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Abstract

We give a state-of-the-art survey of the thickness of a graph from both

a theoretical and a practical point of view. After summarizing the rele-

vant results concerning this topological invariant of a graph, we deal with

practical computation of the thickness. We present some modi�cations of a

basic heuristic and investigate their usefulness for evaluating the thickness

and determining a decomposition of a graph in planar subgraphs.
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1 Introduction

In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes
corresponding to macrocells and of hyperedges corresponding to the nets con-
necting the cells. A chip-designer has to place the macrocells on a printed circuit
board (which usually consists of superimposed layers), according to several de-
signing rules. One of these requirements is to avoid crossings, since crossings
lead to undesirable signals. It is therefore desirable to �nd ways to handle wire
crossings of the graph representing the chip.

In practice, crossing-wires must be layed out in di�erent layers. There are two
approaches for distributing the nets to the layers. According to the �rst method,
one of the wires must change its layer with help of so-called contact cuts or
vias whenever a crossing between two wires occurs. Unfortunately, the presence
of too many contact cuts leads to an increase in area and consequently to a
higher probability of faulty chips. Therefore, a requirement of this manufacturing
method is to reduce crossings as much as possible.

If a large number of crossings is unavoidable, a second approach is appropri-
ate. The representing graph is decomposed into planar subgraphs, each completely
embedded in one layer, which is not used by the other planar subgraphs. Since no
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contact cuts are used, the manufacturing cost measure of this method is the num-
ber of layers. An application of this approach was given by Aggarwal, Klawe and
Shor [AKS91]. They proposed a layout-algorithm with a provably good layout-
area. Since the algorithm needs a priori a decomposition of the graph in planar
subgraphs, a graph-theoretic treatment seems helpful.

Indeed, both approaches have a graph-theoretic counterpart. In the �rst one
we look for the minimum number of edge-crossings needed in a graph-embedding,
the so-called crossing number �(G) of a graph G. In the second approach, the
minimum number of planar subgraphs, whose union is the original graph, is
requested. This number is called the thickness �(G) of a graph G.

The thickness problem is to determine the thickness of a graph. Unfortunately,
the thickness is only known for restricted graph classes, e.g., complete and com-
plete bipartite graphs. Therefore, we have to concentrate on bounds for the thick-
ness. Besides, since the thickness problem is NP-hard, there is little hope of
devising an exact algorithm to evaluate the thickness of arbitrary graphs.

The paper is organized as follows. In section 2 we deal with planar graphs
and algorithms for computing a maximal planar subgraph. In section 3 we list all
known results concerning the thickness and in the next section we discuss some
related problems. In section 5 we analyze strategies of decomposing a graph in
planar subgraphs. Finally, in the last section, we state some results which do not
�t into the general pattern.

2 Planarity and Maximal Planarization

We assume familiarity with standard graph-theoretic terminology. For a survey,
we refer the reader to Beineke and Wilson [BW78] or Harary [Har69]. As pla-
narity is a basic concept for the thickness of a graph and maximal planarization
algorithms are used in section 5, we brie
y list some results.

Among all graphs, planar graphs are of special interest. These graphs are the
graphs that can be drawn in the plane without edge-crossings. Since planarity
is a strong restriction on the structure of a graph, some problems can be solved
e�ciently for planar graphs even if they are intractable in the general case.

After detecting nonplanarity of a graph, using a standard planarity testing
algorithm (see, e.g., Booth and Lueker [BL76] or Hopcroft and Tarjan [HT74]),
it is often favorable to �rst extract a possible large planar subgraph and treat the
remaining edges independently. If no edge can be added to this subgraph without
destroying planarity, the subgraph is called a maximal planar subgraph. A planar
subgraph of greatest cardinality is called a maximum planar subgraph.

There are two classical maximal planarization algorithms, one based on the
Hopcroft and Tarjan planarity testing algorithm and the other based on a PQ-
tree approach. The fastest algorithm using the �rst method is the O(jEj log jV j)
algorithm of Cai, Han and Tarjan [CHT91]. The history of maximal planarization
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algorithms using the PQ-approach is quite interesting [OT81, JTS89, Kan92] and
appears to be still incomplete [Lei94].

