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Abstract

We have implemented a parallel distributed geometric docking algorithm that uses a
new measure for the size of the contact area of two molecules. The measure is a potential
function that counts the “van der Waals contacts” between the atoms of the two molecules
( the algorithm does not compute the Lennard-Jones potential). An integer constant ¢, is
added to the potential for each pair of atoms whose distance is in a certain interval. For
each pair whose distance is smaller than the lower bound of the interval an integer constant
¢, is subtracted from the potential (¢, < ¢,). The number of allowed overlapping atom
pairs is handled by a third parameter N. Conformations where more than N atom pairs
overlap are ignored. In our “real world” experiments we have used a small parameter N
that allows small local penetration. Among the best five dockings found by the algorithm
there was almost always a good (rms) approximation of the real conformation. In 42
of 52 test examples the best conformation with respect to the potential function was an
approximation of the real conformation. The running time of our sequential algorithm is in
the order of the running time of the algorithm of Norel et al. [NLW+]. The parallel version
of the algorithm has a reasonable speedup and modest communication requirements.

1 Introduction

Docking reactions play an important role in a large number of biochemical processes. Although
the mechanisms of docking reactions are not well understood, two complementarity principles
seem to be important for the recognition and binding of docking partners. The first principle is
the shape complementarity principle: The shapes of the molecules that build a docking complex
are (locally geometrically) complementary, that is, there is a large fit between the surfaces of the
docking partners. The second complementarity principle is the chemistry principle. 1t states
that there is a strong chemical complementarity (with respect to hydrogen bonds, electrostatic
interactions, hydrophobicity and so on) between the sites of docking partners.

Although the second principle is the more important one, it is possible to identify many
docking sites solely with the help of the shape complementarity principle. In order to find these
sites for two proteins A and B with n and m atoms (w.l.o.g. n > m), the following 3D matching
problem has to be solved: Determine all transformations (rigid motions) of B such that there
is a large fit between the surface of A and the surface of B and no penetration of B into the
interior of A. We will call the parts of the surfaces that match for a special conformation
the common surface of the conformation. For all candidates with a good geometric fit the
potential energy difference of the docking conformation and the molecules A and B has to be



computed. The best candidates with respect to potential energy difference are possible docking
conformations.

In the above description of the geometric 3D matching problem, two strong assumptions
were made: (1) The two proteins are rigid. (2) There is no penetration of the rigid bodies. Of
course, proteins are not rigid. They have certain dynamics that have strong influence on their
chemical reactivity. Some parts of the molecules are very flexible, others are more or less rigid.
Molecular dynamics simulations of some proteins indicate that the receptor or docking sites of
the proteins are not very flexible. But “small” local changes of the shape of the docking sites
happen during the docking reactions. Hence, if we work with rigid bodies, the algorithm is
not allowed to ignore conformations with local overlappings. That means, we need a fitness
function that can handle local penetration.

Fischer et al. [FNN+] and Lin et al. [LNF+] use the following measure for the size of
the common surface: The algorithm computes for each protein a set of points on its contact
surface [Conl, Con2]. The points of A are stored in a 3D grid. Boxes (voxels) of the grid
that contain surface points are called surface bozes, boxes in the interior of the molecule inner
bozes and boxes outside the molecule outer bozes. Given a transformation of molecule B, the
algorithm computes for each surface point of B the box of the grid of A that contains the point.
The algorithm counts the number of surface boxes that contain points of B. The number of
such boxes (that contain points of A and B) is the measure for the size of the common surface.

In this paper we present a new approach for measuring the size of the common surface.
Intuitively the idea behind this measure was motivated by the observation that the contact
area of most docking complexes is densely packed with respect to the van der Waals hulls of
the atoms. We count the number of “van der Waals contacts” between atoms of molecule A
and atoms of (a conformation of ) molecule B (conf(B); A is fixed and B will is movable). Our
fitness function is defined as follows:

FIT(conf(B)) := cq,*#{(a,b)|la€ A,b€ B,d; < d(a,b) < d,}
—cs x #{(a,d)|la € A,b € B,d(a,b) < di}.

Here, c, < ¢, are integer constants and d; and d,, are distance parameters (default : dj = 2.85
A, d, = 4.0 A). The first part of the fitness function FIT counts the number of atom pairs
that have a “van der Waals contact.” The second part represents a negative score for the
“overlapping” atom pairs. We presently do not take into account that atoms have different
van der Waals radii, but we could easily refine our fitness function with a modest increase of
running time and space requirements.

