
o

PD
INFORMATIK

Parallel Algorithms with Optimal

Speedup for Bounded Treewidth

Hans L. Bodlaender and Torben Hagerup

MPI-I-95-1-017 July 1995

FORSCHUNGSBERICHT • RESEARCH REPORT

MAX - PLANe K- IN S TITUT
FÜR

INFORMATIK

Im Stadtwald • 66123 Saarbrücken. Germany

The Max-Planck-Institut für Informatik in Saarbrücken is
an institute of the Max-Planck-Gesellschaft, Germany.

ISSN: 0946 - OUX

Forschungsberichte des

Max-Planck-Instituts für Informatik

Further copies of this report are available from:

Max-Planck-Institut für Informatik
Bibliothek & Dokumentation
Im Stadtwald
66123 Saarbrücken
Germany

Parallel Algorithms with Optimal

Speedup for Bounded Treewidth

Hans L. Bodlaender and Torben Hagerup

MPI-I-95-1-017 July 1995

Parallel Algürithms with Optimal Speedup
für Büunded Treewidth*

Hans L. Bodlaendert and Torben Hagerupt

Abstract

We describe the first parallel algorithm with optimal speedup for
constructing minimum-width tree decompositions of graphs of bounded
treewidth. On n-vertex input graphs, the algorithm works in O((logn)2)
time using O(n) operations on the EREW PRAM. We also give faster par
allel algorithms with optimal speedup for the problem of deciding whether
the treewidth of an input graph is bounded by a given constant and for a
vanety of problems on graphs of bounded treewidth, including all decision
problems expressible in monadic second-order logic. On n-vertex input
graphs, the algorithms use O(n) operations together with O(lognlog*n)
time on the EREW PRAM, or 0 (log n) time on the CRCW PRAM.

1 Introduction

The concept of treewidth has proved to be a useful tool in the design of graph
algorithms: Many important classes of graphs have bounded treewidth, and many
important graph problems that are otherwise quite hard can be solved efficiently
on graphs of bounded treewidth. A tree decomposition of an undirected graph
G = (V, E) is a pa.ir (T,U), where T = (X, F) is a tree and U = {Uz I :z: EX} is
a family of subsets of V called bags, one for each node in T, such that

- UzEx Uz = V (every vertex in G occurs in so me bag);

- for all (v,w) E E, there exists an:z: E X such that {v,w} ~ Uz (every edge
in G is "internal" to some bag);

·Partially supported by the ESPRIT Basic Research Actions Program of the EU under
contract No. 7141 (project ALCOM 11). A preliminary version of this paper was presented at
the 22nd International Colloquium on Automata, Languages and Programming (ICALP) in
July 1995.

tDepartment of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht,
the Netherlands. Email: hansb@cs.ruu.nl.

tMax-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany. Email:
torben@mpi-sb.mpg.de.

1

- for all z,y,z E X, if y is on the path from z to z in T, then Uz n Uz ~ Uy

(every vertex in G occurs in the bags in a connected part of T, i.e., in a
subtree).

The width of a tree decomposition (T, {Uz I z E X}) is m~EX IUzl - 1.
The treewidth of a graph G, denoted tw(G), is the smallest treewidth of any tree
decomposition of G. Path decompositions and pathwidth are defined analogously,
with the tree T restricted to be a path.

The majority of efficient algorithms for graphs of bounded treewidth depend
not only on a guarantee that the treewidth of an input graph is small, but in fact
on the availability of a minimum-width tree decomposition of the input graph,
so that the construction of minimum-width tree decompositions for graphs of
bounded treewidth is a key problem. A quest for the fastest possible algorithm
for this problem [5,39,20, 10,34,31,38,8] led to the linear-time algorithm of [8],
which eliminated the bottleneck in a large number of algorithms for bounded
treewidth.

In the setting of parallel computation, the situation is similar. Many other
wise difficult graph problems can be solved in NC (i.e., in polylogarlthmic time
with a polynomial amount of hardware) on graphs of bounded treewidth, and
again the need for a minimum-width tree decomposition is a serious bottleneck.
The best parallel algorithms for computing tree decompositions of width k of
graphs of treewidth k, for fixed k, run on the CRCW PRAM using O((logn)2)
time and O(n2k+5) processors [13, 14], or O(1og n) time and O(n3kH) pro ces
sors [7]. Although these algorithms are fast, they are extremely wasteful in terms
of processors, in view of the linear-time sequential algorithm. A related result was
obtained by Wanke [41], who showed that the problem of deciding whether the
treewidth of an input graph is bounded by a constant k belongs to the complexity
dass LOGCFLj this result also does not seem to lead to parallel algorithms that
are efficient from the point of view of processor utilization. If we relax the re
quirements by allowing tree decompositions of width O(k), rather than exactly k,
more algorithms come into play: Lagergren [31] finds a decomposition of width
::::; 6k + 5 in O((1og n)3) time using n processors, and we believe that Reed's se
quential O(n log n)-time algorithm [38] for obtaining a decomposition of width
::::; 4k + 3 can be parallelized (using an algorithm of Khuller and Schieber [29]
to solve a central path-finding problem) to yield an algorithm that works in
O((log n)2) time using O(no:(n) flog n) processors, where 0: is a very slowly grow
ing "inverse Ackermann" function. The parallel version of Reed's algorithm uses
O(no:(n) log n) operations, i.e., has a time-processor product of O(no: (n) log n),
and is the most efficient of the parallel algorithms discussed above. Still, since
the problem can be solved in linear sequential time, it does not have optimal
speedup, which requires a time-processor product of O(n).

2

We describe an EREW PRAM algorithm for constructing minimum-width
tree decompositions for graphs of bounded treewidth in O((1ogn)2) time using
O(n) operations. The algorithm achieves optimal speedup and is the first paral
lel algorithm to do so. Moreover, the new algorithm is second in speed only to
Bodlaender's algorithm [7], but uses a weaker model of computation (the EREW
PRAM versus the CReW PRAM), on which Bodlaender's algorithm can be sim
ulated only in the same time of O((log n)2). The new result immediately implies
that a large number of problems on graphs of bounded treewidth can now be
solved by parallel algorithms with optimal speedup.

A subroutine used in the construction algorithm but of independent interest
is a parallel version of an algorithm due to Bodlaender and Kloks [11]. The
algorithm takes as input a tree decomposition of bounded width of a graph G and
outputs a minimum-width tree decomposition of G, thus blurring the distinction
between the "exact" and the "approximate" construction algorithms discussed
above. The new algorithm runs in O(log n) time using O(n) operations on the
EREWPRAM.

While we cannot compute tree decompositions faster than in O((log n)2) time,
it turns out that we can give fast er algorithms for the related problem of decid
ing whether the treewidth of an input graph is bounded by a given constant
k. The algorithms have optimal speedup (i.e., use O(n) operations) and run
in O(lognlog*n) time on the EREW PRAM, or in O(logn) time on the CReW
PRAM. We achieve the same resource bounds for a number of problems on graphs
of bounded treewidth, including all problems expressible in monadic second-order
logic. These algorithms operate without an explicit tree decomposition and so
bypass the (time) bottleneck of our construction algorithm. Furthermore, we
achieve the same results for path decompositions and pathwidth as for tree de
compositions and treewidth.

The paper combines several different techniques of wide applicability. The
graph-reduction technique consists in repeatedly replacing parts of the graph at
hand by simpler parts until a trivial graph results. The problem of interest is then
solved for the trivial graph, and the solution is "carned along" while the changes
to the graph are undone in reverse order. This technique pervades the paper and
is used in the construction algorithm as weil as in the decision algorithms (and
also in the width-minimizing algorithm, provided that tree contraction is viewed
as a special case of graph reduction).

Another technique used in the derivation of the CReW PRAM decision algo
rithm from the corresponding EREW PRAM algorithm is that of derandomiza
tion. The basic idea of derandomization is that instead of letting random coin
tosses select one algorithm to be executed from a coilection of deterministic al
gorithms, we execute all deterministic algorithms in the coilection and pick the
best output. Because of the need to simulate several possible executions, de
randomization is often associated with a price in the form of increased resource

3

requirements. Here we use derandomization to derive a parallel algorithm with
optimal speedup, i.e., we pay no price.

A third technique of less general applicability but nonetheless independent
interest is that of bounded adjacency-list search, which tries to circumvent the
difficulties caused by high-degree vertices in parallel algorithms for sparse graphs
by letting each neighbor of a high-degree vertex v inspect only a piece of constant
size of the adjacency list of v near its own entry, rat her than the whole adjacency
list. The bounded adjacency-list search technique was used previously (although
not named) in [24]; there, as here, the technique serves to eliminate the need both
for concurrent reading and writing and for superlinear space.