All these algorithms only guarantee that the resulting planar subgraph is
a spanning tree together with an unknown small number of additional edges,
which results in a worst-case ratio of 1

3
. An improved worst-case ratio of 4

9
can

be achieved using the algorithm of C�alinescu et al. [CFFK96], which uses a so-
called triangle cactus approach. Although determining a maximum planar sub-
graph is NP-hard ([LG77]), the branch and cut algorithm of J�unger and Mutzel
([JM93a, JM93b]) solves many problems to optimality (particular problems on
sparse graphs) or achieves a good approximation.

3 Theoretical Results

In 1978, Beineke and Wilson [BW78] published a survey paper on topological
graph theory, which included a section about thickness. Since some interesting
recent results are missing, in this section, we list all results that we are aware of.
Proofs are omitted and interested readers are referred to the literature.

The thickness problem originated in 1961 in the following \Research Problem"
by Harary [Har61], which came to him through Selfridge:

\Prove or disprove the following conjecture: For any graph G with 9
points, G or its complementary graph G is nonplanar".

In the following year, Harary, Battle and Kodoma [BHK62] and Tutte [Tut63a]
independently gave a proof (they checked all planar subgraphs with nine nodes!)
of Selfridge's conjecture. In other words, K9 is not biplanar, i.e., not the union
of two planar subgraphs. Generalizing the term of biplanarity, Tutte [Tut63b]
de�ned the thickness of a graph. For notational convenience, we refer to the
planar subgraphs in the following as layers.

Evidently, �(G) = 1 if and only if G is planar. A further observation is that
an examination of the thickness can be restricted to biconnected graphs, since
�(G) = maxj f�(Gj)g holds for the biconnected components Gj (j = 1; 2; : : : ; b)
of a graph G. Moreover, a subgraph of a graph must have a smaller thickness
than the graph itself and consequently the thickness is a monotone topological
invariant of a graph.

According to a corollary of Euler's polyhedron-formula, a planar graph G =
(V;E) has at most 3jV j � 6 edges. This corollary is used to derive a lower bound
for the thickness of a graph.

Theorem 3.1 If G = (V;E) is a graph with jV j = n (n > 2) and jEj = m, then

i) �(G) � d m

3n�6
e,

ii) �(G) � d m

2n�4
e, if G has no triangles.
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In the 1960's the cornerstone of the thickness-work on special graph classes was
laid by Harary and Beineke, who published the �rst results on the thickness of
complete [BH65] and complete bipartite graphs [BHM64]. But the determination
of a \nice" formula describing the thickness of complete graphs has a long history
and was completed by Alekseev and Gon�cakov [AG76]. By the way, the question
of whether �(K16) = 3 or �(K16) = 4 gives rise to a little anecdote, since this
question was the subject of a mathematical competition (exemplarily correcting
the picture of mathematicians as people in the ivory-tower?): Harary made a
public o�er of $10 to anyone who could compute the thickness of K16. It lasted
until 1972, when Jean Mayer, surprisingly a professor of french literature (!), won
the prize by proving that �(K16) = 3 ([May72]).

We now list all known formulas describing the thickness of several graph
classes. It is interesting to note that in the case of complete, complete bipar-
tite graphs and hypercubes the lower bound of Theorem 3.1 is already the exact
value. We start with the complete graphs.

Theorem 3.2 [AG76] The thickness of the complete graph Kn is

�(Kn) =
�
n+ 7

6

�
; forn 6= 9; 10 and �(K9) = �(K10) = 3:

As a by-product, the proof of Theorem 3.2 yields the following corollary.

Corollary 3.3 [AG76], [Bei67b] The thickness of the n-dimensional octahedron
Kn(2) is

�(Kn(2)) =
�
1

3
n

�
:

Along with their work on complete graphs, Beineke and Harary have computed
the thickness of complete bipartite graphs in most cases.

Theorem 3.4 [BHM64] The thickness of the complete bipartite graph Km;n is

�(Km;n) =
�

m � n

2(m+ n � 2)

�
;

except possible if m and n are both odd, m � n and there is an integer k satisfying

n =
�
2k(m� 2)

m� 2k

�
:

As a corollary, we obtain the thickness of the regular complete bipartite graphs.

