Area-Time Optimal Division for $T = \Omega((\log n)^{1+\epsilon})$

K. MEHLHORN
Fachbereich 10, Informatik, Universität des Saarlandes,
6600, Saarbrücken, West Germany

AND

F. P. PREPARATA
Coordinated Science Laboratory, University of Illinois,
Urbana, Illinois 61801

Area-time optimal VLSI division circuits are described for all computation times in the range $[\Omega((\log n)^{1+\epsilon}), O(\sqrt{n})]$ for arbitrary $\epsilon > 0$. © 1987 Academic Press, Inc.

1. INTRODUCTION

A simple transformation of right-shift to integer division shows that the area-time (AT^2) complexity of any network for the computation of the inverse of an n-bit number (referred to here as "divider") is bounded from below by $\Omega(n^2)$. A trivial fan-in argument also gives $T = \Omega(\log n)$. A family of AT^2-optimal dividers has been proposed some time ago by Mehlhorn (1984). A network of this family can be constructed for each computation time T in the range $[\Omega(\log^2 n), O(\sqrt{n})]$. Since then considerable progress has been made in the design of faster dividers (Reif, 1983), culminating in the result of Beame, Cook, and Hoover (1984) illustrating an $O(\log n)$-time divider (i.e., a time-optimal network in the hypothesis of bounded-fan-in components). However, the Beame-Cook-Hoover network (referred to here as the BCH network) does not achieve area optimality. Thus, it is natural to ask the question of the existence of area-time optimal dividers for $T = o(\log^2 n)$. This paper provides an affirmative answer for $T \in [\Omega(\log n)^{1+\epsilon}, O(\log^2 n)]$ for any positive constant $\epsilon \leq 1$. It must be pointed out that the proposed networks are so complicated—notwithstanding their area-time optimality—that they are exclusively of theoretical interest.

* This work was supported by the DFG, SFB 124, TP B2, VLSI Entwurf und Parallelität, and by NSF Grant ECS-84-10902.
The network (see Fig. 1) consists of \(J + 2 \) cascaded modules, where \(J \geq 1/\epsilon \). The first \(J \) modules are modified dividers of the \(\text{BCH} \) type, computing a sequence of approximations of the inverse with increasing numbers of bits \(l_1 \leq l_2 \leq \cdots \leq l_J < n \).

The last two modules are designed to complete the buildup of the result size from \(l_J \) to \(n \) bits by implementing the Newton approximation method, which, at each iteration doubles the length of the result. This is carried out in two phases, respectively executed by the “fast” and “slow” approximators. The fast approximator basically consists of a single area-time optimal fastest multiplier, used to execute the initial iterations; the slow approximator is instead a cascade of affordably slow multipliers, each executing one of the final iterations. Note that the cascade of the two Newton approximators structurally coincides with Mehlhorn’s (1984) divider.

The paper is organized as follows. In Section 2 we present a more efficient implementation of the \(\text{BCH} \) method leading to a circuit referred to as “modified \(\text{BCH} \) divider.” In Section 3 we discuss an alternative method for the computation of the inverse, which uses the modified \(\text{BCH} \) method as a subroutine. Finally, in Section 4 we illustrate the combination of both techniques with the Newton approximation, to yield our proposed network, while Section 5 contains a few closing remarks.

In this paper we shall frequently refer to under- and overapproximations of the reciprocal of a number. For brevity, given an \(n \)-bit number \(x \) in the interval \([1/2, 1]\) (i.e., a normalized fraction with \(n \) bits to the right of the binary point), we say that for \(l \leq n \), \(v \) is an \(l \)-bit underinverse or an \(l \)-bit overinverse of \(x \) depending upon whether \(v = \lfloor 2/x \rfloor \cdot 2^{-l} \) or \(v = \lceil 2/x \rceil \cdot 2^{-l} \). Equivalently, \(v \cdot x = 1 \pm \delta \), with \(\delta < 2^{-n} \) or \(v \) has two significant bits to the left and \(l \) significant bits to the right of the point.

