structured format (e.g. a database).



Generation nodes generate information on-the-fly. For
the time being, we envision nodes applying information ex-
traction, crowd sourcing, reasoning nodes, or sensor nodes.
While information extraction nodes employ an information
extraction system to generate information from source doc-
uments (at least partially) at query time, crowd sourcing
nodes use crowd sourcing tasks to generate RDF triples [6,
22]. Reasoning nodes use logical rules to (recursively) derive
knowledge from existing data during runtime.

In practice, a node may belong to multiple categories.

4.3 Provenance and Trust

To determine the quality in terms of soundness and trust-
worthiness of query results in a distributed setup, an im-
portant piece of meta information is how the results were
derived from existing knowledge and where this knowledge
originates from. Thus, during query processing additional
meta information needs to be exchanged.

To formally define the origin of data as part of the meta
data, we use the notion of a knowledge source (Definition 4.1).

DEFINITION 4.1
A knowledge source of a statement s provides a representa-
tion of s. A knowledge source of a statement not referencing
another knowledge source as its origin is called a primary
source of the statement.

To identify the origin of information, nodes answering a
(sub)query provide provenance information on their local
results. In the simplest case, provenance information for a
result triple resembles a chain:

DEFINITION 4.2 (SIMPLE PROVENANCE CHAIN). Given
a query q and a node n that produces statement s as triple
result to q, a simple provenance chain is a sequence of knowl-
edge sources n,ni, ..., Nm reflecting the nodes via which state-
ment s has been retrieved.

Ignoring reasoning for the moment, for each piece of infor-
mation, there is at least one simple provenance chain from a
primary source to its final recipient. The trustworthiness of
a piece of information is usually based on such provenance
with special regard to primary sources. Typically, confidence
in a statement s

e increases the more provenance chains are based on
different primary sources,

e increases the more different provenance chains are based
on the same primary source ps, but the trust held in
ps can never be exceeded,

e increases the shorter the path to a primary source is.

Consider the example in Figure 2 and sub-query gl. As-
sume that node I returns a response triple s =(LotR,type,
Horror). Then @, AM, I is a simple provenance chain and I
is the primary source for s. @ might now either trust the in-
formation chain or verify the data directly at the (primary)
source, in this case at I.

Either way, at some point, the confidence in s needs to be
estimated. This will depend on the trust in the knowledge
sources of the remaining provenance chain. Basically, in or-
der to believe a statement s to be true, one needs to trust
each node along the way to be honest. Thus given a sim-
ple provenance chain ¢, n1,...,n, and a trust function ¢ on

(KNOWLEDGE SOURCE, PRIMARY SOURCE).

knowledge sources, we can estimate the confidence conf(s)
in s by

conf(s) = H t(n:) )

ie{l,..,w}

Knowledge sources might also be aware that some infor-
mation they provide is less certain. An information ex-
traction system might for instance know that its extraction
methods are less reliable for some relations or particular
statements. Thus, a node ¢ might provide its own con-
fidence estimation conf;(s), indicating how confident it is
to have understood or measured the information correctly,
which can also be included in the overall confidence product.

Note that this is only a simplified outline for basic cases.
In practice, provenance information for a query answer re-
sembles a directed acyclic graph where nodes represent log-
ical operators. Consider, for instance, s being retrieved not
only from I but also from F' via AM. Then, at AM we can
believe in s if we trust I or F. Similarly, reasoning nodes
can reduce a statement s by applying logical rules to a set of
pre-condition statements ci, ..., ¢, resulting in s being true
iff we believe in ci, ..., ¢,, thus introducing additional logical
nodes in the provenance graph.

There are methods in probabilistic reasoning to derive a
probabilistic confidence from such provenance graphs [25].
While the worst case runtime for such methods can be ex-
ponential, they can still be applied in real-time [15] as prove-
nance graphs usually have a limited size.

These trust computations can either be done at the query
origin or a node might delegate trust estimations by trusting
the confidence estimations received from neighbours along
with query answers. Recursively applied, confidence is com-
puted stepwise based on the local trust function at each node
the query passes. This approach also has the advantage that
it allows for more efficient optimization within the network.
For instance, partial results can be ordered by local confi-
dence and only the top results be returned. The final setting
may apply a mix of these approaches which may be depend-
ing on negotiations between a querying and the answering
node. After all, some nodes might not be willing or able to
provide provenance information but might be able to give a
confidence estimation or the other way around.