U nlike certain related results, most of our algorithms are explicit and do not
rely on nonconstructive arguments. Only the results of Theorems 5.1 and 6.1
are nonconstructive, but can be made constructive in many concrete cases, as
discussed near the end of Section 5. On the other hand, it should be noted that
large constant factors prevent our algorithms from being practical.

All graphs in this paper are undirected, loopless and without multiple edges.
We assume that all graphs, not excluding trees, are represented according to an
adjacency-list representation: Each vertex v in an n-vertex graph Gis represented
by an integer name of size O(n) and has apointer to a doubly-linked adjacency
list with an entry for each neighbor of v in G. For each neighbor W of v, the entry
of W in v's adjacency list contains the name of w as well as a cross pointer to the
entry of v in w's adjacency list.

2 Minimizing decomposition width

In this section we show how to obtain a minimum-width tree decomposition of a
graph G from any tree decomposition of G of bounded width. We begin with an
observation that allows us to assume that tree decompositions are root.ed, binary
and of logarithmic depth whenever this is convenient. In representation terms,
every nonroot node in a rooted tree knows its parent, and a rooted tree is binary
if no node has more than two children.

We appeal twice to the tree-contraction technique introduced by Miller and
Reif [35], which we therefore describe in generic terms. Applied to an n-node
input tree T = (V, E), a tree-contraction algorithm produces a sequence T =
To = (Vo,Eo),Tl = (Vi,Ed, ... ,T,. = (v,.,E,.) of O(1ogn) binary trees, ending
with a one-node tree T,., such that each tree 1i, for i = 1, ... ,r, is obtained from
its predecessor T i - I in the sequence by contracting a set ~f edges Fi - I ~ E i - I

with the following properties:

Fi - I spans a matching (i.e., no node in Vi-I is incident to more than one
edge in Fi - I);

Each edge in Fi - I has at least one end point of degree 1 or 2 in Ti-I'

4

A sequence To, ... , T" with these properties, called a contraction sequence for
T, can be computed in O(log n) time using O(n) operations and O(n) space
[1, 16, 21, 22, 30] (the connection to our generic description of tree contraction is
easiest to establish in the case of the simple and elegant algorithm of [1, 30]).

Let X = Ui=o Vi. We can define a rooted, binary tree T' on the node set
X, called the contraction tree corresponding to the sequence To, • •. , T", in the
following way: The nodes in V, which will be called base nodes, are the leaves of
T', and whenever anode z EX results from the contraction of an edge (y, z), we
make z the parent of y and z in T'. For all z, Y EX, we will say that z contains
y if z is an ancestor of y in T'. The base nodes contained in any node in X span
a connected subgraph of the input tree T. For i = 1, ... ,r, we root Ti at the
node in Vi containing the root of T.

For i = 0, ... ,r, call two base nodes v and w i-neighbors if (v, w) E E and v
and w are not contained in the same node in Vi. For each z E Vi, the i-neighbors
of base nodes contained in z are contained in distinct neighbors of z in Ti. For
all z EX, we define the border of z as the set of base nodes contained in z and
adjacent in T to one or more base no des not contained in z. For i = 0, ... , r, if
z E Vi, then a base node contained in z belongs to the border of z precisely if
it has at least one i-neighbor; in particular, the border of z contains at most 3
nodes.

Lemmas 2.1 and 2.2 below slightly improve a result of [7] by employing a more
efficient subroutine; the same improvement was observed in [27].

Lemma 2.1 The /ollowing problem can be solved on an EREW PRAM using
O(log n) time, O(n) operations and O(n) space: Given an n-node rooted, binary
tree T, compute a rooted, binary tree decomposition 0/ T 0/ depth O(1og n) and
width at most 2.

Proof: Begin by using tree contraction to compute a contraction sequence
T = To = (Va, Eo), Tl = (Vi, EI), ... , T" = (v", E,,) for the input tree T = (V, E)
and construct the corresponding contraction tree T' = (X, F).

Observe that if e and e' are the edges incident on anode v of degree 2 in
some tree H, then the tree obtained from H by contracting e is the same as
the tree obtained from H by contracting e' (the contraction can be "fiipped" to
the other side of v). Because of this, we can assume without loss of generality
that, when an edge between anode v of degree 2 and anode w of degree 3 is
contracted in the transition from Ti- l to Ti, for some i with 1 ::; i ::; r, then v
is the parent of w in Ti-I. To see this, first note that all edge contractions that
violate the assumption - we will call these (3,2)-contractions - can be carried
out separately (i.e., we replace the one-step transition from 1i-l to Ti by a two
step process, thereby doubling r). Now each (3,2)-contraction can be "fiipped",
as described above, without changing the resulting tree; note that the edge set of
the "fiipped" contractions still spans a matching.

5

For all z EX, denote by B(z) the border of z. The sets B(z), where z EX,
can be computed as follows: Successively, for i = 0, ... ,r, we compute B(z),
along with the set of i-neighbors of all nodes in B(z), for all z E Vi. This is
trivial for i = 0, and if, for some i with 1 ::; i ::; r, anode z E Vi is obtained by
contracting an edge (y,z), where y,z E Vi-I, then B(z) ~ B(y) U B(z), and an
(i - 1)-neighbor of a base node v E B(y) U B(z) is also an i-neighbor of v exactly
if it does not belong to B(y) U B(z), so that the information pertaining to z can
easily be derived from the information pertaining to y and z.

We now associate a set Uz ~ V with each z E X as follows: If z is abase
node, i.e., a leaf in T', we take Uz = {z}. Otherwise, if z has the children y and
z in T', we take Uz = B(y) U B(z). We will show that (T', {Uz 1 z E X}) is a tree
decomposition of T. First, because of the convention regarding leaves of T', the
condition Uze x Uz = V is trivially satisfied. Second, for every edge (v, w) in E,
it is easy to see that {v,w} ~ Uz , where z is the least common ancestor ofv and
w in T'. And third, the set of nodes whose bags contain a base node v form an
initial part of the path in T' from v to the root of T', and hence span a connected
subgraph of T'.

The width of the tree decomposition defined above is bounded by one less
than twice the maximum size of a border. We will now show that IB(z)1 ::; 2 for
all z E X.

Suppose that for some i with 1 ::; i ::; r, some base node v E V has two
i-neighbors and belongs to B(z) for some z E Vi with IB(z)1 ~ 2. Then neither
of the two i-neighbors of v is its parent in T. To see why this is true, let j be
minimal such that v belongs to B(y) for some y E V; with IB(y)1 ~ 2. It can be
seen that then y must, in fact, result from the contraction of an edge (v, z), where
z E V;-I is of degree 2 in Tj - I • But then, by the absence of (3,2)-contractions,
z must be the parent of v in Tj - I, which implies that the parent of v in T is not
an i-neighbor of v for any i ~ j.

Since the claim IB(z)1 ~ 2 is trivially true for all base nodes z, assume by
induction that it is true for all z E Vi-I, for some i with 1 ::; i ::; r, and consider
anode z E Vi resulting from the contraGtion of an edge (y, z), where y, z E Vi-I'
Since 1 B (z) 1 is bounded by the degree of z in Ti, w hich is two less than the sum
of the degrees of y and z in Ti-I, we can assume that y is of degree 3 and that
z is of degree 2 in Ti-I. We will show that only one node in each of B(y) and
B(z) also belongs to B(z), from which IB(z)1 ::; 2 follows immediately. In the
case of B(z), this is easy to see: The nodes in B(z) have a total of two (i - 1)
neighbors, and one of these is not an i-neighbor. Similarly, the nodes in B(y)
lose one of their three (i - 1)-neighbors. We must show that the two remaining
(i - 1)-neighbors, which are also i-neighbors, are adjacent to the same node in
B(y). But if this is not the case, then IB(y)1 = 2 and B(y) contains anode v with
two (i - 1)-neighbors, one of which belongs to B(z). By what was shown above,
neither of the (i - 1)-neighbors of v is its parent in T. But this contradicts the

6

Figure 1: Transforming from width 3 to width 2.

fact that z must be the parent of y in Ti - 1 , by the absence of (3, 2)-contractions.
The tree decomposition described so far is of width at most 3. We now

describe how to reduce the width to at most 2. Suppose that :c E X is anode
in T' whose associated bag Uz is of size 4, let y and z be the children of :c in
T' and take B(y) == {Vl,V2} and B(z) == {VS,V4}' so that Uz = {Vl,V2,VS,V4}'
As follows easily from arguments used to bound the sizes of all bags by 2, B(:c)
"inherits" exact1y one element of each of B(y) and B(z), so that we can assume
that B(:c) == {Vl, V4}' Then V2 and Vs do not occur in the bag of the parent of :c
in T', if any. Moreover, (V2,VS) E E and hence (VbVS) rt E. It is now easy to see
that the transformation illustrated in Fig. 1 preserves the defining properties of
a tree decomposition. Applied at all no des with bags of size 4, it produces a new
tree decomposition of T of width at most 2. The depth increases by a factor of
at most 2 and hence remains O(log n), as desired.

