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Abstract 

Trus paper is concerned with the average rUDDing time of Batcher's odd-even 
merge sort when implemented on a collection of processors. We consider the 
case where n, the size of the input, is an arbitrary multiple of the number p of 
processors used. We show that Batcher's odd-even merge (for two sorted lists 
of length n each) can be implemented to run in time O«nlp)(log(2 + p2 In))) 
on the average, and that odd-even merge sort can be implemented to run in 
time 0 « n I p )(log n + log p log( 2 + p2 In))) on the average. In the case of merging 
(sorting), theaverage is taken over all possible outcomes of the merging (all 
possible permutations of n elements). That means that odd-even merge and 
odd-even merge sort have an optimal average running time if n ~ p2. The 
constants involved are also quite small. 

1 Introduction 

This paper is concerned with a long-known parallel algorithm for sorting, namely 
Batcher's odd-even merge sort. Originally this algorithm was described as a compara­
tor network of size O(n log2 n) that sorts n elements in time O(log2 n) [1,11]. However, 
it can also be used as a sorting procedure on a parallel computer. In this case, there 
will, in general, be fewer processors than input elements. Odd-even merge can then be 
implemented by substituting all comparisons (and exchanges) between two elements by 
splits of two sorted lists at the median of their union (for details see Section 2). If this 

*Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfs­
methoden und Parallelität, and in part by the ESPRIT Basic Research Actions Program of the EU 
under contrad No. 7141 (project ALCOM II). 
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is done in a straightforward way (that is, two processors that communicate exchange 
all their elements), the running time will be 9((nlp)(log(nlp) +log2 p)), where pis the 
number of processors used. 

In practice, when comparing different sorting algorithms [4, 9, 6], odd-even merge sort 
has not been used often. Instead, another sorting algorithm proposed by Batcher 
[1], namely bitonic merge sort, has been used in the comparisons. Because of its 
small constant factors, bitonic merge sort is quite efficient on many parallel machines. 
Perhaps the reason for this preference of bitonic merge sort is that the communication 
pattern of odd-even merge sort does not directly correspond to any of the generally 
used interconnection networks. 

In this paper we will show, however, that odd-even merge sort can be implemented (by 
keeping the communication between processors to a minimum) in such a way that it 
performs on the average much better than bitonic merge sort. More precisely, we will 
show that the average running time of odd-even merge sort can be O( (ni p ) (log n + 
logplog(2+p2 In))) (with small constant factors), whereas the average running time of 
bitonic merge sort (in the generally used form) is 9((nlp)(log n + log2 p)). (Here n is 
the size of the input and p is the number of processors used. The average is taken over 
all possible ways to store the input elements evenly distributed among the processors.) 
In particular, odd-even merge sort needs on the average much less communication than 
bitonic merge sort; this is important since communication is still relatively expensive 
with existing parallel machines. (Here we assume that all required connections between 
processors are present, e.g., that the processors form a completely connected graph. In 
Section 5 we will comment on this and present some implement at ion results.) 

To my surprise, I could not find a reference to this result in the literature. (Perhaps this 
is the case because odd-even merge sort has not been used often in practice.) Several 
papers do exist about the average number of exchanged elements for the comparator 
network, i.e., for the case that n = p [15, 8, 12]. In these papers it is shown that 
odd-even merge needs 9(mlogm) exchanges of elements where both lists contain m 
elements. for two sorted lists of length m each Another related result is presented 
in [2]. The authors consider an algorithm (called Gray Sort) for sorting n elements 
using p processors that consists of log p phases. Each phase consists of the first and 
the last step of (several insta.nces of) odd-even merge on subsets of the processors. 
(The authors do not seem to be aware of this; odd-even merge is not mentioned in the 
paper.) They show that this algorithm sorts with high prob ability if n > cp2log p for 
a constant c > 18 * In(2). 

This paper is organized as folIows. In Section 2 we analyze the average running time 
of odd-even merge. These results are used to derive an upper bound for odd-even 
merge sort in Section 3. Section 4 revisits bitonic merge sort, and Section 5 contains 
implementation results and draws some conclusions. 
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2 The Average Running Time of Odd-Even Merge 

In this section we analyze the average running time of odd-even merge on a collection 
of processors. We consider the following machine model: Given are p processors, each 
with its own local memory. The processors communicate by exchanging messages. For 
ease of explanation, we assume in this and the following section that the processors form 
a complete graph, i.e., each pair of processors is directly connected (we will comment 
on this in Section 5). However, in one step, a processor may only communicate with 
one of its neighbours. At the beginning the elements are distributed evenly among the 
processors. We assume that every outcome of the merging is equally likely, that pis a 
power of 2, and that all input elements are distinct. 

