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Abstract

Algorithms for performing gossiping on one- and higher dimensional meshes are presented. As a
routing model, we assume the practically important worm-hole routing.

For one-dimensional arrays and rings, we give a novel lower bound and an asymptotically optimal
gossiping algorithm for all choices of the parameters involved.

For two-dimensional meshes and tori, several simple algorithms composed of one-dimensional
phases are presented. For an important range of packet and mesh sizes it gives clear improvements
upon previously developed algorithms. The algorithm is analyzed theoretically, and the achieved
improvements are also convincingly demonstrated by simulations and by an implementation on the
Paragon. For example, on a Paragon with 81 processors and messages of size 32 KB, relying on the
built-in router requires 716 milliseconds, while our algorithm requires only 79 milliseconds.

For higher dimensional meshes, we give algorithms which are based on a generalized notion of a
diagonal. These are analyzed theoretically and by simulation.

Index Terms: Parallel Algorithms, Interconnection Networks, Grids, Communication, Worm-hole
Routing, Gossiping, Generalized Diagonals, Simulations, Experiments, Intel Paragon.

1 Introduction

Meshes. One of the most thoroughly investigated interconnection schemes for parallel computation
is the n x n mesh, in which n? processing units, PUs, are connected by a two-dimensional grid of
communication links. Its immediate generalizations are d-dimensional n X - -+ x n meshes. While meshes
have a large diameter in comparison to the various hypercubic networks, they are nonetheless of great
importance due to their simple structure and efficient layout. Numerous parallel machines with mesh
topologies have been built, and various algorithmic problems have been analyzed on theoretical models
of the mesh.

Gossiping. Gossiping (also called complete exchange) is one of the fundamental communication
problems. It appears in many contexts, both theoretical and practical. Gossiping is the problem in which
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every PU of a network wants to send a packet of a given size to every other PU. Said differently, initially
each of the N PUs of a network holds an amount of data of size L, and finally all PUs must know the
complete data of size /N - L. This is a very communication intensive operation. On a d-dimensional
store-and-forward mesh it can be performed trivially in n?/d steps. For meshes with worm-hole routing
it is less obvious how to organize the routing such that the total cost is minimal.

Gossiping appears as a subroutine in many important problems in parallel computation. We just
mention two. If M numbers are sorted on N PUs for some M >> N, then a good approach is to select
randomizedly or deterministically a set of m splitters [10, 6, 13]. These splitters must be made available
in every PU. This means that we have to perform a gossip in which every PU contributes m/N numbers.
Gossiping is an expensive operation, but in this case the amount of data to gossip is a lower-order fraction
of the total amount of data. Thus, for large inputs the gossiping time becomes negligible. The efficiency
of the gossiping algorithm determines the minimal problem size for which such algorithms can be used
effectively.

A second application of gossiping appears in algorithms for solving ordinary differential equations
using parallel block predictor-corrector methods [11, 12]. In each application of the block method, block
point computations corresponding to the prediction are carried out by different PUs and these values are
needed by the other PUs for the correction phase. At the end of correction phase, the corrected values
are again needed by all PUs for advancing the computation, and thus needing two gossiping steps in each
application of the method.

Earlier Work. A substantial amount of research has been performed on (variants of) the gossiping
problem (see, e.g., [1, 3, 9, 2, 14]). Some of these papers address the same problem as considered by us:
gossiping on meshes with worm-hole routing.

The algorithms in [9, 2] are very sophisticated and focus on minimizing the number of routing opera-
tions. Theoretically, this is an interesting issue, but practically, such an approach is appropriate only for
very small packets. In this case the gossiping time is almost entirely determined by the start-up latencies
(see Section 2). However, even for very small packets, the complicated structure of these algorithms may
impair their implementation.

In [14] the main goal is to minimize the load on the connections. For two-dimensional tori, an algorithm
is presented, in which the connections of the bisection have to transmit twice as many packets as given
by a simple lower bound. This is achieved by some ‘diagonal-propagation’ approach. The approach is
generalized for three-dimensional tori.

Our Results. In this paper in some sense we turn back to basics. Rather than to design an even more
sophisticated algorithm, along the lines of [9, 2], we present a fairly simple algorithm and show that it
actually works in practice.

An essential point is that we achieve an optimal trade-off between start-up time and data-transmission
time. For relatively large messages, it is not enough to focus on the number of start-ups. A non-
trivial lower bound shows that our algorithms are close to optimal for all possible values of the involved
parameters. On two-dimensional meshes, the information is concentrated on diagonals. For higher
dimensional meshes we give an interesting generalization of the notion of a diagonal, which may be of
independent interest.

Our approach is somewhat similar to the approach of Tseng et al. [14], but there are important
differences as well:

e In [14] trade-offs are not considered. Instead, a rather good general behavior is established. For
small packets our approach is much better (requiring a logarithmic instead of a linear number of
start-ups). For very large packets our approach is twice as fast.

e The generalization of a diagonal given in [14] for three-dimensional tori is rather straight-forward.
Hyperspaces are used that when projected give back a diagonal in two-dimensional space. We
generalize the diagonal in a more interesting way, and with reason: the performance is better, and
a generic algorithm that works for arbitrary dimensions can be formulated without problem.

Furthermore, our theoretical results for two-dimensional meshes are completed with measurements of an
actual implementation on the Intel Paragon. These measurements support our claims in most important
points.



Contents. After a presentation of the model of computation and the lower bounds, the problem of
gossiping on a one-dimensional mesh is analyzed in Section 4. Then we proceed with an extension to two-
and higher-dimensional meshes. Finally, in Section 7, experimental results gathered on the Intel Paragon
are presented.

2 Model of Computation

A d-dimensional mesh consists of N = n? processing units, PUs laid out in a d-dimensional grid of side
length n. Every PU is connected to each of its (at most) 2 - d immediate neighbors by a bidirectional
communication link. A torus is a mesh with wrap-around links. We concentrate on the communication
complexity, and assume that in a step a PU can perform an unbounded amount of internal computation.
It is also assumed that a PU can send data to all adjacent PUs simultaneously. This is sometimes called
the full-port model.