Starting from the sequence To, .•. , T~, the algorithm constructs the tree T',
then computes the sets B(:c) and Uz for all :c EX, and finally carries out the
transformation of T' described above. Each of these steps can easily be done in
O(log n) time using O(n) operations and O(n) space. 0

In the lemma below as weil as in severallater results, the input parameter k is
qualified as being a constant, the meaning of which is that k can be any positive
integer, but that the 0(···) ofthe result may (and will) hide factors that depend
on k.

Lemma 2.2 For all constants k 2: 1 and all integers n 2: 2, the /ollowing problem
can be solved on an EREW PRAM using O(log n) time, O(n) operations and
O(n) space: Given a tree decomposition with n nodes and 0/ width k 0/ a graph
G, compute a rooted, binary tree decomposition 0/ G 0/ depth O(log n) and width
at most 3k + 2.

Proof: We begin by replacing each node of degree m 2: 4 and with associated
bag U in the given tree decomposition by a path of m - 2 nodes, each of degree

7

3 and with associated bag U, which obviously preserves the defining properties
of a tree decomposition. Then we construct an Euler tour of the modified tree
(see [40]) and root the tree by breaking the Euler tour at an arbitrary node of
degree at most 2, declared to be the root, computing the distance from each node
to the Ioot along the Euler tour by means of list ranking [15, 4], and determining
the parent of each nonroot node as the neighbor with a smaller distance to the
root. After these preliminary steps, which can easily be carried out within the
stated resource bounds, we can assume that the input is a tree decomposition
(T,U), where T = (V, E) is rooted and binary.

Now use the algorithm of Lemma 2.1 to obtain a rooted, binary tree decom
position (T', Q) of T of width at most 2 and depth O(log n). Replacing each
node in a bag in Q by the vertices of G in its own associated bag, we obtain
the desired tree decomposition of G. More precisely, write U = {Utl I v E V},
T' = (X,F) and Q = {Qz I Z E X} and take Rz = UtlEq.,UtI , for all z EX.
Then (T', {Rz I z E X}) is a tree decomposition of G. For if a vertex u of G
occurs in UtI , with v E V, and v E Qz, with z E X, then u E Rz. Similarly, both
endpoints of each edge in G occur in some bag UtI , with v E V, and therefore also
in some bag Rz, with z E X. Finally, each vertex u of G occurs in the bags U'I)
in a subtree of T, and two adjacent no des in this subtree occur in the bags Qz in
overlapping subtrees of T', so that, altogether, u occurs in the bags Rz in a con
nected subgraph of T'. The width of the tree decomposition (T', {Rz I z E X})
is at most (2 + l)(k + 1) - 1 = 3k + 2. 0

We will use the phrase "balancing a tree decomposition" to describe an ap
plication of the algorithm implicit in the preceding lemma. The remaining goal
in the present section is to prove the result below.

Theorem 2.3 For all constants k ~ 1 and all integers n ~ 2, the /ollowing
problem can be solved on an EREW P RAM using O(log n) time, O(n) operations
and O(n) space: Given a tree decomposition with n nodes and 0/ width k 0/ a
graph G, construct a minimum-width tree decomposition 0/ G.

The corresponding decision problem ("ls tw(G) ::5 I?", for some given I) can
be solved by a straightforward parallelization of the decision algorithm of [11].
The latter algorithm consists of a pass from the leaves to the root of a tree
decomposition of the input graph, which, in light of Lemma 2.2, can be taken to
be binary and of logarithmic depth. The processing of each node takes constant
time, and all no des on the same level in the tree can be processed in parallel.
If the nodes in the tree decomposition are first sorted by their levels, which can
be done in O(1ogn) time using O(n) operations [37, Lemma 3.1], it is easy to
process the whole tree in O(log n) timeusing O(n) operations. The sequential
construction algorithm processes the tree decomposition in three passes. In one
of these, the processing of anode no longer necessarily takes constant time, so

8

that an amortization argument is used in [11] to bound the total running time
by O(n). Since this appears to stand in the way of a direct parallelization, we
choose a somewhat different approach.

Suppose that the input graph is G = (V, E). Close inspection of the algo
rithm of [11] (we omit the details, some of which were hinted at above) reveals
that O(log n) time and O(n) operations suffice to compute a certain implicit
representation ofthe desired tree decomposition (T = (X, F), {Uz I x E X}) con
sisting of the binary tree T (withou t the bags U z) together wi th, for each v E V,
a collection P" of disjoint simple paths in T whose union contains anode x E X
if and only if v E Uz • Rather than direct1y specifying the set of vertices contained
in each bag, the implicit representation thus presents the set of bags containing
each vertex in the form of a collection of disjoint paths. For each v E V, a path
in p" with end nodes x and y is represented by marking both x and y with the
tripie (x,y,v); anode may be marked with several tripies but, of course, with at
most k + 1.

By the preceding discussion (in particular, note that lXI = O(n)), proving
Theorem 2.3 bolls down to showing the following.

Lemma 2.4 For all constants k ~ 1 and all integers n ~ 2, the following problem
can be solved on an EREW P RAM using O(log n) time, O(n) operations and O(n)
space: Given a rooted, binary n-node tree T and a collection P of simple paths in
T, each of which is labeled by an integer and represented, at each of its end points,
by a tripie specifying its endpoints and label, such that no node in T belongs to
more than k + 1 paths in P, mark each node x in T with the set of all labels of
paths in P containing x.

Proof: Since duplicates are easily eliminated, we can assume that no two paths
in P have both the same endpoints and the same label, so that we can identify
each path with the tripie marking its endpoints. We will also assume that the
endpoints of each path are distinct, since paths consisting of a single node are
trivial to handle.

We begin by using tree contraction to obtain a contraction sequence T =
To = (Vo,Eo), ... ,T,. = (v,.,E,.) for the input tree T = (V,E). We will process
the sequence twice, first in the order of increasing indices (the up phase), and
then in the order of decreasing indices (the down phase).

Let X = Ui=o Vi. During the up phase, we associate a set S(x) with each
node x EX. For x E V, S(x) is the set of paths in P with x as an end point. For
i = 1, ... , T, if anode x E Vi results !rom the contraction of an edge (v, w), w here
v,w E Vi-h we compute S(x) as (S(v) U S(w))\(S(v) n S(w)); it is easy to see
by induction that for all x E X, S(x) will be the set of paths in P with exactly
one endpoint contained in x. During the down phase, for i = T, ••• , 1, we modify
S(v) for all v E Vi-l \ Vi as follows: Suppose that v and another node w E Vi-l are
both contained in x E Vi. Then, for each pair (y, z) of neighbors of x in 1i such

9

that some node in Vi-I contained in y is separated, in Ti-I, from some node in
Vi-I contained in z by the removal of v (Le., v is "between" y and z), add to S(v)
all paths in S(y) n S(z). Again, it is not difficult to see by backwards induction
on i that the final value of S(z), for all z EX, will be the set of paths in l'
comprising at least one node contained in z and at least one node not contained
in z. In particular, the values S(v), where v E V, precisely constitute the desired
output. Since the number of paths containing a given node in V is bounded by a
constant, and since each path in S(z) must contain at least one of the at most 3
border no des of z, for all z EX, each set S(z) is of constant size, and the whole
computation can be carried out in O(log n) time using O(n) operations and O(n)
space. 0

With a similar (but, in fact, easier) argument one can also show the result
below.

Theorem 2.5 For all constants k, I ~ 1 and all integers n ~ 2, the /ollowing
problem can be solved on an EREW P RAM using O(log n) time, O(n) operations
and O(n) space: Given a tree decomposition with n nodes and 0/ width k 0/ a
graph G, decide whether the pathwidth 0/ G is at most I and, i/ so, construct a
minimum-width path decomposition 0/ G.

3 A structural lemma

In this section we provide the basis for showing that any sufficiently large con
nected graph of bounded treewidth admits a large number of reductions of certain
types. Moreover, given any adjacency-list representation of the graph, a large
fraction of these reductions can be identified efficiently.

A well-known fact that we shall use below is that every n-vertex graph of
treewidth < k contains at most kn edges, for all positive integers n and k. We
provide abrief proof. Since removing a vertex from a graph of treewidth :::; k with
at least two vertices leaves a graph of treewidth :::; k, it suffices to show that every
graph G of treewidth :::; k contains a vertex of degree :::; k. To this end consider a
tree decomposition (T = (X, F), {Uz I z EX}) of G of width :::; k with a minimal
number of nodes (i.e., lXI is minimal, over all such tree decompositions) and pick
anode z E X of degree :::; 1 in T. Uz contains at least one vertex v that does not
occur in any other bag (otherwise z would be superfiuous), and v has at most k
neighbors, as desired (they all belong to Uz).