2. AN EFFICIENT IMPLEMENTATION OF THE \(\text{BCH} \) METHOD

In this section we first describe (a variant of) the \(\text{BCH} \) method (Beame et al., 1984) and then modify it so as to reduce its area requirement.

The original \(\text{BCH} \) method computes the \(n \)-bit underinverse of an \(n \)-bit number \(x \) by adding the first \(n \) powers of \(u = 1 - x \) and truncating the \(n^2 \)-bit result to its leading \(n \)-bits. Each power of \(u \) is computed individually and the \(n \) powers are subsequently added together. A power \(u^k \) is computed by taking the “logarithm” of \(u \), multiplying it by \(k \), and then taking the “antilogarithm.”

Since taking logarithms of large numbers is very hard, the method resorts to a modular representation and works as follows:

Algorithm INVERSE \((1/x)\):

- **Input:** an \(n \)-bit number \(x \) in the range \([1/2, 1]\). Given are \(m \) (small, possibly consecutive) primes \(p_1, \ldots, p_m \) such that
 \[
 \prod_{j=1}^{m} p_j \geq 2^{n^2} \quad \text{(Note that } m \approx n^2/\log n)\]

 \(n \) is assumed to be a power of two
- **Output:** an \((n+2)\)-bit number \(v \) in the range \((1, 2)\), so that
 \[
 v \cdot x = 1 + \delta \quad \text{with } \delta < 2^{-n}\]

1. **Begin** \(u := (1 - x) \cdot 2^n \); (* \(u \) is an integer *)
2. **For** \(j, 1 \leq j \leq m \)
3. **Pardo** \(b_j := u \mod p_j \);
4. **Compute** \(a_j := a_j' \cdot b_j \), where \(a_j \) is a generator of the multiplicative group of \(\mathbb{Z}^*_{p_j} \);
5. **For** \(l = 0 \) to \(\log n - 1 \)
6. **Do** \(m_j^{(l)} := a_j^{2^l \mod (p_j - 1)} \); (* \(m_j^{(l)} := u^{2^l} \mod p_j \) *)
7. **Od:**
8. \(v_j := \prod_{k=0}^{l} m_j^{(k)} \cdot 2^{(n^2 - 1) \cdot \sum_{k=0}^{l-1} (u/2^k) \cdot \mod p_j} \)
9. \(V_i := v_j \cdot M_j \mod (p_1 \cdot \ldots \cdot p_m) \); (* first step of Chinese remaindering *)
10. **Odpar:**
11. \(v := \sum_{j=1}^{m} V_j \mod (p_1 \cdot \ldots \cdot p_m) \); (* second step of Chinese remaindering *)
12. **End**

Let us next describe the different steps of this algorithm in more detail. In this description we will make frequent use of the following two facts:

1. One can multiply two \(k \)-bit integers in time \(T \) and area \(A \), where \(AT^2 = O(k^2) \) and \(T \in \Omega(\log k), O(\sqrt{k}) \). This is the result of (Mehlhorn and Preparata, 1983).
(2) One can add m k-bit integers in time $O(\log m + \log k)$ and area $O(km \cdot \log m)$. This can be achieved by expressing the m integers in redundant representation (see, e.g., [4–6]) and then adding them in a tree-like fashion. The tree has depth $O(\log m)$ and requires area $O(m \log m)$ for every bit position. Each level of the tree introduces a delay of just $O(1)$ thanks to the redundant number representation.

We are now ready to describe the circuit in more detail. We start with the parallel loop, lines 2–10.

Line 3. This line is easily executed in time $O(\log n)$ and area $O(n(\log n)^2)$ for each p_j by expressing u by its binary expansion $u = \sum_{i=0}^{n-1} u_2^i$, $u_2 \in \{0, 1\}$, storing the numbers $u_2^i \mod p_j$ in a table and performing the required additions in redundant number representation. We leave the details of this step to the reader.