We use the following argument. Consider the odd-even merging network for two sorted 
lists of p/2 elements each. It consists oflogp steps where elements are compared and 
rearranged. We can use this procedure to merge two sorted lists of length m each (m 
a multiple of p/2) using p processors by substituting all comparisons (and exchanges) 
between two elements by splits of two sorted lists at the median of their union (for 
details see below). H this is done in a straightforward way (that is, two processors that 
communicate exchange a1l their elements), the running time will be 9((m/p)logp). 
However, the average running time of an implementation can be reduced considerably 
if the splitting of lists is done in a more efficient way, i.e., if the communication between 
processors is kept to a minimum. For example, if two processors have to communicate 
in a step, they first test whether they hold any elements that have to be exchanged. 
H this is the case for any pair of processors that communicate in a given step, we say 
that this step is executed. We will see that if m is large enough, with high prob ability 
only few of the logp steps of odd-even merge will be executed. More precisely, we show 
that the average number of steps executed by odd-even merge is 0(1og(2 + p2/m )). 
From this the conclusion follows that the average running time of this implementation 
of odd-even merge is O((m/p)(log(2 + p2/m ))). 

The odd-even merge network works as follows: 
Let A = Ao, Ab A2 , ••• , Am-I and B = Bo, Bll B2 , ••• , Bm - l be the two sequences to be 
merged and denote by Eo, ... , E2m- 1 the outcome of the merging. 
H m = 1, compare and exchange, if necessary, Ao and Bo. Else recursively merge 
sublists of A and B containing only elements with even or with odd indexes. More pre­
cisely, merge Aeven = Aa, A2,~, ... with Beven = B o, B 2 , B 4 , ••• into C = Co, Cb C2 , ••• 

and Aodd = Al, A3 , ••• with Bodd = BI, B3 , ••• into D = Do, D I , D 2 , •••• After this is 
done, compare and exchange, if necessary, Di with Ci+! to form elements ~i+! and 
E2i+2 of the output, i ~ O. 

We want to use this procedure for merging using a collection of processors and thus 
have to determine where the elements are stored. (The average number of exchanged 
elements depends on how this is donej we will comment on this later.) As it turns 
out, the best way to do this is the way already proposed by Batcher. To begin with, 
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we assume that 2m processors are available. Thus we store the list Ao, Al, A 2 , ••• 

at processors Po, P2 , P4 , ••• , the list Bo, BI, B 2 , ••• at processors PI, P3 , Ps, ... , and the 
list Eo, EI, E2 , E3 , ••• at processors Po, PI, P2 , P3 , ••• (see Figure 1). By unfolding the 
recursion we get the following procedure (see, e.g., [15]). Let p = 2m. 

procedure Odd..Even..Merge(p); 
for all i, 0 ~ i < p/2, pardo 

compare-exchange(P2i , P2i+1)j 

for i = logp - 1 downto 1 do 
for all j, 1 ~ j < (p - 2i )/2, pardo 

compare-exchange(P2j_l , P2j+2i -2)j 

Compare-exchange(Pi , Pj) denotes a procedure where Pi gets the smaller of the two 
elements stored at Pi and Pj and Pj gets the larger. 

POjAo 
P1jBo 
P2iA1 

P3 jB1 

P4 i A2 
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Eu 
E14 
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Figure 1. Odd-even merge with 16 processors. 

This procedure can be generalized to the case where p < 2m, i.e., where each processor 
holds more than one element. We assume that p divides 2m and that the sequences 
A and B are stored evenly distributed at the processors such that the even indexed 
processors hold subsequences of A and the odd indexed processors hold subsequences 
of B. Then we can use the same procedure as above, where compare-exchange(Pi,Pj ) 
now denotes a procedure where Pi gets the smallest 2m/p elements of all elements 
stored at Pi and Pi together and Pi gets the largest 2m / p elements of these. 
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That the above procedure merges correct1y can be seen as folIows. In [l1J, page 241, 
exercise 38, it is shown that every comparator network for n elements can be trans­
formed into a sorting algorithm for zn elements by replacing each comparator by the 
compare-exchange procedure above. Here the input consists of n sorted lists of z el­
ements each. It follows from this that the same is true for any merging comparator 
network: Consider the sorting comparator network that divides the input into two 
equally sized sets, sorts them recursively and then merges the two sorted lists together. 
Since the transformed- sorting network sorts correctly and each input for the merging 
network is possible, the transformed merging network merges each input correctly. 