For the communication we assume the much considered worm-hole routing model (see [5, 8, 4] for
some recent surveys). In this model a packet consists of a number of indivisible data units called flits.
Furthermore, a packet has a header which contains the necessary routing information such as its desti-
nation. During routing the header governs the route of the packet and the other flits follow in a pipeline
fashion. Initially all flits reside in the source PU and finally all flits should reside in the destination PU.
At intermediate stages, all flits of a packet reside in adjacent PUs. The packets should be ‘expanded’ and
‘contracted’ only once. That is, two or more flits should reside in the same PU only at the source and
destination PU. In general worm-hole routing is likely to produce deadlock unless special care is taken.

The reasons to consider worm-hole routing instead of the more traditional store-and-forward routing
are of a practical nature. On modern MIMD computers (such as the Intel Paragon and the Cray T3D),
the time to issue a packet is considerably larger than the time needed to traverse a connection. Worm-hole
routing amortizes this ‘start-up time’, such that for sufficiently large packets it is hardly noticeable.

The time for sending a packet consisting of [ flits over a distance of d connections is given by

t(d,l):ts—f—d-td-f—l-tl. (1)

We refer to t; as the start-up time, t; as the hop time, and t; as the flit-transfer time.

(1) is correct only if the packets do not contend for a single connection (in other words, as long as the
paths of the packets do not overlap). If paths of various packets overlap, then the transfer time increases.
Our algorithms are overlap-free.

3 Lower Bounds

We start with a trivial but general lower bound. Thereupon, we give a more detailed analysis, proving a
stronger lower bound for special cases.

Lemma 1 For any network of N PUs with degree deg and diameter D, the time Te,,(N, deg, D) for
concentrating all information in a single node satisfies:

Teon(N, deg, D) > max{(N/deg) -1 -1;, D - tq4, (log N/ log(deg + 1)) - 1, }.

Proof: The terms are motivated as follows: V- flits have to be transferred over at most deg connections to
the concentration PU; one packet must travel over a distance of D connections to reach the concentration
PU; after ¢ steps a PU can hold at most (deg + 1)* data items by induction. O

Of course, Teon immediately implies a lower bound for the gossiping problem. In the case of a d-
dimensional n X - -+ x n mesh, the degree is 2 - d, and the diameter equals d - (n — 1).

Usually ¢, is comparable to ¢;, while D < N/deg-l. Thus we can omit the term D -, from the lower
bound without sacrificing too much accuracy. Dividing all terms by /- ¢;, and setting 7" = T/(l - {;) and
r=1ts/(l-t), we obtain the following simplified lower bound for concentrating all data in one PU:

Tl (N, deg, D) > max{N/deg, (log N/ log(deg+ 1)) - r}. (2)

con



In Section 4, gossiping algorithms for n x --- x n meshes are presented that match the lower bound
of (2) up to a constant for all 7 < n'~¢ € > 0, and for all » = Q(n). For the intermediate range there is
a considerable deviation from (2). Therefore, these values of r are considered in more detail.

Theorem 1 Let r =t,/(l-1;) and r < (n —1)/e. For gossiping on a linear processor array with n PUs,
the number T (n,1) of time units (of duration l-1; each) satisfies

gos

T!,(n,1) =Q(n-1Inn/In(n/r)).

gos

Notice that Theorem 1 constitutes a smooth transition between the range of small r values, » < n'~¢,

€ > 0, and the range of large r values, r = Q(n), for which (2) already gives sharp results. It is proven
by several lemmas.

First we show that for proving lower bounds, one can concentrate on the dissemination problem: the
problem of broadcasting the information that is concentrated in one PU to all other PUs.

Lemma 2
Tdis - Tcon S Tgos S Tdis + Tcon-

Proof: Starting with all data concentrated in a single PU, the initial situation of the gossiping can be
established in T,on by reversing a concentration. On the other hand, a gossiping can be performed by
concentrating and subsequently disseminating. 1

As in our case we will prove a dissemination time that is of larger order than the concentration time (e.g.
for r = n/logn, T{,,(n,1) = O(n)), we have Tyis = O(Tyos).

For the dissemination problem with certain r, it is easy to see that having full freedom to choose
the size of the packets can be at most a factor two cheaper than when the data are bundled into fixed
messages of size r. That is, we may focus on the problem of disseminating n/r messages, residing in
PU 0, while sending a message costs 2 - r. At most another constant factor difference is introduced if we
assume that the gossiping has to be performed on a circular array with only rightward connections.

By the above argumentation the proof of Theorem 1 is completed by

Lemma 3 Consider a circular array with rightward connections only and with n PUs. Initially, PU 0
contains n/r messages of size r. In one step the messages may be sent rightwards arbitrarily far, but
the paths of the messages should be disjoint. If r < (n — 1)/e, then gossiping all messages takes at least

n-lnn

r-ln(n/r) steps.

Proof: We speak of the original n/r messages as colors, and the task is to make all colors available in
all PUs. We define a cost function F(¢) for the distribution of colors after ¢ steps. Consider a PU i
and a color ¢, and let j be the rightmost PU to the left of ¢ holding color ¢ (considered cyclically). The
contribution of PU i to F(¢) by color ¢ is In((i—j) mod n) if PU ¢ does not contain color ¢ and 0 otherwise.

The initial cost is given by
n—1

F(0)=n/r- Zlni ~n?/r-Inn.
i=1
We consider how much the cost function can be reduced after a step is performed. Of essential importance
is that the paths must be disjoint. One large ‘jump’ by a message of some color ¢ gives a strong reduction
of the contribution by color ¢, but the following claim shows that the total reduction is at most n/ In(n/r).

Claim 1 Ifr < (n—1)/e, then after one step the cost function is reduced by at most n/ In(n/r). Moreover,
this occurs if we make a jump over distance r with one message from each color.