The boundary of a subgraph H of a graph Gis the set of those vertices in G
that have at least one neighbor in H, but do not themselves belong to H. Let
d, k, nmm and 1tmax be positive integers, to be characterized more closely in the
following. A vertex will be called small if its degree is bounded by d, and large
otherwise. Given a graph G of treewidth at most k, we are essentially looking

10

for connected subgraphs of G consisting of between nmm and nmax small vertices
and with a boundary of size at most 2(k + 1). It turns out that such subgraphs
may not occur in G at all, for which reason we have to replace the connectedness
condition by a weaker, more complicated condition described below after the
introduction of additional terminology.

Two vertices are said to be twins if they have the same set of neighbors. By
analogy, we call two subgraphs of a common graph twins if they have the same
boundary. A weakly connected component of a subgraph H of a graph G is a
connected component of the graph obtained from H by the introduction of an
edge between each pair of nonneighbors in H with a common small neighbor in G;
a weakly connected component of H may thus comprise several (usual) connected
components of H, linked indirectly via small common neighbors in the boundary
of H. A subgraph that consists of a single weakly connected component is weakly
connected. Given an adjacency-list representation of a graph G, two disjoint
subgraphs H1 and H2 of G are said to be acquainted if the intersection of their
boundaries contains a vertex in whose adjacency list some entry of a vertex in H I

is separated from some entry of a vertex in H 2 by a distance of at most d. This
definition, which embodies the bounded adjacency-list search technique, reflects
the fact that H I can "discover" H 2 by searching through a piece of length at most
2d + 1 of the adjacency list of each of its boundary vertices.

We can now define the objects of interest and state the main result of the
section. A valley in a graph G is a weakly connected subgraph of G induced
by a set of at most Ttmax small vertices and with a boundary of size at most
2(k + 1). A plain (or (d,k,nmm,Ttmax)-plain, for emphasis) in G (relative to a
particular adjacency-list representation of G) is a subgraph of G induced by at
least nmm and at most Ttmax vertices, whose weakly connected components are
pairwise acquainted twin valleys.

Lemma 3.1 For all integer constants k, nmm > 1, there are constants d, Ttmax 2:: 1
and c > 0 such that every connected graph with n > nmax vertices and treewidth
at most k contains at least cn disjoint (d, k, nmm, nmax)-plains (relative to any
adjacency-list representation).

Proof: Take b = 3(k+1)(nmm+1). We will prove the lemma with Ttmax = 3b and
d = 21eH nmm Ttmax' Let G = (V, E) be a connected graph with n > Ttmax vertices
and treewidth at most k and fix a particular adjacency-list representation of G
and a particular maximal collection P of disjoint (d, k, nmm, nmax)-plains in G.
We will show that IP I 2:: cn for a suitably chosen constant c > O.

Let (T,U) be a tree decomposition of G of width at most k and write T =
(X, F) and U = {Uz I Z EX}. We view T as rooted at an arbitrary node. Using
the same standard transformation as in the beginning of the proof of Lemma 2.2,
we can assume without loss of generality that T is binary. On two occasions in
the proof we will use the fact that if v E V, then the subgraph Tv of T induced

11

by the node set {x E X I v EU;:} is a tree, whose root can therefore be reached
from any node in Tv by going from a child node to a parent node zero or more
times; we will refer to this as the root-seeking principle.

We begin by showing that the set X of tree nodes can be partitioned into
disjoint clusters Cl" .. , C. such that for i = 1, ... , s,

(1) Ci induces a subtree of Ti

(2) I U;:ECi U;:I ::; n max;

(3) If Ci does not contain the root of T, then I U;:ECi U;:I ~ b.

The partition Cb .•. , C. can be constructed by a simple procedure that processes
T in inverse topological order, i.e., every node is processed after all of its children.
The processing of anode y computes the set C consisting of y itself and all
descendants of y that have not yet been assigned to clusters. H I U;:EC U;:I ~ b or
y is the root of T, then C is made into a new cluster; otherwise the processing
continues to the next node.

It is easy to see that the set of no des assigned to a cluster always in duces
a connected subgraph of T, i.e., condition (1) above is satisfied. Condition (3)
is satisfied by construction. As for condition (2), observe that if a cluster C is
formed during the processing at anode y, then C receives a contribution of at
most b - 1 vertices from each of the at most two children of y and of at most
k + 1 vertices from y itself, a total of at most 2b + k - 1 :S nmax vertices. This
establishes properties (1)-(3) of the cluster partition.

For i = 1, ... , s, let C: be the set of those nodes in Ci that are adjacent in
T to anode not in Ci) take Zi = U;:EC~ U;: and let Hi be the graph induced
by the vertices in (U;:ECi U;:)\Zi. By the 'properties of tree decompositions, the
graphs Hl , ... , H. are disjoint, and the boundary of Hi is contained in Zi, for
i=l, ... ,s.

For i = 1, ... ,s, we will call Hi a kernel if ICiI ::; 2 and Ci is not the cluster
containing the root of T (we exclude the latter cluster because of its special sta
tus). We next establish a lower bound on the number of kernels. By property (2)
of the cluster partition and the fact that Ui=l U;:EC, U;: = V, the number s of
clusters is at least n/nmax. The clusters form a cluster tree in a natural fashion:
Two clusters are adjacent if one contains anode adjacent in T to anode in the
other cluster, and the degree of a cluster Ci is at least ICiI. In general, a tree
with m nodes contains m - 1 edges. Hence if h denotes the number of nodes of
degree ~ 3 in an m-node tree and m ~ 2, we have 3h + (m -h) ::; 2(m - 1) or
h :S m/2 - 1. Applying this to the cluster tree, with at least n/nmax > 1 nodes,
only one of which contains the root of T, shows that the number of clusters of
degree :S 2 is at least 1 + ~n/nmax, and hence that the number of kernels is at
least ~n / nmax.

12

The boundary of a kernel H contains at most 2(k + 1) vertices and, by prop
erty (2) of the cluster partition, H contains no more than ~ vertices. In
particular, since d 2: 1tmax + 2(k + 1), all vertices in H are small. It follows that
every weakly connected component of H is a valley. We will call a valley of this
kind good if it is part of a plain in 'P, and bad otherwise. Note that a bad valley
contains fewer than 1tmin vertices (otherwise it would be a plain, contradicting
the maximality of 'P). A bad valley with boundary B will be called a B-valley.

We classify the bad valleys into three types depending on their boundaries.
Consider a bad valley L with boundary B. If B contains one or more small
vertices, L is of type (a). If B contains only large vertices and B !l Uz for all
x EX, L is of type (b). H B contains only large vertices and B ~ Uz for some
x EX, finally, L is of type (c). We next bound the number of valleys of type (a)
per kernei, the number of kernels containing valleys of type (b), and the total
number of valleys of type (c).

Type (a) valleys (B contains a small vertex).
A kernel can contain at most 2(k+1) valleys oftype (a), since each such valley

"uses up" one or more of the at most 2(k + 1) boundary vertices. We here use
the fact that valleys need only be weakly connected: Two vertices in the same
kernel and with a common small neighbor belong to the same valley.

We now consider the B-valleys for which B contains only large vertices. Given
such a B-valley, choose v E B such that the root r" of the subtree Tv of T induced
by the node set {x E X I v E Uz } is of maximal depth and assign the B-valley to
v. We here use the fact that Gis connected, which ensures that B =1= 0.

Type (b) valleys (B !l Uz for all x EX).
In this case we can conclude from the root-seeking principle that rv lies within

the cluster C containing the B-valley under consideration; otherwise B would be
contained in Uz , where x is the node in C of minimal depth in T. Since v is large,
the number of clusters containing valleys of type (b) is therefore bounded by the
number of large vertices. Because G has at most kn edges, the latter number in
turn is bounded by (2k/d) . n.

Type (c) valleys (B ~ Uz for some x EX).
By definition, all B-valleys are twins. Thus no d consecutive entries in the

adjacency list of v can contain entries of vertices in 1tmin or more different B
valleys, since then all of these (bad) B-valleys would be acquainted, and some of
them (with a suitable total size) would form a plain, contradicting the maximality
of 'P. We may conclude that at most r deg(v) / dl . 1tmin ::; 2 deg(v) . nmm/ d B
valleys are assigned to v, where deg(v) denotes the degree of v and the inequality
follows from the fact that deg(v) > d.

The valleys assigned to v may not all be twins. However, the choice of v
and the root-seeking principle ensure that if a B-valley is assigned to v and B
is contained in some (single) bag, then B ~ Ur..,. Thus the valleys of type (c)

13

assigned to v have at most 21e different boundaries (all such boundaries are subsets
of a fixed set of at most k + 1 vertices, and all contain v). It follows that the total
number of valleys of type (c) assigned to v is bounded by 2leH deg(v) . 'nmin/ d.
Again since the total number of edges is at most kn, this sums over all vertices v
to at most (2 IeH k. nmm./d)· n.

