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Abstract 

We consider the following set intersection reporting problem. We have a 
collection of initially empty sets and would like to process an intermixed se­
quence of n updates (insertions into and deletions from individual sets) and q 
queries (reporting the intersection of two sets). We cast this problem in the 
arithmetic model of computation ofFredman [Fre81] and Yao [Yao85] and show 
that any algorithm that fits in this model must take time O(q+nytq) to process 
a sequence of n updates and q queries, ignoring factors that are polynomial in 
log n.We also show that this bound is tight in this model of computation, 
agam to within a polynomial in log n factbr, improving upon a result of Yellin 
(YeI92]. Furthermore we consider the case q = O(n) with an additional space 
restriction. We only allow to use m memory locations, where m :5 n3 / 2 • We 
show· a tight bound of 0(n2/m1/ 3 ) for a sequence of O(n) operations, agam 
ignoring polynomial in logn factors. 

1 Introduction 

1 

We consider the complexity of maintaining a collection of sets with a very simple 
but fundamental set of operations: we would like to support updates, which are 
insertions into and deletions from individual sets and intersection queries reporting 
the intersection of two sets. Other variations could include returmng the size of the 
intersection, or retrieving some values associated with the elements in the intersection. 
A unifying way to study these problems is as folIows: we are given a universe U of 
keys, a set M of information items that will be associated with elements of U, a 
function I : U ~ M that associates values from M with keys in U and a collection C 
of initially empty subsets of U. Assume furt her tha.t M = (M, +, 0) is a monoid, i.e., 
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that M is closed under some associative and commutative operator + and that 0 is 
the identity element for +. 

We want to maintain C while processing a sequence of update operations of the 
form insert(z,A) and delete(z,A), for x E U and A E C, so as to efliciently answer 
queries of the form intersect(A, B), A, B E C, which returns LZEAnB l(x), where the 
sum is taken with respect to +. We also consider a variant of the problem, where the 
number of memory locations available is restricted. It is easy to cast the intersection 
problem and its variants in this framework. The basic problem defined above can 
be obtained by lettingM = (~,U,{}) and l(x) = {x} for all x, and the problem 
where one merely has to report the size of the intersection can be obtained by setting 

. M = (IN, +,0) and 1( x) = 1 for all x, where + here is arithmetic addition. 
The arithmetic model of computation was proposed by Fredman [Fre81] and Yao 

[Yao85] as a framework for studying "information retrieval" problems of the above 
kind. A set of data points is to be stored, each with some associated informationj 
queries return some combination of the values associated with some sub set of the data 
points which matches some query specification. Many geometrie retrieval problems 
have been previously studied in this framework (see [Cha89, Fre81, Fre82 , Meh84, 
section VII.2.3]). One of the assumptions made in this framework is that the algorithm 
must be general enough to work for any choice of the combining operator, provided 
only that the associated values form a monoid under this operator. In particular, the 
algorithm is not permitted to assume that the combining operation is invertible (a 
more detailed description of this framework is given in section 2). This makes it easier 
to prove lower bounds and is justified by the fact that the best known algorithms for 
most problems of interest do not effectively make use of the potential invertibility of 
the combining operator. 

Yellin [Yel92] gives a data structure for the set interseetion problem which fits in 
the arithmetic model of computation. Yellin's algorithm processes aseries of n insert 
and delete operations and q intersect operations in time Ö(n . n1/1c + qn(l-l/Ic») time 
for any fixed k, where Ö(f( n)) = U~o0(f( n) loge n), i. e., polyloganthmic factors are 
ignored (a similar convention is used for the n notation, with inverse polyloganthmic 
factors being ignored). 

In order to process a sequence of n updates and q queries, the value of k that yields 
the smallest running time of Ö(q+ ny'q) is defined by n1/1c = min{y'q,n}. We prove 
that this bound is tightj i.e., any algorithm that fits within the arithmetic model 
must take O( q + ny'q) time to process a sequence of n updates and q queries. This is 
true even for the expected running time of randomized algorithms for this problem. 
Further, we prove that this bound can be achieved on-line by an algorithm that does 
not know either n or q in advance. Yellin obtains a weaker bound of Ö(n1/2(n+q)) by 
using a "doubling" technique. We refer to this problem in the following as Problem 
1. 