Let d. be the maximum jump made by a message of color ¢, 0 < ¢ < n/r — 1. Obviously, we must have
Y. de < n, since the paths of the messages must be disjoint. The reduction of the contribution to F(t)
by color ¢ is at most

n—1 de—1
> Ii— Y Ilni~d.-lnn—d.-Ind. = de-In(n/d,). (3)
i=1

i=n—d.



This can be seen as follows. The initial contribution by color ¢ is at most Y . Ini. After a step
over distance d., the contribution of the PUs which are within distance d. remains unchanged. This
contribution is Zj;;l Ini. Furthermore, the contribution of the other PUs becomes Z:‘L:_dlc-H In(7 — d.).
The reduction due to the step made by color ¢ is therefore at most

n n—1 de.—1 n—1 de—1
dlni— > In(i—d)— > Ini= > Ini— > Ini.
i=1 i=de+1 i=1 i=n—d. i=1
From (3), it follows that the total reduction (due to all steps made by all colors) is bounded by
nfr—1
AF < Y d.-In(n/d,).
c=0

We need to show that this expression is at most n/In(n/r). ‘Powering,” we obtain

do dy dnyr—1
AF < Ydein(n/d) <£) <£> ( n > !
- dyo dy dyyr_1

nZ de

d d dn/ior
do® - dy ™ - ey P

By a well-known result! we have

FADIL
dofo - d . ... 'dn/r—ldn/r_l > (Z ) .

n/r

It follows that

nch < < n? >ch
dOdO 'dld1 "'dn/r—ldn/r_1 T'ch ‘

k
Let ar = (%) for k = 1,2,...,n. We need to show that a; is maximal if £ is fixed at its maximum

legal value, which is n. Consider the ratio ayy1/ar. We have

app1 n? . kk
ap (k4 DFHL

It needs to be shown that ax,1/ax > 1. Hence

n? . kk
TR
(k + 1)k+1 - n?
kk r

1\* n?
1+5) k<™
= < + k) (k+1) <
n?
= e-(n+1)< T
which holds because r < (n — 1)/e. Tt follows that the reduction in cost is at most
In(eAF) <In((n/r)") = n-In(n/r).
So, we conclude that the number of steps required for dissemination is at least
F(0)> n?/r-Inn n-lnn

AF ~ n-In(n/r)  r-In(n/r)’

|

! The Lagrange multiplicator theorem (given in any book on calculus, e.g., [7, Section 4.3]), immediately gives that the
product of factors with a fixed sum is maximal if all factors are equal.



4 Linear and Circular Arrays

We analyze gossiping on one-dimensional processor arrays. It is assumed that the time for routing a
packet is given by (1), as long as the paths of the packets do not overlap. We only present algorithms
for circular arrays. Because of the more regular structure, these are slightly ‘cleaner’, but with minor
modifications all of them carry on for linear arrays.

4.1 Basic Approaches

For gossiping on a circular array consisting of n PUs, there are two trivial approaches. Each of them is
good in an extreme case.

1. Every PU sends a packet containing its data to the left and right. The packets are sent on for |n/2]
steps.

2. Perform a recursive concentration of the data packets into a selected PU, then reverse the process,
to disseminate the information to all other PUs.

Lemma 4 If the packets consist of | flits each, then Approach 1 takes
Tl(n,l) = |_n/2J . (ts +tg+1 't[),
for gossiping on a circular array with n PUs.

Proof: The algorithm consists of [n/2] trivial steps. |

Lemma 5 If the packets consist of [ flits each, then the time consumption for Approach 2 can be estimated

on
To(n,l) ~loggn-(2-t,+n-1l-1). (4)

Proof: During the concentration, the number of ‘active’ PUs is reduced by a factor three in every step.
The packets get three times as heavy in every step, and the distance over which the packets have to be
sent, is multiplied by three. For the concentration this gives

log,n—1
Teone =Y (ts+3"(ta+1-1)) <loggn -ty +n/2- (ta+1-1;).

1=0

The expression for the dissemination phase is similar, but here the packets consist of n-{ flits in all steps.
Thus,
log,n—1
Tais = Z (ts +3 -tg+l-n-t) <logsn:(ts+n-l-t)+n/2- 4
i=0
t4 is of the same order of magnitude as ¢;. So, the term n/2 -4 is small in comparison to logsn-n-1-;.
Adding the two contributions gives the lemma. U

Approach 1 is good when ¢; is small: according to (2), it is exactly optimal for » = ¢, /(I-;) = 0. In the
other extreme, that is, for r — oo, Approach 2 becomes optimal to within a constant factor by Lemma 1.
It will be better than Approach 1 for many practical values. Still, in principle the time consumption of
Approach 2 is not even linear in n. For large n or [, the term loggn - n - [-{; dominates, even though ¢,
is much smaller than ;.



4.2 Intermixed Approach

We henceforth neglect the distance term, which is of minor importance anyway, and write ¢; = (-,
instead of #;. If t, >> t], then for all reasonable values of n, the result of Lemma 5 cannot be improved.
However, there are good reasons to assume that for certain problems, t, and t; may be of comparable
magnitude:

Observation 1 Any ratio t, /1] is possible.

For example, if a large sorting problem is solved on a relatively small system, then the packets that have
to be sent are large, consisting of many flits. In that case it may even happen that ¢, =1-¢ > t,. For
such instances, we propose an approach which has features of both basic approaches.

The algorithm consists of three phases, and works with parameters a and b. Later we discuss the
right choices for them.

Algorithm circGos(a, b)
1. Concentrate n/a (rounding!) data in a evenly interspaced PUs, called bridge heads or concentration
points.

2. For |a/2] steps, send packets of size n/a among the concentration points in both directions, such
that afterwards all data are known in all concentration points.

3. In [log, n — 1] further rounds, repeatedly increase the number of bridgeheads by a factor of a until
n. The information is passed to the a—1 new points between any two existing bridgeheads in b > |a/2]
steps with packets of size n/(2-b—a+ 2).