We still have to specify how to implement compare-ezchange(Pi , Pi)' We want to 
minjmize the amount of communication (which is always relatively expensive). This 
can be done in the following way. Remember that processor Pi will get the smaller 
elements and processor Pi will get the larger elements. In the first step, P;, sends its 
largest element to Pi and Pi sends its smallest element to p;,. This is repeated until 
the element sent by Pi is smaller than the element sent by Pi' Thus the number of 
elements exchanged here is at most two plus the number of elements that have to move 
to a different processor. 

Note that if any elements have to be exchanged between Pi and Pi, both processors 
have to merge two sorted lists to get the sorted list of the elements now assigned to 
them. 

Definition For X E {A, B, E}, let XY = Xy(2m/p) , Xy(2m/p)+1, 

X y(2m/p)+2, ... , X y(2m/p)+(2m/p)-1' 

To derive an upper bound for the average running time of odd-even merge, we will use 
the following argument. Assume that m is large compared with p. Consider the above 
iterative description of odd-even merge. In the first step, corresponding subsequences 
of A and B are compared and rearranged. H we choose the input at random, most 
of the elements in any subsequence of A (namely those lying in the middle of the 
subsequence) will be compared with their neighbours in B and vice versa. This is 
because on the average the rank of an element in A will not differ much from its rank 
in B if (2m/p) is large enough. Moreover, these elements will, after the first step, be 
stored at the "correct" processors (see Figure 1): After the first step processors P2i and 
P2i+l hold the elements in A (B, resp.) with ranks in A (B, resp.) between i(2m/p) 
and (i + 1)(2m/p) -1. At the end, processors P2i and P2i+l hold E2i and E2i+l, i.e., all 
elements with overall rank between 2i(2m/p) and 2(i + 1)(2m/p) - 1. Thus, for most 
inputs, most of the elements will be stored at the correct processors after the first step. 
(This observation shows why it is best to store the input and the output as suggested 
by Batcher and as is done here.) 

Next consider the for-Ioop of the algorithm.. H there are many steps where elements are 
exchanged there has to be a large i where this happens. Denote the first (or lugest) i 
where at least one element has to be exchanged between two processors by imc:c. We 
will show that there exists an element z such that the difference between the rank of 
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z in A and the rank of z in Bis large - namely at least (2im .. .,-1 - 1)(2m/p) + 1. (For 
example, if all log p - 1 steps of the for-loop are executed, there exists at least one 
element with a difference of almost m/2 between its rank in A and its rank in B.) 
However, there ·are not many inputs for merging with this property if m/p and i maz 
are large. 

Next we will analyze this property more closely and then show what it means for the 
average running time of odd-even merge. 

Definition Let X be a sorted list. The rank of z in X is the number of elements in 
X that are sm aller than z. 

Lemma 1 Assume that at least two elements are ezchanged in the for-loop of the 
algorithm for a fized i. There then ezists an element z in A U B where the rank of z 
in A differs !rom the rank of z in B by at least (2i - 1 - 1)(2m/p) + 1. 

Proof. Let ima:r: = maz{i; at least two elements are exchanged in the for-loop}. Thus, 
before the execution of the loop with i = i maz , processors P2i and processors P2j+1 

hold all elements in Ai U Bi, 0 ::; j < p/2. 
Let 8 = 2im...:. Let P/c and Pk+cS-l be two processors that exchange elements in this step. 
Then one of them sends only elements from A and the other one only elements from B 
(this follows from the observation above.) Assume that P/c sends only elements from 
A. Let k = 2j + 1. The largest element from A that P/c holds is z = A(j+1)(2m/p)-1l and 
the smallest element from B that P/c+c5-1 holds is B(j+c5/2)(2m/p). Thus the rank of z in 
A differs from the rank of z in B by at least (j + 8/2)(2m/p) - ((j + 1)(2m/p) - 1) = 
(8/2 - 1)(2m/p) + 1. Since ima:z: ~ i, the claim follows. 0 

N ext we upper bound the prob ability that there exists an element z E AU B such that 
the rank of z in A differs from the rank of z in B by ß. 