Our lower bound applies to algorithms that know the values of n and q, as well as 
the series of queries and updates, in advance, and do not handle deletionsj the upper 
bound can be achieved by an algorithm that knows neither parameter in advance and 
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handles on-line an intermixed sequence of queries and updates (both insertions and 
deletions). That is, the semi-dynamic off-line version of this problem is no easier than 
the general case within this model of computation. 

We also consider a variant of the problem which .we call Problem 2. Here we want 
to process a sequence of n operations (updates as well as queries). The number of 
memory locations available is limited by m. For this variant we show a lower bound 
of Ö(n2 /m1/ 3 ) time to process the sequence. Again we show that this bound is tight 
by giving an algorithm that needs time Ö(n2 /m1/ 3 ). . 

2 The Lower Bounds 

We now give a somewhat simplified description of the lower bound model which 
conveys the essential aspects: the interested reader is referred to [Meh84, section 
VII.2.3] for further details. The data structure is modeled as an collection of variables 
va, VI, ... , which take values in M, and initially contain o. In problem 1, this collection 
is considered to be unlimited whereas in problem 2 the number of variables is at most 
m. After receiving the input to each operation, the algorithm. executes a sequenceof 
operations of the form Vi +- INPUT, Vi +- Vi + vk or OUTPUT +- Vi. Here INPUT 
refers to the information associated with a key that is the argument to a insert or 
delete operation. The algorithm. must be correct for all choices of M, thus in particular 
it cannot assume that the operator + is invertible. The cost of an algorithm. in 
processing a sequence of operations is the total number of such instructions executed 
by it. All other computation is given for free. 

The intuition for the lower bounds for the two considered problems is essentially 
as follows. We consider the problem where the elements in the intersection are to be 
reported, i.e., we take M = (~,u,{}) and l(x) = {x}. We construct a collection 
of sets the (sums of) sizes of whose pairwise intersections are large, and query all 
possible intersections of the sets. If the answers to all the queries were to be obtained 
by unioning together singleton sets, then the lower bound would follow. 

However, this is too simplistic: subsets obtained as temporary values during the 
com,putation of one answer may be re-used to answer another query. An important 
observation to make at this point is that a sub set that is used to compute the ans wer to 
several intersection queries must lie in the common intersection of all the sets involved. 
Therefore, we also ensure that the common intersection of sufficiently many (this is 
still a small quantity) of the sets we construct is small, from which it follows that no 
large sub set obtained during the computation of one answer can be used to answer 
very many different queries. 

In the proof to problem 2 we destroy the useful subsets by some deletions and 
afterwards perform hard queries where we have to compute the answers from scratch. 

Now we fiesh the above arguments out. 
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2.1 Problem 1 

Let n and q denote the number of updates and · queries, respectively, and assume that 
q ~ n2 (otherwise a lower bound of n( q) = n( q + n.vq) is trivial). We construct 
a family F of .vq subsets, each a subset of U = {I, ... , 2n/ .vq}. Let u = IUI and 

f = IFI· 
We want to construct this family of sets with the following properties: 

(a) ISi n Sjl is n(u) for all i,j with 1 ~ i < j ~ f. 
(b) for any pairwise distinct indices 
1 nr=l Si; 1 < L, if L is sufliciently large. 

We call such a family of sets acceptable. H ·an acceptable family of sets can be 
found, then the theorem can be proved as follows. We first build up the sets by 
insertions. Note that this requires at most fu = E>(n) update operations, since the 
size of each set is at most u. We then query the pairwise intersections of all the sets; 
i.e., we query Si n Sj for 1 ~ i < j ~ f. There are (;) = E>( q) queries in all. 

Firstly, note that the sizes of all the output sets sum to n(uf2) by (a) above. The 
output to each query is conceptually obtained by a binary union tree in which each 
internal node combines the answers from its children; the external nodes represent 
singleton sets. Each node can be labeled with a set in the obvious way. Consider the 
entire forest; we wish to count the number of distinct nodes in the forest (that is, 
nodes labeled with distinct sets). Since each distinct set corresponds to at least one 
instruction that is not counted elsewhere, counting the number of distinct sets is a 
lower bciund on the number of instructions executed. 