Corollary 3.5 [BHM64] The thickness of the complete bipartite graph Kn;n is

�(Kn;n) =
�
n + 5

4

�
:
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A further graph class, for which the thickness can be determined, is that of
the hypercubes, whose thickness was evaluated by Kleinert [Kle67].

Theorem 3.6 [Kle67] The thickness of the hypercube Qn is

�(Qn) =
�
n+ 1

4

�
:

Recently, J�unger et al. [JMOS95] have shown that the thickness of a certain
minor-excluded class of graphs is less than or equal to two. As a special case they
obtained the following result.

Theorem 3.7 [JMOS95] If G is a graph without K5-minors, then �(G) � 2.

Moreover, graphs with thickness two have drawn some attention in the �eld of
graph-drawing, where there are used in the study of so-called rectangle-visibility

graphs [HSV95].
To our knowledge, the thickness of no other graph class has been settled yet.

Moreover, we cannot expect to �nd a nice formula describing the thickness of
an arbitrary graph, since the thickness problem was proven to be NP-hard by
Mans�eld [Man83].

Hence, we turn to upper bounds. A simple consideration gives the order O(n)
of the thickness of a graph, since the formula of the thickness of complete graphs
operates as an upper bound for arbitrary graphs. In the early 90's, two new
results dealing with upper bounds were published. Dean, Hutchinson and Schein-
erman [DHS91] correlate the thickness of a graph with the number of edges and
Halton [Hal91] uses the maximal degree of a graph to compute an upper bound
of the thickness of a graph. In the following theorem we summarize these three
approaches.

Theorem 3.8 If G = (V;E) is a graph with jV j = n (n > 10), jEj = m and

maximal degree d, then

i) [AG76] �(Kn) �
�
n+7

6

�
,

ii) [DHS91] �(G) �
�q

m
3
+ 7

6

�
,

iii) [Hal91] �(G) �
�
d
2

�
.

Since graphs arising in practice are usually sparse and have a small maximal
degree, Halton's attempt to relate the thickness of a graph to the maximal degree
of the graph seems to be the most appropriate approach (see section 5).

Halton also makes the following conjecture, which might in
uence the design
of integrated circuits, since current chip-designers mainly use only two layers for
designing a chip.

Conjecture 3.9 [Hal91] Any graph of degree not exceeding six has thickness not

exceeding two.
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4 Modi�cations of the ground-concept

In this section we will look at several modi�cations of the ground-concept of thick-
ness, e.g., restrictions on the properties of each planar subgraph or considerations
of the thickness on other surfaces.

Tutte [Tut63b] de�ned the t-minimal graphs to be the graphs of thickness t
whose proper subgraphs have a thickness less than t. According to Kuratowski's
theorem there are in�nitely many 2-minimal graphs, but they can easily be char-
acterized as subdivisions of K5 or K3;3. The consideration of t-minimal graphs
could be helpful in the investigation of the structure of a graph with given thick-
ness. This originated in the fact that a graph G has thickness t (t � 2) if and
only if G contains a t-minimal, but no (t+1)-minimal subgraph. In other words,
the t-minimal graphs are the forbidden subgraphs for the graphs of thickness not
greater than t. Furthermore, in the same paper, Tutte derived the �rst results on
t-minimal graphs and proved the existence of in�nitely many t-minimal graphs
satisfying several properties.

Hobbs and Grossman [HG68] extended these results. They derived the exis-
tence of another class of t-minimal graphs and showed that each t-minimal graph
(t � 2) is at least t-edge-connected. While the proofs of the existence of the
classes of t-minimal graphs in [Tut63b] and [HG68] are non-constructive, �Sir�a�n
and Hor�ak [SH87] gave an explicit construction of an in�nite number of t-minimal
graphs of connectivity two, edge-connectivity t and minimal degree t. In addi-
tion, Beineke [Bei67a] proved thatK2t�1;4t2�10t+7 while Bouwer and Broere [BB68]
proved that K4t�5;4t�5 are t-minimal.

The thickness of a graph can be related to two other topological invariants of a
graph: the crossing number �(G) and the genus 
(G) (see, e.g., Harary [Har69]) of
a graph G. Whereas the simple formula �(G) � �(G)+1 ful�lls the �rst relation,
the situation for the genus is not that easy. However, Asano [Asa87] proved that
�(G) � 
(G) + 1 holds, if G contains no triangle. Furthermore, he showed that
a graph of genus 1 has thickness 2. Dean and Hutchinson [DH88] strengthened

Asano's result in proving that �(G) � 6 +
q
2 � 
(G) � 2.

