
Generalized k-Center Problems

Shiva Chaudhuri� Naveen Garg� R. Raviy

Abstract

The k-center problem with triangle inequality is that of placing k center nodes in a weighted

undirected graph in which the edge weights obey the triangle inequality, so that the maximum

distance of any node to its nearest center is minimized. In this paper, we consider a generalization

of this problem where, given a number p, we wish to place k centers so as to minimize the

maximum distance of any node to its pth closest center. We consider three di�erent versions

of this reliable k-center problem depending on which of the nodes can serve as centers and

non-centers and derive best possible approximation algorithms for all three versions.
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1 Introduction

The k-center problem is a classical problem in facility location: given n cities and the distances

between them, we wish to select k of these cities as centers so that the maximum distance of a

city from its closest center is minimized. The problem is NP-hard and Hochbaum and Shmoys

present a 2-approximation algorithm1 for graphs with edge weights obeying triangle inequality [4].

Further they also show that no polynomial time algorithm for this problem can have a performance

guarantee of (2� �) for any � > 0, unless P=NP. In this paper we consider generalizations of the

k-center problem with triangle inequality in which we require that each city has some number (say

p) of centers `close' to it. We extend the techniques of Hochbaum and Shmoys and provide similar

best possible approximation algorithms.

Suppose that we wish to locate facilities at k out of n cities such that the maximum distance of

a city to its pth-closest facility is minimized. Considering `pth closest' (as against closest in the

k-center problem) is important when the facilities concerned are subject to failure and we wish to

ensure that even if up to p�1 facilities fail, every city has a functioning facility close to it. However,

we can formulate such a generalization of the k-center problem in two di�erent ways depending on

whether the center nodes are required to be served by p centers or not. This leads to the �rst two

formulations below. The third problem arises out of a generalization that partitions the nodes into

suppliers and customers and requires that only customer nodes be serviced by p center nodes from

among the suppliers.

The p-reliable k-center problem

Given a complete graph G = (V;E) with edge weights w : E ! R+ that satisfy triangle inequality,

the p-reliable k-center problem is to �nd a subset S, of at most k vertices which minimizes

max
v2V

dp(v; S)

where dp(v; S) is the distance of the p
th-closest vertex to v in S. Note that if v 2 S then the closest

vertex to it is v itself.

The p-neighbor k-center problem

Another possible generalization of the k-center problem arises when we demarcate the roles of the

centers and non-centers. Consider a setting where we wish to select k sites as warehouses in a

distribution network with n sites. We only require that each site that is not a warehouse have at

least p warehouses close to it while we have no such requirement on the warehouses. Then the

problem, which we refer to as the p-neighbor k-center problem is to �nd a subset S of at most k

vertices which minimizes

max
v2V�S

dp(v; S)

Note that setting p = 1 in both the above problems reduce them to the k-center problem.

1An �-approximation algorithm for a minimization problem runs in polynomial time and always outputs a solution
of value no more than � times the optimal.
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The p-neighbor k-supplier problem

In the k-supplier problem the vertices are partitioned as supplier and customer vertices and the

problem is to choose k supplier vertices such that the maximum distance of any customer to its

nearest chosen supplier is minimum. Hochbaum and Shmoys [5] provide a 3-approximation algo-

rithm for this problem and a result due to Karlo� [7] shows that computing a (3��)-approximation

for any � > 0 is NP-hard. The generalization of the k-supplier problem that we consider and refer

to as the p-neighbor k-supplier problem is to choose a set of k suppliers such that the maximum

distance of a customer to its pth-nearest chosen supplier is minimized. Formally, if S denotes the

supplier vertices and C the customer vertices, we wish to pick a set S � S of at most k vertices

which minimizes

max
v2C

dp(v;S)

1.1 Main results

In this paper we present polynomial-time algorithms achieving an approximation ratio of 2 for the

p-reliable k-center problem and the p-neighbor k-center problem and an approximation ratio of 3

for the p-neighbor k-supplier problem. Since these problems are generalizations of the k-center and

k-supplier problems, these approximation ratios are the best possible. The techniques used in this

paper are mainly graph-theoretic; we relate the size of certain types of dominating sets in a graph

to the size of certain types of independent sets in its square.

1.2 Related work

Location problems including several versions of the k-center problem are surveyed in [3]. Kariv and

Hakimi [6] describe exact solution methods for the k-center problem.

