
On the Saturation of YAGOMartin Suda and ChristophWeidenba
h and Patri
kWis
hnewskiMPI{I{2010{RG1{001 February2010

Authors' AddressesChristoph Weidenba
hMax-Plan
k-Institut f�ur InformatikCampus E1 466123 Saarbr�u
kenGermanyPatri
k Wis
hnewskiMax-Plan
k-Institut f�ur InformatikCampus E1 466123 Saarbr�u
kenGermanyMartin SudaMax-Plan
k-Institut f�ur InformatikCampus E1 466123 Saarbr�u
kenGermany
Publi
ation NotesThis report is an extended version of an arti
le intended for publi
ationelsewhere.

Abstra
tYAGO is an automati
ally generated ontology out of Wikipedia and Word-Net. It is eventually represented in a proprietary
at text �le format anda
ore
omprises 10 million fa
ts and formulas. We present a translation ofYAGO into the Bernays-S
h�on�nkel Horn
lass with equality. A new vari-ant of the superposition
al
ulus is sound,
omplete and terminating for this
lass. Together with extended term indexing data stru
tures the new
al-
ulus is implemented in Spass-YAGO. YAGO
an be �nitely saturated bySpass-YAGO in about 1 hour. We have found 49 in
onsisten
ies in the orig-inal generated ontology whi
h we have �xed. Spass-YAGO is able to provenon-trivial
onje
tures with respe
t to the resulting saturated and
onsistent
lause set of about 1.4 GB in less than one se
ond.

Keywordssuperposition, large �nite domain reasoning, reasoning in large ontologies,term indexing

Contents1 Introdu
tion 22 Preliminaries 53 Translation of YAGO into BSHE 64 A new Cal
ulus for BSHE 84.1 The proof system . 104.2 Completeness, soundness, and termination 115 Term Indexing 205.1 Context Tree Indexing . 205.1.1 Context Trees . 215.1.2 Algorithms for Context Trees 225.2 Filtered Context Tree Indexing 355.2.1 Filtered Context Trees 365.2.2 Algorithms for Filtered Context Trees 395.2.3 Implementation in Spass-YAGO 425.2.4 Further Improvements 425.3 Summary . 436 Engineering 447 Experiments 458 Con
lusion 47
1

1 Introdu
tionYAGO (Yet Another Great Ontology) has been developed by our
olleaguesfrom the database/information retrieval group at the Max Plan
k Institutefor Informati
s [17℄. It attra
ted a lot of attention in the information retrieval
ommunity be
ause it was the �rst automati
ally retrieved ontology withboth an a

ura
y of about 97% and a high
overage as it in
ludes a uni�
ationof Wikipedia and WordNet. It
ontains about 20 million \fa
ts" of the YAGOlanguage. A detailed introdu
tion to YAGO
ontaining a
omparison to otherwell-known ontologies
an be found in [18℄.After a
lose inspe
tion of the YAGO language it turned out that theBernays-S
hoen�nkel Horn
lass with equality, abbreviated BSHE from nowon, is suÆ
iently expressive to
over a
ore of YAGO. In 2008 the idea wasborn to write a translation pro
edure from YAGO into BSHE and then useSpass in order to �nd all in
onsisten
ies in YAGO and to answer queries.The translation pro
edure is des
ribed in Se
tion 3. We then started runningSpass on the resulting formulas in a kind of \test and re�ne" loop, eventuallyleading to the Spass-YAGO variant of Spass, a new superposition
al
ulusfor BSHE, an extension to
ontext tree indexing, and this paper.The �rst step was a
tually to make Spass ready for handling really bigformula and
lause sets. Some of this work went already into Spass 3.5 [26℄,the basis for Spass-YAGO, but further re�nements were needed in order toa
tually start the experiments on YAGO. The engineering steps taken areexplained in Se
tion 6.After the �rst experiments on smaller fragments of YAGO it immediatelybe
ame
lear that the standard superposition
al
ulus does not work suf-�
iently well on BSHE. We started sear
hing for a
al
ulus that is sound,
omplete and terminating on BSHE and at the same time generates \small"saturations. The YAGO language assumes a unique name assumption, i.e.,all
onstants are di�erent. This
an be translated into �rst-order logi
 by enu-merating disequations a 6� b for all di�erent
onstants a, b. For several million
onstants this translation is not tra
table. Bonan
ina and S
hulz [15℄ there-2

fore suggested additional inferen
e rules instead of adding the disequations.We followed this approa
h and further re�ned one of their rules a

ordingto the BSHE fragment and the rest of our
al
ulus. The BSH fragment
anbe de
ided by positive hyper resolution. Hyper resolution is a good
hoi
eanyway, be
ause it prevents the proli�
 generation of intermediate resolventsof the form :A1_ : : ::An_B that would be generated and kept by (ordered)binary resolution if there are no resolution partners for some :Ai. Experi-ments showed that this works ni
ely for most types of
lauses resulting fromthe translation. For example, in YAGO a relation Q
an be de�ned to befun
tional, translated into the
lause :Q(x; y) _ :Q(x; z) _ y � z. If hyperresolution su

eeds on generating a ground
lause (y � z)� out of this
lause,it is either a tautology or the unique name assumption rule mentioned abovewill refute the
lause. The sear
h spa
e generated by hyper resolution out ofsubsort de�nitions and transitive relations
ontained in YAGO turned out tobe too proli�
. Therefore, we further
omposed our
al
ulus by adding
hain-ing for transitive relations [3℄ and sort reasoning [25℄. The latter is availablein Spass anyway, whereas for
haining we added a novel implementation.All details on the BSHE fragment generated out of YAGO and the eventual
al
ulus in
luding proofs for
ompleteness, soundness, and termination plusimplementation aspe
ts are dis
ussed in Se
tion 4.Thirdly, it turned out that the well-known indexing solutions for �rst-order theorem proving [11℄ are too ineÆ
ient for the size and stru
ture ofthe YAGO BSHE fragment. The problem is that for example uni�abilityqueries with a query atom Q(x; a) need an index to both dis
riminate onthe signature symbols Q and a without expli
itly looking at all potentialpartner atoms in the index. In Se
tion 5 we present an extension to
ontexttree indexing [5℄
alled Filtered Context Trees that dis
riminate for the aboveexample on Q and a in logarithmi
 time in the number of symbols, i.e. inlogarithmi
 time the �ltered
ontext tree index gives a

ess to a stru
turethat
ontains all potential partners
ontaining these symbols. Context treesare a generalization of substitution trees used in Spass. In Spass-YAGO the
ontext tree extension is �nally implemented as an extension to substitutiontree indexing.Eventually, Spass-YAGO saturates the BSHE translation of YAGO in 1hour, generating 26379349
lauses. The generated saturated
lause set
on-sists of 9943056
lauses. We found 49 in
onsisten
ies whi
h we resolved byhand. With respe
t to saturated
lause set we
an prove queries in less thanone se
ond (Se
tion 7). The paper ends with a summary of the obtainedresults and dire
tions for future work (Se
tion 8). Detailed proofs and algo-rithms are available in a te
hni
al report [20℄. Spass-YAGO and all input �lesare available from the Spass homepage http://www.spass-prover.org/ in3

se
tion prototypes and experiments.

4

2 PreliminariesWe follow the notation from [25℄. A �rst-order language is
onstru
ted over asignature �. We assume � to be a �nite set of fun
tion symbols. In additionto the signature � we assume that there is an in�nite set V of variables.The set of terms T (�;X) over a signature � and a set of variables X withX � V is re
ursively de�ned: X � T (�;X) and for every fun
tion symbolf 2 � with arity zero (a
onstant) f 2 T (�;X) and if f has arity n andt1; : : : tn 2 T (�;X) then also f(t1; : : : tn) 2 T (�;X). The variables V n Xare used as meta variables in
ontext tree indexing. Let vars(t) for a termt 2 T (�;X) be the set of all variables o

urring in t. If t = f(t1; : : : ; tn) thentop(t) = f .A substitution � : V ! T (�;X) is a mapping from the set of variablesinto the set of terms su
h that x� 6= x for only �nitely many x 2 V. Thedomain of a substitution � is de�ned as dom(�) = fx j x� 6= xg and the
odomain is de�ned as
od(�) = fx� j x� 6= xg. Substitutions are lifted toterms as usual. Given two terms s and t, a substitution � is
alled a uni�er ifs� = t� and most general uni�er (mgu) if, in addition, for any other uni�er �of s and t there exists a substitution � with �� = � . A substitution � is
alleda mat
her from s to t if s� = t. The term s is then
alled a generalization of tand t an instan
e of s. A substitution � is a uni�er for substitutions � and �if � is a uni�er of x� and x� for all x 2 dom(�). The de�nitions for mat
her,generalization and instan
e
an be lifted to substitutions analogously. The
omposition � Æ � of the two substitutions � and � is de�ned as (x�)� .

5

3 Translation of YAGO intoBSHEFrom a logi
al perspe
tive, YAGO [17, 18℄
onsists of about 20 million groundatoms of se
ond-order logi
. However, most of the se
ond-order
ontent isa
tually \synta
ti
 sugar" that
an be eventually translated into �rst-orderlogi
.For example, subsort relations are represented as fa
ts over the involvedsort predi
ates.The YAGO ontology
omprises fa
ts of the formarg1 rel arg2where rel is a relation and arg1, arg2 are either individuals or are relations.For example, the following fa
t states that Albert Einstein is born in UlmAlbertEinstein bornIn Ulmwhere bornIn is a relation, AlbertEinstein and Ulm are individuals. For thetranslation of YAGO into BSHE, we transform ea
h fa
t of this form, wherethe arguments of a relation are entities, into a ground atom. The relationbe
omes a binary predi
ate symbol and an individual be
omes a
onstant.We translate the above example intobornIn(AlbertEinstein;Ulm)The relation type of YAGO assigns a type to an individual or to an relation.For example, the following says that Angela Merkel is a humanAngelaMerkel type humanThe fa
t stating that the relation bornIn is a fun
tion, istype bornIn yagoFun
tion6