We consider only nodes that correspond to sets of size L or larger. Clearly, the 
number of such sets is n( u p / L). Furthermore, no such set can be used to answer 

more than (;) different queries. To see this, suppose that any such set B is used to 
answer intersection queries involving L or more different sets, say Si1 , ••• , SiL' Then, 
as discussed above, it must be the case that B ~ nr=l Si;' However, IBI ~ L, which 
contradicts (b) above. 

. Thus there can be at most L - 1 distinct sets such that B can answer queries posed 
involving these sets, from which it follows that there are less than (;) queries that 

B can be used to answer. Thus, n(pu/ L3) distinct sets can be counted, giving us a 
lower bound of this magnitude. Now we show that sets with the required properties 
exist. The argument is an application of the "probabilistic method" pioneered by 
Erdös [Spe87], that is, we prove the existence of such a family by a counting argument 
couched in probabilistic terms. We first consider a discrete sampie space and postulate 
a distribution on itj then we show that the conjunction of the properties we are 
interested in occurs with non-zero prob ability, from which we conclude that some . 
sampie point must indeed satisfy the conjunction of the properties. 

The sampie space we consider is all possible families of sets that are subsets of U, 
i.e., [~l', and the distribution is obtained as follows: z E Sj holds with prob ability 
1/2 independently of all other such events, for all 1 ~. z ~ u. and 1 ~ j ~ f. We 
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now verify that properties (a) and (b) hold with positive prob ability in the above 
distribution. 

(a) Consider sets Si and Sj, i =1= j. The prob ability that z E Si n Sj = 1/4. Further­
more ISi n Sjl is a binomially distributed variable with parameters (u, 1/4). It follows 
from the Chernoff bounds (Lemma 19 in Appendix A) that: 

Pr[lSi n Sjl < u/8] < (0.962)" < 1/212
, 

provided u is at least clog 1 for some sufficiently large c. (If not, this implies that 
q = O(n2

) and the lower bound is trivial anyway.) Summing over the (Ü possible 
values for i, j we get: 

Pr[3i,j: ISi n Sjl < u/8] < 1/4. 

(b) Fix a set of pairwise distinct indices i I , ... ,iL . For any z EU, the prob ability 

that z belongs to all of Si1 , ••• , SiL is 2-L . Thus, the size of the common intersection 
of Si1 , ••• , SiL is a binomially distributed variable with parameters (u, 2-L ). Let 
L ~ 2max{log I,log u}. Then the expected size of the intersection is min{ul-2 , u- I }. 

It follows from the Chemoff bounds (Lemma 19) that: 

L . exp(L) . 
Pr(1 nj=l Si; I > L] < (Lmax{J2/u,u})L 

Summing over the (f) < (f / e)L choices for the indices we get that for all indices 
i l < i 2 < ... < h: 

L (I)L Pr[1 nj=l Si; I > L] < Lmax{J2/u,u} < 1/4. 

Thus, we see that both properties (a) and (b) hold with prob ability > 1/2, and so 
there is a family of sets :F satisfying (a) and (b). 

From the discussion above, we can now infer that at least O(J2u/ L3
) operations 

are needed to process this sequence of queries, from which the lower bound follows 
since 1 = .;q, u = 9(n/.;q) and L = O(1og n). We have just proved: 

Theorem 1 In the Fredman-Yao arithmetic model of computation, any algorithm fQr 

the set intersection problem requires O(q+n.;q) time to process a sequence of n updates 
and q queries. 