Turning to approximation algorithms, other than the work of Hochbaum and Shmoys mentioned

above, Gonzalez [2] as well as Feder and Greene [1] also describe 2-approximation algorithms for

the k-center problem. A generalization with vertex weights is addressed by Hochbaum and Shmoys

in [5] which also describes a general paradigm for approximating bottleneck problems. In [9], Wang

and Cheng considered a generalization of the k-center problem where the distance to the center is

multiplied by a vertex priority in the objective; they developed a 2-approximation algorithm for

this problem.

The p-neighbor k-center problem was considered previously by Krumke [8]; he provided a 4-

approximation algorithm for this problem. We use ideas from his work for deriving a lower bound

for this problem but provide a di�erent algorithm to achieve an approximation ratio of 2.

In the next section, we describe a basic paradigm of Hochbaum and Shmoys for approximating

bottleneck problems using the instance of the k-center problem. In the following three sections,

we apply the paradigm and generalize the techniques for the three di�erent problems mentioned

above.
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2 The Basic Paradigm

The problems mentioned in the introduction fall into a general class of problems known in the

literature as bottleneck problems. Roughly speaking a bottleneck problem is one in which we are

trying to optimize a bottleneck, i.e. minimizing the maximum or maximizing the minimum value

of some quantity. Thus for the k-center problem we wish to �nd from among all dominating sets

of size k, the one in which the longest covering edge is minimum.

Hochbaum and Shmoys [5] developed a general paradigm for approximating NP-hard bottleneck

problems; we illustrate this paradigm with the k-center problem. Let w1; w2; w3 : : : be the edge

weights in increasing order and let Gi be the subgraph induced by edges of weight at most wi. First

observe that the optimum value for the k-center problem is equal to one of the edge weights; in

particular it is the minimum edge weight wi such that Gi has a dominating set of size at most k.

While it is easy to generate the subgraphs G1; G2; G3 : : :, the problem of checking if these subgraphs

have a dominating set of size at most k is NP-complete. However, suppose that in the subgraph

Gi we can �nd an independent set I of size more than k such that no vertex in Gi is adjacent to

two vertices of I . Then any dominating set in Gi has a unique vertex dominating each vertex of I

and therefore cannot be of size k or less.

Given a graph G = (V;E) the xth power of G, denoted by Gx = (V;Ex) is a graph with the same

vertex set as G and an edge between two vertices if they are connected by a path of at most x edges

in G. Then I is an independent set of vertices in G2
i . Thus to argue that Gi has no dominating

set of size at most k, it su�ces to �nd an independent set in G2
i of size larger than k. What if the

largest independent set we can �nd in G2
i is of size no more than k? While we cannot say anything

for sure about the size of a dominating set in Gi, we claim that G2
i has a dominating set of size at

most k.

To prove this claim we only need to assume that the independent set in G2
i that we �nd (say I) is

maximal, i.e. the addition of any other vertex to I yields a set which is not independent. But this

implies that every vertex not in I has a neighbor in I which means that I is a dominating set in

G2
i .

Let Gj be the �rst subgraph in the sequence G1; G2; G3; : : : such that the maximal independent set

found in G2
j is of size no more than k. Since G2

j�1 has an independent set of size larger than k,

every dominating set in Gj�1 is of size more than k and hence the optimum value is at least wj.

Further, G2
j has a dominating set (the maximal independent set found) of size at most k. Since

the edge weights satisfy triangle inequality, the longest edge in G2
j has weight at most 2wj . Thus

we have a k-center in which the distance of any vertex to its closest center is at most twice the

optimum.

Summarizing, we have the following two key ingredients in this 2-approximation for the k-center

problem.

1. If G has a dominating set of size at most k then no independent set in G2 is of size larger

than k.

2. A maximal independent set is also a dominating set.

The �rst observation is useful in establishing a lower bound on the optimum value while the second
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gives a solution of value at most twice the lower bound.

3 The p-neighbor k-center problem

Note that in this version of the problem, only the noncenter nodes need to be considered in comput-

ing the bottleneck objective value. For this problem, we �rst generalize the notion of independent

and dominating sets following Krumke [8] and sketch his proof of a lower bound relating these

sets. However, to obtain the upper bound we describe a di�erent algorithm motivated by proving

a stronger graph-theoretic lemma about these sets.

De�nition 3.1 A set of vertices S � V is p-dominating if every vertex not in the set has at least p

neighbors in it, i.e. 8v 2 V �S : degS(v) � p. Thus, a 1-dominating set is the same as a dominating

set.

De�nition 3.2 A set of vertices S � V is p-independent if every vertex in the set has at most

p � 1 neighbors in it, i.e. 8v 2 S : degS(v) � p � 1. Thus, a 1-independent set is the same as an

independent set.