4.4 Generation Nodes & Data Freshness

Our knowledge network includes nodes that can acquire
information at query time to deal with changing informa-
tion. Important examples include information extraction
and crowd sourcing, but also sensor and reasoning nodes.

We assume that only a minority of all statements change
over time and their change frequency varies heavily, e.g. con-
sider a change in temperature versus the change of a movie
theatre’s schedule. Thus, it is not reasonable to update in-
formation more often than it actually changes. On the other
hand, a generation node might have limited update capabil-
ities. If we imagine a sensor node measuring the temper-
ature at the North Pole, taking a particular measurement
is a matter of less than a millisecond. An extraction node
re-parsing several web pages or a crowd sourcing node, for
instance, retrieving crowd opinions on the quality of a cur-
rent movie either by graded rating or a 500 word review —
in Gaelic, may take seconds, minutes or even longer. Thus,
a node may be limited physically to a maximal update fre-
quency. Additionally, limitations like available computation



power and parallel queries can add a dynamic limit on the
actual update frequency. Depending on the actual informa-
tion need, information freshness requirements may also be
variable. A querying node might be satisfied if the informa-
tion retrieved contains all updates to a certain time point or
contains on average only a certain percentage of outdated
triples. For instance, if the user needs to estimate whether
to bring a bikini or a snow suit for her holidays, it is tolerable
if the temperature at her holiday destination was acquired
a few days ago. Similarly, if calculating the average number
of movie ticket sales over a weekend to calculate whether a
movie achieved a box office record, a margin of error might
be acceptable in a first estimation, thus a certain percentage
of visitor numbers being not up-to-date would be acceptable.

Thus, in our model a querying node can attach a hard or
soft data freshness constraint to its query. In the soft case,
the answering node can decide to answer although it cannot
satisfy the constraint, but a hard constraint indicates the
query coordinator will throw away any result not within the
constraints anyway, thus it can spare such answers.

However, while a node may not be able to always pro-
vide the most up-to-date information, the least it needs to
provide is meta-information on how fresh its information is.

Finally, aggregator nodes can divert traffic from primary
source nodes by caching their knowledge on particular knowl-
edge domains, e.g. on movies. In the example in Figure 2
the nodes AM and AG are examples of such aggregator
nodes. An aggregator node may decide to subscribe to an
aggregated node’s updates of certain information types, if
the aggregated node offers such an update stream. A typ-
ical example where this makes sense are informations that
change infrequently, such as a movie schedule. In the exam-
ple in Figure 2 AG has subscribed to update streams from
CS and SC and thus, never needs to ask for information
covered by these subscriptions.

4.5 Personalization

While there is often great emphasis on constructing con-
sistent knowledge spaces, we explicitly suggest the creation
of an inconsistent knowledge space within the network. The
knowledge network should represent human understandings
of the world, which are often enough inconsistent, especially
when beliefs held by different people are mixed. Thus, to
retrieve meaningful answers, the system may need to decide
at query time which particular statements to accept as base
facts. This decision should depend on the beliefs held by the
user. These can be explicitly stated at query time as query
constraints or gathered over time from user feedback (see
Section 4.7). For instance, a user query may be extended by
the statement (LotR,type,Horror) to indicate that the user
thinks the movie “Lord of the Rings” is a horror movie, and
thus the query result for movie suggestions to see with her
young nephew should not contain it. Again, such query con-
straints could be applied as a filter once all query answers
reach the query node along with full provenance informa-
tion, but in most cases it would be more efficient to provide
such constraints as part of the query, such that results in
conflict with the query constraints are filtered out locally
within the network.

Note that the full power of query constraints is only used
when reasoning is employed. Basically either the query node
first derives as many consequences from any user specific
query constraints and adds these as well or individual nodes

need to employ reasoning, possibly via a reasoning node in
order to include implied consequences derived from the con-
straints specified.