Line 4. Step 4 is realized by a table lookup, i.e., by a look-up in a table which gives the value of r_j for each possible value of b_j. Since p_j can certainly be expressed using $2 \log n$ bits this table has n^2 entries of $2 \log n$ bits each. We realize this table by $2 \log n$ H-trees each requiring area $O(n^2)$. Thus the total area is $O(n^2 \log n)$ for each p_j, and a table look-up takes time $O(\log n)$.

Note that the $2 \log n$ slices of the table are accessed in parallel. Also note that this circuit can be pipelined (its period is $O(1)$ in technical terms) and therefore $O(\log n)$ look-ups can also be performed in time $O(\log n)$ using the same area. This observation is important for step 6.

Lines 5, 6, 7. Consider a fixed l first. We first compute

$$R_j^{(l)} = r_j \cdot 2^l \mod (p_j - 1)$$

as outlined in line 3. Note that the l-place shift does not have to be executed explicitly; it only determines which powers of two need to be looked up. The computation of $R_j^{(l)}$ takes time $O(\log n)$ and area $O(n(\log n)^2)$. We perform this computation in parallel for all l, $0 \leq l \leq \log n - 1$.

The integer $m_j^{(l)}$ is computed from $R_j^{(l)}$ by look-up in a table of "antilogarithms." The $\log n$ look-ups are pipelined and take time $O(\log n)$ and area $O(n^2 \log n)$ for each p_j (refer to the description of line 4).

Finally note that $m_j^{(l)} = u_2^{l \cdot 2^l \mod p_j - 1} \cdot b_j^l \mod p_j = u_2^l \mod p_j$.

Line 8. We use a tree of multipliers. This tree has depth $O(\log \log n)$ and has $\log n$ nodes. Each node contains a circuit multiplying two $2 \log n$ bit numbers and reducing the result $\mod p_j$ in time $O(\log \log n)$ and area $O(\log \log n)^2$. This shows that step 8 takes time $O(\log n)$ and area $O(n)$. Both estimates are very generous.

Finally note that

$$\prod_{l=0}^{\log n - 1} (2^{2^l} + m_j^{(l)}) = \prod_{l=0}^{\log n - 1} (2^{2^l} + u_2^{2^l}) = 2^{m(n-1)} \cdot \sum_{l=0}^{n-1} (u/2)^l.$$

Line 9. Let $M_j = [(p_1 \cdots p_m)p_j]^{n-1} \mod (p_1 \cdots p_m)$. Then M_j is the coefficient of v_j required for Chinese remaindering (Knuth, 1981). The number M_j is precomputed and stored in a register of length $O(n^2)$. We multiply v_j by M_j, by dividing M_j into $n^2/\log n$ pieces of length $O(\log n)$, performing $n^2/\log n$ multiplications in parallel and then summing the results. This can certainly be done in time $O(\log n)$ and area $O(n^2 \log n)$. Also the reduction mod$(p_1 \cdots p_m)$ can be done in that area and time.

Indeed, let q be an integer in $[0, 2^{n^2} \cdot \log n]$ and $M = \langle p_1 \cdots p_m \rangle$. Then $q \mod M = q - \lfloor q/M \rfloor \cdot M$. Thus we perform, in time $O(\log n)$ and area $O(n^2)$, a multiplication of q by an approximation of $1/M$ of precision $2^{m \cdot \log n}$ (having only $O(\log n)$ significant bits), followed by a multiplication of M by $\lfloor q/M \rfloor$.

Summary. Lines (3) to (9) take time $O(\log n)$ and area $O(n^2 \log n)$ for each p_j. Since u_2^l has n^2 bits we have $m = O(n^2/\log n)$ and each modulus is representable in $2 \log n$ bits. We realize loop (2) to (10) by having a module for each modulus and hence the loop takes time $O(\log n)$ and area $O(n^4)$.

Line 11. In line 11 we add m numbers of n^2 bits each and reduce mod$(p_1 \cdots p_m)$. This takes time $O(\log n)$ and area $O(m \log m \cdot n^3) = O(n^4)$.