In Phase 2, the packets are circulated around. The description is pleasant because of the circular
structure. A small improvement (of some importance only for small meshes), may be obtained, by
exploiting in Phase 3 that already part of the data are known in the points to which the data are
transferred. Notice that the algorithm ‘degenerates’ into Approach 1 for a = n.

It is easy to compute the total time for ciIRcGos. Remind that the distance term is neglected, and
that we do not consider all details of rounding.

Lemma 6 The three phases of CIRCGOS (a, b) take

T i = logsnfa) -te+n/(2-a) -1,
Ty, 2 = la/2]-(ts +n/a-t),
Tegy3 = (logon—1)-b-(ts+[n/(2-b—a+2)]-1)).

Proof: Phase 1 is a simple concentration step, on linear arrays of size n/a instead of n. The time for
Phase 2 follows by multiplying the number of steps by the time for each of them. Phase 3 consists of
log, n — 1 rounds of b steps each. |

At a first glance, it is not clear what the result of Lemma 6 means. Particularly, it is not immediately
clear which a and b should be chosen. To obtain an impression, we have written a small program
which searches for the optimal values. In Table 1 we have listed some typical results. There are several
interesting conclusions that can be derived:

e For realistic values of n and ¢, /t], CIRCGOS may be several times faster than the best of Approach 1
and Approach 2.

e At worst, CIRCGOS is hardly slower than Approach 2 (actually, for ¢ = 3 and b = 1, it becomes
equal to Approach 2, except for the fact that the presence of knowledge is not exploited).

e The range of ¢, /t] values for which a non-degenerate instance of CIRCGOS is the best increases with
n.

e The best choices of @ and b increase with n and decrease with ¢, /1].

Though the detailed choice of the parameters is essential for the performance of CIRCGOS, the analysis
of what happens is qualitatively unchanged if we take a = b = n -t}/t,. For this choice the performance
is asymptotically optimal (cf. Theorem 1):



n N\ L/t 2 10 50 250

40 144 664 3264

27 64 104 304 1304
40 (27,-) 100 (3, 1) 318 (3,1) | 1318 (3,1)

120 440 2040 10040

81 | 257 319 593 1993
120 (81, -) 239 (5, 4) 594 (3,1) | 2013 (3, 1)

364 1332 6172 30372

243 990 1062 1422 3222
337 (4,8) 565 (7,7) | 1251 (3,2) | 3248 (3, 1)

1092 4004 18564 91364

729 | 3667 3755 4195 6395
936 (10, 20) | 1377 (13,17) | 2707 (7,7) | 6264 (4,2)

Table 1: Comparison of the results obtained for gossiping on a circular arrays with n PUs applying
Approach 1 (top), Approach 2 (middle) and CirRcGos (bottom). The instances for which cIrRcGos is
better are printed bold. Behind the results for ctRcGos, the values of the parameters a and b for which
the result was obtained are indicated. The cost unit is ¢].

Theorem 2 Let r = t;/(l-4;), r < n. We consider gossiping on a linear processor array with n PUs.
When applying circGos(n/r,n/r), the number T, (n, 1) of time units (of duration -1, each) satisfies
T!,(n,1) = O(n -Inn/In(n/r)).

gos

Proof: From Lemma 6 we obtain

Tyos(n,1) = O(n+ 1 -loggr +n -log,, r) = O(n+7-Inr+n-lnr/In(n/r)).

For r = n/a with « > 1, the second term never dominates, because r = n/z < n/lnz = n/In(n/r).
Replacing the factor Inr in the third term by Inn gives the theorem. U

Thus, CIRCGOS gives a natural continuous transition from gossiping times O(n), as achieved by Ap-
proach 1 for » = O(1), to gossiping times O(n - logn), as achieved by Approach 2 for » = n. Though
we have not analyzed the constants hidden in the expressions of Theorem 1 and Theorem 2, probably
they do not lie far apart: for » < 1 and r > n, CIRCGOS degenerates to Approach 1 and Approach 2,
respectively, and these are provably close to optimal (see the remark at the end of Section 4.1). For
intermediate r values, CTRCGOS may be substantially faster:

Corollary 1 Let r = t,/t]. For all logn < r < nl=¢ € > 0, circGos is Q(logn) times faster than
Approach 1 and 2.

Proof: For r > logn, Approach 1 and Approach 2 both take (n -logn) time units. On the other hand,
for » = n1=¢ cIRcGOS has a time consumption bounded by O(n -logn/(1 —€) - logn) = O(n). |

4.3 Extension to Higher Dimensions

We sketch a very simple algorithm for gossiping on d-dimensional meshes, d > 1.

The algorithm consists of d phases: in Phase f, 0 < f < d—1, the packets participate in a gossip along
axis f. For each of the one-dimensional gossips, we take the most efficient algorithm from Section 4. As
the size of the packets increases with the number of phases performed (in Phase f, the packets consist of
[ - nf /d flits, if they initially consisted of [ flits), this is not necessarily the same algorithm in all phases.
Call the described algorithm HIGH-DIM-GOS.

Theorem 3 For constant d, HIGH-DIM-GOS has asymptotically optimal performance.



Proof: Denote the time for Phase f of HIGH-DIM-GOS by Thqg, s, and the optimal gossiping time by 5.
Clearly, Top exceeds the time required for making all information available in all PUs, starting with the
situation at the beginning of Phase d — 1. In Phase d — 1, only a fraction 1/d of the connections is used.
Using all connections would make the algorithm faster by at most a factor d. Thus, Thag, ¢ — 1 < d-Tops.
As Thdg, 7 < jjhdg7 d— 1 for all 0 < f <d-— 1, Zf Thdg, f < d? . Topt- O

It is easy to give a considerably better algorithm, exploiting the full routing power of a higher dimen-
sional mesh. First the packets are colored with d colors. The packet in PU (ig,...,i4_1) is given color
({0 + -+ ++14—1) mod d. Now, in Phase f, 0 < f <d — 1, the packets with color ¢ participate in a gossip
along axis (f + ¢) mod d. To this algorithm we refer by HIGH-DIM-GOS’.