Since a bad valley contains fewer than nmm. vertices and a kernel contains at
least b - 2(k + 1) vertices, each kernel containing only bad valleys decomposes into
at least (b - 2(k + 1))/nmm. ~ 3(k + 1) bad valleys. At most 2(k + 1) of these are
of type (a). Hence if a kernel contains only bad valleys, then either one or more of
these are of type (b), or at least k + 1 of them are of type (c). The first condition
applies to at most (2k/d). n $ln/nmax kerneIs, and because the total number of
valleys of type (c) is bounded by (21eH k . nmm./ d) . n, the second condition applies
to at most (21e+2 k . nmm./ (d(k + 1))). n $ ~n / nmax kernels. Since the total number
of kernels is at least ~n/1tmax, at least (~ - ~ -l) . n/1tmax = ln/1tmax kernels
contain one or more good valleys. At most 1tmax valleys can belong to the same
plain, so the number of plains ·in P is at least cn if we take c = 1/(8· n!ax). 0

4 Constructing tree decompositions

In this section we show that minimum-width tree decompositions of n-vertex
graphs of bounded treewidth can be constructed on an EREW PRAM using
O((log n)2) time and O(n) operations. More precisely, given an n-vertex graph
G and a constant k, our algorithm outputs either a tree decomposition of G of
treewidth tw(G) or an indication of the fact that tw(G) > k.

The algorithm is based on the graph-reduction technique: A connected input
graph of treewidth $ k is successively replaced by smaller and smaller graphs in a
series of reductions until a constant-size graph results. Starting from a minimum
width tree decomposition of the final constant-size graph, the reductions are then
undone one by one in the reverse order of their application, where, in undoing a
reduction that originally replaced a graph G' by a smaller graph G", a minimum
width tree decomposition of G' is derived from one of G". At the end of this
process we obtain a minimum-width tree decomposition of the input graph.

Suppose that v and w are vertices in a graph G' that are either adjacent or
twins and let G" be the graph obtained from G' by removing v and its incident
edges after first inserting an edge between wand each neighbor of v that was not
previously a neighbor of Wj we will call v and w reduction partners and say that G"
is obtained from G' by reduction on the pair {v, w}. A tree decomposition of G"
can be obtained from any tree decomposition of G' by replacing each occurrence
of v in a bag by w if v and w are adjacent in G', and by removing all occurrences
of v if v and w are twins in G'; hence tw(G") $ tw(G'). On the other hand,
tw(G') $ tw(G") + 1, since a tree decomposition of G' can be obtained from

14

any tree decomposition of G" by replacing each occurrence of w in a bag by
occurrences of both v and w - we will say that w is expanded. If G' is of
bounded treewidth, we can therefore undo the reduction transforming G' into G"
by applying the width-minimizing procedure of Theorem 2.3 to derive a minimum
width tree decomposition of G' from one of G".

For a fast parallel algorithm it clearly does not suffice to remove vertices one
by one. It is easy to see, however, that the scheme described in the preceding
paragraph remains valid if, rather than reducing on a single pair of vertices, we
reduce simultaneously on an arbitrary collection of pairs that are sufficiently far
apart in the graph not to interfere with each other. The only difference is that
the treewidth of G' may now be as much as twice that of G", plus one (each
vertex in a bag may need to be expanded into two vertices), which is still fine for
the width-minimizing procedure.

Theorem 4.1 For all constants k ~ 1 and all integers n ~ 2, the following prob
lem can be solved on an EREW PRAM using O((log n)2) time, O(n) operations
and O(n) space: Given an n-vertex graph G, construct a minimv.m-width tree
decomposition of G or decide (correctly) that tw(G) > k.

Proof: For the time being assume that Gis connected and of treewidth at most
k. We will apply Lemma 3.1 to G with nmm = 2. Hence let the constants c and
d be as in the lemma and define the concepts small and acqv.ainted accordingly.
The lemma implies that G contains at least cn/2 distinct pairs {v, w} of small
vertices such that v and w are either adjacent or acquainted twins; to see this,
note that each of the cn disjoint plains whose existence is guaranteed by the
lemma contains either a valley of at least two vertices, hence a small vertex with
a small neighbor (either the small neighbor also belongs to the plain, or it is one
of its boundary vertices), or two or more acquainted twin valleys of one vertex
each. Furthermore, the set R of all such pairs can be computed in constant time
using O(n) operations, since it suffices to let each small vertex inspect all its
neighbors and all vertices with which it is acquainted; with some care, this can
be done without concurrent reading.

We cannot necessarily execute all reductions corresponding to pairs in R,
since vertices in distinct pairs may coincide, be adjacent or have adjacent entries
in some adjacency list, which hinders the simultaneous execution of the associ
ated reductions. In order to deal with this complication, we construct a conflict
graph with a vertex for each pair in Rand an edge between two vertices if the
corresponding reductions exclude each other for one of the reasons mentioned
above. It is easy to see that the con:ßict graph is of bounded degree and can be
constructed in constant time using O(n) operations. Following [19], we define a
fractional independent set in an m-vertex graph H as an independent vertex set
in H of size at least €m, where € is an (unspecified) positive constant. We proceed
to compute a fractional independent set in the confiict graph, which can be done

15

in O(log n) time using O(n) operations [24, Lemma 7(b)]. Finally we execute the
reductions on the pairs in the independent set, which takes constant time and
uses O(n) operations.

The reductions described above change G into a smaller graph G'. Let us now
see that we can undo the reductions in the sense of deriving a minimum-width tree
decomposition of G from one of G'. We already observed that all that is involved
is to expand certain vertices into the corresponding pair of reduction partners,
after which we can finish using the width-minimizing procedure of Theorem 2.3.
Allowing concurrent reading, the task would be trivial - processors collectively
inspecting the whole tree decomposition could simply expand each such vertex
after looking up its partner in a table. In order to avoid concurrent reading from
the table, we begin by balancing the given tree decomposition of G' (Lemma 2.2);
this may increase its width, but only by a constant factor. We then process the
resulting balanced tree decomposition (T = (X, F), {Uz I z E X}) in topological
order, i.e., each node is processed before all of its children. The processing of a
node z in T expands all vertices in Uz that need to be expanded. Hz is the root
of T, this is easy. If not, the identity of the reduction partner of each relevant
vertex v E Uz can be passed to zfrom its parent y, except ifv occurs in Uz for
the first time (i.e., if v rt. UlI). For each vertex v the latter happens only at a
single tree node z, however, so that in this case we can use table lookup to find
the reduction partner of v without any risk of concurrent reading. The balanced
tree decomposition can be processed as described in O(log n) time using O(n)
operations.

Th~ graph G' derived from G is connected and of treewidth at most k, so
that a new batch of reductiQns can be applied to G'. Since G' is smaller than G
by a constant factor, as measured by the number of vertices, O(log n) successive
stages of simultaneous reductions suffice to re du ce the input graph to a graph of
constant size. Provided that the representation of the graph at hand is compacted
after each stage by means of prefix summation, the number of operations and the
space needed decrease geometrically over the stages, so that the whole process
uses O((log n)2) time, O(n) operations and O(n) space. U ndoing the reductions
is no more expensive. This proves Theorem 4.1 for connected input graphs of
treewidth at most k.

Suppose now that the input graph G is of treewidth at most k, but not
connected. Gur approach will be to apply the algorithm developed above not to
G, but to an auxiliary connected graph H obtained from G by introducing a new
vertex rand an edge between rand a single vertex in each connected component
of G. Except in the trivial case in which G has no edges, G and H have the same
treewidth, so that a minimum-width tree decomposition of G can be obtained
from a minimum-width tree decomposition of H by removing the occurrences of
r from all bags. In order to select a vertex from each connected component of G,
we can apply the first part of the reduction algorithm to G in a preprocessing

16

phase: Each connected component of G, being of treewidth at most k, is reduced
to constant size, at which point the selection is easy, and the component can be
removed (since its size may not decrease any further , keeping it around might
make subsequent stages too expensive).

If the treewidth of the input graph G is larger than k, one or more of its
connected components may fall to be reduced to constant size within the time
bound established for graphs of treewidth at most k, or one of the intermediate
graphs encountered while undoing reductions may have treewidth larger than k.
In either case, the algorithm can stop and announce that tw(G) > k. Finally, it
is easy to see from the description of the algorithm that even if tw(G) > k, the
algorithm never performs an illegal action such as concurrent reading, and any
output produced by the algorithm is a correct minimum-width tree decomposition
ofG.O

By applying first the algorithm of Theorem 4.1 and then that of Theorem 2.5,
we obtain theresult below.