Lemma 1. There exists a circuit which computes the n-bit inverse of an n-bit number in time $O(\log n)$ and area $O(n^4)$.

Proof. Immediate from the discussion above.

The enormous space requirement of the method sketched above is essentially due to the fact that the powers of u are computed with $\Theta(n^2)$ bits of precision. However, only the leading $n + \log n$ bits are truly needed for the computation of v. This observation is the key to the "modified" BCH method, to be described next. In the modified method we compute the powers of an l-bit integer u in m rounds (this m has nothing to do with the m in algorithm INVERSE 1), where m is a design parameter to be selected. In each round we compute the sum of $s = (l_1 \cdots l_m)$ consecutive powers using the method of Lemma 1. We call s the depth of the method. This takes time $O(\log l)$ and area $O(\log l)^2$ and yields a result of $O(\log l)$ bits. The space requirement results from the fact that only $\log(\log l)$ different prime moduli, each of length $2 \log(l)$ bits, must be used. We truncate this result to $\lceil \log(12m) \rceil$ bits and start the next round. The details are as follows.
Algorithm INVERSE 2(x)

Input: an l-bit number \(x \in [1/2, 1) \) and an integer \(s = (l)_{1/m} \).

Output: an \((l+2)\)-bit number \(r \in (1, 2) \)

begin \(u_0 := 1 - x \);
for \(i = 0 \) to \(m - 1 \) do
begin
\[\sigma_i := \sum_{j=0}^{i-1} u_j \]
\[u_{i+1} := \text{truncate} \; u_i \; \text{to} \; q = l + \lceil \log 12m \rceil \; \text{bits right of point}; \]
end;
\[r := \text{truncate} \; \sigma_0 \sigma_1 \cdots \sigma_{m-1} \; \text{to} \; l \; \text{bits right of point}; \]
end.

To prove the correctness of this algorithm we must show that \(r \) gives the \((l+2)\)-leading bits of \((1/(1-u))\) (of which the rightmost \(l \) bits represent the fractional part). To this end, we must show that the error of the underapproximation is \(< 2^{-l} \).

For any variable \(a \) used by the above algorithm let \(\hat{a} \) denote the corresponding exact value (note that, since all numbers are nonnegative, the truncation mechanism gives \(\hat{a} \approx a \), and \(\hat{a} \) the absolute error on \(a \), such that \(a = \hat{a} - \delta(a) \). Recall also that \(\delta(a \cdot b) \approx \delta(a) \cdot b + \delta(b) \cdot a \) and that \(\delta(a + b) = \delta(a) + \delta(b) \). Using these relationships, we readily have

\[\delta(\sigma_0 \cdots \sigma_{m-1}) < \sigma_0 \cdots \sigma_{m-1} \frac{\delta(\sigma_0) + \cdots + \delta(\sigma_{m-1})}{\sigma_0 \cdots \sigma_{m-1}}. \]

Since \(\sigma_0 \cdots \sigma_{m-1} \approx 3 \) and \(\sigma_i > 1 \) \((i = 0, \ldots, m - 1) \), we obtain

\[\delta(\sigma_0 \cdots \sigma_{m-1}) < 3 \delta(\sigma_0) + \cdots + \delta(\sigma_{m-1}). \]

From \(\hat{\sigma}_i = \sum_{j=0}^{i-1} \hat{u}_j \) we have

\[\delta(\sigma_i) = \sum_{j=0}^{i-1} \delta(u_j) < \sum_{j=0}^{i-1} j \hat{u}_j^{-1} \delta(u_j) < \delta(u_i)/(1 - \hat{u}_i)^2 \leq 4 \delta(u_i), \]

since \(\hat{u}_i < \frac{1}{2} \) for \(i = 1, \ldots, m - 1 \). (Obviously \(\delta(u_0) = 0 \).)