In the �rst
ase we translate the fa
t into a ground instan
e of the sortpredi
ate human as followshuman(AngelaMerkel)The se
ond
ase seems to be se
ond-order but it is a
tually "synta
ti
 sugar"for the following �rst-order
onstraint:bornIn(x; y) _ :bornIn(x; z) _ x = zLikewise, the fa
t stating that a relation is of type yagoTransitiveRelation istranslated into the repse
tive �rst-order
onstraint. For example, the fa
tlo
atedIn type yagoTransitiveRelationis translated into the
onstraint:lo
atedIn(x; y) _ :lo
atedIn(y; z) _ lo
atedIn(x; z)The last kind of fa
ts that we
onsider for our translation are fa
ts ofthe relation subClassOf. The following example states that ea
h human is amammal human subClassOf mammalFrom a logi
al point this also seems to be se
ond-order be
ause this fa
t statesover the sort predi
ates human and mammal. However, we
an translatethis into the following subsort relation:human(x) _mammal(x)The above kind of fa
ts make up about half of YAGO, i.e., about 10 mil-lion fa
ts translated into ground atoms and
lauses of the above form. Thetranslation results in �rst-order ground fa
ts and non-unit
lauses one halfea
h. For this report we left out YAGO fa
ts about the sour
e of informationas well as
on�den
e values atta
hed to the fa
ts. For example, in YAGO forea
h relation o

urring in a YAGO fa
t there is also a fa
t relating it to thelink of the website it was extra
ted from as well as further fa
ts relating tolinks of other websites
ontaining the same relation.
7

4 A new Cal
ulus for BSHEWe translated YAGO into the Bernays-S
h�on�nkel Horn
lass with equalitywhere all the
lauses are range restri
ted. This means that any
lause hasthe form C _ A or just C with the following
onditions satis�ed� Horn
lauses: C
ontains only negative literals and A is a positiveliteral,� range restri
ted: Var(A) � Var(Cn), where Cn is the sub
lause of C
onsisting of all the non-equality atoms of C,� Bernays-S
h�on�nkel: the signature �
ontains only
onstant symbols,� equality (�) is present among the predi
ate symbols.By using the unique name assumption, whi
h is in our
ase imposed onall the
onstant symbols from �, the given set of
lauses
an be furthersimpli�ed before starting the a
tual reasoning pro
ess. Ea
h
lause of theform C _ a 6� b is a tautology and
an therefore be removed. If it is of theform C _ a 6� a the literal a 6� a
an be deleted. Moreover,
lauses of theform C_x 6� t, for variable x and term t (either a variable or a
onstant)
anbe simpli�ed to C[x t℄. Thus we may assume that the
lause set does not
ontain disequation literals. When we look at the positive o

urren
es of theequality predi
ate, we
an do yet another simpli�
ation: a
lause of the formC _ a � b
an be simpli�ed to C, be
ause a � b is false in any interpretationsatisfying the unique name assumption. As noted in the introdu
tion, weused the re�nement of the
al
ulus presented in [15℄ to deal with the uniquename assumption.Another key ingredient in the pro
ess of saturation of YAGO is the
hain-ing
al
ulus, a re�nement of superposition designed to deal eÆ
iently withtransitive relations [3℄. It is well known that the axiom stating that a relationQ is transitive, Q(x; y) ^Q(y; z)! Q(x; z);8

may be a sour
e of non-termination in resolution proving. This is be
ause thetransitivity axiom
lause may be resolved with (a variant of) itself to yielda new
lause Q(x; y) ^Q(y; z) ^Q(z; w)! Q(x; w). Evidently, su
h pro
ess
an be arbitrarily iterated. Even if we use sele
tion of negative literals orhyperresolution to blo
k the self-inferen
e, (hyper)resolution will eventuallyexpli
itly
ompute the whole transitive
losure of the relation Q.The idea of
haining is to remove the proli�
 transitivity axiom fromthe given
lause set, and instead to introdu
e a
ouple of spe
ialized infer-en
e rules that en
ode the logi
al
onsequen
es of transitivity in a
ontrolledway. The
ru
ial restri
tion lies in requiring that the two literals Q(u; v)and Q(v; w)
hain together only if v � u and v � w, where � is a standardsuperposition term ordering. In order to show that su
h a restri
ted versionof the rule is still
omplete te
hniques from term rewriting are employed.An important step in introdu
ing the
haining
al
ulus to a theoremprover is the implementation of a new literal ordering. In the standard su-perposition setting literal ordering is typi
ally de�ned as the two-fold mul-tiset extension of the term ordering on the so
alled o

urren
es of equa-tions/atoms (see e.g. [25℄ for details). This, for instan
e, entails that :A � Afor any atom A, a property essential for the
ompleteness of the
al
ulus.Unfortunately, however, stronger properties are required for the
haining towork, namely to ensure that the
haining inferen
es are de
reasing, i.e. thatthe
on
lusion of an inferen
e is always smaller than the maximal premise.These properties are integrated under the notion of admissibility of the literalordering.De�nition 1. An ordering � on ground terms and literals is
alled admis-sible [3℄ if� it is well-founded and total on ground terms and literals,� it is
ompatible with redu
tion on maximal subterms, i.e. L � L0whenever L and L0
ontain the same transitive predi
ate symbol Q, andthe maximal subterm of L0 is stri
tly smaller than the maximal subtermof L,� it is
ompatible with goal redu
tion, i.e.{ :A � A for all ground atoms A,{ :A � B whenever A is an atom Q(s; t) and B is an atom Q(s0; t0),su
h that Q is a transitive predi
ate and max (s; t) � max (s0; t0),{ :A � :B whenever A is an atom Q(s; s) and B atom Q(s; t) orQ(t; s), where Q is a transitive predi
ate and s � t.9

An ordering on ground
lauses is
alled admissible if it is the multisetextension of an admissible ordering on literals.In order to a
tually implement an admissible ordering on ground literals,we
an work as follows. We asso
iate to ea
h literalL a tuple (maxL; pL;minL)and
ompare these lexi
ographi
ally, using the superposition term ordering� in the �rst and last
omponent, and the ordering 1 > 0 in the middle
om-ponent. The individual members of the tuple are de�ned as follows: If L isof the form Q(s; t) for a transitive predi
ate Q we set maxL to the maximumof s and t, and minL to the minimum of the two terms (with respe
t to �).If L is of the form A or :A for some atom A the top symbol of whi
h is nota transitive predi
ate, we set maxL = A and minL = >, where > is spe
ialsymbol minimal in the term ordering �. We set pL = 1, if L is negative, and0 otherwise.We use � to denote both the standard term ordering, whi
h is as usualassumed to be total on ground terms, and the just des
ribed admissibleordering on literals and
lauses. Context should always make
lear whatinstan
e of � is meant.Lifting the lexi
ographi
 ordering of the tuples to the non-ground levelis a non-trivial task. For instan
e, the maximum of s and t may not beunique, be
ause the term ordering �
annot be total on non-ground terms.Nevertheless, it is possible to pro
eed by simultaneously
onsidering both
ases. Then it
an happen that we produ
e a distin
tive result, as opposedto just reporting in
omparability of the two literals in question, whi
h isalways a sound solution, be
ause it only means that more inferen
e willpotentially have to be done. For example,
omparing the two non-groundliterals L1 = :R(s1; t1) and L2 = R(s2; t2) where the term pairs s1; t1, s2; t2,and t1; s2 are in
omparable respe
tively, but s1 � s2 and t1 = t2, we
anreport that L1 � L2 although we don't know whether maxL1 is s1 or t1.For the instan
es where maxL1 is t1 the pL-member of the tuple takes over.Obviously, we try to identify as many su
h
ases as possible, to be able torestri
t appli
ability of the inferen
es.4.1 The proof systemHere we present the inferen
e rules of our
al
ulus. They are re�nements of
al
uli presented in [3℄ and [15℄
omposed and spe
ialized for BSHE. For the
haining rules, we assume that Q is a transitive predi
ate.Ordered Chaining Q(l; s) Q(t; r)Q(l; r)�10

where � is the most general uni�er of s and t, l� 6� s�, and r� 6� t�.Negative Chaining Q(l; s) D _ :Q(t; r)D� _ :Q(s; r)�where � is the most general uni�er of l and t, s� 6� l�, and r� 6� t�, andQ(l; s) D _ :Q(t; r)D� _ :Q(t; l)�where � is the most general uni�er of s and r, l� 6� s�, and t� 6� r�.HyperresolutionA1 : : : An :B1 _ : : : _ :Bn _ PP� ;where n � 1, A1; : : : ; An are unit
lauses, P is a positive literal or false, and� is the simultaneous most general uni�er of Ai and Bi respe
tively, for alli 2 f1; : : : ng.OECut [15℄ a � b? ;where a and b are two di�erent
onstants.In negative
haining, the
ase t� = r� needs to be dealt with by only oneof the two negative
haining rules. We do not impose maximality restri
tionson the negative literal as this would
ause in
ompleteness in the
ombinationwith hyperresolution. Positive hyperresolution alone is known to de
ide Hornfun
tion-free
lauses, but with respe
t to YAGO the sear
h spa
e be
omestoo proli�
. Therefore, we developed the above
al
ulus where transitivity isrepla
ed by the spe
i�

haining rules.4.2 Completeness, soundness, and termina-tionIn this se
tion we show that our
al
ulus is
omplete, sound, and terminatingfor the Bernays-S
h�on�nkel Horn
lass with equality with range restri
ted
lauses.The
ompleteness proof is based on the ideas from [3℄ adapted to ourspe
ial
ase. It in
orporates the notion of redundan
y, so the standard elim-ination rules like subsumption and tautology deletion
an be added to the
al
ulus. The model
onstru
tion itself pro
eeds along standard lines. Onetakes the set of all ground instan
es of the given saturated
lause set, and11

uses the
lause ordering whi
h is total and well-founded on the ground levelto indu
tively build partial interpretations. In order to satisfy all the
lausesin the �nal interpretation, some of the
lauses are designated as produ
tive,whi
h means they
ontribute with a positive atom to the interpretation. Aspe
ialty of our
ase is that we additionally need to
onsider a
losure of the
ontributed atoms in order to obtain the right interpretation. Moreover, weonly allow positive unit
lauses to potentially be
ome produ
tive (this
an bejusti�ed by viewing all the negative literals as impli
itly sele
ted). We nowbuild up the theory needed to establish the
ompleteness theorem formally.We assume a �xed theory TRANS of axioms stating transitivity for pred-i
ates Q1; : : : ; Ql, and a theory UNA = fa 6� bja 6= b; a 2 �; b 2 �g for theunique name assumption. We de�ne the following notions:De�nition 2. A
hain is a �nite sequen
e of atomsQ(l0; l1); Q(l1; l2); : : : ; Q(ln�1; ln)where n � 1 and all terms l0; : : : ; ln are ground and Q is a transitive predi
ate.The type of su
h a
hain is the atom Q(l0; ln). A
hain is
alled a proof ina Herbrand interpretation I if all atoms Q(li�1; li) are true in I. We sayQ(l0; ln) is provable in I if there exists a proof of type Q(l0; ln) in I.Note that this notion of proof enjoys the subproof property (subsequen
eof a proof is again a proof) and the subproof repla
ement property (wheneverwe repla
e a subproof with another subproof of the same type, we againobtain a proof).De�nition 3. The transitive
losure of I (with respe
t to TRANS) is de�nedas the set I plus all ground atoms Q(l; r) that are provable in I.Observation 1 (Chara
terization of transitive
losure). A Herbrand inter-pretation I is a model of a set of transitivity axioms TRANS if and only ifit is identi
al to its transitive
losure (w.r.t TRANS).Proof. For one dire
tion, use indu
tion on the length of proofs to show thatwhenever I is a model of TRANS, then it is identi
al to its transitive
losure.The other dire
tion is straightforward.We now aim at de�ning rewrite proofs. We �rst �x a total well-foundedordering � on ground terms, whi
h allows us to
lassify proof steps Q(l; r)a

ording to the order relation between the two terms. We write:� l)Q r if l � r, 12