Corollary 4.2 For all constants k ? 1 and all integers n ? 2, the following
problem can be solved on an EREW PRAM using O((log n)2) time, O(n) oper
ations and O(n) space: Given an n-vertex graph G, construct a minimum-width
path decomposition of G or decide (correctly) that the pathwidth of G is larger
than k.

5 Deciding treewidth on the EREW PRAM

An important bottleneck for the running time of the algorithm in the previous
section is the repeated application of the algorithm of Theorem 2.3 while undoing
the reductions. When we aim for adecision algorithm only, we can follow a
different approach: We will not undo reductions, but instead make sure that all
reductions preserve treewidth. We actually describe a generic algorithm, whose
instantiations solve various decision problems on graphs of bounded treewidthj
in the more general setting, reductions must not affect membership in the dass
of graphs to be recognized.

Our algorithm can be viewed as a parallelization of a linear-time sequential
algorithm due to Arnborg et al. [6]. A first parallel version of this algorithm was
given in [9]. The algorithm described there is randomized, works only for graphs
of bounded degree and uses O(log n) expected time and O(n log n) expected op
erations on n-vertex input graphs. The algorithm given in this section works for
arbitrary graphs, uses O(n) operations and is deterministic, but at a cost of an
extra factor of O(log*n) in the running time. The algorithm of [6] uses an amount
of space bounded by a polynomial, but a polynomial whose degree is large and
unspecified. We reduce this to O(n) by means of the bounded adjacency-list
search technique.

17

EB~
Figure 2: Combination of two terminal graphs using ES.

A terminal graph is a tripie G = (V, E, Z), where (V, E) is a graph and Z ~ V
is an ordered set of distinguished vertices in G. The vertices in Z and those in
V\ Z are called the terminals and the internal vertices of G, respectively. A
terminal graph is open if there are no edges between terminals. For 1 ~ 0, an
I-terminal graph is a terminal graph with exact1y 1 terminals. Let 1lz denote the
dass of l-terminal graphs, for 1 ~ 0.

Given two l-terminal graphs G1 and G2 , for some 1 ~ 0, we define G1 ES G2 as
the graph obtained by taking the disjoint union of G1 and G2 and then identifying
the ith terminals in G1 and G2 , for i = 1, ... , ,. An example is shown in Fig. 2.
(When there is an edgebetween a pair of terminals in both G1 and G2 , we take
just a single edge between these in G1 ES G2 .)

Let g be a dass of graphs. We define an equivalence relation "'g on the set
of terminal graphs as follows: G1 "'g G2 if and only if for some " G1 and G2

both have 1 terminals, and for all H E 1lz, we have G1 EB H E g if and only if
G2 ES H E g. Informally, G1 and G2 are equivalent under "'g if any occurrence
of G1 in a bigger graph can be replaced by an occurrence of G2 without affecting
membership of the bigger graph in g. We say that a dass g or its defining
property P (Le., G E g if and only if P(G)) is of finite index if, for every 1 ~ 0,
1lz is split into a finite number of equivalence dasses under ""'g. (Graph properties
of finite index are also known as being regular or of finite state.) Many important
properties are known to be of finite index.

Theorem 5.1 For every graph property P of finite index and for all constants
k ~ 1 and all integers n ~ 2, the problem of deciding whether P(G) 1\ (tw(G) :::;
k) for an n-vertex input graph G can be solved on an EREW PRAM using
O(log n log· n) time, O(n) operations and O(n) space.

Proof: Assume first that P(G) implies that G is connected. It was shown in
[32] that the dass of graphs of treewidth at most k is of fiIiite index, and one
easily observes that finite index is closed under intersection (see, e.g., [12]). Hence
g = {G I P(G) 1\ (tw(G) :::; k)} is of finite index. Let 'R be a finite set of open
terminal graphs that contains at least one element of each equivalence dass of ""'g

comprising one or more open terminal graphs with at most 2(k + 1) terminals,
and take nmm as one more than the largest number of vertices of any graph in
'R. By Lemma 3.1, we can choose d, 7tmax ~ 1 and c> ° such that G contains at

18

least cn disjoint (d, k, nmm, nmax)-plains (for any adjacency-list representation of
G).

The significance of nmm is that any open terminal graph with at least nmm
vertices and at most 2(k + 1) terminals has a smaller equivalent terminal graph in
'Tl. In particular, each plain H together with its boundary Band all edges joining
a vertex in H and a vertex in B, with the vertices in B considered as terminals
(call this an extended plain), is such an open terminal graph, so that it can be
replaced by a smaller terminal graph in 'Tl. Considering isomorphic graphs as
identical, there is only a finite number of different exten~ed plains, all of which
can therefore be mapped to equivalent smaller open terminal graphs by means of
a finite table T. Each entry in T corresponds to a reduction in a natural way.

The algorithm proceeds in a number of phases. In each phase, each vertex
determines whether it belongs to a plain and, if so, looks up a corresponding
reduction in T. This can be done in constant time: It suffices to let each vertex u
inspect those vertices and edges that lie on a path of length at most 2nmax from
u such that the entries of any two consecutive edges (v, w) and (w, x) on the path
are separated by a distance of at most d in the adjacency list of Wj this can be done
without concurrent reading. The reductions found by two distinct vertices may
not be simultaneously executable: The plain containing one vertex may intersect
the plain containing the other vertex or its boundary, or two vertices, one from
each plain, may have adjacent entries in some common boundary vertex. Because
we only replace open terminal graphs by other open terminal graphs, however,
these are the only ways in which two reductions can interfere with each other.
As in Section 4, we construct a confiict graph of bounded degree on the vertices
belonging to plains, compute a fractional independent set in the confiict graph
and execute the corresponding reductions, which reduces the size of the graph by
at least a constant factor. After O(log n) stages, either we are left with a graph
of constant size, whose membership in g can be determined directly, or the input
graph did not belong to g.

The only part of a stage that takes more than constant time with a linear
number of processors is the computation of a fractional independent set in the
confiict graph. For this, we employ in the first O(1og·n) stages the algorithm
of [24, Lemma 7(b)], which uses O(logm) time and O(m) operations, where m
is the number of vertices in the confiict graph. In the remaining phases, we use
the algorithm of [23, Theorem 4], which needs O(log·n) time and O(mlog·n)
operations. The total time is O(log n log·n), and a simple simulation argument
that schedules compactions ofthe representation conveniently (see [26, Section 4])
shows that the algorithm can be carried out using O(n) operations.

Dropping the assumption that P(G) implies that G is connected, we can still
proceed as described above, provided that we remove and save each connected
component with fewer than nmm vertices as soon as it anses. After O(log n)
stages, either the input graph has been reduced to an equivalent collection of

19

connected graphs, each of which contains fewer than 1tm.in vertices, or it did not
belong to g. Assume the former. In constant time, a single processor can com
bine two graphs in the collection, i.e., replace them by a single graph equivalent
to their union and containing fewer than 1tm.in vertices. By means of a tree
structured combination process that uses O(log n) time and O(n) operations, we
can therefore reduce the input graph to a single equivalent graph with fewer than
1tm.in vertices, for which membership in 9 can be decided directly. 0

The theorem implies, in particular, that the problem of deciding whether
the treewidth of a given graph is at most k, for constant k, can be solved in
O(lognlog*n) time with O(n) operations. Moreover, the same result can be
shown to hold for pathwidth. Many well-known graph properties are of finite
index. For instance, this is true of all problems that can be expressed in monadic
second-order logic, such as Hamiltonicity and l-colorability. This was first shown
by Courcelle [18]; see [12] for a possibly more accessible proof.

Theorem 5.1 is nonconstructive: An algorithm with the stated properties is
merely shown to exist. To actually exhibit the algorithm, we must be able to
compute the number 1tm.in and to construct the table T. If we have a terminating
algorithm that decides whether two given terminal graphs are equivalent under
"'g or under some refinement (subdivision) of "'g that still has a finite number of
equivalence classes, this can be done by a method described in [6] (in a general
algebraic setting). For the case in which 9 is the dass of all graphs of treewidth
at most k, such an explicit decision algorithm was exhibited in [32]. If 9 is the
set of those graphs of treewidth at most k that satisfy a property P expressed in
monadic second-order logic, then an algorithm that decides a sub division of "'g

with a finite number of equivalence classes can be obtained by combining results
implicit in [12, 18, 32].

It is also possible to apply the parallel reduction techniques to problems that
are of finite integer index, in the sense of [9]. This allows deciding on the size of
a maximum independent set, minimum vertex cover, minimum dominating set
and others on graphs of bounded treewidth in O(log n log*n) time using O(n)
operations on an EREW PRAM. Using the technique of [9, Section 6.1], it is also
possible to construct corresponding solutions for some of these problems.