Thus \(\delta(\sigma_0 \cdots \sigma_{m-1}) < 12m \max \delta(u_i) \) and the condition

\[12m \max \delta(u_i) < 2^{-l} \]

ensures the correctness of the method. We claim that \(\delta(u_i) < 2^{-q} \) as a result of truncating to \(q \) bits right of the point. Indeed \(\delta(u_i) < 2^{-q} \), trivially. For \(i > 1 \), assuming \(\delta(u_i) < 2^{-q} \), let \(u_{i+1} = u_i \) (before the truncation). Then

\[\delta(u_{i+1}) < s \hat{u}_i^{-1} \delta(u_i) < \frac{s}{2^{i+1}} \delta(u_i), \]

since \(u_i < \frac{1}{2} \) for \(i > 1 \). If we assume \(s > 2 \), then \(\delta(u_{i+1}) < 2^{-q} \), which shows that its \(q \) bits to the right of the point are correct. Thus, the prescribed truncation yields \(\delta(u_{i+1}) < 2^{-q} \), and the induction step is complete. In conclusion, we choose

\[q > l + \log 12m. \]

(Note that for any choice of \(s \), \(\lceil \log 12m \rceil > 4 + \log \log l \) by the definition of \(m \).)

Noting that \(m \cdot O(\log l) = O(\log^2 l / \log s) \), we have:

Lemma 2. For any \(2 \leq s \leq 1 \) there exists a circuit computing the \(l \)-bit inverse of an \(l \)-bit number in time \(O(\log^2 l / \log s) \) and with area \(O((l)^2) \).

The \(AT^2 \)-performance of the above circuit is given by

\[AT^2 = O\left(l^2 \log^2 l \cdot \frac{s^2}{\log^2 s}\right). \]

(1)

By choosing the depth \(s \) as \(s = \sqrt{\epsilon} \) \((\epsilon > 0)\), the resulting circuit achieves \(T = O((l)^{1+\epsilon}) \) and \(AT^2 = O(l^{2(1+\epsilon)}) \), i.e., it is a moderately \(AT^2 \)-suboptimal divider still achieving \(T = \Omega(l) \), for fixed \(\epsilon \). We are aware that this result had been previously obtained by Leighton (1985), presumably by a similar argument.

We close this section by noting that if \(r \) is an \(l \)-bit underinverse of \(x \in [1/2, 1) \) then \(r + 2^{-l} \) is an \(l \)-bit overinverse of \(x \).

3. A Technique of Successive Refinements

We now describe an alternative approach to the computation of the inverse of an \(l \)-bit number, which uses the BCH method as a subroutine. Informally, this approach begins by computing a (small length) coarse overapproximation of the inverse of \(x \), and subsequently refines it by multiplicative factors, which are all inverses of numbers very close to 1 (from above). Therefore, the first approximation takes advantage of the small operand length, whereas the subsequent refinements exploit the presence of leading zeros in the representation of the number to be inverted. This method is best described for an \(l \)-bit integer \(x \in [1, 2) \). (Note the modified range of normalization.)

The number \(x \in [1, 2) \) can be written as

\[x = x_1 + 2^{-l-2} \cdot w, \]

where \(x_1 \) is an \((l_1 + 2)\)-bit number (the leading \(l_1 + 2 \) bits of \(x \)) and \(w \) is an \((l - l_1 - 2)\)-bit number (the trailing \(l - l_1 - 2 \) bits of \(x \)). Then \(x_1 \in [1, 2) \) and
Let \(v_1 \cdot 2 \) be an \((l_1 + 1)\)-bit overinverse to \(x_1 \cdot 2^{-1} \) (i.e., \(x_1 v_1 = 1 + \eta, \eta < 2^{-l_1 - 1} \)). Then
\[
v_1 x = v_1 x_1 + v_1 w 2^{-h-2} = 1 + \eta + v_1 w 2^{-h-2} < 1 + 4 \cdot 2^{-h-2} = 1 + 2^{-h},
\]
since \(\eta < 2^{-h-2}, v_1 \leq 1, \) and \(w < 2 \). This means that \(v_1 x \) has at least \(l_1 - 1 \) consecutive 0's immediately to the right of the point. Define
\[
z_2 = v_1 x.
\]
Then, if \(v_2 \) denotes an approximation of \(1/z_2 \), we have \(v_2 z_2 \approx 1/x \). Also, if \(v_2 z_2 = 1 + \eta' \) then \(v_1 v_2 x = 1 + \eta' \), i.e., \(v_1 v_2 \) is an overapproximation of \(1/x \) of precision \(\eta' \). The process can be iterated thereby obtaining
\[
1/x \approx v_1 v_2 \cdots v_k.
\]
This leads to the following algorithm:

Algorithm INVERSE 3

Input: an \(l \)-bit number \(x \in [1, 2) \), and an integer sequence \(l_1 < l_2 < \cdots < l_k = l \).

Output: an \(l \)-bit number \(v \in (1/2, 1] \), such that \(vx = 1 + \epsilon, \epsilon < 2^{-l} \).

1. **begin**
2. for \(i = 1 \) to \(k \) do
3. **begin**
4. \(t_i := \text{leftmost } (l_i + 2) \text{ bits of } x; \)
5. \(z_i := v_i t_i; \)
6. \(x_i := \text{leftmost } (l_i + 1) \text{ bits of } z_i; \)
7. \(v_i := 2^{-1}((l_i + 1)\text{-bit overinverse of } x_i 2^{-1}); \)
8. \(v := v v_i; \)
9. **end**
10. **end**

The correctness of the method is established by showing that the error is bounded from above by \(2^{-l} \). Indeed, note that \(t_k = x_k \) so that (line 4) \(z_k = v_{k-1} \cdots v_1 x_1 \), and \(z_k v_k = (v_k \cdots v_1) x \). But (line 5) \(x_k = z_k - \eta_k, \eta_k < 2^{-l_1 - 1} \) and (line 6) \(t_k = 1 + \delta_k, \delta_k < 2^{-l_k - 1} \). We conclude
\[
z_k v_k = x_k v_k + \eta_k v_k = 1 + \delta_k + \eta_k v_k = 1 + \gamma, \gamma < 2^{-l},
\]
since \(\delta_k + \eta_k v_k < 2^{-l_1 - 1} + 2^{-l_k - 1} = 2^{-l} \). This shows that \(v_k \cdots v_1 \) is the desired overapproximation of the inverse of \(x \).

Step 6 is the crucial action in the above algorithm; we realize it by making use of the BCH method. To analyze its performance, we need

Lemma 3. If an \(l \)-bit number \(x \in [1/2, 1) \) has \(l'-1 \) zeros immediately to the right of the leading 1, the \(l \)-bit inverse of \(x \) can be computed in time \(T = O((\log l l') \log l \log s) \) and area \(A = O((l s)^2) \), for any \(2 < s < ll' \). (Note that this result subsumes Lemma 2 for \(l' = 1 \).)

Proof. Indeed \(u = 1 - 2x \) is a (nonpositive) proper fraction whose absolute value has \(l' \) zeros immediately to the right of the point. This implies that \(\lfloor u / l' \rfloor < 2^{-l} \), so that only the first \(\lfloor l / l' \rfloor \) consecutive powers of \(u \) need to be computed.

The numbers \(x_i, i = 1, \ldots, k \), used in Step 6 meet the conditions of Lemma 3, since \(v_i t_i - 1 \) is a (nonnegative) number with \(l_i - 1 \) leading zeros \((l_0 = 0, \text{ by convention}) \). Step 6 is therefore carried out by applying Algorithm INVERSE 2 so that the \(i \)th iteration is characterized by length \(l_i \) and depth \(s_i \). An implementation of this technique is therefore completely specified by the two sequences:
\[
l_1, l_2, \ldots, l_k
\]
and
\[
s_1, s_2, \ldots, s_k.
\]

Before closing this section we note that Step 7 involves a multiplication of \(O(l) \)-bit numbers at the \(i \)th iteration; thus this operation is no more complex than the execution of the homologous Step 6, and will not be further mentioned in this discussion.