This lower bound ·can be extended to the expected run-time of randomized al­
gorithms by invoking Yao's corollary [Yao77] to von Neumann's minimax principle 
[Neu28], which can be stated as folIows: 

Lemma 2 Let T.,. be the expected run-time of any randomized algorithm for solving a 
problem P. Let D be any distribution over the inputs to problem P, and let Td be the 
minimum averag~case time (under distribution D) of any deterministic algorithm for P. 
Then T.,. > Td • 
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We note that given the above dass of inputs and the above distribution, any 
deterministic algorithm requires O( q + ny'q) time for at least half the possible inputs. 
This implies (since run-times are non-negative) that the average-case running time 
for any deterministic algorithm on the above distribution is also O( q + ny'q). We can 
thus condude: 

Corollary 3 In the Fredman-Yao arithmetic model of computation, any randomized 
algorithm for the set intersection problem requires O(q + ny'q) expected time to process 
a seq'uence of n updates and q queries. 

2.2 Problem 2 

Now let U = {1, ... , u} be the universe of elements, let Ml be the set of memory 
locations and let m = IMll be the num.ber of the variables. The num.ber of operations 
(insertions, deletions and queries) will be 0(n). . 

If :z: E Ml is a memory location and A is a sub set of U, then :z: is said to be 
relevant to A, if it contains the sum over so me subset of the elements of A. The 
size of a memory location (or a variable) is the num.ber of elements which have been 
summed to produce its contents. A memory location :z: is called major if its size is at 
least L. 

As shown in section 2.1 a major memory location is relevant to at most (;) distinct 
intersections Si n Si of an acceptable family of sets. Informally the strategy for the 
lower bound proof is as follows. We choose f to be m 1

/
3 L2 and u = n/ f. Each set of 

the acceptable family has size '0(u) = 9(nm-1/ 3 L-2) 

After building the family we choose an app~opriate set S of 0(1) elements of U 
and delete t'hese elements from all Si'Sj this amounts to 0(j2) delete operations. The 
set S has the property that it contains at least one element of each memory location of 
size:2: 2mL2 / j2, i.e., deletion of the elements of S makes a.ll memory locations of size 
:2: 2mL2 

/ j2 irrelevant. The existence of S will be shown by a probabilistic argument. 
As a consequence we will show that for half of the intersections the still relevant ma.jor 
memory locations can cover only h'alf of the intersection. Hence, answering a.ll 0(12) 
intersection queries will have cost n(j2u/ L3) as in the previous section. We now 
reinsert the deleted elements and thus reestablish the original situation. Altogether, 
we have identified a sequence of 0(j2) operations with total cost n(j2u/ L3

), i.e. the 
amortized costper operation is n(u/L3

) = n((n/m1
/

3 )/LS ). 

We now give the details. Assume that m :::; n3/ 2/(log n)7 (the lower bound 
O(n/m1

/
3

) for the amortizedcost of an operation follows from Theorem 2.1 for 
m :2: n3

/
2/(log n? Note that Theorem 2.1 implies a n(n3

/
2

) lower bound for a se­
quence of n updates and n queries even without any restriction of the memory size). 
Let L = 2log2n, f = fm1

/
3L 21 and u = ln/fJ, and l~t Sl""'S, be an acceptable 

family of subsets of U = {1, ... , u}. . 

Let ri.i be the number of major memory locations that are relevant to Si n Si' 
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Lemma 4 :E1$i<j:5J ri,j :5 mL2/2. 

Proof: No major memory location is relevant to more than L of the Si, and so 
cannot be relevant to more than (;) of their intersections. 

Lemma 5 If variables a1, ... , ak are non negative, and :E ai = B, then for any z > 1, 
I{ilai 2: zB/k}1 :5 kfz. . . 

Proof: Obvious. 
These lemmas imply the following. Let T = 2mL2 / j2, and Z be the set {(i, j) 11 :5 

i < j < f,riJ:5 T}, then 

Lemma 6 IZI 2: fU - 2)/4. 

Thus we have shown that for at least a constant part of the intersections the 
number of relevant major memory locations is limited by T. 

Lemma 7 Let A be a nonempty subset of U. The probability that none of 2Lu/IAI 
randomly chosen elem~nts (with replacement) of U is in A is less than 1/n2

• 

Proof: A randomly chosen element of U has prob ability IAI/u of being in A. 
Therefore, the prob ability that kindependent choices from U will all not be in A is 
(1-IAI/u)k. Since (1-1/z)Z < l/e, (1-IAI/u)k :5 e-kIAI/u. For k = 2Lu/IAI, this 
is e-4Iog,n < 1/n2 • 

Call a memory location large if its sizeit at least (u/16)/T. We show next that 
alliarge memory locations can be made irrelevant by a small number of deletions. 