� l (Q r if r � l,� l ,Q r if l = r.The annotation Q will be omited if it is
lear from the
ontext or inessential.We
an now distinguish spe
ial kinds of proofs:De�nition 4. Valley is a
hain of the forml0) l1 : : :) lk (lk+1 (: : :(lnor l0) l1 : : :) lk , lk+1 (: : :(lnValleys are also
alled rewrite proofs. A two step
hain l (t) r is
alleda peak. A
hain l , l) r or l (r , r is
alled a plateau. A
hainl = l0 , l1 , : : :, lk = r is
alled a plain if k � 2.Observation 2 (Chara
terization of a valley). A valley is a
hain that
on-tains no peak, plateau or plain.De�nition 5. We write l +IQ r to indi
ate that there exists a rewrite proofof (type) Q(l; r) in I. We say that peak, plateau or plain
ommutes in I ifthere exists a rewrite proof of the same type in I. A rewrite
losure of I isde�ned as I [fQ(l; r) : l +IQ rg.Note that rewrite
losure is obviously
ontained in the transitive
losure.De�nition 6 (Complexity of rewrite steps). We de�ne� the
omplexity of l)Q r as the multiset flg,� the
omplexity of l (Q r as the multiset frg,� the
omplexity of l ,Q r as the multiset fl; rg.The
omplexity of a
hain is the multiset of the
omplexities of all its indi-vidual steps.We
ompare two
hains by
omparing their respe
tive
omplexities inthe two-fold multiset extension of the ordering � and denote the resultingordering by ��. Su
h an ordering on proofs
an be
alled proof ordering asit satis�es the following properties:� A proper subproof of a proof is smaller than the original proof.13

� Repla
ement of any subproof by a smaller proof will result in a smallerproof.De�nition 7. A proof of Q(l; r) in I is said to be minimal (w.r.t. ��) ifthere exists no smaller proof of the same type in I.Observation 3 (Chara
terization of minimal proofs). Let � be a well-founded ordering on ground terms, �� be the
orresponding proof ordering,and I be a Herbrand interpretation. If no peak, plateau, or plain in I is aminimal proof, then all minimal proofs in I are rewrite proofs. Furthermore,if a peak, plateau or plain
ommutes in I, then it is nonminimal.Proof. Dire
t inspe
tion shows that any rewrite proof is simpler (a

ordingto ��) than any peak, plateau, or plain of the same type. If a proof
ontainsa peak, plateau, or plain as a subproof, then that subproof is nonminimaland hen
e
an be repla
ed by a simpler proof. The result is a simpler proofof the same type, whi
h implies that the original proof is nonminimal. Thus,all minimal proofs must be rewrite proofs.Lemma 1 (Commutation). Let � be a well-founded ordering on groundterms. The rewrite
losure of I w.r.t. a set of transitivity laws TRANSis a model of TRANS if and only if all peaks in I
ommute.Proof. It
an easily be seen that if the rewrite
losure of I is a model ofTRANS, then all peaks in I
ommute. For the other dire
tion, it is suÆ
ientby
hara
terization of transitive
losure to show that the rewrite
losure of Iis the same as the transitive
losure. Suppose all peaks in I
ommute. First,note that if a proof
ontains at least two steps, then any one identity step
anbe deleted, the result being a simpler (and shorter) proof of the same type.This implies that no plateau or plain is minimal. By assumption, peaks
ommute and hen
e are also nonminimal. We may use Chara
terizationof minimal proofs to infer that all minimal proofs are rewrite proofs. Inshort, if an atom Q(l; r) is provable in I, then it also has a rewrite proof.Consequently, the rewrite
losure of I is the same as the transitive
losure.We say that a ground inferen
e is de
reasing with respe
t to a
lauseordering � if its
on
lusion is smaller than the maximal premise.Lemma 2 (De
reasing inferen
es). If � is an admissible
lause ordering (i.e.the multiset extension of an admissible ordering on literals), then any groundinferen
e is de
reasing w.r.t. �.Proof. Let us
onsider the individual rules:14

� Ordered Chaining: This follows from the
ompatibility with redu
tionof maximal subterms.� Negative Chaining 1: Consider a ground negative
haining inferen
eQ(l; s) D _ :Q(l; r)D _ :Q(s; r) ;where l � s, l � r. Sin
e � is
ompatible with redu
tion of maximalsubterms, we may infer that :Q(l; r) � :Q(s; r). The
on
lusion istherefore smaller than the se
ond premise.Negative Chaining 2 is very similar, but also needs the property "
om-patibility with goal redu
tion" point three, for the
ase where the neg-ative transitive literal is of the form :Q(l; l).� Hyperresolution: P is ne
essarily smaller than the nu
leus :B1; : : : ;:Bn; Pas it is its sub-multiset.� OECut: trivial.We say that a ground
lause C is redundant with respe
t to N if thereexists a set fC1; : : : ; Ckg of ground instan
es of N su
h that C is true in everymodel of fC1; : : : ; Ckg and C � Cj, for all j with 1 � j � k. A nonground
lause is
alled redundant if all its ground instan
es are.A ground inferen
e � is redundant with respe
t to N if either one ofits premises is redundant, or else there exists a set fC1; : : : ; Ckg of groundinstan
es of N su
h that the
on
lusion of � is true in every model offC1; : : : ; Ckg and C � Cj, for all j with 1 � j � k, where C is the maximalpremise of �. A nonground inferen
e is
alled redundant if all its groundinstan
es are redundant.We say that a set of
lauses N is saturated up to redundan
y with respe
tto some inferen
e system, if all inferen
es from N are redundant.Given a set of ground
lauses N we de�ne a
orresponding Herbrandinterpretation I (a "
andidate model" for N) by indu
tion on �.De�nition 8 (Candidate models). � For every
lause C in N let RC bethe set SC�D ED and IC the rewrite
losure of RC.� If C is a unit
lause P , where P is a positive literal and C is false inIC then EC = fPg. In this
ase we also say that C is produ
tive (andprodu
es P). In all other
ases, EC = ;.15

� Finally, let R be the set SC EC and I the rewrite
losure of I.� We also use RC to denote the set RC [EC and IC to denote the rewrite
losure of RC .Lemma 3 (Produ
tive
lause). If C is a produ
tive
lause in N , then it istrue in IC.Lemma 4 (Monotoni
ity). Let � be an admissible ordering. If a ground
lause C (whi
h need not to be in N) is true in some interpretation ID orID, where D � C, then it is also true in I and in all interpretations ID0 andID0, where D0 � D (and D and D0 are
lauses in N).Proof. Let C, D and D0 be ground
lauses, su
h that D0 � D � C and Dand D0 are elements of N . From the above de�nitions, it
an be seen thatID � ID � ID0 � ID0 � I. Thus if a positive literal A in C is true in ID orID, then A (and hen
e C) is also true in ID0 , ID0 and I.If, on the other hand, a negative literal :A in C is true in ID or ID, thenA is false in ID or ID. We
laim that A is also false in I. Sin
e the
lauseordering is admissible (i.e. the multiset extension of an admissible orderingon literals), we know that if B is an atom produ
ed by a
lause greater thanor equal to D then B � :A. Sin
e � is
ompatible with goal redu
tion, wehave :A � A and also :A � A0, for any atom A0 = Q(l; r) for whi
h Q(l; r)may o

ur in a rewrite proof of type A. In other words, no atom B produ
edby any
lause greater than D
an possibly be used in a rewrite proof of A.This implies that A is false, and :A true, in I. We
on
lude that C is truein ID0 and ID0, as well as in I.The lemma is typi
ally used in its
ontrapositive form to infer that C isfalse in the interpretations IC and IC whenever it is false in ID0 or ID0, forsome D0 � C.Lemma 5 (Model
onstru
tion). Let � be an admissible ordering and N bea set of ground Horn
lauses that is saturated up to redundan
y and does not
ontain the empty
lause. If I is the interpretation
onstru
ted from N thenfor every
lause C in N we have:1. If C is produ
tive, then it is non-redundant.2. Both IC and IC are transitivity interpretations satisfying the uniquename assumption.3. The
lause C is true in IC . 16