3 

2 

1 

o 

-1 

o 1 2 3 4 5 6 7 8 9 10 

Figure 2: m = 5. The path shown corresponds to the input where the outcome of the 
merging is AABAABBBBA. 
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Lemma 2 Let A and B be two sorted sequences o/length m each, and let each outcome 
0/ merging A and B be equally likely. Then the probability that there exists an element 
x in A U B where the rank 0/ x in A diJJers !rom the rank 0/ x in B by ,6. is at most 

Proof. This can be shown with the help of the reflection principle (see, e.g., [7], pp. 
72-73) as follows. We can represent each input as a path from point (0,0) to point 
(2m,0) (see Figure 2). 

We are interested in all paths that touch or cross the line y = ,6. + 1 or the line 
y = -(,6. + 1): these correspond to inputs where a difference in rank of at least ,6. 

exists. According to the re:fl.ection principle, the number of paths that touch or cross 
the line y = a, a > 0, is equal to the number of paths from (0,0) to (2m,2a). Thus 

the number of inputs with a difference in rank of at least ,6. is at most 2 (m~:+1)' and 

the probability that an input has this property is at most 2 (m~:+J j (:). 0 

The following lemma gives an upper bound for (,;~) j e:) . 
Lemma 3 

(2m)2 _A2 

-1r(':""""m-+--'--,6.'7"':)(:--m-_-,6.-e m). 

Proof. This can be shown with the help of Stirling's approximation of n! and a Taylor 
senes expansion of In x; the Appendix gives more details. 0 

Now we are ready to prove an upper bound for the average number of steps executed 
in odd-even merge. 

Lemma 4 The average number 0/ steps executed in odd-even merge is bounded by 

1.39 + flog(1 + Vp2 jm)l. The probability that at least 1 + flog(1 + vr jm)l + 6, 6> 0, 

steps are executed is bounded by e-226
• 

Proof. Let prob(i) be the prob ability that the for-loop is executed for a fixed i. 
Remember that a step of odd-even merge is executed if at least two processors have to 
exchange elements. The average number of executed steps is bounded by 

log1'-1 Iog1'-1 

1 + L i(prob(i) - prob(i + 1)) = 1 + L prob(i) =: A(m,p). 
i=l i=l 
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We know from Lemma 1 that there is a difference in rank of at least (2 i
-

1 -1)(2m/p)+1 
if the for-Ioop is executed for a fixed i. Together with Lemmas 2 and 3 this gives an 
upper bound of 

for A(m,p). Let c = 2J16/37r. Since i ::; logp - 2, this is 

logp-2 

< 1 + L min (1, e-4{2i-l)2mlr+ln{c)) . 

i=O 

The last term of this behaves as follows: As long as the absolute value of the exponent 
is smaller than 1, the value of the term lies between 1 and 1/ e; when the absolute value 
becomes !arger, the value of the term drops rapidly towards o. Since there are llog(l + 

J(1 +ln(c))p2/4m)J i's where the absolute value of the exponent is smaller than 1, 

we can expect that the value ofthe sum is 0(1 +log(l + Jp2/m )). To actually derive 
an upper bound for A(m,p) we cut the sum into two parts, one containing the "large" 

terms and one containing the "small" terms. Let :z: = log(l + J(1 + In(C))p2 /4m) and 
let i z = r:z: l, i.e., i z is the smallest value of i where the absolute value of the exponent 
is larger than 1. With this we get 

i:z:-l logp-2 2 

A(m,p) ::; 1 + L 1 + L e-4(2
i
-l) mlp2+ln{c) 

i=O i:i:z: 

i=O 

. log~-i= -4 (2i (l+J(l+ln{C))p2 14m) -Ir mlr+ln(c) = 1 + lz + L..J e 
i=O 

logp-2-i :z: 

::; 1 + i z + L e-
22i 

i=O 

::; 1 + i z + 0.39::; 1.39 + flog (1 + Jr/m ) 1· 
The second claim follows direct1y from the above discussion. o 

The following table shows some examples. For various numbers of processors, it gives 
the required size of the input such that with prob ability of at least 0.99 (0.999, resp.) 
not more than the listed number of steps are executed. The size of the input is given as 
number of elements per processor. The numbers are computed directly from Lemmas 
2 and 3. 
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I I 
0.99 I 0.999 I 

no. proc. \ no. steps 1---2--'1r---3---r-1 -4-r'1-5 """1-6"""'-+---2--'-1 -"'""'3 -r1-4--r-1 -5""-1""--:6-l 

16 23 6 1 - - 64 8 1 - -
64 180 20 4 1 - 252 28 6 2 1 

256 714 80 16 4 1 1008 112 22 6 2 
1024 2850 318 60 14 4 4028 448 84 18 6 
4096 11394 1266 234 52 12 16110 1790 330 72 18 

Since each step of odd-even merge can be executed in time O(m/p), we get the following 
upper bound for the average running time of odd-even merge. 