Lemma 8 There exists a set of . 32LT elements of U such that each large memory 
location contains an element fromt the set. 

Proof: Choose 32LT = 2Lu/((u/16)/T) elements from U at random (with re­
placement). Then the probability that a particular large memory cell contains none 
of the chosen elements is bounded by 1/ n 2 according · to Lemma 7 and hence the 
prob ability that one of the at most m large memory cells contains none of the chosen 
elements is bounded by m/n2 < 1. The required set therefore exists. 

Lemma 9 LTf = O(j2),j2 = o(n), and LT = o(u). 

Proof: We have LT = mL3 / j2 = mL6 /(j2 L3) = O(P /(j2 L3)) = 0U). Thus 
LTf = O(j2). Also f2 = o(m2/3 L4) = o((mL6 )2/3) = o(n), since m :5 n 3/ 2/(log nf. 
Finally, LT = OU) = O(j2 / f) = o(n/ f) = o(u). 

Let S be the set of 32LT elements chosen according to Lemma 8. Delete all 
elements of S from all sets Sl, ... , S J of our acceptable family. Ifhis amounts to 
at most 32LTf = O(j2) delete-operations. After these delete-operations all large 
memory cells are irrelevant, i.e., cannot be used to answer any intersection query. 
Moreover, the non - large major memory cells cover at most half of the intersections 
Si n Sj for (i,j) E Z as we next show. 
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Lemma 10 Let (i,j) E Z. After the deletions of the elements of S, the major memory 
loeations relevant to Sinsi have total size at most u/16. Moreover, ISinsil ~ u/8-o(u). 

Proof: There are at most T relevant major memory loeations for Si n Si, eaeh of 
size at most (u/16)/T. Their total size is therefore at most u/16. 

We have deleted at most 32LT elements from Sinsi, so ISinsil ~ u/8-32LT = 
u/8 - o(u). 

Lemma 11 After performing these deletions, it requires n(j2u/ L3
) time to perform the 

queries Si n Si, for (i,j) in Z. 

Proof: Note that IZI = 9(j2). Now, we must eompute the sum of at least 
u/16 - o( u) elements for eaeh query. Conservatively, assume that all sums of at most 
L variables are free. Sinee sums of more than L variables are useful for eomputing 
fewer than L2 of the interseetions (beeause the original Si were aeeeptable), we ean 
eondude that we require at least O(j2u/ L3

) time to perform the queries (tbis indudes 
time spent during the deletions leading up to the queries). 

We ean now summarize. The eost of a eyde of O(j2) delete-, query-, and insert­
operations is n(j2uL3

). Moreover, the eyde reestablishes the original aeeeptable fam­
ily SI, ... , S f. Consider now the following sequenee of O( n) operations: O( u) insert­
operations to build up an aeeeptable family SI, ... , S f followed by Ln / j2 J repetitions 
of the eyde. Tbis sequenee has eost n(nu/ L3

) = n(n2 /u L3
)) = n(n2 /(m i

/
3 L6)) = 

Ö(n2/mI / 3 ). 

Theorem 12 There is a sequenee of O(n) insert, delete and interseet operations whieh 
takes time Ö(n2m- I / 3 ) with m memory loeations, in the monoid model. 

3 The Upper Bounds 

In tbis seetion we prove the following two theorems: 

Theorem 13 Any intermixed sequenee of n updates and q queries ean be performed in 
Ö(ny'q + q) time using O(min{ny'q, n2

} spaee. 

Theorem 14 Any intermixed sequenee of O(n) updates and queries ean be performed 
in Ö(n2 /m i /

3
) time and O(m) spaee. 