4. THE DIVIDER NETWORK

We have all the premises to illustrate in detail the structure of the divider sketched in Fig. 1.

The first \(J \) stages are collectively designed to implement the successive refinement technique; each module implements the modified BCH algorithm. For \(i = 1, 2, \ldots, J \), let \(l_i \) be the (output) operand length, \(s_i \) the depth, \(A_{i,j} \) the area, and \(T_{i,j} \) the time of the \(i \)th module. We seek a solution where all such modules have identical area (i.e., \(A_{i,j} = A' \) for \(i = 1, \ldots, J \)) and identical computation time, equal to the target time (i.e., \(T_{i,j} = \theta(\log n)^{1+s_i}, i = 1, \ldots, J \)). By the requirement of optimality, we have
\[
\sqrt{A_{i,j}} = \frac{n}{T_{i,j}} = \frac{n}{(\log n)^{1+s_i}}.
\]
We also choose
\[
l_i = \frac{n}{(\log n)^{1+s_i}} s_i \]

and
\[
s_i = \left(\frac{n}{(\log n)^{1+s_i}}\right)^{1/(2(\log n)^{s_i})} (i = 1, \ldots, J),
\]
The parameter \(J \) is chosen as the largest value of \(i \) for which \(s_i \geq 2 \), and is readily found to be \(\Theta(1/e) \). Also note that \(2 \leq s_i = \log \frac{n}{2^{\log n}} \leq 2 \log n \). Since the area of the \(i \)th module is \(\Theta((l_i s_i)^2) \), condition (2) is obviously verified. From (3) and (4) we obtain \(l_i = (n/(\log n))^{1+s_i} \), and from Lemma 2:

\[
T_{1,i} = O \left(\log l_i \frac{\log l_i}{\log s_i} \right) = O((\log n)^2/(\log n)^{1-s_i}) = O((\log n)^{1+s_i}).
\]

From Lemma 3, for \(i = 2, \ldots, J \),

\[
T_{1,i} = O \left(\log \frac{l_i}{l_{i-1}} \frac{\log l_i}{\log s_i} \right) = O \left(\log \frac{s_{i-1}}{s_i} \frac{\log l_i}{\log s_i} \right) \text{ since } l_i s_i = l_{i-1} s_{i-1}
\]

\[
= O \left(\log \frac{\log l_i}{\log s_i} \frac{s_{i-1}}{s_i} \right) \text{ since } s_i \geq 2
\]

\[
= O \left(\log n \frac{2(\log n)^{e(i-1)}}{2(\log n)^{e(i-2)}} \right) = O((\log n)^{1+s_i})
\]

thus verifying the objective for the computation time.

With these choices, each module of the chain is \(AT^2 \)-optimal, and the global computation time is \(c_1 (1/e)(\log n)^{1+s} = \Theta((\log n)^{1+s}) \), for some constant \(c_1 \). The value of \(l_i \), the number of bits of the result, is approximately

\[
l_i \approx \frac{n}{(\log n)^{1+s} \cdot 2(\log n)^{e}}.
\]

This value \(l_i \) represents the length of the operand supplied to the cascade of the two Newton approximators, to be described next. Notice that, since each Newton iteration doubles the number of accurate bits, if we start with \(l_i \) accurate bits, only \((1 + e) \log \log n \) Newton iterations are needed to complete the task.