The following lemmas relate the size of a p-dominating set in a graphG to the size of a p-independent

set in G and G2. These can be viewed as extending the relationship between dominating sets and

maximal independent sets. The �rst lemma appears in [8] as Proposition 5. We sketch the proof

here for completeness.

Lemma 3.1 [8] If G has a p-dominating set of size k then no p-independent set in G2 has size

more than k.

Proof: Let D be a p-dominating set in G (jDj = k) and I a p-independent set in G2 and let v

be a vertex in I � D. Let S1 be the vertices in D that are neighbors of v and S2 the vertices in

V �D that are neighbors of the vertices in S1. Further, let S = S1 [ S2. Since each vertex in S is

a neighbor of v in G2, the set I contains at most p vertices from S. The set D on the other hand

contains at least p vertices from S (the subset S1). Since D � S is a p-dominating set and I � S a

p-independent set in the graph obtained by deleting the set S we can repeat the above argument

in this residual graph G[V � S]. Continuing in this manner we will eventually reach a situation

when there is no vertex in the residual graph that belongs to the p-independent set but not to the

p-dominating set. Since at each step the number of vertices deleted from I was at most the number

deleted from D, we have that jI j � jDj = k.

While Krumke showed that a maximal p-independent set in G is p-dominating in G2, we show

below that there is a p-independent set in G that is also a p-dominating set in G (rather than G2).

This reduces the performance ratio of the resulting algorithm from 4 to 2.

Lemma 3.2 Given a graph G = (V;E) and 1 � p � n, there exists a p-independent set S � V

that is also p-dominating.
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Proof: Let S be a p-independent set that is not p-dominating. In particular let v 2 V � S be such

that degS(v) = q < p. Let U be the neighbors of v in S that have exactly p� 1 neighbors in S and

let G[U ] be the subgraph induced by U in G. Let I be a maximal independent set (and hence also

a dominating set) in G[U ]. Therefore the set S � I [ fvg is also p-independent.

De�ne the potential of a p-independent set, S, as  (S) = p � jSj� jE(G[S])j, where E(G[S]) denotes

the edge set of the subgraph induced by S in G. Since

jSj � jS � I [ fvgj = jI j � 1

jE(G[S])j� jE(G[S� I [ fvg])j = (p� 1)jI j � (q � jI j)

we have

 (S)�  (S � I [ fvg) = q � p < 0

Given any p-independent set that is not p-dominating we can obtain another p-independent set

that has strictly larger potential. Therefore the p-independent set with maximum potential is also

p-dominating.

The proof of the above lemma also yields a polynomial time procedure for computing a p-independent

set that is also p-dominating. We start with some p-independent set and if this is not p-dominating

we �nd a vertex that has less than p neighbors in the set. Then as in the proof we delete and

add vertices to the set to obtain another p-independent set with strictly larger potential. Since the

potential of a p-independent set is at least zero and at most pjV j, we will obtain a p-independent

set that is also p-dominating in at most pjV j steps.

Let Gi be the �rst subgraph in the sequence G1; G2; G3 : : : for which the p-independent set found

in G2
i by using the above procedure is of cardinality at most k. By triangle inequality it follows

that the longest edge in G2
i is of length at most 2wi and hence we have a p-neighbor k-center of

value 2wi. Since in G
2
i�1 we found a p-independent set of cardinality more than k, Gi�1 does not

have a p-dominating set of size k or less by Lemma 3.1. Hence the optimum value is strictly larger

than wi�1 (i.e. at least wi) and this gives a 2-approximation algorithm for this problem.

4 The p-reliable k-center problem

Recall that this version of the problem assumes that all nodes including the center nodes are con-

sidered in evaluating the bottleneck objective. Therefore we modify the de�nition of p-dominating

sets appropriately.

De�nition 4.1 A vertex v dominates a vertex u if u is adjacent to v or u = v, i.e. a vertex

dominates its neighbors and itself. A set of vertices S � V is p-dominating if every vertex in the

graph is dominated by at least p vertices in the set.

This time we relate the size of a p-dominating set in the graph G to that of an independent set

(rather than a p-independent set) in G and G2.

Lemma 4.1 If G has a p-dominating set of size k then no independent set in G2 has size more

than k=p.
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Proof: Let I be an independent set in G2. A vertex in G can dominate at most one vertex of I .

Therefore any p-dominating set in G is of size at least pjI j. Since G has a p-dominating set of size

k, jI j � k=p.

Lemma 4.2 If no independent set in G is of size more than k=p then G has a p-dominating set of

size k.