We call a conformation of B feasible if the number of overlapping atom pairs, i.e., pairs
(a,b) with a € A, b € B and d(a,b) < dj, is less than a prescribed constant N. The goal is to
compute the feasible conformations with the highest fitness values, say the top 1000 (or any
other prescribed number).

In Section (2) we describe a data structure for molecule A that allows to approximately
compute the fitness value of a fixed conformation of B and we also describe a technique to
identify promising conformations for B. In Section (3) we show how to parallelize our algorithm.
In Section (4) we present a few docking results. We have accurately docked proteins where
other programs had difficulties. In 42 out of 52 tested examples the best element of the fitness
list was close to the real conformation. In 4 out of 52 examples a good approximation of the
real conformation was among the best five elements of the fitness list. As far as we know, there
is only one other docking system that produces results of similar quality, namely the docking



system that is being developed at the GBF (Gesellschaft fiir Biotechnologische Forschung mbH,
Braunschweig) in the group of Prof. Schomburg. It uses correlation techniques (see [KSE+]).
The running times of this docking system seem to be much larger than the running times of
our program.

The fitness function is only a rough measure for the potential energy contribution of the
van der Waals interactions. We can give the measure a stronger chemical taste, by changing
the constant ¢, for pairs of atoms that can build hydrogen bonds. This can be realized with a
modest increase of the computational requirements. Approaches to refine the modell and some
future research directions will be dicussed in Section (5).

For other (geometric) protein docking techniques see [Con3, KSE+, KCF, KBO+, FNN+,
HCT, EKS+].

2 The Sequential Algorithm

First, we describe the algorithm for the fitness test, i.e, the algorithm that computes the size
of the common surface of a given conformation using the measure defined above. Second, we
outline the technique for selecting a discrete set of conformations that will be tested.

For a point p define its contact value

contact_value(p) := cq*#{(a,p)|la € A,d; < d(a,p) < d,}
—¢, *#{(a,p)|la € A,d(a,p) < di},

i.e, the contact value of p is simply the value of our fitness function for a molecule consisting
of a single atom which is placed at point p of the three-dimensional space.

We describe two data structures that allow to efficiently determine an approximation of the
contact_value(p) for any p. The second data structure is faster than the first, but uses more
space. For both data structures a 3D grid that contains molecule A is computed. The boxes of
the grid have a side length of 4 A. If all points in a box have the same contact value, then we
store the contact value with the box. Otherwise we store the value “Undefined” and a pointer
to a local data structure for this box. The two data structures for the fitness test differ by the
local data structure that is added to boxes with value “Undefined.” In the first data structure
this local data structure is a simplified octree [FVF+] with a constant number (default:4) of
hierarchy levels. The leaves of the octree store the maximum of the contact values of the eight
corners of the corresponding cube.

The second data structure has a 3D grid (array of contact values) as local data structure.
The approximation of the contact-value that is stored for a cell of the grid is the maximum of
the contact values of its eight corners. It enables faster tests, but requires more storage.

Given a conformation of A and B the fitness test can be carried out in the following way:
For each atom of B we determine the box of the grid that contains the atom. If the value
of the box is not “Undefined”, then we add this value to the fitness function. Otherwise we
search in the local data structure of the box for a smaller box that contains the atom and has
a defined contact value. This value is added to the fitness value. The sum of all contact values
is the fitness value of the conformation. Instead of comnsidering all atoms of B, we compute
only the contact values of the atoms of B that belong to the Connolly (contact) surface of
B [Conl, Con2]. These atoms can be easily computed in a preprocessing step. The rationale
behind only looking at atoms in the Connolly surface is that atoms of B that do not belong to
the Connolly surface of B have contact value 0 in most feasible conformations.



Figure 2: (a) All points on the probe sphere surface. (b) The points with contact value greater
or equal to 12.

Now we describe the method for selecting the conformations that have to be tested: We
compute an almost uniformly distributed point set on the surface of a sphere s. We can get
such a point set by recursively refining an icosahedron (see Figure 1). For our purpose we take
a sphere of radius 3.5 A.

For each atom a of A we carry out the following test: We move the center of the sphere
s to the center of atom a. For each point of the discrete surface point set of sphere s the
algorithm checks if the point belongs to the so called probe center surface. A point belongs to
this surface if the smallest distance to any atom in A — a is greater or equal to 3.5 A. We store
all the points that belong to the probe center surface in a list L. For each point p in the list L
contact _value(p) is computed. We select the points with “large” contact values (default: > 12)
and store them in a second list BL (see Figure 2). The points that have such large contact
values are usually located in invaginations of the surface of A.

Using geometric hashing [LW] the set of test transformations can be computed as follows
(see Figure 3): We compute all triangles between points of BL, whose side lengths are larger
than a lower bound /; and smaller than an upper bound [,,, and store them in a hash table H.