The most important conclusion from this section is that for higher dimensional meshes, achieving
asymptotically optimal results is not an important issue. The real issue is of a more practical nature:
constructing algorithms with minimal routing time for a given choice of parameters, paying attention to
the constants involved. This will be the main goal of the subsequent sections.

5 Two-Dimensional Arrays

In this section we extend the approach of the previous section, to obtain simple but effective algorithms
for gossiping on two-dimensional meshes. In principle, more sophisticated approaches, e.g. as presented
in [9], give better performance. However, they are so complicated, that we do not believe that they might
be implemented effectively.

5.1 Basic Approaches

The simplest idea is to apply HIGH-DIM-GO0s’, with the best of Approach 1 and Approach 2 in each of
the two phases. By Approach ¢-j, we denote the algorithm in which first Approach ¢ is applied and then
Approach j. Approach 1-2 can be excluded. The time for gossiping with Approach i-j, is denoted T; ;.
Using the results from Section 4, we find

Lemma 7
Tip =~ 3/4-n-ts+n/4-(n+1)- -,
Ton = (2-logy(n/2) 4 n/2) -1, + /2 (loga(n/2) + n/2) -1l
Tys =~ (4-loggn—3)-t;+(2-loggn—2)-n/2-(n/2+1)-1].

Proof: Applying Approach 1 in Phase 1 takes |[n/2]/2] - (ts + t]), because there are at most [n/2]
packets on the one dimensional subarrays (rings). According to Lemma 5, applying Approach 2 instead,
takes about (2 -logg[n/2] — 1) - t, + (logz[n/2] — 1) - [n/2] - t;. In Phase 2, we start with packets of size
at most [n/2] in all PUs of a column or row. This gives |n/2] - (t; + [n/2] - t;) for Approach 1, and
(2-logsn — 1) - ts + (logsn — 1) - n?/2 - t; for Approach 2. O

Substituting some values for n and r = t,/t; (numerical results are given in Table 2), shows that

e Approach 1-1 is the best if » < 10.

e Approach 2-1 is the best if 10 < » < (loggn — 1) - n. It may be up to 25% faster than the best of
the other two approaches.

e Approach 2-2 is the best if (loggn—1)-n < r.

5.2 Intermixed Approach

The described approaches are competitive for many choices of n, ¢, and ¢}, but for an important range,
they are not. In this section we describe a more truly two-dimensional approach. It gives results that are
better by a constant factor for intermediate » values.



The algorithm is a two-dimensional analogue of cIRCcG0S. We concentrate on the ‘white’ packets,
initially residing in the PUs P;; with ¢ + j even. The ‘black’ packets are handled analogously, being
routed at all times orthogonally to the white ones.

Algorithm TORGOS
1. Concentrate all white packets in a concentration points of their rows: in row 4, in the PUs F; ; with
(j — ) mod (n/a) = 0. Each concentration point now holds n/(2 - a) white packets.

2. Route the data residing in each concentration point in [a/2] steps to all other concentration points
in the same row. Now every concentration point holds n/2 white packets.

3. Route the data residing in each concentration point in |a/2] steps to all other concentration points
in the same column. Now every concentration point holds a - n/2 white packets.

4. Determine suitable b;, 0 < ¢ < ¢, such that [[,6; = n/a, and x; > [b;/2]. Perform ¢ rounds
of further concentration. At the beginning of round j, 0 < j < ¢, the concentration points all hold
S; = a-[]/Z, b - n/2 white packets.

a. The data are divided into packets of size S;/(2-x;— b; +2). Route these packets during x; steps
along the rows, to b; — 1 points equally interspaced between any two concentration points.

b. Perform |b;/2] steps of vertical routing with packets of size S;.

Phase 1 is performed by a repeated concentration in logs(n/a) steps. In Phase 2 and 3, the packets
are circulated around. As for cTRCGOs, the description is simple because of the wrap-around connections,
but further the algorithm immediately carries over to meshes. After Phase 1, all data are present on each
of a diagonals. After Phase 3, all data are present on each section of length n/a of these diagonals. In
Phase 4, new diagonals are created. First the data are copied to them (4.a), then they are made available
in all sections (4.b).

We compute the time consumption of TORG0OS. The distance term is neglected, and we do not consider
all details of rounding,.

Lemma 8 The phases of TORGOS(a, b;, z;) take

Ty, 1 = logy(n/(2-a))-t; +n/(4-a) 1,
T, o = la/2]-(ts +n/(2-a)-17),
Tig, s = la/2]-(ts +n/2-1),
a-Hj:lbi -n/2
T a i — . ts 1=0 't/ ,
tg, 4.4, j x] ( +(2‘$]—bj+2) l)
j-1
Ty, 40,5 = 1b/2) - (ts+a-J]bi-n/2-1)).
i=0
Proof: The arguments are analogous to those in the proof of Lemma 6. U

Actually, we defined a class of algorithms, leaving the parameters unspecified. Because the weight of
the packets increases after every round in Phase 4, the optimal choice of the b; satisfies

2< by <by <...< by

For all realistic values of n, we have to choose only a few b;, and it turns out that excellent performance
is even obtained when all b; = b and all #; = x, for certain b and x. This considerably reduces the effort
of choosing the optimal parameters, and simplifies the expressions for the total time consumptions during
Phase 4.a and 4.b:

Tig 4a = x-(logy(n/a) to+n?/(2-(b—1)-(2-2; —b;+2)) - 1]), (5)
Tig an = |bj/2] - (logy(n/a) - t; +n?/(2- (b—1))-1;). (6)