In the subsequent lines we deal with restrictions on the shape of the planar
subgraphs of the decomposition.

The arboricity �(G) of a graph G is the minimal number of forests whose
union is G. In contrast to other topological invariants of a graph, the ar-
boricity can be exactly determined using Nash-Williams' formula ([NW61])

�(G) = maxH�G

�
mH

nH�1

�
for an induced subgraph H of G with mH edges and

nH nodes. Clearly, �(G) � �(G) and �(G) � 3 � �(G), since a maximal pla-
nar subgraph is at most three times as large as a spanning tree. Analogously to
their upper bound for the thickness, Dean, Hutchinson and Scheinerman [DHS91]
found an upper bound for the arboricity.

Another restriction on a layer is the outer-planarity. The outerthickness �o(G)
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of a graph G is the minimal number of outerplanar graphs whose union is G.
In addition to the trivial relation �(G) � �o(G), Guy [Guy74] has derived some
results for the outerthickness of a graph.

The tripartite and bipartite thickness of a graph are de�ned almost analogously
to the other modi�cations. Walther [Wal68] and Wessel [Wes83] gave some results
for complete graphs.

Due to the application in the design of integrated circuits, the degree-4 thick-

ness �4(G) of a graph G has been de�ned as the minimal number of planar
subgraphs with maximal degree four, whose union is G. Using an explicit con-
struction, Bose and Prabhu [BP77] computed the degree-4 thickness of complete
graphs in almost all cases.

Theorem 4.1 [BP77] The degree-4 thickness of the complete graph Kn is

i) n > 5: �4(Kn) = bn+3
4
c, except if n = 4p + 1 (p � 3),

ii) n � 5: �4(Kn) = bn+7
6
c.

Moreover, they obtained the degree-4 thickness of the complete bipartite
graphs, using an iterative method.

Theorem 4.2 [BP77] The degree-4 thickness of the complete bipartite graph

Km;n is

i) �4(Km;n) = bm+5

4
c, for m = n,

ii) �4(Km;n) = bn+3
4
c, for m � n� 2,

iii) �4(Km;n) = bm+5

4
c, for m = n� 1, except if m = 4r + 2 (r � 1).

A generalization of this concept is a node-restriction not only on four but also
on any degree k 2 IN. Bose and Prabhu have also analyzed this modi�cation in
the case of complete and complete bipartite graphs for small values of k.

The book-thickness Tb(G) of a graph G is the smallest number n such that
G has an n-book embedding, i.e., an arrangement of vertices in a line along the
spine of the book and edges on the pages in such a way that edges residing on
the same page do not cross. A survey can be found in [Bil92]. The relations to

outerthickness and thickness are given by To(G) � Tb(G) and T (G) � dTb(G)
2

e.
Another modi�cation of the ground-concept is made by considering the thick-

ness on other surfaces. The S-thickness �S(G) of a graph G on a surface S is the
minimal number of S-embeddable graphs whose union is G. Using Euler's gener-
alized polyhedron-formula (see, e.g., Beineke and Wilson [BW78]), one derives a
lower bound for the S-thickness similar to Theorem 3.1.

Beineke [Bei69] has reported formulas for some surfaces by extending his con-
structions of the planar cases. Independently, Ringel [Rei65] found the \toroidal"
thickness.
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Theorem 4.3 [Bei69] The S-thickness of the complete graph Kn (n > 2) is

projective plane : bn+5
6
c,

torus : bn+4
6
c,

double-torus : bn+3
6
c.

Cases which still remain undetermined occur more frequently for complete
bipartite graphs on other surfaces than in the planar case. However, if we restrict
ourselves to the regular complete bipartite graphs, Beineke [Bei69] has found the
following formulas.

Theorem 4.4 [Bei69] The S-thickness of the regular complete bipartite graph

Kn;n is

torus : bn+3
4
c,

double-torus : bn+3
4
c,

triple-torus : bn+2
4
c,

projective plane : bn+4
4
c,

Klein bottle : bn+3
4
c.