Proof. The proof is by indu
tion on �. Let C be a ground
lause in N , su
hthat assertions (1)-(3) are satis�ed for all
lauses in N that are smaller thanC. 1. We prove the
ontraposivite statement. Suppose C is redundant in N ;that is, there exist smaller ground instan
es C1; : : : ; Cn of N su
h thatC is true in every model of fC1; : : : ; Cng. We may use parts (2) and(3) of the indu
tion hypotheses and Monotoni
ity lemma to infer thatIC is a model of fC1; : : : ; Cng. Therefore C is true in IC , whi
h impliesit is non-produ
tive.2. The equation a � b
an never be produ
ed for two di�erent
onstantsa and b, be
ause otherwise there would be a one step OECut inferen
eturning the
lause a � b into the empty
lause, whi
h we assume is notin N (and whi
h
an never be redundant).1By Commutation Lemma, it suÆ
es now to prove that all peaks inRC and RC , respe
tively,
ommute. Ea
h peak in RC is a peak inRC0 , for some C 0 with C � C 0, and
ommutes in RC0 by the indu
tionhypotheses. Thus it also
ommutes in RC .If EC is nonempty, then there may be peaks in RC , whi
h are not prov-able in RC . In that
ase, C is produ
tive. Let l (Q t)Q r be a peakin RC . Then there exists a unit
lause Q(l; t) that produ
es Q(l; t), andanother
lause Q(t; r) that produ
es Q(t; r). The two
lauses are notidenti
al. Both
lauses are nonredundant by part (1) of the indu
tionhypotheses, and the larger of the two is C. From these two
lauses weobtain C 0 = Q(l; r) by ordered
haining. Sin
e N is saturated up to re-dundan
y, there exists
lauses C1; : : : ; Cn smaller than C, su
h that C 0is true in every model of fC1; : : : ; Cng. We may use the Monotoni
itylemma and parts (2) and (3) of the indu
tion hypothesis to infer thatIC is one su
h model. Thus, the
lause C 0 is true in IC and therefore,the atom Q(l; r) must be true in IC , that is, l +RCQ r, whi
h indi
atesthat the peak
ommutes in RC .3. We already know that all ground instan
es of N that are smaller thanC are true in IC and that IC is a transitivity interpretation satisfyingthe unique name assumption. Therefore, if C is redundant, it is truein IC . If C is produ
tive, it is true in IC by de�nition. Suppose C isneither redundant nor produ
tive. This means that C is of the form1As a side remark we note that we also never produ
e the equations of the form a � a,simply be
ause they are redundant. This has the ni
e
onsequen
e that any Herbrandinterpretation automati
ally has to be an interpretation of the equality predi
ate.17

:B1 _ : : : _ :Bn _ P , where n � 1 and P is a positive unit
lause orthe empty
lause. Assume Bi are true in IC , P is false in IC , otherwisewe are done.If all the Bi are dire
tly produ
ed by unit
lauses, i.e. Bi 2 RC , thenwe get the
lause C 0 = P by hyperresolution. Sin
e N is saturated upto redundan
y, (and Bi's are not redundant being produ
tive { part (1)of indu
tion hypotheses), there exist
lauses C1; : : : ; Ck smaller than C,su
h that C 0 is true in every model of fC1; : : : ; Ckg. We may use theindu
tion hypotheses to infer that IC is one su
h model. Ne
essarilyC 0 is not the empty
lause, P is true in IC , and hen
e C is true in IC ,whi
h is a
ontradi
tion.If some of Bi =2 RC , it has to be an atom Q(l; r) with a rewrite proof ofat least two steps in RC . Then there exists a produ
tive
lause Q(l; l0)(where l � l0 and l0 +RCQ r) or Q(r0; r) (where r � r0 and l +RCQ r0). Bynegative
haining we get :B1; : : : ;:Bi�1;:Q(l0; r);:Bi+1; : : : ;:Bn; Por :B1; : : : ;:Bi�1;:Q(l; r0);:Bi+1; : : : ;:Bn; P . In either
ase we mayagain use saturation up to redundan
y to infer that inferen
e
on
lu-sion is true in IC , but that means that either :Q(l0; r) or respe
tively:Q(l; r0) is true in IC , and hen
e C is true in IC , again a
ontradi
tion.Theorem 1 (Completeness). If a set of Horn
lauses N is saturated up toredundan
y then the set N [TRANS[UNA is unsatis�able if and only if N
ontains the empty
lause.Proof. If N does not
ontain the empty
lause, we
laim that the Herbrandinterpretation I
onstru
ted from the set of all ground instan
es of N is amodel of N [TRANS [UNA. Via the usual lifting argument2 the set ofall ground instan
es is saturated as well. By the model
onstru
tion lemma,every ground instan
e C of a
lause in N is true in I, and in addition I is atransitivity interpretation and satis�es the unique name assumption.Theorem 2 (Soundness). The presented
al
ulus is sound. Con
lusion ofany inferen
e is logi
ally entailed by the premises of the inferen
e and thetheory (TRANS [UNA).Proof. The
laim is obvious for hyperresolution, and also for the OECut rule,where we use the unique name assumption. Finally, all the
haining rules2Note that we only
onsider ground version of the OECut rule. Nevertheless, it does notneed to be lifted in our
ase. It is be
ause our
lauses are range restri
ted, and thereforewe
an never generate a non-ground positive (unit)
lause.18

an be simulated as two resolution steps between the parti
ipating premisesand the appropriate transitivity axiom
lause.Theorem 3 (Termination). The
al
ulus terminates on the set of Horn
lauses from Bernays-S
h�on�nkel
lass.Proof. No inferen
e rule produ
es a longer
lause than any of its premises.There are only �nitely many
lauses of given length (up to variable renaming)as all the fun
tion symbols are
onstants.

19

5 Term IndexingThe invention of term indexing data stru
tures has been pivotal for the su
-
ess of automated theorem proving. Likewise, it is vital to develop eÆ
ientindexing me
hanisms for the reasoning on huge sets of
lauses su
h as the
lause set resulting from the translation of YAGO into the BSHE
lass. Theatoms o

urring in these
lauses are of the form: Q(a; b), Q(a; x), Q(x; b),Q(x; y), S(a) and S(x), where Q is a binary predi
ate symbol, a, b are
on-stants and S is a monadi
 predi
ate (sort symbol) from the signature. Inorder to perform retrieval operations on an index
ontaining su
h atoms, wehave to dis
riminate eÆ
iently on all o

urring term positions. Therefore, wedevelop a �ltering me
hanism for
ontext tree indexing [5℄ whi
h eÆ
iently�lters out subtrees of the indexing that do not lead to a su

ess with re-spe
t to the
urrent retrieval operation. The resulting new indexing is
alledFiltered Context Tree indexing. The �ltered
ontext tree indexing enablesSpass to eÆ
iently reason about the
lauses resulting from the translationof the
ore of YAGO. Without the �ltering Spass was even unable to loadthese
lauses into the index.In the �rst se
tion, Se
tion 5.1, we give a de�nition and the requirednotions for
ontext trees. After that we give a
omplete overview of thealgorithms for all the operations of the
ontext tree indexing. These are thealgorithms for the retrieval operations (instan
e, uni�er, generalization) aswell as the insertion and deletion operation of terms. Based on this notionsand algorithms we introdu
e �ltered
ontext tree indexing as an extensionto
ontext tree indexing in Se
tion 5.2. Also, we present details about theintegration of the �ltering into Spass and show further optimizations.5.1 Context Tree IndexingContext tree indexing [5℄ is a generalization of substitution tree indexing [7℄.In order to be self-
ontained the following se
tion shows the de�nitions of20

w0 7! F1(w1; w2)w1 7! �1F1 7! fw2 7! a F1 7! gw2 7! �2
w2 7! �1F1 7! hw1 7! �1 F1 7! gw2 7! bw1 7! b w1 7! �1Figure 5.1: Context tree
ontext tree indexing following notions from [7℄ as well as the algorithmsperforming all the operations for term indexing stru
tures. This se
tion also
ompletes the introdu
tory arti
le of
ontext tree indexing [5℄ whi
h onlypresents the algorithms for the retrieval of generalizations.5.1.1 Context TreesLet t1; : : : ; tn be terms and P be a predi
ate symbol with arity n thenP (t1; : : : ; tn) is an atom. An atom or its negation is
alled a literal. Com-pared to substitution trees,
ontext trees
an additionally share
ommonsubterms even if they o

ur below di�erent fun
tion symbols via the intro-du
tion of extra variables for fun
tion symbols. These variables are
alledfun
tion variables. For example, the terms f(s; t) and g(s; t)
an be repre-sented as F1(s; t) with
hildren F1 = f and F1 = g. The fun
tion variableF1 represents a single fun
tion symbol. In the
ontext of deep terms, thispotentially in
reases the degree of sharing in an index stru
ture.Before inserting a term into the index, variables of the term are normal-ized. The normalization is a renaming of the variables of the term whi
hin
reases the sharing. Assume a in�nite set of variables V� whi
h are totallyordered with respe
t to a ordering <�. Let �1 be the smallest element in V�.A substitution � is a normalization for a term t if � is a renaming for thevariables of t and
od(�) = f�1; : : : ; �ng and for ea
h �i; �i+1 2
od(�) thereis no �i0 2 V� with �i <� �i0 <� �i+1.Figure 5.1 depi
ts a
ontext tree
ontaining the terms f(�1; a), g(�1; �2),h(�1; �1), g(b; b), and g(�1; b).De�nition 9 (Fun
tion variables). We assume a set of fun
tion variablesU � V whi
h is disjoint from the set of variables X . The set of termsT (� [U ;X) are terms build over the signature �, the fun
tion variables Uand the variables X . The notion of a substitution
an be adapted a

ordingly.21

De�nition 10 (Index variables). Assume a set of index variables W � Vwhi
h is pairwise disjoint from X and U . Index variables are denoted by wi.We also assume a set of index fun
tion variables whi
h are denoted by Fi.De�nition 11 (Context Tree). A
ontext tree is a tree T = (V;E; subst; vr)where V is a set of vertexes, E � V � V is the edge relation, the fun
tionsubst assigns to ea
h vertex a substitution, vr 2 V is the root node of T andthe following properties hold:1. ea
h node is either a leaf or an inner node with at least two
hildren.2. for every path v1 : : : vn from the root (v1 = vr) to any node it holds:dom(subst(vi)) \ [1�j<idom(subst(vj)) = ;3. for every path v1 : : : vn from the root (v1 = vr) to a leaf vnvars(
od(subst(v1) Æ � � � Æ subst(vn))) � XEa
h node in a
ontext tree whi
h is not a leaf node, must have at leasttwo subtrees due to the �rst
ondition. The se
ond
ondition ensures thatea
h variable is bound at most on
e along a path. The third
ondition assuresthat all terms represented by a path from the root to a leaf are from T (�;X).A term that is stored in a
ontext tree is represented by a path from theroot to a leaf. The respe
tive term
an be obtained by the
omposition ofthe substitutions along this path. Therefore, we extend the de�nition of thefun
tion vars returning the variables of a term, to the fun
tion returning thevariables o