Starting with the downstream approximator, we recall (see Fig. 2) that this module is in turn the cascade of \(p \) submodules (\(p \) is an integer to be defined shortly), where the \(i \)th submodule has area and time \(A_{3,i} \) and \(T_{3,i} \), respectively, and

\[
A_{3,i} = 2A_{3,i-1}, \quad T_{3,i} = \sqrt{2} T_{3,i-1}, \quad i = 2, 3, \ldots, p.
\]

With this choice (originally proposed in (Mehlhorn, 1984)), the global area and time of the slow approximator are respectively proportional to the area \(A_{3,p} \) and time \(T_{3,p} \) of the \(p \)th (last) submodule. Since we are aiming for an \(AT^2 \)-optimal network with computation time \(O(T) \), we have

\[
A_{3,p} T_{3,p}^2 = O(n^2)
\]

and

\[
T_{3,p} = T.
\]

This condition enables us to specify the parameter \(p \). Indeed, the speed of the submodules increases as we proceed upstream (by decreasing submodule index), and each submodule must satisfy the condition that its multiplication time is at least logarithmic in the operand length. Since the operand length is halved in going from index \(i \) to index \(i-1 \) (due to the mechanism of the Newton approximation), and the most stringent condition occurs for \(i = 1 \), we have

\[
\frac{T}{(\sqrt{2})^{p-1}} \geq \log \left(\frac{n}{2^{p-1}} \right)
\]

which is certainly satisfied if we select \(p \) as

\[
p - 1 = 2 \log \left(\frac{T}{\log n} \right) = 2e \log \log n,
\]

or \(p = 1 + 2e \log \log n \).

Finally we turn our attention to the “fast approximator.” This module receives an approximation of length \(l_j \geq n/(\log n)^{1+s} \cdot 2(\log n)^{e} \) and delivers an approximation of length \(n/2(\log n)^{2e} \). (Note that this is exactly the input operand length of the first module of the slow Newton approximator discussed earlier.) Thus, this module must execute at most \((\log n)^{e} + (1 - e) \log \log n \) iteration steps, each of them within time \(\Theta(\log n) \).

The module essentially consists of a “fastest” multiplier, i.e., time \(O(\log n) \),
of numbers of length \(n/(\log n)^{2\varepsilon} \), and can be realized with area \(A_2 \) such that
\[
A_2 (\log n)^2 = \Theta\left(\frac{n}{(\log n)^{1+2\varepsilon}} \right)
\]
and hence
\[
A_2 = \Theta\left(\frac{(n/(\log n)^{1+2\varepsilon})^2}{(\log n)^2} \right) = O(n^2)
\]
and the optimality condition is clearly satisfied.

Since each of the three major units of our divider—the chain of modified BCH dividers, the fast Newton approximator and the slow Newton approximator—has area \(O((n/(\log n)^{1+\varepsilon})^2) \) and time \(O((\log n)^{1+\varepsilon}) \), we conclude with

Theorem 1. For any fixed \(1 \geq \varepsilon > 0 \), the \(n \)-bit inverse of an \(n \)-bit number can be calculated with optimal \(AT^2 \)-performance for any \(T \in [\Omega((\log n)^{1+\varepsilon}), O((\log n)^2)] \).

5. Conclusion

We constructed an \(AT^2 \)-optimal divider with computation time \((\log n)^{1+\varepsilon} \) for any \(\varepsilon > 0 \). The reader may wonder whether one can choose \(\varepsilon \) as a decreasing function of \(n \) (tending to zero as \(n \) goes to infinity). This is indeed the case if the construction is slightly modified. In the construction as it is now we use a chain of modified BCH dividers each with the same area and speed. Thus both area and time grow as \(1/\varepsilon \) and hence \(AT^2 \) grows (at least) as \((1/\varepsilon)^2 \).

If \(\varepsilon \) is chosen as a function of \(n \), then this simple chain of equally sized modules does not suffice. Rather one has to use a chain of increasingly larger (and slower) modules as we did for the Newton iteration. Omitting the tedious and not particularly illuminating details we have

Theorem 2. There is an \(AT^2 \)-optimal divider for \(n \)-bit integers for any \(T \in [\Omega((\log n)^{2(\log \log n)^{\varepsilon}}), O((\log n)^2)] \).

Note that \(2^{(\log \log n)^{\varepsilon}} = O((\log n)^{\varepsilon}) \) for any \(\varepsilon > 0 \).

Received August 1985; accepted October 1986

REFERENCES