5 Heuristic Approaches

In this section we deal with practical computation of the thickness of a graph.
As previously mentioned, the thickness problem was proven to be NP-hard by
Mans�eld [Man83]. Therefore, we cannot expect to �nd a polynomial algorithm
and have to turn to heuristics.

A basic approach (and we did not �nd any other in the literature) is to extract
iteratively a possibly large planar subgraph until the resulting graph is planar.
The achieved decomposition in planar subgraphs is not necessarily minimal, but
we at least get an upper bound for the thickness.

The di�erent methods of computing a maximal or maximum planar subgraph
introduced in section 2 lead to di�erent heuristics. The general outline in either
case is as follows.

Heuristic Thick

Input : Graph G = (V;E)
Output : Upper bound �0(G) of �(G),

Decomposition of G in �0(G) planar subgraphs

(1) Initialize: G0 := G, t := 1

(2) while G0 nonplanar do

(2.1) t := t+ 1
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(2.2) determine a maximal/maximum planar subgraph M of G0

(2.3) G0 := G0 �M

(3) endwhile

(4) �0(G) := t

We compare the results of the following three heuristics for planarization. The
ThickHT heuristic is based on the Cai, Han and Tarjan algorithm in an imple-
mentation of Jordan [Jor93]. The basic algorithm for the ThickPQ heuristic is by
Jayakumar, Thulasiraman and Swamy in an implementation of Winter [Win93].
Finally, the ThickJM heuristic is founded on the branch and cut algorithm of
J�unger and Mutzel [JM93b].

First, the three heuristics are compared on the complete and complete bipartite
graphs, since the exact values of the thickness of these graphs are known. Table 1
and Table 2 show that the ThickHT and ThickPQ heuristics produce nearly
the same values. For complete graphs, their values are about 38% away from the
optimal solution (on average), whereas the values of the heuristic ThickJM using
the exact planarization algorithm, is only 20% away on average.

Table 1: Complete graphs Kn

n ThickHT ThickPQ ThickJM �(Kn)
10 3 3 3 3
15 4 4 4 3
20 5 6 5 4
25 7 7 6 5
30 8 8 7 6
35 9 9 8 7
40 10 11 9 7
45 11 12 10 8
50 13 13 11 9
55 15 14 12 10
60 15 15 13 11
65 17 16 14 12
70 18 18 15 12
75 19 19 16 13
80 21 20 17 14
85 23 22 18 15
90 23 23 19 16
95 24 24 20 17
100 26 26 21 17
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Table 2: Complete bipartite graphs Kn;n

n ThickHT ThickPQ ThickJM �(Kn;n)
10 4 4 4 3
15 6 6 5 5
20 7 7 7 6
25 9 9 8 7
30 10 10 9 8
35 12 12 11 10
40 13 14 12 11
45 15 15 13 12
50 16 17 14 13

The results are much better for complete bipartite graphs. The obtained qual-
ity of the solutions is about 24% o� the optimal solution for ThickHT and
ThickPQ, whereas it is only 12% o� for ThickJM .

The resulting values of these graph classes are easy to compare with the exact
values, but they lack expressiveness for the application. Shown in Table 3 are
some results for real-world graphs originated in VLSI-design. Since the exact
values are not known, we have to use the lower and upper bounds described in
Theorems 3.1 and 3.8 in order to assess the achieved results.

Table 3: Special graphs
n m l.b. ThickHT ThickPQ ThickJM u.b.
28 75 2 2 2 2 3
38 76 2 2 2 2 2
45 98 2 2 2 2 6
50 142 2 3 3 2 5
50 183 2 3 3 3 5
90 201 2 2 2 2 2
100 248 2 3 3 3 4
100 269 2 3 3 3 3
166 504 2 5 4 3 10
200 403 2 2 2 2 2
200 514 2 3 3 3 6
200 701 2 4 4 3 8
300 495 2 2 2 2 4
680 3103 2 4 5 4 15

Here, our results indicate that the algorithm based on the HT- and PQ-
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Table 4: CPU-time in seconds for the graphs of Table 3
n m ThickHT ThickPQ ThickJM

28 75 0.3 0.2 2
38 76 0.3 0.3 1002
45 98 0.4 0.4 1004
50 142 0.6 2 1004
50 183 0.6 3 2012
90 201 0.6 13 1006
100 248 1 5 1015
100 269 1 6 2013
166 504 3 11 2012
200 403 2 17 1032
200 514 4 39 2252
200 701 5 49 2090
300 495 4 12 1040
680 3103 103 111 17485

algorithm produces a fairly good approximation of the thickness. Using the JM-
algorithm produces only slightly better results.