Figure 3: How to determine the transformation test set.

Then we do the same for the centers of the atoms of B that belong to the Connolly surface of
molecule B, i.e., we compute all triangles that fulfill the above length conditions. For each of
the triangles between atom centers of B, we determine all “similar” triangles in the hash table
H. For each pair of similar triangles (¢1,%;) a transformation is computed, that maps ¢; onto
t2. Since the triangles are similar but not equal, there are different ways to map the triangles.
We use the centers of gravity, the normals of the triangles and angle bisectors to determine
(choose) a transformation.

Using local complementarity criteria we can reduce the number of transformations that will
be tested.

3 The Parallel Algorithm

The sequential algorithm can be easily parallized, by splitting the list of fitness tests. A master
processor distributes the work between a set of clients and coordinates the clients. Each
client builds the data structure for fitness tests in a preprocessing step. After that the master
processor informs the client which part of the transformation list he should work on, by sending
him an integer ¢. This integer is the list number where the client should start. The client stops
at i+ STE P, where STEP is a small integer. The client informs the master that he has carried
out his work, by sending an integer. Either all work has been done — in this case the master
informs the client that he should send his list of the best transformations — or there is a rest of
the transformation list — then the master sends a new start number to the client. The master
collects all results from the clients and computes a list of the best transformations. There is no
communication between the clients. The message passing is handled by PVM routines [Sun].
By choosing a suitable small constant ST E P, the load of the clients is well balanced, but



the communication overhead is still modest. The first version runs on a cluster of workstations
with processors that have different performance values (SUN and SGI workstations). Hence,
it is difficult to prove precisely how the speedup behaves, but our experience seems to imply
that the speedup will be greater than 90 % for a small number of processors (< 32) (see also
Section 5).

4 Docking Examples

We now summarize our “real world” experiments. We have tested 52 docking examples that
can be found in the PDB. We have also tested dockings where B is a small ligand (see Table
(1)). The best 1000 geometric dockings were optimized by a local optimizer that “shakes” the
molecule (only translations, no rotations). Since we are still working on parameter optimization,
we did three experiments with different parameter sets for some of the “difficult” docking
examples. The best result of these three experiments can be found in Table (1). The parameter
sets of the three experiments differ only in the sizes of the lower bound [; and the upper bound
I, for the edge length of the triangles. All other parameters (c,, ¢;, di, du, N, tolerance for
“similar” edge length and so on) did not change. The standard lower bound [; is 6.5 A and the
standard upper bound I, is 10.5 A. The two other parameter sets are “small” = (=40 Al =
9.5 &) and “large” = (I; = 8.5 A,1,, = 12.0 A). Norel et al [NLW+] did only one experiment
for each docking example. Their docking program did not carry out local optimizations that
can significantly improve the docking results.

The algorithm did almost always determine good approximations of the real conformations.
The algorithm did not dock 1LYM, that is there was no approximation of the real conformation
among the 1000 elements of the score list. We have used the local optimizer to compute the
“real fitness” of the natural conformation (see column 8). The large difference between the
“real fitness” and the maximal fitness that has been found by the algorithm implies that there
are a few thousand conformations with better fitness value than the real conformation (see
Table (1)).

In almost all examples where the algorithm succeeded, an approximation of the real confor-
mation was among the five best conformations, more precisely: The worst example was 4XIA.
It was number 290 of the score list. If doubles are eliminated, its rank is below 50. The second
worst was 2HFL, which was the 54th element of the score list. On the ranking list of Norel
et al [NLW+] it was number 6792 (see Column 4 of Table (1)). Using our local optimizer we
“shaked” the real conformation of 2HFL, in order to see what fitness values can be expected
for approximations of the real conformation. The “real fitness” 723 (see column 8 of Table (1))
would be number 7 on the score list. 3HFM was number 13 (17637 on the list of Norel et al)
and 4CPA was number 11 (161 on the list of Norel et al).

All other examples had approximations among the first five elements. In most examples the
best geometric fit was an approximation of the real conformation, for instance 4SGB, which
was number 13691 on the ranking list of Norel et al.