urring unbound on a path of a
ontext tree.De�nition 12 (Variables of a path). Let v1; : : : ; vn be a path from the rootof a
ontext tree to a node vn then the set of variables of this path isvars(v1; : : : ; vn) = [i2f1:::ng vars(
od(subst(vi))) n [i2f1:::ngdom(subst(vi))Note, for a path vr = v1; : : : ; vn of a
ontext tree from the root vr to a leafvn we have that vars(x1; : : : ; xn) � X be
ause of Condition 3 of De�nition 11.5.1.2 Algorithms for Context TreesThis se
tion shows the algorithms for
ontext trees implementing the stan-dard operations for term indexing stru
tures. The standard operations of22

term indexing data stru
ture
an be separated into two
ategories. The �rstare the retrieval algorithms. These operations query a
ontext tree index foruni�able terms, instantiations and generalizations of a given query term. Inthe se
ond
ategory are the algorithms for updating a
ontext tree indexingstru
ture. These are the algorithms for insertion of terms into the index anddeletion of terms from the index.Retrieval algorithmThe query algorithms for uni�able terms, instantiations and generalizationare based on a
ommon lookup pro
edure whi
h traverses the tree and appliesto the substitution of ea
h visited node the pro
edure Test. The pro
edureTest is either the test for uni�ability, the test for instantiation or the test forgeneralization.The query given to the lookup fun
tion is a query substitution
ontainingthe query term rather than the query term itself. This means, if t is thequery term, then the respe
tive query substitution is fw0 7! tg where fw0g =dom(subst(vr)).Algorithm 1: LookupInput:
ontext tree T = (V;E; subst; vr), vn 2 V , substitution �,fun
tion Test1 HITS = ;;2 forea
h (v; v0) 2 E do3 if Test(subst(v0),�) = (true; �) then4 if isLeaf(v0) then HITS = HITS [fv0g;5 HITS = HITS [Lookup(T; v0; � Æ �;Test);6 end7 end8 return HITS ;Lookup The lookup pro
edure Lookup (Algorithm 1) expe
ts a
ontexttree T , a node vn, a query substitution � and the test fun
tion Test. Thenode vn is initially set to the root node of T and it is the
urrent pro
essednode of T during the re
ursive appli
ation of Lookup. The substitution � isan a

umulator argument. It is the
omposition (line 5) of the initial querysubstitution and all substitutions �
omputed in line 3 during the re
ursiveappli
ation of Lookup. The fun
tion Test is one of the fun
tions UnifyTest(Algorithm 6), GenTest (Algorithm 8) or InstTest (Algorithm 10) whi
h tests23

two substitutions for uni�ability, generalization or instantiation, respe
tively.Ea
h path in a
ontext tree from the root node to a leaf node
orrespondsto a term stored in the index. The respe
tive path is represented by itsleaf node and ea
h leaf node maintains a referen
e to the term it represents.Therefore, Lookup returns a set of leaf nodes rather than a set of terms.The following theorem shows the
orre
tness of the pro
edure Lookup forthe retrieval of terms that are uni�able with the given query. The
orre
tnessof the remaining operations, generalization and instantiation, follows analo-gously. The
orre
tness proof of the retrieval operation for substitution treeswas originally given in [7℄ where we also refer to for the
orre
tness proofof the test for uni�
ation, generalization and instantiation. These originalproofs have to be adjusted slightly in order to be valid also for
ontext trees.Theorem 4 (Corre
tness of Lookup). Let t be a term, Test the test fun
tionfor uni�
ation, � = fw0 7! tg be the query substitution andvn 2 Lookup(T; vr; �;UnifyTest). Then vn is a leaf node and there is a pathvr; v1; : : : ; vn and a substitution � with dom(�) � X andw0 subst(v1) : : : subst(vn)� = w0��:
Proof. Let vn 2 Lookup(T; vr; �;UnifyTest) and � the query substitution.The fun
tion UnifyTest, applied in line 3, tests for two given substitutions� and � if there is a substitution � with 8x 2 dom(�):x��� = x��. Conse-quently, be
ause of the re
ursive stru
ture of Lookup there is a path vr; v1; : : : ; vnsu
h that for i 2 f1; : : : ; ng and �i = �i�1 Æ �i�1 with �0 = � and �0 = ; thefollowing holds:9�i:8x 2 dom(subst(vi)): x subst(vi)�i�i = x�i�i (5.1)Additionally, the node vn is a leaf node be
ause of line 4. For the
orre
tnessproof we show the following property by indu
tion9�m:8x 2 V: subst(v1); : : : ; subst(vm)�m�m = x�m�m (5.2)For m = 1 this follows immediately from (5.1). Now assume (5.2) holds form. From (5.1) and De�nition 11 - 2 it follows9�m+1:8x 2 V: subst(v1) : : : subst(vm) subst(vm+1)�m�m�m+1 = x�m�m�m+1(5.3)24

The property follows for m+ 1 with �m+1 = �m Æ �m. As a
onsequen
e9�n:8x 2 V: subst(v1); : : : ; subst(vn)�n�n = x�n�n (5.4)We have �n = � Æ �1 � � � Æ �n�1 and from De�nition 11 - 3 and vn is a leaf itfollows that 8x 2 V:vars(x subst(v1) : : : subst(vn)) � X . As a result 9� withw0 subst(v1) : : : subst(vn)� = w0�1� and dom(�) � X .Uni�
ation The uni�
ation test of two substitutions � and � tests if thereis a substitution � su
h that for all x 2 dom(�) it holds x��� = x��. Note,that � o

urs on both sides of the equation. The substitution � works as ana

umulator argument of Lookup (Algorithm 1) and it may bind variables ofx� . These bindings also have to be respe
ted in the test fun
tion. The re-spe
tive test pro
edure UnifyTest is depi
ted in Algorithm 6. The pro
edureUnifyTest uses the pro
edure TermUnify (Algorithm 5) whi
h
he
ks for twogiven terms s and t whether they are uni�able, i.e. if there exists a substi-tution � with s� = t�. The
orre
tness proof of UnifyTest for substitutionstrees is given in [7℄. This proof
an easily be extended to
ontext trees.Generalization The test fun
tion for generalization GenTest (Algorithm 8)
he
ks for two given substitutions � and � if there exists a substitution � su
hthat for all x 2 dom(�) : x��� = x�. Note that � o

urs on both sides be-
ause � is the a

umulator argument of Lookup (Algorithm 1) and may bindvariables of x� . The implementation of this pro
edure is based on TermGen(Algorithm 7) that tests for two given terms s and t if s is a generalization oft, i.e. if a substitution � exist with s� = t. The
orre
tness proof of GenTestfor substitutions trees is given in [7℄. This proof
an easily be extended to
ontext trees.Instan
e The test fun
tion for instantiation InstTest (Algorithm 10)
he
ksfor two given substitutions � and � if there exists a substitution � su
h thatfor all x 2 dom(�) : x��� = x�� and dom(�) � vars(x�) [W. Note, that� o

urs here on both sides of the equation. During the re
ursive browsingof the
ontext tree it may be
ome ne
essary for the retrieval that the sub-stitution � binds index variables in x�� as well as in x�. This is be
ause ofthe fa
t, that a term in the
ontext tree is represented by the
omposition ofthe substitutions along a path from the root to a leaf. Condition 3 in De�-nition 11 ensures that the algorithm has found an instan
e of the query on
eit has rea
hed a leaf node. In the
ase of substitution trees we refer to [7℄for the
orre
tness proof. This proof
an easily be extended to
ontext trees.25

The implementation of the pro
edure InstTest is based on the pro
edure Ter-mInst (Algorithm 9) that tests for two given terms s and t if s is an instan
eof t, i.e. if a substitution � exist with s� = t� and dom(�) 2 vars(t) [W.Update AlgorithmsThe pro
edures for inserting a term into a
ontext tree and deleting a termfrom a
ontext tree require a
he
k for variations. The terms s and t arevariants if and only if they are equal up to variable renaming. Note that allterms in a
ontext tree are normalized. If t0 is the normalization of the termt then the retrieval operation for variations of the term t is the retrieval foruni�able terms of the query substitution � = fw0 7! t0g su
h that for ea
huni�er � we have dom(�) \ X = ;.With the variant test we
an implement a pro
edure LookupVariant thatsear
hes a given
ontext tree for variations analogously to Lookup (Algo-rithm 1). Initially � = fw0 7! tg where t is the normalized query term. Thepro
edure LookupVariant returns a leaf node if t is
ontained in the
ontexttree. Otherwise, it returns the node vbest whi
h is the �rst node along apath from the root node to the node vbest that is not a variant of the
urrentsubstitution �.For the insertion of the term t into the index, the subnodes of vbest arerepla
ed by two new nodes. One node represents the former subtrees of vbestand the other is a new leaf node whi
h represents t. The substitutions of themodi�ed node vbest and the two new subnodes are
omputed su
h that themodi�ed
ontext tree ful�lls De�nition 11.Considering the deletion of a term t from a
ontext tree, a term t is
ontained in the
ontext tree if and only if the pro
edure LookupVariantreturns a leaf node. Then this leaf node is removed from the index. Analogousto the insertion of a term into a
ontext tree, nodes are removed from theindex during the deletion of a term. The deletion operation also ensures thatthe index ful�lls De�nition 11 after the deletion of a term.The following se
tion presents the pro
edure LookupVariant and the algo-rithms whi
h implement the insertion and deletion operation using Lookup-Variant.Variation The test pro
edure VariantTest (Algorithm 12)
he
ks for a sub-stitution � and a substitution � if for all x 2 dom(�) x��� = x�� anddom(�) � W. The implementation uses the pro
edure TermVariant (Algo-rithm 11) whi
h tests for two given terms s and t if they are variations, i.e.s� = t� and dom(�) � W. Be
ause of the fa
t that a term in a
ontext tree26