Our experiments could lead to the conjecture that the choice of a maximum
planar subgraph in each iteration of the heuristic would always result in a smaller
thickness. By giving a counterexample, we show that this is not the case in
general. Consider the graph depicted in Figure 1.

After subtracting the maximum planar subgraph, we obtain the dotted-lined
K3;3. Since this graph is nonplanar, we get a value of 3. In Figure 2, a decompo-
sition of the same graph in two planar subgraphs can be seen.

Nevertheless, on the average, the use of the JM-algorithm in each iteration of
the heuristic yields a very good approximation. For sparse graph instances, the
optimal value can usually be obtained, whereas in dense graph instances, values
close to the optimum are obtained.

However, it should be noticed that one drawback of this method is the use of
the time-consuming branch and cut algorithm. Table 4 gives an overview. Except
for the last problem, the time bound for the branch and cut algorithm in each
iteration was set to 1000 sec. computation time.

A characteristic of the layers is that they are not �lled evenly. Often many
edges adjacent to a node in the original graph are placed in the same layer.
Figure 3 shows a decomposition of K14 achieved with the ThickJM algorithm.
Although the fourth layer consists of only one edge, we have a value of 4. Note,
however, that node 1 has degree 10 in the �rst layer.
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Figure 1: Graph G
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Figure 2: Decomposition of G
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In order to avoid this situation, we carried out a degree-restriction for each
node on all layers. With a restriction of at most 6 adjacent edges we got a de-
composition of K14 in 3 layers, which can be seen in Figure 4. Unfortunately,
we did not �nd during our experiments a convenient rule for choosing a good
node-restriction, so that we cannot recommend this approach in general.

6 Miscellaneous Results

This last section is devoted to some results which cannot be subsumed under a
general topic. Chartrand, Geller and Hedetniemi [CGH71] de�ne a line-partition-
number �0n(G) of a graph G, using a \Property Pn", which makes it possible to
view the arboricity, the outerthickness and the thickness of a graph in a general
framework, since �0

2
(G) = �(G), �0

3
(G) = �a(G), �04(G) = �(G).

The coarseness �(G) of a graph G was unintentionally de�ned by Erd�os as the
maximum number of edge-disjoint nonplanar subgraphs whose union is G (see
Harary [Har69] for the whole story). This concept is in some sense opposite to
the concept of thickness but it turned out that deriving formulas even for the
complete graphs involves many exceptions. Since this problem does not yet have
any applications we will not go into details here.

To complete this survey, we give an integer programming formulation of the
thickness problem. We are encouraged by the fact that polyhedral combinatorics
and branch and cut algorithms have been successfully applied to the maximum
planar subgraph problem. Moreover, since the thickness value for practical prob-
lem instances is relatively small, only a few more variables are needed. The facet-
de�ning inequalities occuring in the integer programming formulation for the
maximum planar subgraph problem are the main ingredients of this formulation.

Consider a graph G = (V;E) with jV j = n and jEj = m and let t be an upper
bound for the thickness of G. The task is to assign each edge e 2 E to a subgraph
l 2 f1; 2; : : : ; tg in such a way that all subgraphs are planar and the number of the
planar subgraphs is minimized. We introduce edge-variables yl;e for l = 1; 2; : : : ; t
and e = 1; 2; : : : ;m which indicate if edge e is assigned to layer l (yl;e = 1) or
not (yl;e = 0). In addition, we need layer-variables xl for l = 1; 2; : : : ; t, which
indicate if layer l is required, i.e., the layer contains at least one edge. The integer
programming formulation of the thickness problem can now be stated as follows:

min
Pt

l=1 xl
s.t.

Pt
l=1 yl;e = 1 for all e = 1; 2; : : : ;mP
e2Fl

yl;e � jFlj � 1 for all subdivisions Fl of K5 and K3;3 on layer l,
for all l = 1; 2; : : : ; t

xl � yl;e for all e = 1; 2; : : : ;m and l = 1; 2; : : : ; t
yl;e 2 f0; 1g for all e = 1; 2; : : : ;m and l = 1; 2; : : : ; t
xl 2 f0; 1g for all l = 1; 2; : : : ; t

14



References

[Asa87] Asano, K., On the genus and thickness of graphs, J. Comb. Theo. (B)
43 (1987), 287{292.