Theorem 3.1 generalizes Yellin's upper bound [Ye192]. Yellin showed how to pro­
eess n updates and q queries in time Ö(nn1

/
fe + qn/n i /

fe ) for any fixed k with k ~ 1, 
i.e., the parameter k needs to be fixed when bis algorithm is started. Thus k ean be 
set to its optimal value (where nI/fe = min{y'q,n}), only when n and q are known in 

advaneej the optimal value of k gives a time bound of Ö( ny'q + q). We show that the 

bound Ö( ny'q + q) ean be aebieved without prior knowledge of n and q. We believe 
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that our construction is not only more general than Yellin's but also simpler. We 
remark that the output of an intersection query Query(S, S') is not only the monoid 
value E:Z:EsnsI I( z) but also a persistent search tree for S n S'; this is also true for 
Yellin's algorithm. 

In theorem 3.2 we do not distinguish between updates and queries but use n 
to denote the total number of operations. For this situation, theorem 3.1 yields 
an Ö( n3

/
2

) time and space bound. Theorem 3.2 deals with the situation that the 
available space is o(n3

/
2
). We remark that the algorithm underlying theorem 3.2 only 

computes the monoid value E:Z:Esnsl I( z) as the answer of an intersection query; it 
does not produce a search tree representation of the intersection. 

3.1 Problem 1 

Let t denote the number of time steps and n(t) and q(t) the number of updates 

and queries respectively up to and including time t. Let J(t) = 1 + Jq(t) and 
u(t) = n(t)/ J(t). 

A set S ~ U is called small (at time t) if ISI < u(t), medium if u(t) ::::; ISI < 2u(t) 
and large if ISI > 2u(t). The algorithm marks some subsets of U using the following 
rule: 
Marking Rule: Initially all subsets are unmarked. When a sub set becomes large it is 

. marked and stays marked until it becomes small again at which point it is unmarked. 
The marking rule implies that large sets are always marked and small sets are 

never marked. Medium sets may be marked or not. In particular, a marked set has 
cardinality at least u(t) and hence there can never be more than J(t) marked sets. 

Let M be the collection of marked sets. For every pair (Si, Si) of marked sets we 
maintain a persistent balanced binary tree for the intersection Si n Sj; each intemal 
node of this tree contains the sum of the monoid values associated with the leaves 
of the subtree rooted at the node. For every set Si (marked or not) we maintain a 
balanced binary tree of its elements. We also maintain for each integer i a list of the 
sets of cardinality i (call such a list a block) and a sorted list of the non-empty blocks. 
In the sorted list of blocks we also maintain pointers to the blocks corresponding to 
sizes Lu(t)J and L2u(t)J. 

Lemma 15 The space requirement of the data structure is O(min(n(t)2, n(t)J(t))). 

Proof: It suffices to show that N := Es-S -EM ISi n Sil = O(n(t)J(t)). For . .t , 
every element z E U let a(z) be the number of marked sets containing z. Then 
E:z: a(z) < n(t) since the total size of all sets is at most n(t), a(z) :5 J(t) for all z 
since there are at most J( t) marked sets, and N = E:z: a( z)2. The sum E:z: a( z)2 is 
maximized subject to the two constraints above if exactly n(t)/J(t) values a(z) are 
equal to J(t) and the remaining values are zero. Thus N = n(t)J(t). 

We can now describe the various operations. 
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Mark(S): To mark a set S we build for each S' E M the intersection tree for 
sn S' by checking for each element z E S whether z belongs to S'. This takes time 
O( u( t)f( t) log n( t)). 
Unmark(S): To unmark a set S we delete all trees Sn S' for SI E M. This takes 
time O(u(t)f(t)) 
Insert (z, S): Add z to the tree for S, increase n(t) and change u(t). Unmark all 
marked sets which became small. H S is marked. then insert z into the appropriate 
intersection trees Sn S', S' E M, and if S is unmarked and became large then mark S. 
All of this takes time O(f(t) log n(t)) plus the time for the marking and unmarking. 

Delete (z, S): Delete z from the tree for Sand, if S is marked, also from all 
intersection trees. Increase n(t) and change u(t)~ Unmark all marked sets which 
became small. All ofthis takes time O(f(t) log n(t)) plus the time for the unmarking. 