Algorithm 2: LookupVariantInput: Context tree T = (V;E; subst; vr), vn 2 V , substitution �1 HIT = ;;2 BEST = NULL;3 forea
h v0 with (v; v0) 2 E do4 if VariantTest(subst(v0); �) = (true; �) then5 if isLeaf(v0) ^ vbest = NULL then return (v0; NULL; � Æ �);6 (HIT; vbest; �0) = LookupVariant(T; v0; � Æ �;VariantTest);7 if HIT then8 return (HIT;NULL; �0)910 else if 8x 2 dom(subst(v0)) top(x subst(v0)) = top(x�) andvbest = NULL then11 vbest = v0;12 end13 end14 return (v; vbest ; �);is represented by a path from the root to a leaf, index variables are the onlyvariables that are allowed to be bound during the retrieval for variations.The pro
edure LookupVariant (Algorithm 2) is invoked with a
ontexttree T , a node vn, and the query substitution �. Like in the
ase of Lookup(Algorithm 1), the node vn is initially set to the root node of T and it isthe
urrent examined node of T during the re
ursive appli
ation of Lookup-Variant. The substitution � is an a

umulator argument, initially set tothe substitution
ontaining the term t to be inserted. It is the
omposition(line 6) of the initial query substitution and all substitutions �
omputedin line 4 during the re
ursive appli
ation of LookupVariant. The pro
edureLookupVariant traverses the
ontext tree T as long as the variant test (line 4)is su

essful. The algorithm of VariantTest is given in Algorithm 12. If thealgorithm has found a leaf node (line 5) the re
ursion stops and it returnsthis leaf node. If VariantTest fails then LookupVariant
he
ks if the terms inthe
odomain of the substitution of the
urrent node and the substitution �have the same top symbols (line 10). If they have the same top symbols thenLookupVariant remembers this node in vbest. If no variant is found then thealgorithm returns vbest. This node indi
ates a suitable position in the
ontexttree T where a new leaf node
an be
reated whi
h represents t.
27

Algorithm 3: EntryCreateInput: Context tree T = (V;E; subst; vr), term t1 � = fw0 7! tg;2 if : IsLeaf(vr) then3 (v; vbest; �0) = LookupVariant(T; vr; �);4 end5 if IsLeaf(v) ^ vbest = NULL then InsertReferen
e(v; t) ;6 else if vbest 6= NULL then7 (�1; �2; �) = ms
g(subst(vbest); �0);8 V = V [fv1; v2g;9 forea
h (vbest; v0) 2 E do E = (E n f(vbest; v0)g) [f(v1; v0)g;10 E = E [f(vbest; v1); (vbest; v2)g;11 InsertReferen
e(v2; t);12 subst(vbest) = �;13 subst(v1) = �1;14 subst(v2) = �2;15 else16 V = V [fv0g;17 E = E [f(v; v0)g;18 InsertReferen
e(v0; t);19 endMost spe
i�

ommon generalization When inserting a term t into anindex whi
h
ontains no variant of this term, the pro
edure LookupVariantreturns the node vbest whi
h is the �rst node along a path from the rootnode to the node vbest that is not a variant of the
urrent substitution �. Forthe insertion of the term t into the index, the subnodes of vbest are repla
edby two new nodes. One node represents the former subtrees of vbest andthe other is a new leaf node whi
h represents t. The
omputation of themost spe
i�

ommon generalization yields the substitutions of the modi�edvbest and the two new subnodes su
h that they ful�ll De�nition 11. If �and � are two substitutions and there exist substitutions �1 and �2 and �su
h that � Æ �1 = � and � Æ �2 = �, then � is
alled
ommon generalization.Additionally, if there is a substitution Æ for ea
h other
ommon generalization� 6= � su
h that � = �ÆÆ, then � is
alledmost spe
i�

ommon generalizationwhi
h is given by the fun
tionms
g(�; �) := (�1; �2; �)28

Insert The pro
edure EntryCreate inserts a term t into a
ontext tree T .Remember, we assume t to be normalized. First the term t is transformed intoa query substitution � = fw0 7! tg. Then EntryCreate
alls LookupVariantwith T the root node vr and the query substitution �. Three
ases
an o

ur.The �rst is that LookupVariant has found a leaf (line 5) whi
h represents t.Then a referen
e to t is inserted into the leaf node whi
h is done by InsertRe-feren
e. If there is no respe
tive leaf node representing t then LookupVariantreturns a node vbest, if there is su
h a node. The node vbest indi
ates a suitableinsert position. In order to insert t into the index, EntryCreate �rst
om-putes the ms
g(subst(vbest); �) = (�; �1; �2). After that, the pro
edure
reatestwo new nodes v1, v2. All subnodes of vbest be
ome subnodes of v1 and aredeleted from the subnodes of vbest. Then v1 and v2 be
ome the new subnodesof vbest ((vbest; v1) 2 E and (vbest; v2) 2 E). The substitutions of vbest, v1 andv2 are set to the substitutions
omputed by ms
g(subst(vbest); �) as follows:subst(v1) = �, subst(v2) = �2 and subst(vbest) = �1. After that, the pathvr; : : : ; vbest; v1 represents the same terms as the former path vr; : : : ; vbest. Thepath vr; : : : ; vbest; v2 represents the inserted term. Additionally, a referen
e tot is inserted into the leaf node v2. The third
ase arises if none of the aboveo

urs. This means, neither t has been inserted into the index before nor isthere a suitable insert position vbest. Then a new leaf node is inserted belowv representing t.Algorithm 4: EntryDeleteInput: Context tree T = (V;E; subst; vr), substitution �1 if IsLeaf(vr) then2 RemoveReferen
e(T; v; �)3 else4 (v0; vbest) = LookupVariant(T; v0; �);5 if v0 6= ; then RemoveReferen
e(T; v0; �);6 endDelete The pro
edure EntryDelete (Algorithm 4) removes the term t fromthe
ontext tree T . Assume t is normalized than the query substitution is� = fw0 7! tg. If vr is not a leaf node, EntryCreate applies LookupVariant inorder to obtain the leaf node representing t. If there is su
h a leaf node v0 inT then EntryDelete performs RemoveReferen
e whi
h removes the referen
eto t from v0.We have modi�ed the deletion operation of the original
ontext trees insu
h a way that EntryDelete does not remove nodes from the
ontext treewhen deleting a term. Instead it removes the referen
e of the term from29

the respe
tive leaf node. It turned out that deleting nodes from the indexand ensuring that De�nition 11 holds, is too expensive in our
ontext. Thisrequires that we also modify the invariant of
ontext trees su
h that a termt is
ontained in a
ontext tree if and only if the leaf node representing t
ontains also a referen
e to t. For the original algorithm we refer to [7℄.

30

Algorithm 5: TermUnifyInput: term s, term t, substitution �1 if s = x then2 if s� = t then3 return (true; �)4 else if s 62 dom(�) then5 � = � Æ fs 7! tg;6 return (true; �);7 else8 return (false; ;);9 end10 else if t = x then11 if s = t� then12 return (true; �)13 else if t 62 dom(�) then14 � = � Æ ft 7! sg;15 return (true; �);16 else17 return (false; ;);18 end19 else if s = F (s1; : : : ; sn) and t = f(t1; : : : ; tn) then20 forea
h i 2 f1; : : : ng do21 (r; �) = TermUnify(si; ti; �);22 if r = false then return (false; ;);23 end24 if F 2 dom(�) ^ F� 6= f then return (false; ;);25 if F� = f then return (true; �) else return (true; � Æ fF 7! fg);26 end27 return (false; ;);Algorithm 6: UnifyTestInput: substitution � , substitution �1 forea
h x 2 dom(�) do2 (r; �) = TermUnify(x� ,x�,�);3 if r = false then return (false,�)4 end5 return (true; �); 31

Algorithm 7: TermGenInput: term s, term t, substitution �1 if s = x then return (true, fx 7! tg);2 if s = F (s1; : : : ; sn) and t = f(t1; : : : ; tn) then3 forea
h i 2 f1; : : : ng do4 (r; �) = TermGen(si; ti; �);5 if r = false then return (false; ;);6 end7 if F 2 dom(�) ^ F� 6= f then return (false; ;);8 if F� = f then return (true; �) else return (true; � Æ fF 7! fg);9 end10 return (false; ;);

Algorithm 8: GenTestInput: substitution � , substitution �1 forea
h x 2 dom(�) [dom(�) do2 (r; �) = TermGen(x� ,x�,�);3 if r = false then return (false,�)4 end5 return (true; �);
32

Algorithm 9: TermInstInput: term s, term t, substitution �1 if s 2 W then return (true; fs 7! tg);2 if t = x then return (true; fx 7! tg);3 if s = F (s1; : : : ; sn) and t = f(t1; : : : ; tn) then4 forea
h i 2 f1; : : : ng do5 (r; �) = TermInst(si; ti; �);6 if r = false then return (false; ;);7 end8 if F 2 dom(�) ^ F� 6= f then return (false; ;);9 if F� = f then return (true; �) else return (true; � Æ fF 7! fg);10 end11 return (false; ;);

Algorithm 10: InstTestInput: substitution � , substitution �1 forea
h x 2 dom(�) do2 (r; �) = TermInst(x��,x�,�);3 if r = false then return (false,�)4 end5 return (true; �);
33

Algorithm 11: TermVariantInput: term s, term t, substitution �1 if s = x ^ s = t then return (true; �);2 if s 2 W then3 if s� = t then4 return (true; �)5 else if s 62 dom(�) then6 � = � [fs 7! tg;7 return (true; �);8 else9 return (false; ;);10 end11 end12 if s = F (s1; : : : ; sn) and t = f(t1; : : : ; tn) then13 forea
h i 2 f1; : : : ng do14 (r; �) = TermVariant(si; ti; �);15 if r = false then return (false; ;);16 end17 if F 2 dom(�) ^ F� 6= f then return (false; ;);18 if F� = f then return (true; �) else return (true; � Æ fF 7! fg);19 end20 return (false; ;);
Algorithm 12: VariantTestInput: substitution � , substitution �1 forea
h x 2 dom(�) do2 (r; �) = TermVariant(x� ,x�,�);3 if r = false then return (false; �)4 end5 return (true; �);