[AG76] Alekseev, V.B., and V.S. Gon�cakov, The thickness of an arbitrary

complete graph, Math. Sbornik 30,2 (1976), 187{202.

[AKS91] Aggarwal, A., M. Klawe, and P. Shor, Multilayer Grid Embeddings

for VLSI, Algorithmica 1 (1991), 129{151.

[BB68] Bouwer, I.Z., and I. Broere, Note on t-minimal bipartite graphs,
Canad. Math. Bull 11 (1968), 729{732.

[Bei67a] Beineke, L.W., Complete Bipartite Graphs: Decomposition into planar
subgraphs, in: A seminar on graph theory, ed. by F. Harary, New York
(1967), 42{53.

[Bei67b] Beineke, L.W., The decomposition of complete graphs into planar sub-
graphs, in: Graph theory and theoretical physics, Academic Press,
New York (1967), 139{153.

[Bei69] Beineke, L.W., Minimal decompositions of complete graphs into sub-

graphs with embeddability properties, Canad. J. Math. 21 (1969), 992{
1000.

[BH65] Beineke, L.W., and F. Harary, The thickness of the complete graph,
Canad. J. Math. 17 (1965), 850{859.

[BHK62] Battle, J., F. Harary and Y. Kodoma, Every planar graph with nine

points has a nonplanar complement, Bull. Amer. Math Soc. 68 (1962),
569{571.

[BHM64] Beineke, L.W., F. Harary, and J.W. Moon, On the thickness of the

complete bipartite graph, Proc. Camb. Phil. Soc. 60 (1964), 1{5.

[Bil92] Bilski, T., Embedding graphs in books: a survey, IEE Proceedings-E,
Vol. 139, No.2, March 1992.

[BL76] Booth, K.S., and G.S. Lueker, Testing for the Consecutive Ones Prop-
erty, Interval Graphs and Graph Planarity Testing using PQ-tree al-

gorithms, J. of Computer and Systems Sciences 13 (1976), 335{379.

[BP77] Bose, N.K., and K.A. Prablu, Thickness of graphs with degree con-

strained vertices, IEEE Trans. on Circuits and Systems 24 (1977),
184{190.

15



[BW78] Beineke, L., and R. Wilson, Selected topics in graph theory, Academic
Press (1978), 15{49.

[CFFK96] C�alinescu, G., C.G. Fernandes, U. Finkler, and H. Karlo�, A Better

Approximation Algorithm for the Maximum Planar Subgraph Prob-

lem, Proc. of the 7th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA'96, Atlanta, Georgia (1996), 16{25.

[CHT91] Cai, J., X. Han, and R.E. Tarjan, An O(m log n)-Time Algorithm for

the Maximal Planar Subgraph Problem, SIAM J. Comput. 22 (1993),
1142{1162.

[CGH71] Chatrand, G., D. Geller, and S. Hedetniemi, Graphs with forbidden

subgraphs, J. Comb. Theo. 10 (1971), 12{41.

[DH88] Dean, A.M., and J.P. Hutchinson, Relations among embedding pa-

rameters for graphs, in: Int'l Conf. on the Theory and Applications
of Graphs, Kalamazoo, MI, (1988).

[DHS91] Dean, A.M., J.P. Hutchinson, and E. Scheinerman, On the thickness

and arboricity of a graph, J. Comb. Theory (B) 52 (1991), 147{151.

[Guy74] Guy, R.K., Outerthickness and outercoarseness of graphs, in: Combi-
natorics, London Math. Soc. Lecture Notes 13, Cambridge University
Press, London (1974), 57{60.

[Hal91] Halton, J., On the thickness of graphs of given degree, Info. Sci., 54
(1991), 219{238.

[Har61] Harary, F., Research Problem, Bull. Amer. Math. Soc. 67 (1961), 542.

[Har69] Harary, F., Graph Theory, Addison Wesely (1969).