In Table 2 we give some results of simulations. The optimal choices of a, b and = were found by a simple
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n ts/t; 8 30 100 250
351 796 2214 5252
360 761 2038 4774
27 855 1053 1683 3033
444 606 1122 2227
363 (3,9, 7) 605 (3,3,2) 1122 (3,3,1) 2227 (3,3, 1)
2146 3483 7736 16848
2155 3194 6501 13568
81 10188 10474 11384 13334
3424 3652 4378 5934
2162 (3, 27, 22) 2828 (9,9, 8) 3982 (3,5, 3) 5934 (3,3, 1)
16281 20290 33048 60386
16335 19200 28317 47853
243 119206 119580 120770 123320
29814 30108 31044 33049
16288 (5, 49, 54) 17808 (7, 35, 32) 21101 (3,9, 9) 25477 (3,9, 7)
137416 149445 187718 269730
137819 146074 172341 228627
729 | 1332416 1332878 1334348 1337498
266398 266758 267904 270360
137398 (3, 243,211) | 141693 (9,81, 86) | 149888 (15,49, 49) | 162239 (17, 43, 37)

Table 2: Comparison of the results obtained for gossiping on a nxn tori. Results are given for Approach 1-
1 (top rows), Approach 2-1 (second rows) and Approach 2-2 (third rows). In the fourth rows we give the
results for TORGOS, with @ = b =3 and ¥ = 1. In the lowest rows, we give the results for TORGOS, with
the corresponding optimal choices of a, b and z indicated in brackets. Where these results are better
than any of the others, they are printed bold. The cost unit is ¢.

computer program. We also added the results for an analogue Approach 2: the version of TORGOs with
a=0b=3and z = 1.

As claimed before, Approach 2-1 may be substantially better than either Approach 1-1 or Approach 2-
2. The smallest problem instance for which this occurs is n = 27,k = 50. But, looking at the complete
list of results, we see that Approach 2-1 and Approach 2-2 have become obsolete: in all cases TORGOS
performs better. Only for small » = t,/¢], it may happen that Approach 1-1 is the best of all. Trying
shows that this happens if » < 8 (except for very large n). From these observations, it is easy to derive
a good gossiping strategy for two-dimensional tori. Qualitatively one can say that

e The range of r values for which a non-trivial instance of TORGOS is the best increases with n.

e The best choices of a, b and x increase with n. The best choices of b and z decrease with r. «a is
always rather small; only for relatively large r, b is smaller than n/a. z is of the same order as b.

6 Higher Dimensions

For the success of the two-dimensional algorithm it was essential that the packets were concentrated on
diagonals at all times: after round j of Phase 4, all data is known on a diagonal consisting of n/(a - &)
PUs, each PU holding n - a - & data. Starting in such a situation, this property could be efficiently
established for j + 1: copying horizontally (Phase 4.a), and wiping together vertically (Phase 4.b).

The main problem in the construction of a gossiping algorithm for d-dimensional meshes is, that it is
not clear how to generalize the concept of a diagonal. Once we have such a ‘diagonal’, we can perform
an analogue of TORGOS. In the following section we describe the appropriate notion of d-dimensional
diagonals. Thereafter, we specify and analyze the gossiping algorithm for d > 3.

6.1 Generalized Diagonals

The property of a two-dimensional diagonal that must be generalized, is the possibility of ‘seeing’ a full
and non-overlapping hyperplane, when looking along any of the coordinate axes. We will try to explain
what this means.
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In [0, 1] x [0,1] C IR?, when projecting its diagonal, the set {x +y = 1|0 < z,y < 1}, perpendicularly
on the y-axes, we obtain the set 0 x [0, 1]; when projecting on the z-axes, we obtain [0,1] x 0. The
projection is not only surjective, but also injective. For our gossiping algorithm TORGOS, this means that
the information from diagonals in adjacent submeshes can be copied without problem onto each other.
Not only in one direction, but in both directions. This requirement of problem-free copying between
diagonals in adjacent submeshes along all coordinate axes leads us to the following

Definition 1 A subset of a d-dimensional cube is called a d-dimensional diagonal, if the following two
conditions are satisfied:

1. The perpendicular projection of the diagonal of a subcube onto any of the bounding hyperplanes of
this cube is surjective.

2. The perpendicular projection of the diagonal of a subcube onto any of the bounding hyperplanes of
this cube is injective except for subsets of total measure zero.

For the unit-cube I = [0,1] x - - -x [0, 1], the union of the intersections of the following set hyperplanes
with the I? gives a diagonal:

D] = {xo,xl,...,xd_l\xo+x1+...+xd_1:1}
Dy = {ro,r1,--yTag 1o+ T1+ -+ 241 =2}
Dd—l = {xo,xl,...,:l?d_l‘xo—}-xl+...+xd_1:d_l}

Lemma 9 A diagonal of I¢ is given by
d-1
Upini®
i=1

Proof: As the D; are completely symmetric, we can concentrate on the projection along the zg-axis.
Denote the projection of a set § along the zg-axis by IIo(S). It is easy to check that for all 1 < i< d,

Ho(DZ) = {$0,I1,...,$d_1|1‘0 = O,i— 1 S 1 +--- 4 Td—1 S l} (7)

So, for any i < j,

$0,l‘1,...,l‘d_11‘0:0,$1+"'$d_12i lf]:l—l—l,

Hence, the projection is almost injective, as required by point 2 of Definition 1. On the other hand, (7)
gives that

d—1 d—1
UHO(Di) = U{l‘o,l‘h---,ﬁd—ﬂﬂco:0-,1'—1§$1+"'+9€d_1Si}
i=1 i=1

= {zo,x1,...,74-1|ro=0,0< 2y + -+ 2x4-1 <d—1}

Hence, the projection is surjective as well. (|

So, we successfully defined d-dimensional diagonals. The reader is advised to obtain a full under-
standing of the case d = 3, as illustrated in Figure 1. For us it was helpful to construct a model of
paper (cardboard would have been even better). Such a model makes it easy to convince oneself that
the required property that looking along a coordinate axis indeed gives a full but non-overlapping view
of the hyperplanes.

Though we are not aware of any result in this direction, we are not sure that we are the first to define
this concept. Still we are very pleased with the utmost simplicity of the defined diagonal and the elegance
of the proof of Lemma 9.
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Figure 1: Diagonal of the unit cube; the projection along the z-axis is the set 0 x [0, 1] x [0, 1].