The results above show that the new fitness function is a promising new measure for the
size of the docking sites. Many docking sites can be determined by shape complementarity, but
there are examples (perhaps a large percentage of all docking examples) where the common
surface of the docking complex is much smaller than the common surface of the best geometric
fits. The best approximations of these difficult examples will have large ranks (> 1000). Since
energy evaluations have to be carried out for all potential solutions, we cannot claim that these



Results obtained by our docking algorithm

PDB # A # B no. fit. best real rms [NLW+] dock. proc.
A (min) (min)
1AAR 601 601 4 492 528 576 2.82 4.25 6(136.5)
6ADH 2834 2835 1 1381 1381 1554 1.57 59.43 4(139.0
3APR 2403 57 1 611 611 551 3.04 4.57 1(53.0)
2CCY 972 972 1 744 744 810 1.85 19.42 5(165.5)
1CHO 1750 400 1(2 492 492 606 2.96 12.4(44.8) 3.21 2(59.5
4CPA 2437 289 11(106) 517 574 604 3.31 5.4(11.9) 5.27 4(165.5
5CSC 3303 3303 1 2651 2651 2752 2.12 496.32 5(161.5
4CTS 3444 3444 1 3041 3041 3230 1.93 88.04 4(139.0
3DFR 1294 81 1 906 906 960 1.31 1.23 1(53)
3EST 1822 31 1 469 469 1.55 1.33 1(53.0)
3FAB 1551 1683 1 1319 1319 1350 3.65 203.29 3(112.5
4FAB 1695 1700 1 1149 1149 1367 3.76 58.56 4(139.0
1FAI 1657 1663 1 1074 1074 1712 4.00 40.47 4(139.0
2FB4 1710 1602 3 965 999 1585 2.86 40.58 3(112.5
2FBJ 1683 1636 1 1443 1443 1562 1.91 60.19 3(112.5
3GCH 1048 700 1 2067 2067 2201 1.25 12.19 4(165.5
3GPD 2577 2577 1 1123 1123 1143 5.89 794.31 4(165.5
2577 2577 4 985 1123 1143 3.76 794.5 4(165.5
’: 2HFL 3227 1000 54 (6792) 646 767 723 3.16 52.6(230.8) 227.56 4(165.5
I 3HFM 3295 1001 13 (17637) 649 777 602 1.59 60.5(275.4) 51.51 4(165.5
I 3HLA 2189 829 1 1052 1052 1134 1.36 25.18 7(202.0
I 4HVP 758 758 1(2) 1260 1260 1235 1.62 12.7(52.5) 23.31 1(53.0)
4HVP 1516 54 1 512 512 478 1.72 1.44 1(53.0)
1516 54 3 493 512 478 0.69 1.44 1(53.0)
2KAI 1799 438 4 624 634 657 3.68 7.15 4(139.0
2LTN 1786 1786 1 930 930 1106 3.01 27.50 7(189.5
1LYM 1001 1001 661 235 31.59 4(165.5
4MBN 12056 44 1 536 536 496 1.89 1.32 1(53.0)
2MCG 1606 1606 1 895 895 1205 1.75 108.30 4(165.5
1MCP 1709 1692 1 1333 1333 1587 1.42 114.45 3(112.5
2MCP 1720 1692 1 1397 1397 1544 1.73 48.26 4(139.0
1MEE 1948 530 1 917 917 965 1.83 10.40 5(161.5
ZMHB | 1178 | 1113 | 1(49) 408 408 659 2.16 | 34.0(174.2) | 7.07 6(124.0
1MVP 872 867 1 1066 1066 1324 3.13 16.50 5(161.5
1PP2 946 946 1 989 289 1043 3.89 37.21 3(112.5
2PTC | 1629 | 454 1(161) 596 596 623 4.35 | 9.9(28.4) 4.32 2(59.5
1P01 1391 27 2 344 344 281 1.67 0.59 1(53.0
| 1P02 1351 23 1 351 351 246 1.52 1.04 1(53.0
2RSP 890 890 1 1336 1336 1304 1.60 13.56 5(161.
3RUB 3471 1029 1 1225 1225 1790 2.82 32.48 5(161.5
2SEC 1920 530 1 735 735 692 1.02 13.37 4(165.5
3SGB 1310 380 4 607 630 620 1.28 6.25 4(165.5
4SGB 1310 380 1(13691) 613 613 638 4.53 3.5(7.6) 4.34 4(165.5
1310 380 4(13691) 596 613 638 2.24 3.5(7.6) 4.34 4(165.5)
2SNI 1938 513 1(81 636 636 643 1.28 12.4(39.2) 9.46 1(53.0)
1TEC 2004 522 1(95 712 712 640 1.25 8.8(27.7 5.00 5(114.0)
2TGP 1629 454 1(180) 665 665 661 3.65 8.4(22.8 5.00 5(114.0)
1TGS 1646 416 1(552) 690 690 646 1.91 12.9(32.2) 4.22 5(114.0
1TIM 1870 1870 1 1201 1201 12356 2.24 94.09 4(139.0
3TIM 1889 1889 1 1385 1385 1454 2.44 81.58 6(184.0
3TPI 1629 454 1 543 543 638 2.26 3.51 6(136.5)
4TPI1 1629 471 1(11) 836 836 880 1.52 7.9(23.3) 10.28 1(53.0)
1629 | 471 2(11) 786 836 880 3.78 | 7.9(23.3) 10.28 1(53.0)
1629 471 3(11) 769 836 880 2.83 7.9(23.3) 10.28 1(53.0)
2TSC 2256 2146 1 2625 2625 2597 1.40 56.23 5(161.5
2UTG 548 548 1 734 734 1032 2.22 4.11 6(136.5
4XIA 3040 3040 290 700 3904 1337 3.44 1163.23 4(165.5