Proof: We �rst argue that there exists a p-dominating set, S, such that in the subgraph induced

over S, any vertex with degree more than p� 1 has a neighbor with degree exactly p� 1. We then

show that S has an independent set of size jSj=p.

Claim 4.1 There exists a p-dominating set S such that any vertex, v 2 S, with degS(v) > p � 1

has a neighbor u 2 S with degS(u) = p� 1.

Proof: Let S be a p-dominating set and v a vertex in it violating the claim. Then degS(v) = q > p�1

and degS(u) � p for every u 2 S that is a neighbor of v. Let U be the neighbors of v in V �S that

have exactly p neighbors in S and let I be a maximal independent set in G[U ]. Since I is also a

dominating set in G[U ], the set S [ I � fvg is p-dominating.

De�ne the potential of a p-dominating set, S, as  (S) = (p� 1)jSj � jE(G[S])j. Since

jS [ I � fvgj � jSj = jI j � 1

jE(G[S [ I � fvg])j � jE(G[S])j = (p� 1)jI j � q

we have

 (S [ I � fvg)�  (S) = q � (p� 1) > 0

Thus, given a p-dominating set violating the claim we can obtain another with strictly larger

potential. Hence the p-dominating set with maximum potential has the property claimed.

Claim 4.2 Any p-dominating set S satisfying the previous claim contains an independent set of

size at least jSj/p.

Proof: Pick arbitrarily from S a vertex of degree at most p� 1 and include it in the independent

set. Delete the vertex and its neighbors. Continue in this manner till there are no more vertices

of degree at most p � 1 in S. Since every vertex in S of degree more than p � 1 has a neighbor

in S of degree exactly p � 1, we stop only when we have deleted all vertices in S. Every time we

include a vertex in the independent set we delete no more than p vertices from S. Thus the size of

the independent set is at least jSj=p.

Since G has no independent set of size larger than k
p
, jSj � k. This proves the lemma.

The proof of the above lemma also yields a polynomial time algorithm for obtaining a p-dominating

set of size at most k. We start with a p-dominating set which perhaps does not satisfy Claim 4.1

and add/delete vertices to it (as in the proof) till it satis�es the property in the claim. Since each

modi�cation strictly increases the potential and the potential of a p-dominating set is at least �jEj

and at most (p � 1)jV j, the maximum number of steps needed is at most (p � 1)jV j + jEj. The
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p-dominating set so obtained may not be of size k. But then, using the procedure in the proof of

Claim 4.2 we can �nd an independent set of size at least k=p.

As in the previous section, let Gi be the �rst subgraph in the sequence G1; G2 : : : for which the

independent set found using the above procedure on G2
i is of size less than k=p. Then, we have

a p-dominating set in G2
i of size at most k and hence a solution of value 2wi for the p-reliable

k-center problem. Since we found an independent set of size at least k=p in G2
i�1, there is no

p-dominating set in Gi�1 of size at most k. Hence, the optimum value is at least wi and we have a

2-approximation algorithm for the p-reliable k-center problem.

5 The p-neighbor k-supplier problem

The vertex set of the graph is now partitioned into sets S and C, the set of suppliers and customers

respectively. We wish to �nd the minimum i such that each customer is dominated by at least p

suppliers from a subset of k suppliers in the subgraph Gi.

We use the same de�nition of a p-dominating set as in the previous section. However, now we are

only interested in suppliers dominating customers and hence a p-dominating set now refers to a set

of suppliers which dominates every customer at least p times. Furthermore, an independent set is

now an independent set of customers. The proof of the following lemma is along the lines of that

of Lemma 4.1 and is hence omitted.

Lemma 5.1 If G has a p-dominating set of size k then no independent set in G2 has size more

than k=p.

Let Gi be the �rst subgraph such that the maximal independent set found in G2
i is of size at most

k=p. Since G2
i�1 has an independent set of size more than k=p, Gi�1 does not have a p-dominating

set of size at most k. Hence the optimum value is at least wi.

The maximal independent set (of customers) in G2
i dominates all the other customers by maximality.

For each customer in the maximal independent set we pick p suppliers adjacent to it in Gi (if a

customer does not have p suppliers adjacent to it in Gi then the optimum value is strictly larger

than wi and we move onto the next subgraph Gi+1). Thus the total number of suppliers picked is

at most k. Furthermore, this set of suppliers is a p-dominating set in G3
i . Since the longest edge

in G3
i is of length at most 3wi, we have a solution to the p-neighbor k-supplier problem of value at

most thrice the optimum.
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