Lemma 5 The average running time olodd-even merge is O«n/p)log(2 + p2/n )), 
where p is the number 01 processors and n is the size 01 the input. 

3 The Average Running Time of Odd-Even Merge 
Sort 

Building on the results from Section 2 we can now derive an upper bound for the 
running time of odd-even merge sort. Odd-even merge sort works as folIows. Let n 
be the size of the input, let p be the number of processors, let p divide n, and let the 
processors be numbered from 0 to p -1. At the beginning each processor stores n/p of 
the elements. In the first step each processors locally sorts its portion of the input. In 
the following log p steps these sorted lists are merged together in the following way. In 
step i, 0 :5 i < log p - 1, the lists stored at processors Pi, Pi+6, Pi+2C, •.. and processors 
Pi+6/2' Pi+C/2+C, Pi+6/2+2C, ... are merged, where S = p/2i and 0 :5 j < p/2i

+1 (see 
Figure 3). Note that this means that in each instance of odd-even merge the elements 
are stored as required in the previous section. 

Again we will derive an upper bound for the number of steps where elements have to 
be exchanged. 

Lemma 6 Let c = 2J16/37r. In the j-th call olodd-even merge, 0 :5 j :5 logp-1, the 
average number 01 steps where elements are ezchanged is bounded by 1.39 + ~og(l + 
J(1 + ln(cp/2i +1 ))p2i /n)l· 

Proof. In the j-th call of odd-even merge, p/2i+1 independent mergings are performed, 
each with 2i+1 processors and (n/p)2i +1 elements. Thus, the for-loop in odd-even merge 
consists of j steps. The prob ability that at least two elements are exchanged in any of 
the p/2i +1 mergings during the execution of the for-Ioop for a speci:fic i, j ;::: i ;::: 1, is 
bounded by 

. (1..!!!!....- _2(2i - 1 _1 )2n/(P2;+1)) 
mm '2i +1 e , 
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Po PI P2 P3 p. Ps P6 PT Ps Pg PIO Pu Pu P13 PB PIS 

i = 0' t t t 1 J I I 
, j r J J J J J 

i = l' i T ! ! ± T I ! ± T I 
, j r r 

i = 2' + ! + ! + ! + ! + ! + ! I , j 
i = 3' ! ! ! ! ! ! ! ! ! ! ! ! ! ! , 

Figure 3 The processors that work together in step i are shown connected. 

a.nd the average number of steps with data excha.nges is bounded by 

1 + ~ min (1 ~e-2C2i-1)2n/cp2j+l») 
L...., , 2i +1 
i=O 

·+1 
= 1 + t min (1, e-2C2i-1)2n/Cp2i+l)+lnCCP/2i+l») . 

i=O 

Let z = log(1 + J(1 + ln(cpI2i +1 ))p2i In) a.nd let z = rz 1- As in the proof of Lemma 
4, we split the sum into "small" a.nd "large" terms a.nd get as upper bound 

. 1 

1 + z + t e_2(2i_1)2n/(p2i+l)+ln(cp/2i+l) 

i=,z: 

i=O 

i~,z: -2 (2i (1+VC1+lnCcp/2i+1 ))p2i In) -1) 2 nl (p2i+l) +ln( cp/2i+1 ) 

=1+z+L....,e 
i=O 

i-1-,z: 
:5 1 + z + L e-

22i 

i=O 

< 1.39 + Z. 0 

Now we Ca.n derive a.n upper bound for the average number of steps with data excha.nges 
in odd-even merge sort. 

Lemma 7 The average number of steps in odd-even merge sort where data are ex­

changed is bounded by log p(1.39 + flog(1 + J p2 In)l), where n is the size of the input 
and p is the number of processors. 
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Proof. Let c = 2J16/31(". According to Lemma 6, the average number of steps with 
data exchanges is 

~ log p ( 1. 39 + r log (1 + J (1 + In ( c) ) p2 I (2n ) ) 1) 
~ logp (1.39 + rlog (1 + Jr In) 1) .0 

Since each step in odd-even merge (except for the initiallocal sorling) can be executed 
in linear time, we arrive at the following theorem. 