4.6 Query Processing

The first step of processing a query that cannot be an-
swered locally is to locate nodes with matching knowledge.
In today’s Linked Open Data (LOD) setup, the user needs
to manually identify candidate nodes and add them to their
federation [21]. While such a manual setup should still be
possible to add known trustworthy nodes, we envision that
knowledge nodes automatically discover other nodes using
techniques similar to peer-to-peer networks.

Once potential sources are identified, the query processor
can simply split up the query and ask every known node,
similar to the current approach for LOD. In Figure 2 the
query node first splits the original query ¢ into its two sub-
queries gl and g2, solves the sub-queries and then joins the
results. Each query executed yields information about which
nodes can provide which kind of information, including in-
formation about transitive neighbours and especially their
primary sources. Thus, a node can iteratively learn more
and more about nodes in the network. Unlike current LOD
settings, however, these nodes can be of very different kind,
so the quality of information provided by a node can vary
and needs to be estimated. This allows for ranking nodes
and asking nodes according to the ranking in batches un-
til the result is satisfying. Typically, memory nodes will
provide results faster than generation nodes, but there may
also be differences amongst generation nodes. This node effi-
ciency can be learnt iteratively just as the trust distribution.
To speed up the learning process for both properties, i.e.,
information availability and query processing efficiency, we
require that every node provides general meta-information,
such as its type and the knowledge domain it covers, similar
to the voID descriptions used in the LOD world [1].

Given both user-defined goals and per-node estimations
for quality and efficiency, a cost model is needed to deter-
mine optimal query executions. Existing work on integrating
information extraction on-the-fly into SQL [5, 11] often in-
cludes such cost models, but they need to be extended with
per statement confidence. Additionally, query execution in
our network is distributed and thus it could leverage existing
distributed SPARQL approaches [21]. As query run-time at
different nodes may vary largely, we envision an incremen-
tal processing strategy, reporting initial results early while
continuing evaluation in the background, such that they are
available when a user asks for more or more convincing re-
sults. To alleviate this, a querying node can attach time or
quality constraints to a query, such that a queried node can
either tune its execution plan or directly refuse execution.

An important aspect not considered by existing systems
are the different update rates of different types of informa-
tion. Depending on how often the information changes and
how up-to-date the information needs to be, it may not al-
ways be necessary to re-extract. This balance between data
dynamic and user constraints on data freshness needs to be
integrated into the cost model as well.

4.7 Feedback

User feedback in our setting can be given either explic-
itly by pointing out that particular statements are not true
according to the user’s belief system, or implicitly, e.g. by



learning from query constraints used by the user, by results
she usually accepts and vice versa by learning from results
that seem not to satisfy the user, such that she asks for
more. Thus, by constantly harvesting a user’s feedback and
query constraints, a knowledge node may generate user be-
lief statistics, i.e. a set of statements a user finds valid or
invalid associated with confidence values indicating how cer-
tain the node is that the user holds this belief. The system
can then re-use this information for personalization and to
improve in several ways:

1. It may include statements a user beliefs in as default
query constraints

2. It may use statements a user beliefs in as answers for
incoming queries, citing the user as source

3. It may adjust the (user specific) trust function for a
source whenever the user accepts or rejects statements
that stem from this source

4. If the node has an information extraction component
it may adapt confidence estimations for the method
used to extract the statement

While feedback is typically collected after a query has been
answered, the system might also directly ask the user dur-
ing query execution to clarify the query or her assumptions
about the knowledge domain. For instance the system could

e try to clarify disambiguation problems to understand
the query, e.g. asking which “Einstein” the user meant,
the famous scientist or the dog from the “Back to the
Future” movies

e ask whether it can extend or restrict the query in order
to improve the result quality or the performance, e.g.
by replacing an entity type like GermanActor by a more
general type like Actor or vice versa

e try to clarify some basic beliefs that are decisive for
the query execution, e.g. whether the user accepts
that mankind has visited the moon or not

While such interaction may make a huge difference in terms
of execution cost, when the right questions are asked, the
number of user questions needs to be limited such that the
user does not get annoyed by answering her own query.
Hence this could also be integrated into the cost model with
an additional user discomfort cost and a maximum discom-
fort threshold depending on the user.