Table 1: Columns: (1) PDB code of the molecular complex. (2) The number of atoms of A (without hydrogen atoms). (3) The number
of atoms of B (without hydrogen atoms). (4) The rank of the best approximation of the real conformation (the ranking of the algorithm
of Norel et al. [NLW+] is given in brackets). (5) The fitness value of the best approximation. (6) The fitness valne of the best geometric
fit. (7) The “real fitness” of the natural conformation, determined by the local optimizer. (8) The RMS deviation of the approximation in
A. (9) The sequential running time of the docking program of Norel et al. (the time to carry out the scoring) on a SUN SPARC 77. (10)
Preprocessing+docking time of our algorithm. The sequential running times have been measured on a SGI POWER CHALLENGE M. The
times for the distributed version have been measured on a non-homogeneous workstation cluster. (11) The number of processors (since we
are working on a non-homogenous workstation cluster, we computed a performance number for each processor; total performance value

sum of the performance values of the processors).




The natural docking conformation of the HIV-1 protease (dimer). (b)

The best geometric fit (1.62 A rms

Figure 4: Example: (a)

deviation).



docking experiments were successful. Hence, there will be docking examples, where the docking
sites cannot be identified by shape complementarity. We have to search for such examples, in
order to learn more about the docking reactions. These examples will be the test set for our
future research (refinement of the fitness function).

5 Future Research

First, we will check all docking examples in the Brookhaven Protein Data Bank and search
for examples that cannot be docked by our algorithm. These examples will be our test set for
future research.

In the above docking experiments the docking tests have been carried out with the docking
conformations of the two molecules A and B, i.e, the conformations of A and B in the docking
complex. We also did a few successful docking experiments with “native” conformations,
for example with the HIV protease. But there is a lack of examples, where the “native”
conformations of A and B and the conformation of the docking complex are known. We have
to search for such examples, because the results of docking tests with the “native” conformations
are the real quality measure for a docking program.

We will expand our model of conformation valuation. We will add a hydrogen bond compo-
nent to our fitness functions. More precisely: Hydrogen bond building atom pairs (a, b), that
are in contact, will get a larger constant weight. We hope that this refinement of the model
will result in a better separation of the good docking sites from the docking sites that are
randomly geometrically complementary. By refining the model in this way, we leave of course
the pure geometric consideration of the docking problem. Note that we do still not compute
energy values. Furthermore, we will try to reduce the number of fitness tests with the help of
hydrogen bonds (i.e., by asking for at least one pair of atoms that can build a hydrogen bond
in each matching that will be tested).

Besides we will try to test other methods to generate the points on the probe sphere surface
and other methods to compute the orientations that have to be tested. We observed that the
worst results with respect to RMS deviation are caused by “large” deviations of the rotation
angles. We will try to decrease the RMS deviations by changing the point set of surface points
or by modifying the way the triangles are matched. Our program has a simple local fitness
optimizer that shakes molecule B locally. This optimizer has to be improved.

Since the sequential running time is in the order of the fastest known sequential algo-
rithm [LNF+] and since the parallel algorithm shows a good speedup, we hope that we will be
able to handle a list of docking candidates {B;, Bz, - - -, Bi} for a molecule A with a high per-
formance multi-processor system in reasonable time. The possibility to handle lists of docking
candidates will be added to the system.

The preprocessing step will be parallelized. Our program is still lacking the ability to repair
(substitute) problems that are caused by a break-down of a processor. We will implement the
following straightforward repair method: The master checks if a processor has problems to carry
out his work. If this is the case, the master redistributes this work. Furthermore, the speedup of
the parallel version will be measured on a SGI POWER CHALLENGE multi-processor system.

Finally, we will implement a filter that removes transformations which are very similar
(same docking site). We observed that our score list (1000 transformations) contains very often
more than hundred almost identical transformations. We will implement a simple solution that



builds lists of similar transformations. Hence the score list will become a list of transformation
lists.
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