6 Deciding treewidth on the CRCW PRAM

In this section we show how the running time of O(log n log*n) of the algorithm
in the previous section can be reduced to O(log n) if we move to the stronger
CRCW PRAM. Among the many variants of the CRCW PRAM, we employ one
that allows m processors to compute the OR of m bits in constant time using O(m)
space, for all integers m ~ 1; this requirement excludes none of the CRCW PRAM
variants commonly considered. We assume an instruction set that includes unit-

20

time binary left and right shifts of words of O(log n) bits by amounts specified in
a second word.

As concerns its running time, the EREW PRAM algorithm has two bottle
necks: First, as dictated by efficiency considerations, the representation of the
graph at hand must be compacted 9(log*n) times, with each compaction taking
logarithmic time. Second, in each of 9 (log n) stages a fractional independent set
is found in a conftict graph of bounded degree, for which we spend 9(log*n) time
per stage. Moving to the CRCW PRAM, we can easily eliminate the first bottle
neck, since in this model compaction can be done in 9(logn/log log n) time [17],
rather than the 9 (log n) time for the EREW PRAM. Before attacking the second
bottleneck, let us observe that we can execute 9(log n/log*n) stages ofthe EREW
PRAM algorithm without exceeding a time bound of O(log n). After compacting
once, we can then associate 20 (logn/log'n) processors with each remaining vertex
in the graph, We will express this by saying that we have a processor advantage
of 20 (logn/log'n), which is much more than what we need in the following.

The remaining problem is to finish the computation in O(log n) time making
use of the large processor advantage mentioned above, which we will do by means
of derandomization. The task is, for a positive integer m S n, to compute a
fractional independent set 1 in an m-vertex graph of bounded degree in constant
time. Observe that there is a very simple randomized algorithm for obtaining
1: Each vertex picks a random bit uniformly from {0,1} and independently of
other vertices and then steps into 1 exactly if it picked a 1, while each of its
neighbors picked a 0. Although this formulation assumes that the vertices make
independent choices, it is easy to see that much less will also do. If each vertex
v has at least a constant prob ability of stepping into 1, then the expected size of
1 is n(m), so that, obviously, at least one possible execution of the randomized
algorithm will result in 111 = n(m). Whether v steps into 1, however, is a
function only of the random bits picked by v and by its neighbors, i.e., it suffices
to guarantee d-wise independence, where dis one more than the maximum degree
of the graph. In the case of perfect d-wise independence, the probability that v
steps into 1 is at least 2-d • Since we can allow any positive constant here instead
of 2-d , however, we can relax the requirements even more. For € > 0, random bits
Xl, ... , X m are said to be (€, d)-independent [3] if for all positive integers 1 S d,
all distinct integers i b ... , i l with 1 S i l , ... , i l S m and all bb"" bl E {0,1},
the probability of the event XiI = bl ,Xi2 = b2 , ••• ,Xii = bl deviates from 2-l by
at most € (d-wise independence is the special case € = 0). It is easy to see that
(€, d)-independent random bits, where € = 2-d- l , suffice for our purpose. We now
appeal to Theorem 2 of [3], which promises that m (2-d- l , d)-independent random
bits can be drawn from a sampie space of size (logm)O(l) (where the exponent
depends on d)j we argue separately in Lemma 6.2 below that the computation of
the m bits can be carried out in constant time with m processors.

Since our processor advantage is much bigger than polylogarithmic in n,

21

we can use the limited-randomness algorithm developed above and simulate all
(log m)0(1) == (log n)0(1) possible executions of it in parallel. We know that at
least one execution will be good, in the sense that it will lead to an indepen
dent set I of size O(m). We would like simply to pick a good execution, but
this is not entirely trivial, since we have only constant time per stage, which is
not sufficient for computing the size of I. U sing the deterministic approximate
summation algorithm of [25, Theorem 3], we can compute the size of I, up to a
constant factor (which is sufficiently accurate), in O((log log n)3) time. While this
is fast, it is not fast enough. We overcome this using a technique of [25], namely
to simulate all possible executions of the randomized algorithm not just for one
stage at a time, but for e((log log n)3) consecutive stages, after which we can
spend O((log log n)3) time determining a good execution without violating our
time bound (as much time is then spent on graph reduction as on counting). Do
ing this increases the size of the sampie space to (log n)0«loglogn)3) = 20 «loglogn)4),

which is still su:fficiently small, in view of our larger processor advantage.

Theorem 6.1 For every graph property P of finite index and for all constants
k ;::: 1 and all integers n > 2, the problem of deciding whether P(G) A (tw (G) ~ k)
for an n-vertex input graph G can be solved on a CRCW PRAM using O(log n)
time, O(n) operations and O(n) space.

As in the case of Theorem 5.1, Theorem 6.1 is nonconstructive; see the dis
cussion near the end of Section 5. In order to complete the proof of Theorem 6.1,
we still have to show the following.

Lemma 6.2 For all given integers m, K ;::: 2 with K = (log m)0(1) and all con
stant integers d ;::: 2, m (1/ K, d)-independent random bits can be computed in con
stant time on a CRCW PRAM using m processors, O(m) space and a single ran
dom integer drawn /rom the uniform distribution over a range of size (log m)0(1).

Proof: Our construction, described below, is an elaboration of one given in [3,
Theorem 2].

Without loss of generality assume that d is odd, say d = 2t + 1. Let r be
the smallest number of the form 2 . 3i no smaller than log (m + 1), where i is an
integer, and take pas the smallest prime no smaller than (2K(1 + rt))2.

Let F be the set of all bit vectors of length r and denote by <p : {O, ... , 2'" -
I} -+ F the function that maps each integer to its standard r-bit binary repre
sentation. Assume that F is organized into a field by means of suitable addition
and multiplication operations.

Now choose a random integer h from the uniform distribution over {O, ... ,p-
I} and compute the bit vector y oflength l+rt whose (i+1)st bit, for i = 0, ... , rt,
is ° exactly if i + h = 52 (modp) for some 5 E {I, ... ,p - I} (i.e., if h + i is a
quadratic residue modulo p). Finally, for i = 1, ... , m, compute the ith output
bit as the inner product modulo 2 of y with a bit vector Xi of length 1 + rt

22

constructed as foIlows: The first bit of Zi is 1, the next r bits are those of </J(i),
the next r bits are those of (</J(i))3, where the powering is done according to the
multiplication in F, the next r bits are those of (</J(i))5, etc., until the last r bits,
which are those of (</J(i))2t-1.

It is proved in [3, Proposition 2] that the inner product modulo 2 of y with
any fixed bit vector oflength l+rt is c-biased [3], where c = rtf y'p+(1 + rt)/p ~
2(1 + rt)/ y'p ~ 1/ K, i.e., it takes on the values 0 and 1 with probabilities differing
by at most c. It then foIlows from [3, Lemma 2] and [2, Proposition 6.5] that the
m bits output by the algorithm are indeed (1/ K, d)-independent. What remains
is to bound the resources needed by the computation.

Obviously, r = O(1og m) and, by Bertrand's postulate (see, e.g., [28,
Thm. 418]), which asserts the existence of a prime in the range {8, ... ,28} for ev
ery positive integer 8, we obtain that p = (log m)0(1), so that the random integer
h is indeed chosen from a range as small as claimed in the lemma. Because of the
small size of r and p, it is easy to compute these quantities, as weIl as the vector
y, in constant time by brute force that amounts to trying out all possibilities.

In order to construct the vectors Zl, ••• , Zm, we need to implement the
multiplication operation in the field F. We define the product of the
vectors (ar-l,ar-2, ... ,aO) and (br-1,br-2, ... ,bo) as (c,,-bc,,-2, ... ,eo), where
L:~;~ CiZ i is the remainder polynomial obtained by dividing the product
O:i;~ aizi)(L:i;~ bizi) by the fixed polynomial j(z) = zr + zr /2 + lover the
2-element field 7Z2 • Since j(z) is irreducible over 7Z2 [33, Exercise 3.96], it is
weIl-known that this multiplication operation (together with componentwise ad
dition over 7Z2) indeed turns F into a field.

Compute q as a positive integer with q ~ (logm)/5, but q = O(1ogm). We
can implement addition and multiplication over 7Z 2 of polynomials of degree
less than q, represented by bit vectors in the obvious way, by means of table
lookup. In each case, we need a (2q -1) x (2q -1) table with entries in the range
{O, ... ,22q

- 1 - 1}. In constructing the tables, we can therefore, for each table
entryand each integer in the range {O, ... , 22q

- 1 -1}, dedicate a team of O(m1/ 5)

processors to testing whether the integer is the correct value of the entry under
consideration, in which case the team will fill in that table entry. In the case of
addition, the testing is trivial to do in constant time with just q processors, each
of which takes care of one bit position. For multiplication, the problem reduces
to computing the parities of 2q - 1 bit sequences, each of length at most q. Since
the parity of q bits can be computed in constant time with O(m cS) processors,
for arbitrary constant 8 > 0 (see, e.g., [36, lemma on p. 375]), we have enough
processors in this case as weIl.