4.8 Collaboration

Arguably the main difference we would like to encour-
age is that of (semi-)automatic collaboration. While today,
knowledge publishers can only gain from one another if they
manually talk to each other or copy parts of another ontol-
ogy (in case they do not agree with parts of its modelling),
which might be considered plagiarism by the original au-
thors, we want to explicitly encourage and support informa-
tion exchange. In particular this means nodes in our network
architecture should collaborate and exchange:

e ontological knowledge relevant for query answering

e provenance information and thus, knowledge about their
information sources

e index information recommending expert nodes
e user feedback by forwarding feedback to relevant nodes

e meta information on good extraction, crowd sourcing
or sensor settings

We have previously discussed the typical answering of queries
as well as how users can generate feedback and how it can
be used locally to improve a node’s performance. However,
once a query is answered and feedback from a user gath-
ered, it is the responsibility of the query node to try pay
back some value to the nodes that helped to answer the
query. Thus, user feedback should be forwarded to all nodes
involved in the query answering, more precisely to all nodes
potentially affected by the feedback. For instance, if user
feedback claims a certain statement to be false, feedback
shall be sent to nodes that were responsible in producing
that part of the answer. However, the query node may de-
cide to contact additional nodes, if it thinks these may also
benefit due to its semantic node index. Additionally a query
node may have contacted different nodes and thus it might
have received different, potentially disagreeing results. It
should also inform nodes that produced disagreeing results
about the opinion of its counterpart. This also holds for any
node that issued a sub-query.

Consider the example in Figure 2 and assume the query
results amongst others in the IMDB node I returning the
triple s = (LotR, type, Horror) towards the aggregator node
AM, while F provides a triple 3 = (LotR,not_type, Horror)
indicating the opposite. Since I enjoys more trust, at the
query node, s will be retrieved and be part of a query answer.
If now a user refutes this part of the answer, @ will forward
the feedback to AM, which will forward it to I and M,
which may update their knowledge. @ and AM may also
adapt their trust function for I and M.

Similarly nodes can exchange index information, which
can be especially helpful for initial node discovery. While
we already suggested that each node provides an interface
for self-description, this could be extended to also offer de-
scriptions on other nodes, based on the index information
available. This way, a node new to the network could ask ini-
tially known neighbours explicitly for the best expert nodes
to be asked about certain kinds of information, thus short-
cutting the discovery process further.

Additionally, nodes may gather and exchange user belief
statistics (if users agree) in order to generate user clusters
to improve indexing and query processing as well as try to
establish belief worlds, i.e. sets of statements agreed on by
a substantial amount of users. This can help again in im-
proving result quality by employing automatic query rewrit-
ing techniques, e.g. adding more constraints from the belief
world a user belongs to. If user statistics can be exchanged,
this could even lead to social interaction amongst users that
share similar beliefs, which might also simply mean they are
interested in similar knowledge domains.

Finally, the network may collaboratively solve larger tasks
like ontology matching [24] and entity consolidation in a
distributed way. For instance, during query processing rea-
soning nodes might logically derive new sameAs links. This
information can be distributed through the network as part
of a query answer or in a dedicated exchange step. The
more nodes agree on a sameAs statement, the more likely it
will establish itself as a fact in large portions of the net-
work and thus become accepted truth. This can help in



ontology matching as well as entity consolidation. There
could also be dedicated nodes coordinating such global en-
deavours, e.g. by collecting sameAs candidates and spreading
candidates accepted by enough reasoning nodes deliberately
within the network.

5. CONCLUSIONS AND FUTURE WORK

In this paper we envision a distributed self-organizing so-
cial knowledge network to enable collaborative knowledge
generation and management. We give an overview over sev-
eral important research areas related to semantic knowledge
generation and management and outline a way to combine
these issues in a shared architecture. Our envisioned net-
work aims to lower the participation threshold and encour-
age a higher level of knowledge exchange and interactivity.
While trying to ease access and still give users as many per-
sonalization freedoms as possible, participating nodes are
also free to decide about their own policy.

While we sketch a rough outline of a knowledge network
of the future, in each aspect we discussed there remain open
problems to overcome before such a network can be realized.
Among the major obstacles that need to be tackled towards
such a knowledge network, we leave one aspect relatively
untouched, namely that of security. While a trust network
might protect against some forms of knowledge oriented at-
tacks, other forms of network attacks, like denial of service
attacks and data redundancy are not addressed at all.
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