34

�0 : fw0 7! F1(w1; w2)g�1 : fw2 7! ag�2 : fF1 7! fw1 7!
g�3 : fF1 7! hw1 7! dg
�4 : fw1 7! aF1 7! gw2 7! dg �5 : fF1 7! gw2 7! bg�6 : fw1 7! dg �7 : fw1 7! egFigure 5.2: Context Tree5.2 Filtered Context Tree IndexingWhen performing a retrieval operation, the pro
edure Lookup (Algorithm 1)pursues paths that do not
ontribute to the
urrent query. In the
ase ofSpass-YAGO this approa
h is not feasible be
ause one subnode may havemillions of subnodes and the term indexing is pro
essed several thousandtimes in a reasoning loop. Therefore, we develop in the following a me
hanismthat eÆ
iently �lters out subtrees of a
ontext tree indexing whose paths donot
ontribute to the
urrent query. Without this new �ltering te
hnique,loading the
lause set resulting from the translation of the
ore of YAGOinto the index of Spass was already not possible in reasonable time.The following example demonstrates a retrieval operation on a
ontexttree. The
ontext tree of the example is a typi
al ex
erpt from the index
ontaining the terms resulting from translating YAGO into the BSHE
lass.Example 1. Consider the
ontext tree of Figure 5.2 and the retrieval ofterms uni�able with the term g(e; x). The query substitution � for g(e; x)is � = fw0 7! g(e; x)g. The algorithm starts with the query substitution �at the node whose substitution is �0. The substitution �0 is uni�able with� using the substitution � = fw1 7! e; w2 7! x; F1 7! gg. Des
ending theindexing further requires to
he
k all subnodes. In this
ase, these are thenodes
ontaining �1, �4 and �5. Uni�able under the
urrent substitution � Æ �are the substitutions �1 and �5. At �rst, the algorithm pro
eeds by inspe
tingthe subtree starting at the node with �1. The substitution �1 is uni�able with� Æ � using �0 = fx 7! ag. Continuing with the subnodes, the algorithmsre
ognizes that neither �2 nor �3 are uni�able with �Æ�Æ�0. Then the algorithmba
ktra
ks, pro
eeds with �5 and eventually �nds a leaf where all substitutionsalong the path �0, �5, �7 are uni�able under the respe
tive substitution � andreturns the desired term whi
h is w0�0�5�7.In this example, after pro
essing the node
ontaining the substitution �0,35

�0 : fw0 7! F1(w1; w2)g[a;
; d; f; h℄�1 : fw2 7! ag[
; f ℄�2 : fF1 7! fw1 7!
g [d; h℄�3 : fF1 7! hw1 7! dg
[a; d; g℄�4 : fw1 7! aF1 7! gw2 7! dg [b; d; e; g℄�5 : fF1 7! gw2 7! bg[d℄�6 : fw1 7! dg [e℄�7 : fw1 7! egFigure 5.3: Filtered Context Treethe retrieval pro
edure pro
eeds by examining all subnodes. These subnodesare the nodes
ontaining the substitutions �1, �4 and �5. Looking at thequery the symbol g has to o

ur in a substitution of some node along asu

essful path. However, if we inspe
t the subtree starting at the nodewith the substitution �1 we re
ognize that the symbol g does not o

ur inany substitution of this subtree. Consequently, this subtree does not havea su

essful path and
an be ex
luded from further pro
essing. It
an be�ltered by only looking at the o

urring fun
tion symbols.In the following, we introdu
e this new �ltering te
hnique in detail andshow the respe
tive retrieval operations. In Se
tion 5.2.1, we introdu
e �l-tered
ontext trees and in Se
tion 5.2.2 we present the algorithms for theretrieval operations of �ltered
ontext trees. Additionally, we proof the
or-re
tness and
ompleteness of these algorithms. Details about the implemen-tation of �ltered
ontext trees in Spass
an be found in Se
tion 5.2.3 andfurther potential improvements in Se
tion 5.2.4.5.2.1 Filtered Context TreesIn this se
tion, we �rst de�ne the
hara
teristi
 fun
tion for a substitution �as the set of top symbols o

urring in some term of
od(�). We
all the resultof applying the
hara
teristi
 fun
tion to a substitution � the
hara
teristi
of �. On
e we have de�ned the
hara
teristi
 fun
tion for a substitution we
an de�ne Filtered
ontext trees as an extension of
ontext trees. Filtered
ontext trees
ontain additionally a mapping fun
tion M . The fun
tion Mof a �ltered
ontext tree FT maps to ea
h node v and ea
h symbol s 2 �the set of subnodes of v su
h that v1 2M(v; s) if and only if v1 is a subnodeof v and there is a path v1; : : : ; vn in FT su
h that there is a node vi on thispath with s is in the
hara
teristi
 of subst(vi).Additionally, we
hange the lookup pro
edure Lookup (Algorithm 1) su
h36

that it applies the fun
tion M on the
urrent node vn and on ea
h symbolin the
hara
teristi
 of �. The results from M are the subnodes of vn thathave a subtree whi
h is
ompatible to � with respe
t to the
hara
teristi
fun
tion. This means that the symbols in the
hara
teristi
 of � also o

urin the
hara
teristi
 of a substitution of a node in the subtree starting atvn. The subtrees
ompatible with �, are potentially su

essful with respe
tof the
urrent retrieval operation. As a
onsequen
e, all other nodes
an beex
luded from further pro
essing.Example 2. Re
onsider Example 1 with the uni�
ation retrieval operationfor the query substitution � = fw0 7! g(e; x)g. Figure 5.3 depi
ts the �ltered
ontext tree obtained by extending Figure 5.2 su
h that at ea
h node v thosesymbols are indi
ated that o

ur as top symbols in a term of the
odomain of asubstitution along a path starting at v. This represents the fun
tion M of the�ltered
ontext tree. The retrieval algorithm applied to Figure 5.3 examinesthe node
ontaining the substitution �0. The substitution �0 is uni�able with �using the uni�er � = fw1 7! e; w2 7! x; F1 7! gg. As we have seen, only thosesubtrees
an
ontribute to the
urrent retrieval operation that
ontain g in aterm of the
odomain of the substitution of any of its nodes. In our examplethese are the subtrees starting at the nodes
ontaining the substitution �4 and�5. Consequently, the node
ontaining the substitution �1 does not need to be
onsidered during the retrieval.A mapping me
hanism has also been used for dis
rimination tree index-ing. In dis
rimination tree indexing the mapping assigns to a given label therespe
tive su

essor node of the dis
rimination tree. For example, this hasbeen added to the indexing of the theorem prover E [14℄.As mentioned before, we de�ne the
hara
teristi
 fun
tion for a substitu-tion as the set of top symbols o

urring in its
odomain. If there are onlyvariables in the
odomain of a substitution �, we de�ne the
hara
teristi
 of� as the set f?g where ? is a symbol with ? 62 �.Be
ause of
ondition 2 of De�nition 11 ea
h index variable o

urs at moston
e on a path of a
ontext tree. For this reason, we restri
t the substitution� when
omputing the
hara
teristi
 fun
tion as depi
ted in the followingexample.Example 3. Consider Example 2 with the query substitution � = fw0 7!g(e; x)g. Assume the retrieval pro
edure des
ends to the node with �5. Thenew � be
omes � = � Æ � = fw0 7! g(e; x); w1 7! e; w2 7! x; F1 7! gg. Thevariables w2 and F1 have already been bound in �5. Consequently, the onlyvariables that
an be bound in the substitution of a node o

urring below �5 inthe
ontext tree is w1. Therefore, we only need to
ompute the
hara
teristi
37

fun
tion of fw1 7! xg. The result of the
hara
teristi
 fun
tion is f?gbe
ause x is a variable.As a result we de�ne the
hara
teristi
 fun
tion with respe
t to a setof variables O. In the improved lookup pro
edure FilteredLookup (Algo-rithm 13) the set O is instantiated with vars(vr; : : : ; vn) for a path vr; : : : ; vnof a �ltered
ontext tree FT . These are exa
tly these index variables thatare bound below vn in FT .De�nition 13 (Chara
teristi
 fun
tion). Let � be a substitution and O be aset of variables. The set of top symbols of � and O is de�ned asts(�;O) = ff j 9x 2 dom(�) \ O with x� = f(: : :)gThe
hara
teristi
 fun
tion
hr(�;O) of a substitution � with respe
t to theset of variables O is de�ned as follows:

hr(�;O) = 8>>>>>><>>>>>>:

ts(�;O) if ts(�;O) 6= ;f?g if ts(�;O) = ; ^ 9x 2 dom(�) withx� 2 X _ x� 2 T (U ;X) _ x 2 X; otherwiseNote that this de�nition also in
ludes the
ases where x� is a
onstantor x� is a fun
tion symbol mapped from a fun
tion variable.Example 4. Re
onsider the query substitution � = fw0 7! g(e; x)g of Ex-ample 1. The
hara
teristi
 fun
tion of � is
hr(�; fw0g) = fgg. Note thatg is the only symbol of the
hara
teristi
 fun
tion of � be
ause this is thetop symbol of the term g(e; x). A term that is uni�able with g(e; x) is of theform g(y; x), where y is either a variable or the
onstant e. Consequently,the symbol g is the only symbol
hara
terizing �.On
e we have de�ned the
hara
teristi
 fun
tion for a substitution, we
an extend the de�nition of
ontext trees with a fun
tion M that assigns toa given node v and a symbol s a set of su

essor nodes. For ea
h node v0 inthe set of su

essor nodes it holds that there is a node on a path, startingat v0, whi
h
ontains the symbol s in the
hara
teristi
 of its substitution.This lifts the
hara
teristi
 fun
tion of a substitution of one node to the
hara
teristi
 of a subtree of a
ontext tree.De�nition 14 (Filtered Context Tree). A �ltered
ontext treeFT = (V;E; subst; vr;M) is a
ontext tree (V;E; subst; vr) together with38