Theorem 1 The average running time 0/ odd-even merge sort is bounded by O((nlp) 
(log n + log p log(2 + p2 In))) where n is the size 0/ the input and p is the number 0/ 
processors used. 

4 Revisiting Bitonic Merge Sort 

In the introduction we claimed that odd-even merge sort is much faster than bitonic 
merge sort for random inputs. However, this is only true if the input elements are 
stored as suggested by Batcher. In this section we show how to modify bitonic merge 
to achieve a running time that is comparable to that of odd-even merge. 

The bitonic merge network works as follows. 
Let A = Ao, Al, A2 , ••• , Am-l and B = Bo, Bb B2 , ••• , Bm- l be the two sequences to be 
merged and denote the outcome of the merging by Eo, ... , E2m- l . H m = 1, compare 
and exchange, if necessary, Ao and Bo. Else, merge Aeven = Aa, A2,~, ... with Bodd = 
Bl , B3 , ••• into C = Co, Cb C2 , ••• and Aodd = Al, Aa, ... with Beven = Bo, B2 , B4 , ••• into 
D = Do, D l ,D2 , •••• After this is done, compare and exchange, if necessary, Ci with Di 

to form elements E2i and E2i+1 of the output, i ~ o. 
As in the case of odd-even merge we can use this as a merging procedure for a collection 
of processors. Again, every comparison and exchange between two elements is replaced 
by the split of two sorted lists at their median. 

In this high level description, bitonic merge looks very similar to odd-even merge. 
However, it leads to a very different looking network. In the original version, the list 
Ais stored before list B, and the list B is stored in reversed order. Figure 4.a shows 
the bitonic merging procedure with 16 processors. H the input is stored like this, the 
running time of bitonic merge will be O((nlp)logp) on the average (where n is the size 
of the input). This can be seen as follows: on the average, half of the elements in Bo 
will have to be moved to Po. However, since Bo is stored at Pp - l at the beginn;ng, 
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a) original bitonic merge b) modified bitonic merge 

Figure 4. Bitonic merge with 16 processors. 

this will take time n((n/p)logp). Thus, the problem is that one of the lists is stored 
in reversed order. 

But what happens if we store the input elements in the same order as we did for 
odd-even merge? Figure 4.b shows the communication pattern for this alternative 
when using 16 processors. The links between the processors are drawn such that their 
thickness increases with the prob ability that they are used (i.e., that elements have 
to be exchanged across them). Although links drawn in the same thickness occur in 
several steps of the algorithm, they do not interfere much with each other: except for 
the last three steps, every processor is endpoint of at most two links drawn in the 
same thickness. We can again argue that the running time of this merging procedure 
is O((n/p) log ß), where ß is the largest difference of rank in A and B. With this we 
get asymptotically the same average running time as for odd-even merge. 

5 Implementation and Comparison with other Par­
allel Sorting Algorithms 

In the previous sections, we assumed for the sake of simplicity that all processors 
that have to communicate in odd-even merge sort are connected. On existing parallel 
computers this is, in general, not the case. However, many existing parallel machines 
can be viewed as complete graphs, as long as the number of processors is not too large 
[5]. Other machine models where the running time from Section 3 can be achieved 
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are the hypercube (by using gray code [14]) and the hypercube with E-router [10]. A 
hypercube with E-router can perform shifts without conflicts; i.e., the running time 
for a shift operation will be O(Z) where Z is the maximallength of a message sent, if 
Z ~ logp. (Intel's iPSC/860 and NCube's NCube are hypercubes with E-router.) 

We have implemented the above algorithm to run on the iPSC /860 from Intel in the 
following way. If two processors have to communicate in a step, they first check whether 
they have to exchange any elements. If this is the case, they use binary search to 
determine which elements have to be exchanged (the latter method was proposed in 
[16].) This is done in order to be able to send the data in larger blocks (on existing 
parallel computers this is, in general, much cheaper than sending the same data in 
small blocks). The elements at each processor are stored as a linear list; when new 
elements arrive, they are merged with the elements already present. If one of the two 
lists that have to be merged in a step is short, binary search is used to determine where 
the elements in the shorter list belong, as has been proposed in [16]. Communication is 
done using asynchronous send and receive; on the iPSC/860 this allows communication 
and local computation to be performed in parallel and for part of the communication 
time to be "hidden". 