Because r = O(q), addition and multiplication over 7Z2 of polynomials of
degree less than r reduces to a constant number of additions and multiplications
over 7Z2 of polynomials of degree less than q, so that both operations can be
carried out in constant time by one processor using the tables constructed above.

23

In order to complete the implementation of multiplication over F, we need to
describe how to com pute the remainder over 7Z 2 of a polynomial a(z) = L:~=o aiZ i

modulo f(z), where r ~ I ~ 2r - 2. But since none ofthe powers Z"-l, ••• ,Z(,,/2)+1

occur in f(z), the polynomial a(z) - (L:!=" aizi-")f(z), which obviously has the
same remainder modulo f(z) as a(z), is of degree at most max{l- r/2,r - I},
so that constant time suffices to reduce the degree of the input polynomial byat
least r/2 or below r. Doing this twice completes the computation.

The final operation that must be supported is forming the inner product
modulo 2 of two bit vectors, each of length O(r). This operation can easily be
carned out in constant time by one processor using a table that maps each bit
sequence of q bits to its parity. Before the table can be used, it is necessary to
convert y from a representation with one bit per word to one with q bits per
word. Again, this can be done in constant time by trying out all possibilities in
parallel. 0

Acknowledgment. We thank Jordan Gergov and Rajeev Raman for helpful
discussions related to the proof of Lemma 6.2.

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple
parallel tree contraction algorithm. J. Aigorithms 10 (1989) 287-302.

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Aigorithms 7 (1986)
567-583.

[3] N. Alon, O. Goldreich, J. Hästad, and R. Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures and
Aigorithms 3 (1992) 289-304.

[4] R. J. Anderson and G. L. Miller. Deterministic parallel list ranking. In
Proc. 3rd Aegean Workshop on Computing (AWOC 1988), Springer- Verlag,
Lecture Notes in Computer Science, Vol. 319, pages 81-90.

[5] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Aig. Disc. Meth. 8 (1987) 277-284.

[6] S. Arnborg, B. Cource1le, A. Proskurowski, and D. Seese. An algebraic theory
of graph reduction. J. ACM 40 (1993) 1134-1164.

24

[7] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In Proc.
14th International Workshop on Graph-Theoretic Concepts in Computer Sci
ence (WG 1988), Springer- Verlag, Lecture Notes in Computer Science, Vol.
344, pages 1-10.

[8].H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. In Proc. 25th Annual Symposium on Theory of Computing
(STOC 1993), pages 226-234. To appear in SIAM J. Comput.

[9] H. L. Bodlaender. On reduction algorithms for graphs with small treewidth.
In Proc. 19th International Workshop on Graph-Theoretic Concepts in Com
puter Science (WG 1993), Springer- Verlag, Lecture Notes in Computer Sci
ence, Vol. 790, pages 45-56.

[10] H. L. Bodlaender. Improved selI-reduction algorithms for graphs with
bounded treewidth. Disc. Appl. Math. 54 (1994) 101-115.

[11] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Technical Report RUU-CS-93-27, De
partment of Computer Science, Utrecht University, Utrecht, the Netherlands,
1993. A preliminary version appeared in Proc. 18th International Colloquium
on Automata, Languages and Programming (ICALP 1991), Springer- Verlag,
Lecture Notes in Computer Science, Vol. 510, pages 544-555. To appear in
J. Algorithms.

[12] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatie generation of linear
time algorithms from predicate calculus descriptions of problems on recur
sively constructed graph families. Algorithmica 7 (1992) 555-581.

[13] N. Chandrasekharan. Fast Parallel Algorithms and Enumeration Techniques
for Partial k-Trees. Ph.D. thesis, Clemson University, 1989.

[14] N. Chandrasekharan and S. T. Hedetniemi. Fast parallel algorithms for tree
decomposing and parsing partial k-trees. In Proc. 26th Annual Allerton Con
ference on Communication, Co ntro I, and Computing, U rbana-Champaign,
lllinois, 1988.

[15] R. Cole and U. Vishkin. Approximate parallel scheduling. Part I: The basic
technique with applications to optimal parallel list ranking in logarithmic
time. SIAM J. Comput. 17 (1988) 128-142.

[16] R. Cole and U. Vishkin. The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time. Algorithmica 3
(1988) 329-346.

25

[17] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking.
Inform. and Comput. 81 (1989) 334-352.

[18] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs. Inform. and Comput. 85 (1990) 12-75.

[19] N. Dadoun and D. G. Kirkpatrick. Parallel construction of sub division hier
archies. J. Comput. System Sei. 39 (1989) 153-165.

[20] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of
polynomial-time algorithms. J. Comput. System Sei. 49 (1994) 769-779.

[21] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in an EREW
model. In S. K. Tewksbury, B. W. Dickson, and S. C. Schwartz, editors,
Coneurrent Computations: Algorithms, Architecture, and Technology, pages
139-156. Plenum Press, 1988.

[22] A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic ex
pression evaluation and context-free recognition. Inform. and Comput. 81
(1989) 32-45.

[23] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry
breaking in sparse graphs. SIAM J. Disc. Math. 1 (1988) 434-446.

[24] T. Hagerup. Optimal parallel algorithms on plan ar graphs. Inform. and
Comput. 84 (1990) 71-96.

[25] T. Hagerup. Fast deterministic processor allocation. J. Algorithms 18 (1995)
629-649.

[26] T. Hagerup, M. Chrobak, and K. Diks. Optimal parallel 5-colouring of planar
graphs. SIAM J. Comput. 18 (1989) 288-300.

[27] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizations
of k-terminal flow networks and computing network flows in partial k-trees.
In Proe. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1995), pages 641-649.

[28] G. H. Hardy and E. M. Wrlght. An Introduction to the Theory of Numbers
(5th ed.). Oxford University Press, Oxford, 1979.

[29] S. Khuller and B. Schieber. Efficient parallel algorithms for testing connectiv
ity and finding disjoint s-t paths in graphs. In Proe. 30th Annual Symposium
on Foundations of Computer Science (FOCS 1989), pages 288-293.

26

[30] S. R. Kosaraju and A. L. DeIcher. Optimal parallel evaluation of tree
structured computations by raking. In Proc. 3rd Aegean Workshop on Com
puting (AWOC 1988), Springer- Verlag, Lecture Notes in Computer Science,
Vol. 319, pages 101-110.

[31] J. Lagergren. Eflicient parallel algorithms for tree-decomposition and related
problems. In Proc. 31st Annual Symposium on Foundations 0/ Computer
Science (FOCS 1990), pages 173-182.

[32] J. Lagergren and S. Amborg. Finding minimal forbidden minors using a
finite congruence. In Proc. 18th International Colloquium on A utomata,
Languages and Programming (ICALP 1991), Springer- Verlag, Lecture Notes
in Computer Science, Vol. 510, pages 532-543.

[33] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applica
tions. Cambridge University Press, Cambridge, 1986.

[34] J. Matousek and R. Thomas. Algorithms finding tree-decompositions of
graphs. J. Algorithms 12 (1991) 1-22.

[35] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In
Proc. 26th Annual Symposium on Foundations 0/ Computer Science (FOCS
1985), pages 478-489.

[36] P. Ragde. The parallel simplicity of compaction and chaining. J. Algorithms
14 (1993) 371-380.

[37] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM J. Comput. 18 (1989) 594-607.

[38] B. A. Reed. Finding approximate separators and computing tree width
quickly. In Proc. 24th Annual Symposium on Theory 0/ Computing, (STOC
1992), pages 221-228.

[39] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. J. Combo Theory Sero B. 63 (1995) 65-110.

[40] R. E. Tarjan and U. Vishkin. An eflicient parallel biconnectivity algorithm.
SIAM J. Comput. 14 (1985) 862-874.

[41] E. Wanke. Bounded tree-width and LOGCFL. J. Algorithms 16 (1994)
470-491.

27

	95-1-0170001
	95-1-0020002
	95-1-0170003
	95-1-0170004
	95-1-0170005
	95-1-0170006
	95-1-0170007
	95-1-0170008
	95-1-0170009
	95-1-0170010
	95-1-0170011
	95-1-0170012
	95-1-0170013
	95-1-0170014
	95-1-0170015
	95-1-0170016
	95-1-0170017
	95-1-0170018
	95-1-0170019
	95-1-0170020
	95-1-0170021
	95-1-0170022
	95-1-0170023
	95-1-0170024
	95-1-0170025
	95-1-0170026
	95-1-0170027
	95-1-0170028
	95-1-0170029
	95-1-0170030
	cover-hinten_2099-2897-300dpi