[HG68] Hobbs, A.M., and J.W. Grossman, Thickness and connectivity in

graphs, J. Res. nat. Bur. Standards Sect. B 72 (1968), 239{244.

[HSV95] Hutchinson, J., T. Shermer, and A. Vince, On Representations of

some Thickness-Two Graphs, Extended Abstract, Lecture Notes in
Computer Science, Graph Drawing '95, F. Brandenburg ed., Springer
(to appear).

[HT74] Hopcroft, J., and R.E. Tarjan, E�cient planarity testing, J. ACM 21
(1974), 549{568.

[JM93a] J�unger, M., and P. Mutzel, Solving the Maximum Planar Subgraph

Problem by Branch and Cut, Proc. 3rd IPCO Conf. Erice (1993).

16



[JM93b] J�unger, M., and P. Mutzel, Maximum Planar Subgraph and Nice

Embeddings: Practical Layout Tools, Universit�at zu K�oln, Report
No. 93.145, 1993, to appear in: G. Di Battista and R. Tamassia (Eds.),
Special Issue of Algorithmica on Graph Drawing (1996).

[JMOS95] J�unger, M., P. Mutzel, T. Odenthal, and M. Scharbrodt, The Thick-
ness of a Minor-Excluded Class of Graphs, to appear in Discrete
Mathematics, Special Volume on the Third Slovenian International
Conference in Graph Theory, Bled (1995).

[Jor93] Jordan, E., personal communication.

[JTS89] Jayakumar, R., K. Thulasiraman, and M.N.S. Swamy, O(n2) Algo-

rithms for Graph Planarization, IEEE Trans. on Computer-aided De-
sign 8 (1989), 257{267.

[Kan92] Kant, G., An O(n2) Maximal Planarization Algorithm based on PQ-

trees, Technical Report, RUU-CS-92-03, Dept. of Computer Science,
Utrecht University (1992).

[Kle67] Kleinert, M., Die Dicke des n-dimensionalen W�urfel{Graphen,
J. Comb. Theo. 3 (1967), 10{15.

[Lei94] Leipert, S., The Problem of Computing a Maximal Planar Subgraph

Using PQ-Trees is still not solved, to appear in Special Proceedings
for students at ECMI'94, Kaiserslautern (1994).

[LG77] Liu, P.C., and R.C. Geldmacher, On the deletion of nonplanar edges

of a graph, Proc. 10th S-E Conf. Combinatorics, Graph Theory, and
Computing, Boca Raton, FL (1977), 727{738.

[Man83] Mans�led, A., Determining the thickness of graphs is NP-hard,
Math. Proc. Cambridge Philos. Soc. 9 (1983), 9{23.

[May72] Mayer, J., D�ecomposition de K16 en Trois Graphes Planaires,
J. Comb. Theo. (B) 13 (1972), 71.

[NW61] Nash-Williams, C. St.J. A., Edge-disjoint spanning trees of �nite

graphs, J. London Math. Soc. 36 (1961), 445{450.

[OT81] Ozawa, T., and H. Takahashi, A Graph-Planarization Algorithm and

its Application to Random Graphs, Graph Theory and Algorithms,
Lecture Notes in Computer Science 108 (1981), 95{107.

[Rei65] Ringel, G., Die torodiale Dicke des vollst�andigen Graphen, Math. Z.
87 (1965), 19{26.

17



[SH87] �Sir�a�n, J., and P. Hor�ak, A construction of thickness-minimal graphs,
Discr. Math. 64 (1987), 262{268.

[Tut63a] Tutte, W.T., The non-biplanar character of the complete 9-graph,
Canad. Math. Bull. 6 (1963), 319{330.

[Tut63b] Tutte, W.T., The thickness of a graph, Indag. Math. 25 (1963), 567{
577.

[Wal68] Walther, H., �Uber die Zerlegung des vollst�andigen Graphen in paare

planare Graphen, in: Beitr�age zur Graphentheorie (ed. H. Sachs)
Teubner, Leipzig (1968), 189{205.

[Wes83] Wessel, W., On some variations of the thickness of a graph connected

with colouring, in: Graphs and other combinatorial topics, Teubner
Texte Math. 59 (1983), 344{348.

[Win93] Winter, A.,Heuristiken f�ur nicht-planare Graphen, Diplomarbeit Uni-
versit�at Passau (1993).

18