The speedups achieved for large inputs are quite high; e.g., the speedup on theiPSC/860 
for 100,000 longs per processor and using 16 processors is 12.3 or 77% of the maximal 
possible; for 1,600,000 long per processor it is 14.5 or 90.6% of the maximal possible. 
For small inputs the speedups are not as high as one could, perhaps, expect from the 
asymptotic upper bounds. E.g., for 300 longs per processor and 16 processors of the 
iPSC /860 the speedup is 1.5, that is, the parallel algorithm is only slightly faster than 
the sequential algorithm (for 5,000 longs per processor it is already 55%). The reason 
for this is that the start-up time for messages is quite long; only if long messages are 
sent (much more than 300 longs), the full bandwidth of the communication links can 
be utilized. (All of the above listed speedups are for randomly generated input.) 

How does this algorithm compare with other parallel sorting algorithms? As mentioned 
in the introduction, odd-even merge sort is, on the average, faster than the original 
bitonic merge sort. However, as seen in the previous section, if we change the order 
in which the input elements are stored, bitonic merge sort becomes much fast er for 
random inputs. On the iPSC/860, the running times for these two modified merge sort 
algorithms were very similar. 

Note that this way of storing the elements in a parallel merge sort also make the sorting 
algorithm adaptive: if the input is nearly sorted in the sense that no element is stored 
far away from its position in the sorted list, this will be reflected by the running time. 

We have also compared odd-even merge sort with the sorting algorithm proposed in 
[16]. In the first phase of this algorithm, the input is "presorted" by a hypercubic 
descend algorithm; in the second phase, the sorting is then finished by odd-even merge 
sort. The authors claim that this algorithm performs much better than odd-even merge 
sort alonej however, we cannot confirm this. According to our experiments, the running 
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time is almost the same. (For large inputs, the algorithm with presorting executes fewer 
steps but sends more elements.) 

For large inputs, sampIe sort (see, e.g., [3]) will have a smaller running time. The idea of 
sampIe sort is as foilows. First splitters are determined by sampling the input elements. 
These splitters are sorted and used to form buckets. The buckets are then distributed 
among the processors and each input element is sent to the processor responsible for 
the bucket that contains the element. One advantage of this method is that each input 
element is moved only once. On the other hand, this method does not work weil if the 
input is small or if there are many identical elements. 
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Appendix 

Lemma 3 
(2m)2 _~2 

~--~~----~e m 
1r(m + ß)(m - ß) . 

Proof. With the help of Stirling's approximation for n! the foilowing can be shown. 

Let n E N and let I,Ln E N, 0 < P, < 1. Then 

1 2nH2 (I-') < (n) < 1 2nH2 (I-') J 8np,( 1 - p,) - p,n - J 21rnp,( 1 - p,) , 

where H2(z) = -zlogz - (1- z)log(l- z). (See, e.g. [13], pp. 308 ff.) 

U sing this we get 

(2m)2 22m(B2C'2t.~)-1) 
1r(m + ß)(m - ß) . 

Taylor series expansion of In z around 0.5 leads to 

22 ~ 24 

In(z) = In(0.5) + 2(z - 0.5) - 2(z - 0.5? + 3'(z - 0.5)3 - "4(z - 0.5)4 + ... 

and thus 

H2(m+ß) =_m+ßlog(m+ß) _ m-ßlog(m-ß) 
2m 2m 2m 2m 2m 
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(
m +.6. ( .6. 2

2 
( .6. ) 2 2

3 
( .6. ) 3 2

4 
( .6. ) 4 ) =-log(e) ln(0.5)+2--- - +- - -- - + ... + 

2m 2m 2 2m 3 2m 4 2m 

m .6. ( .6. 2
2 

( .6. ) 2 2
3 

( .6. ) 3 2
4 

( .6. ) 4 ) ) 
2m ln( 0.5) - 2 2m -"2 2m - 3" 2m -"4 2m - .. . 

= 1 -log e ( (1 _ ~) (~) 2 + (~_ ~) (~) 4 + (~ _ ~) (~) 6 + ... ) 

(
1 (.6.)2 1 (.6.)4 1 (.6.)6 ) = 1 - log e 2" m + 12 m + 30 m + ... . 

Putting this together yields the claimed inequality. o 
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