6.2 Details of the Algorithm

On a d-dimensional mesh or torus, the packets are colored with a color from {0, 1,...,d — 1}: the packet
residing in position (zg,x1,...,2q4—1) is given color (3}, #;) mod d. In this way, there are n/d packets
with the same color on any 1-dimensional submesh. The packets of each color are treated independently
by d orthogonally operating gossiping procedures. In order to get a clear exposition, we present the
algorithm for tori. With some extra routing steps, meshes can be treated similarly. We concentrate on
the color 0 packets. The packets of color ¢, 1 < ¢ < d — 1, are handled analogously. In order not to
complicate the algorithm, we give a generalization of TorG0s(3, 3, 1):
Algorithm cuBGos(n, d)

1. In every PU, compute the nearest intersection of its row with the set of diagonals of all n/3 x - - x

n/3 subtori. In each row, concentrate all color 0 packets in logsn — 1 steps in the three computed

concentration points. Each concentration point now holds n/(3 - d) color 0 packets.

2. Perform d steps of data spreading: in Step 7, 0 < ¢ < d — 1, the color 0 data residing in a
concentration point are routed along axis ¢ to both other concentration points on this same axis. After
Step i, every concentration point holds n/d - 3 color 0 data.

3. Perform log; n —1 rounds of further concentration. At the beginning of round j, 1 < j <logsn—1,
the concentration points all hold n/d - 37"(4=1) color 0 data. All data are known within every n/37 x
.-+ x n/37 subtorus. In round j, two diagonals are added between any two existing diagonals. Then
we perform

a. Route a copy of the color 0 data in each direction along axis 0, from every PU on an old diagonal
to the PUs on the two adjacent new diagonals.

b. Perform d — 1 steps of data spreading: in Step ¢, 1 < i < d — 1, the color 0 data residing in a
concentration point are routed along axis ¢ to the concentration points on adjacent diagonals. After
Step i, every concentration point holds n/d - 37" (4=1+% color 0 data.

Notice that the situation after Phase 1 is similar to the situation after Phase 3.a, and that Phase 2 is
analogous to Phase 3.b. We compute the time consumption of CUBGOS.

Lemma 10 The phases of cCUBGOS(n,d) take

Teg 1 = (loggn—l)-ts—i—n/(ﬁ-d)-t;,
Ty 5.0 = (loggn—1)-t, +n/(d- (3971 = 1)) -1},
Teg 04+ Teg 56 = loggn-(d—1)-t,+n%/(2-d- (1 —1/3%71)) -1},

Proof: We consider the last equation. Clearly, in Phase 2 and Phase 3.b, there are performed log; n
rounds of d — 1 steps each. In Step i, ¢ < i < d— 1, of Round j, 0 < jloggn — 1 (where Round 0
corresponds to Phase 2), the packets that are sent have weight n/d - 37:(d=1)+i-1 Qumming over i and j
and using the estimate Zg_ll 3i-1 < 39-1/2, gives the result. O
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Adding together all important contributions gives
Theorem 4 For gossiping on a d-dimensional torus CUBGOS requires about

(341 4 2) . pd

—_'t;'
2.d-(39-1-1)

(d+1)-loggn-t, +

This is a very strong and general result, the algorithm is close to optimal for all n, ¢,/t; and d > 2:

Corollary 2 For gossiping on d-dimensional tori, CUBGOS is
max{1 + 1/d, (1+2/391) /(1 — 1/3%" 1) }-optimal.

Proof: Because, for given d and n, d-logg n-t;+n®/(2-d)-t], is a trivial lower bound for just concentrating
all data in a single PU, the worst performance ratio is the maximum over all » = t,/t] > 0 of

(d+1)-loggn-r+ (1+2/31/(1—-1/3""1) - n?/(2-d)
d-logsn-r+nt/(2-d) '

Differentiating for r, gives that the extremal values are assumed for r = 0 and » = cc. Substituting these
values gives the stated result. 1

For d = 3, we have 1¥/s-optimality, and for large d, CUBGOS even almost achieves one-optimality.

7 Experiments

In this section we present experimental results collected on an Intel Paragon XP/S 10 consisting of 138
processing nodes.

System Description. The Paragon system used for the experimentation consists of 138 PUs, each
containing a 1860 microprocessor and 32 MB of local memory. The mesh is 14 nodes high and 10 nodes
wide, with 2 nodes missing in the lower right corner. All experiments were conducted on a configuration
of size 9 x 9.

Some features of the Paragon system used in this study are particularly important in order to under-
stand the performance of our algorithms. Especially

e The Paragon router employs dimension order routing, i.e., packets are first routed along the rows
to their destination columns, and from there along the columns to their destinations.

e As shown in Figure 2, the PUs are connected to the communication network by uni-directional, 80
MB/s links. Router chips in the communication network are connected by bi-directional, 120 MB/s
links.

e The NX message-passing library supports so-called “synchronous” (blocking) and “asynchronous”
(non-blocking) sends and receives. In principle, asynchronous calls allow communication in hori-
zontal and vertical directions simultaneously. However, we found that in many cases asynchronous
sends are dispatched one after the other.

e When a message enters its destination before the corresponding receive is posted, the operating
system has to buffer the incoming message in a system buffer. When the corresponding receive
instruction is issued, the message is copied from the system buffer to the application buffer. This
buffering is very expensive and should be avoided whenever possible. Message buffering can be
avoided if the recipient first sends a zero-length message to the sender indicating that it has posted
the receive. All implementations make use of this synchronization mechanism.

Performance Model. In total eight algorithms were implemented: four one-dimensional (1D) gossiping

algorithms and four two-dimensional (2D) variations. The 1D algorithms are obtained by first performing
Approach 1 or 2 in the rows, then in the columns. The 2D variants divide the packet initially residing
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PU PU

80 MB/s 80 MB/s
uni-directional uni-directional

120 MB/s bi-directional

Figure 2: Communication hardware of the Intel Paragon.

in each PU into a white packet and a black packet, and route the white packets orthogonally (and
simultaneously) to the black ones.