Query(S, S'): Increase q(t) and change f(t) and u(t). Mark all unmarked sets which 
became large. If Sand S' are both marked then answer the query in time 0(1) using 
the intersection tree for Sn S'. If one is unmarked, say S, then check each element of 
S for membership in S'. All of this takes time O( u( t) log n( t)) plus the time for the 
marking. 

To complete the analysis we define a potential function C) and show that the 
amortized cost of mark and unmark is non-positive and that the amortized cost of 
the other operations is within a constant factor of their actual cost . Let 

C) = L (ISI- u(t))f(t) log n(t) 
$ medium and unma1'1eed 

+ L (2u(t) -ISl)f(t)logn(t) 
S medium and ma1'1eed 

With this potential function the amortized cost of mark and unmark is clearly non­
positive. Let us turn to the operations insert, delete and query next. Assume first that 
the operation at time t is an insert or delete. Then n(t) = n(t -1) + 1, q(t) = q(t -1) 
and f(t) = f(t - 1). Hence (using LS medium ISI ~ n(t) and nlog(n/n - 1) = 0(1)) 

C)(t) ~ C)(t -1) < f(t)logn(t) + 3(n(t)f(t)logn(t) 
-n(t -1)f(t -1)logn(t ~ 1)) 

- O(f(t) log n(t), 

i.e., the potential increase is bounded by a constant factor of the actual cost. Assume 

next that the operation at time t is a query operation. Then n(t) = n(t - 1), q(t) = 

q(t - 1) + 1 and f(t) - f(t - 1) = ./q(t) - ./q(t) -1 = O(I/./q(t)) = O(I/f(t)). 
Hence 

C)(t) - C)(t - 1) < n(t)(f(t) - f(t - 1)) log n(t) 
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- O((n(t)/f(t))logn(t)) 
- O(u(t)logn(t)), 

smallskipi.e., the potential increase is witllln a constant factor of the actual cost. We 
have thus shown. 

Theorem 16 Any intermixed sequence of n updates and q queries can be performed in 
O((ny'q +q)logn) time using O(min{ny'q,n2

}) space. 

3.2 Problem 2 

We assume that an a-priori bound m ~ n 3/ 2 on the number of memory locations is 
given.We show how to process a sequenceofn updates and queries in time Ö(n/m l /

3
) 

within O( m) memory space. 
We first fix a few constants. Let f = m l

/
3

, u = n/ fand c = nf /m = n/m2
/

3
• 

The algorithm to be described is a modification of the algorithm of the preceding 
section. We describe the differences. The quantities f, u and n are used instead of 
f(t), u(t) and n(t). As before, each set S is stored in a balanced binary tree. In 
addition, we maintain a partition of Sinto blocks of between c and 2c contiguous 
elements. Each block knows the elements belonging to it and each element knows the 
block it belongs to. 

For every pair S and S' of marked sets one of the two sets is designated as the 
leader of the pair. The cardinality of the leader must not exceed twice the cardinality 
ofthe other set in the pair. The intersection tree for Sn S' is organized as follows: It 
has a leaf for each block B of the leader. The leaf corresponding to block B contains 
EZEsnsl I(z), where I(z) is the monoid value associated with z. Each internal node 
of the intersection tree contains as before the sum of the monoid vall1es of the leaves 
below it. The intersection tree for sn S' has at most 2min(ISI, IS'I)/c leaves and 
hence the total size of all intersection trees is at most n f / c = O( m) as the next 
lemma shows. 

Lemma 17 Let k be an integer and let UI," ., Uk be reals with Ei Ui ~ n and Ui 2:: n/ f 
for all i. Then Ei<j min(ui, Uj) ~ nf. 

Proof: Let ui, ... , uk maximize N(UI, ... , Uk) = Ei<j min(ui, ud) subject to the 
constraints Ei Ui ~ n and Ui 2:: n/ f for all ij a simple compactness argument 
shows that ui, ... , uk exists. Assume w.l.o.g. that ui ~ u; ~ ... . ~ uk' Then 
N( ui, ... , uZ) = Ei ni(k - i). Assume now that ui < ui+1 for some i. Let A = Ui+I -
ui· Then N(ui,···, Ui_llUi + A/2, ui+1 - A/2, Ui+2"'" uZ) = N(ui,···, uZ) + A/2, 
a contradiction. Thus ui = ... = uZ and hence N(ui, ... ,uZ) = (n/k)(;) ~ nf. 

We can now discuss the various operations. Besides the hidden operations mark 
and unmark, which stay unchanged, we also need a hidden operation change-Ieader. 
Assume that S and S' are marked sets with S being th~ leader. When ISI > 2\S'\ we 
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make S' the leader and reconstruct the intersection tree for SnS' in time O(IS/llog n). 
S was the leader ofthe pairfor the last O(ISI) = O(IS/I) updates of one of the members 
of the pair and hence the amortized cost of change-Ieader per update is O(log n). 

We turn to the insert and delete algorithms next. They are as described above 
with the following three changes: 

- Suppose that :z: is inserted into (deleted from) the marked set Sand that S' 
is another marked set. Let S" E {S, S'} be the leader of the pair. Locate the block 
B of S" containing :z: and recompute the value associated with B. Then update the 
intersection tree. All of this takes time O( clog n) for a single marked set S' and hence 
total time O(fclog n) = Ö(njm1

/
3

). 

- H some block of set S becomes too large (> 2c elements) or too small « c 
elements) then balance it with the neighbouring block. This can also be done in time 
O(fclog n). 

- H the leader of a pair of marked sets needs to be changed then use change-Ieader 
to make the change. 

We conclude that an update operation takes time Ö(njm1
/

3
) plus the time for the 

mark and unmark operations. The query operation is as described abovebut note 
that it will not do any unmark operations. It thus takes time O(ulog n) = Ö(njm1

/
3

) . 

It remains to account for the mark and unmark operations. Each such operation takes 
O(uflogn) = O(nlogn) time and there can be no more than O(nju)ofthem (since 
two such operations on the same set are separated by u updates of the set)j the total 
cost of all marks and unmarks is therefore O«n2 ju)logn) = Ö(nf) = Ö(nfc) = 
O(n2 jm1/ 3 ). 

We summarize in: 

Theorem 18 Any intermixed sequence of O(n) updates and queries can be performed 
in Ö(n2 jm1/ 3 ) time and O(m) space. 

4 Discussion 

It would be very interesting to determine the complexity of these problems when the 
combining operation is known to be invertible. We should point out that Fredman 
[Fre82] shows tight bounds for the problem of maintaining partial sums of an array 
in the above framework, both when the combining operator iso invertible and when it 
is not. In this case allowing inverses leads to a constant factor improvement in the 
running time. 

We also want to point out that our lower bound does not rule out a solution with 
query time O(log n + k), where k is the size of the answer, and logarithmic update 
time. It would be interesting to find out if there exists such a solution. For example 
for the halfspace reporting problem there is a lower bound of O( Vn) in the arithmetic 
model [Cha89] and an upper bound of O(logn + k) [CGL85]. On the other hand, 
the best known upper bound for counting the number of points in the query region 
is O( Vnlog n) [CGL85]. 
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In addition, Yellin's algorithm also solves the related problem of answering the 
yes-no query A ~ B? for sets A and B. Since decision problems such as these do not 
fit into the arithmetic framework, our lower bound does not apply, though the upper 
bound does. It would be interesting if matching upper and lower bounds could be 
found for the subset testing problem. 

Finally we are interested in generalizing the proofs for the upper and lower bound 
of problem 2 for arbitrary q. 
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AChernoff Bounds 

We use the form of these bounds derived by Raghavan [Rag89]. Suppose that Xis a 
binomial random variable with parameters n and p, i.e., it is the number of successes 
in n independent trials each with probability of success p. Then: 

Lemma 19 Let J.L = np. Then for any 8 E (0,1]: 

[ 
exp( -8) ]'" 

Pr[X < (1 - 8)J.L] < (1 _ 8)(1-6) , (1) 

and for any 8> 0, 

[ 
exp(8) ]'" 

Pr[X > (1 + 8)J.L] < (1 + 8)(1+6) (2) 
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