It is necessary to refine the performance model used in the previous sections. In our performance
model it is assumed that each algorithm consists of a sequence of synchronous communication steps.
Furthermore, the time taken by a step with messages of m bytes is modeled by the formula

ntep(m) = Ggtep T+ bstep - m,

where agiep and bgep are constants that depend on the exact step executed. In theory these constants
are independent of which step is executed, but in practice they can vary substantially. The reason is that
in some steps a node needs to send or receive only one message, whereas in others it may be required to
send or receive multiple messages. A similar performance model was used in [1] for the Intel Delta.

The implementations make use of the following basic steps:

e A 1D-send step: each node sends a message to its east or south neighbor, but not simultaneously.
Nodes in the last row/column send messages to the nodes in the first row/column. This is the basic
step used in Approach 1-1.

e A ID-concentrate step: data is concentrated in one node. This basic step is used in Approach 2-2
during the concentrate phase.

e A 1D-disseminate step: a selected node simultaneously sends a messages to two other nodes. This
is the basic step during the disseminate phase.

o A 1D-shift step. In algorithm TORGOS, it is necessary that the packets are concentrated on diag-
onals. However, because the PUs in the first column do not have an east neighbor, an extra step
sending the packets to the selected PUs is required.

These steps differ in the number of messages sent or received by each node. For example, in a 1D-send
step each PU sends one message and receives one message. On the other hand, in a 1D-shift step, one
PU in each row sends one message and another receives one message. Each step also has a 2-dimensional
variant in which communication takes place in both horizontal and vertical directions simultaneously.
These steps will be denoted by 2D-send, 2D-concentrate, 2D-disseminate and 2D-shift, respectively.

Experimental Results. Figure 3(a) plots the time per byte taken by each 1D basic step as a function
of the message length. The total execution time is obtained by multiplying the time per byte by the
message length m. By fitting a straight line through the measured data points, we found that the time
(in seconds) taken by each 1D basic step with messages of m bytes is approximately given by:

Tipsend(m) =~ 3.0-107*+4+2.2.1078.
TiD-conc(m) =~ 2.2.107*4+1.7-1078.

(m) =~ 2.8:-107*+22.107%.
Tip-shite(m) ~ 2.2-107*+1.1-107% - m.

3 3 3

TlD—diss m

These approximations are also depicted in the figure. It can be seen that the formulae are reasonably
accurate (the maximum error is 15%). For the 2D variants, the time taken by each basic step is approx-
imately given by:
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Figure 3: Time taken by every basic step: 1D operations at the top; 2D operations at the bottom.

~ 42.107*+4.6-1078.
3.0-107*+4.8.1078.
3.4-107*+5.9.1078.
~ 25.107*41.7-107%.

R

333 3

Note that the time taken by each 2D basic step more than doubles compared to the 1-dimensional variants,
except for the shift basic step. As noted before, it appears that at any given time a processor can be
sending a message or receiving a message, but not both. However, we do not have an explanation for
the fact that the time taken by a 2D basic step is more than twice the amount of time required by the
corresponding 1D basic step.

We are now ready to discuss the performance of our gossiping algorithms. The predicted (top figure)
and measured (bottom figure) execution times of the 1D implementations are depicted in Figure 4. Again,
the total execution times are divided by the message length m in order to capture them in one picture.
Every experiment was repeated 25 times and the average was taken. The maximum observed deviation
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Figure 4: Predicted and measured execution times of the four one-dimensional gossiping algorithms on a
9 x 9 mesh.

from the mean was about 16%.

Comparing the predicted and actual performance, we find that the implementations run within 20%
of the expected execution times. This can be called acceptable. Moreover, the relative performance of the
for gossiping algorithms is quite accurately predicted. The model predicts that for very small messages
Approach 2-2 is the fastest. However, this is not observed in practice. For messages up to 4 KB, the
TORGOS(3, 3, 1) algorithm is faster than any other algorithm. For very long vectors (> 16 KB), Approach
1-1 is the best and Approach 2-2 performs significantly worse than the other approaches, which is in
agreement with the predictions. For messages of moderate size (4-16 KB), Approach 2-1 is faster, which
is also predicted by the model. Figure 4 clearly demonstrates that in order to obtain a gossiping routine
that is efficient for all message sizes, a trade-off has to be made between the number of start-ups and the
communication volume. Even on this relatively small network, it is not enough to focus on one goal only.

We also compared the performance of our implementations with the performance of an implementa-
tion that uses the global communication routine gcolx supplied by Intel. Somewhat surprisingly, our
implementations were much faster than the gcolx communication routine. For example, for messages of
32 KB, the gcolx routine requires 716 milliseconds, while Approach 1-1 requires only 79 milliseconds.
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Figure 5: Predicted and measured execution times of the four two-dimensional gossiping algorithms on
a 9 x 9 mesh.

We do not have an explanation for the poor performance of the vendor-supplied routine.

The predicted and measured execution times of the two-dimensional gossiping algorithms are shown
in Figure 5. Again, we find that the relative performance of the four implemented algorithms is quite
accurately predicted. As expected, the 2D implementations do not outperform the 1D algorithms because
PUs cannot be sending and receiving data simultaneously. Under ideal circumstances, the time taken by
each 1D basic step and its corresponding 2D basic step would be about the same, but this is not observed
in practice. We also implemented a 2D variation of Approach 1-1 in which the nodes were divided into
white and black nodes (instead of the packets). However, due to rounding effects, this implementation
did not outperform the 2D algorithms described here on a configuration of size 9 x 9. On a 10 x 10 mesh
it was about a factor of 1.4 faster than the corresponding 1D algorithm.

Because the size of the mesh used for experimentation is relatively small, the difference between the
various gossiping algorithms is not very large. For larger values of n, these differences will become more
apparent. Nevertheless, the experimental results presented in this section support our theoretical claims
in most important points.
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8 Conclusion

We presented gossiping algorithms for meshes of arbitrary dimensions. We optimized the trade-off be-
tween contributions due to start-ups and those due to the bounded capacity of the connections. This
enabled us to reduce the time for gossiping in theory and practice for an important range of the involved
parameters.
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