Algorithm 13: FilteredLookupInput: FT = (V;E; subst; vr;M), vn 2 V , substitution �,fun
tion Test1 HITS = ;;/* vr = v1; :::; vn path from the root vr to vn */2 C =
hr(�; vars(vr; :::; vn));3 if C = f?g then N = fv0j(vn; v0) 2 Eg;4 else if C 6= ; then N = Ss2C[f?g)M(vn; s);5 else N = ;;6 forea
h v0 2 N do7 if Test(subst(v0); �) = (true; �) then8 if isLeaf(v0) then return fv0g;9 HITS = HITS [FilteredLookup(FT ; v0; � Æ �;Test);10 end11 end12 return HITSa fun
tion M : V � (� [f?g) ! 2V from nodes and fun
tion symbolsto a subset of V su
h that vk+1 2 M(vk; s) if and only if there is a pathv1; : : : ; vk; vk+1; : : : ; vn where v1 is the root node vr withs 2 [i2fk+1;:::;ng
hr(subst(vi); vars(v1; : : : ; vk))5.2.2 Algorithms for Filtered Context TreesThe pro
edure FilteredLookup (Algorithm 13) depi
ts the fun
tion perform-ing the lookup operation on a given �ltered
ontext tree FT , a startingnode vn, a query substitution � and a fun
tion Test. The node vn is the
urrent pro
essed node of FT during the re
ursive appli
ation of Filtered-Lookup. Initially, the node vn is the root node vr. The fun
tion Test is eitherUnifyTest(Algorithm 6), GenTest (Algorithm 8) or InstTest (Algorithm 10).These are the standard algorithms for the test fun
tions shown in Se
tion 5.1whi
h are independent from the underlying indexing. This is be
ause theyexpe
t only two substitutions as their argument. As a result, the standardalgorithms
an also be used for �ltered
ontext trees.In line 2 FilteredLookup (Algorithm 13)
omputes the
hara
teristi
 fun
-tion of � with respe
t to the set of variables that have not yet o

urred inthe domain of a substitution of a node on the path vr; : : : ; vn. If the
har-a
teristi
 fun
tion returns f?g then the loop in line 6 inspe
ts all subnodes39

of the given node vn. Otherwise, the algorithm looks for the symbols in Mand
onsiders only those nodes whi
h are returned by M (line 4). Begin-ning with line 6, FilteredLookup is exa
tly the same algorithm as Lookup(Algorithm 1). Computing the
hara
teristi
 of the substitution � in line 2is in time O(j dom(�)j), where j dom(�)j is the number of elements of thedomain of �. As a result, obtaining the set N from M in line 4 is in timeO(j dom(�)j � log j�j) where j�j is the number of symbols in the signature.Hen
e, the overhead for the �ltering is in O(j dom(�)j � log j�j).The algorithms for insertion EntryCreate (Algorithm 3) and deletion En-tryDelete (Algorithm 4) use the pro
edure LookupVariant (Algorithm 2).The pro
edure LookupVariant has to be modi�ed analogously to Filtered-Lookup (Algorithm 13) due to the fa
t that LookupVariant is a variation ofLookup (Algorithm 1).Additionally, the pro
edure EntryCreate (Algorithm 3) has to maintainthe map M when inserting a term into the indexing. If the pro
edure insertsa new inner node in line 6 - 14 then the fun
tion M has to be updated inorder to meet the properties required in De�nition 14. All nodes vi along thepath vr; : : : ; v1 have to be updated as follows8s 2
hr(�1; vars(vr; : : : ; vi)):M(vi; s) = M(vi; s) [fvi+1gThe nodes along the path vr; : : : ; v2 have to be updated analogously.The fun
tion M is realized via a mapping and
an, therefore, be a

essedin O(log j�j) where j�j is the number of signature symbols. As a result,updating the nodes along a path with length n is inO(n � (j
hr(�1;W)j+ j
hr(�2;W)j) � log j�j)In the
ontext of YAGO the
hara
teristi
 fun
tions of �1 and �2 havesize at most two and the index has depth at most three. So, maintaining Mis very
heap.Remember, that we have modi�ed the original pro
edure for deletingterms from an
ontext tree. Nodes are not deleted from a
ontext tree duringthe deletion of a term t from the
ontext tree be
ause this is not feasible inthe
ontext of YAGO. Instead the term t is deleted from the
ontext tree byremoving the referen
e to t from the leaf node representing t. Consequently,we have
hanged the invariant su
h that a term t is
ontained in an
ontexttree if and only if there is a leaf node in the
ontext tree that represents t andhas a referen
e to t. As a
onsequen
e, the fun
tion M of a �ltered
ontexttree is not updated when deleting a term and the
omplexity for EntryDeleteof �ltered
ontext trees is the same as for LookupVariant.Theorem 5 (Corre
tness). FilteredLookup is
orre
t.40

Proof. Sin
e, the algorithm only restri
ts the number of nodes in the
on-text tree whi
h are
onsidered for testing, the
orre
tness follows from the
orre
tness of Lookup (Theorem 4).In the following, we proof the
ompleteness of FilteredLookup (Algo-rithm 13) for the retrieval of substitutions that are uni�able with the querysubstitution. The proof for the retrieval of substitutions with respe
t to in-stantiation and generalization is analogous. Sin
e LookupVariant is a slightmodi�
ation of Lookup, the
ompleteness proof for LookupVariant for �l-tered
ontext trees is also analogous.Lemma 6. Let FT = (V;E; subst; vr;M) be a �ltered
ontext tree, � be a sub-stitution, v0 2 V a node, (v0; v) 2 E, � = subst(v) and O = vars(vr; : : : ; v0).If 9�8x:x�� = x��� then 9s 2
hr(�;O) with v 2 M(v0; s) or
hr(�;O) =f?g or
hr(�;O) = f?g.Proof. Assume 9�8x:x�� = x���. If 9x 2 dom(�)\O\W with x� = f(: : :)(this also in
ludes F� = f with F 2 U) then the following two
ases have tobe
onsidered:� If 8w0i 2 dom(�) it holds that w0i� 2 X then
hr(�;O) = ? by De�ni-tion 13� Else, 9w0i 2 dom(�) su
h that w0i� 62 X , then by De�nition 14 andDe�nition 12 wi 2 dom(�) or there is a node v00 that is in a subtreeof v and wi 2 dom(subst(v00)). If wi 2 dom(�) then there exist asubstitution � with wi�� = wi��� by assumption. Consequently, f 2
hr(�;O), f 2
hr(�;O) and by De�nition 14 v 2M(v0; f).If wi 2 dom(subst(v00)) then v 2M(v0; f) follows indu
tively.If there is no wi 2 dom(�) \ O \W with wi� = f(: : :) then 8x 2 dom(�) \O \W one of the following holds:� x 2 X� x� 2 X� x� 2 T (U ;X)For all of these
ases
hr(�;O) = f?g.Theorem 6 (Completeness). Let � be a substitution and T = (V;E; subst; vr)a
ontext tree. If Lookup (Algorithm 1) applied to T and � returns a non-empty set of leaf nodes L then FilteredLookup (Algorithm 13) returns thesame set L when applied to � and the �ltered
ontext tree FT = (V;E; subst; vr;M).41

Proof. Assume v; v0 2 V , E(v0; v), � = subst(v), O = vars(vr; : : : ; v0) and9�:8x:x�� = x���. We have to show that v is in N in line 6 of Algorithm 13.From Lemma 6 we have to
onsider three
ases:� If
hr(�;O) = f?g then v 2 N be
ause of line 3.� If
hr(�;O) = f?g then v 2 N be
ause of line 4.� If 9s 2
hr(�;O) with v 2M(v0; s) then v 2 N be
ause of line 4.Then, the theorem follows by indu
tion on the path length.5.2.3 Implementation in Spass-YAGOSin
e
ontext trees are a generalization of substitution trees and Spass has animplementation of substitution tree indexing, our implementation of Spass-YAGO
ontains the substitution tree indexing of Spass together with theabove des
ribed �ltered te
hniques.In Spass, symbols are internally represented as integers. Consequently,they
an be
ompared with respe
t to their integer value. So, we implementedthe lookup fun
tion M using CSB+-trees [12℄ , a
a
he
ons
ious variant ofB-trees.The implementation of the set of variables of a path vars(vr = v1; : : : ; vn)is realized via a marking me
hanism. Ea
h time a substitution � of a node is
ompatible with the
urrent query � all index variables of dom(�) are marked.Sin
e, one node of a �ltered
ontext tree
ould be rea
hed via severalsymbols from its parent node, we mark ea
h visited node in order to avoidmultiple inspe
tions of the same node.For ea
h of the retrieval operations (uni�
ation, instantiation and gener-alization) we have implemented a separate version of the pro
edure Filtered-Lookup (Algorithm 13) be
ause this allows a more eÆ
ient implementationfor ea
h individual retrieval operation. More subnodes of a given �ltered
ontext tree may be �ltered. For example, assume the retrieval for instan
esof the substitution fwi 7! g(x)g. In this
ase, nodes that solely
ontain sub-stitutions of the form fwi 7! xg do not
ontribute and
an be ex
luded fromfurther pro
essing. A similar argument holds for generalizations.5.2.4 Further ImprovementsThere are further opportunities to improve our
urrent implementation ofSpass-YAGO. For example, the o

ur
he
k for the uni�
ation operation
an be omitted. 42

In the
ontext of YAGO, the notion of fun
tion variables provides a me
h-anism to query for term symbols. For example, we
an query the index forterms that
ontain the symbol a as its se
ond argument. The respe
tivequery term is F (x; a). Applying this query to the
ontext tree given inFigure 5.2 returns the terms f(
; a) and h(d; a). So, an implementation of�ltered
ontext trees in Spass-YAGO provides these features.We
an also use
ontext trees to index ea
h term stored in the
ontexttree by ea
h of its symbols. For example,
onsider the term f(
; a) whi
his stored in the
ontext tree of Figure 5.2. Following the path from theroot to the leaf we �nd the substitutions �1 and �2 with f(
; a) = w0�0�1�2.The order of the appli
ation of the substitutions �1 and �2 to w0�0 does notmatter. As a result, w0�0�1�2 = f(
; a) = w0�0�2�1. If we store both paths inthe
ontext tree we
an
hoose the path that is more eÆ
ient for the
urrentretrieval operation. For example,
onsider the query term F (x; a). Here theonly symbol o

urring is a. To restri
t the sear
h spa
e we �rst dis
riminateon a with the help of �1. If we
onsider the query term f(x;
) it is moreeÆ
ient to �rst
onsider �2 be
ause this dis
riminates on f . Although, thisapproa
h in
reases the size of the �ltered
ontext tree exponentially, it isfeasible in the
ase of YAGO. This is be
ause a �ltered
ontext tree storingterms obtained from the translation of YAGO has depth at most three. Thisapproa
h provides a very eÆ
ient retrieval me
hanism. A similar idea isused for the implementation of relational data base systems, where an indexis
reated for ea
h of its arguments. For example, the tuple (a; b;
)
an beobtained by querying the indexing of the �rst argument for a, querying theindexing of the se
ond argument for b or querying the indexing for the thirdargument
. An implementation of this
an be found, for example, in [10℄.5.3 SummaryFiltered
ontext trees are a powerful term indexing stru
ture for storing largesets of terms and for eÆ
iently performing uni�
ation, instantiation andgeneralization queries. In parti
ular for the set of terms resulting from thetranslation of YAGO into BSHE, �ltered
ontext tree indexing enables theretrieval operations to avoid inspe
ting unsu

essful subtrees of the indexing.Consequently, our algorithms of the retrieval operations perform a more goaloriented sear
h on the term index. In the beginning, Spass was not able toload YAGO into its index within 24 hours. Now, with the integration of thenew �ltered
ontext tree indexing, Spass is able to load YAGO into its indexand also to eÆ
iently perform reasoning tasks on the
lause set resulting fromthe translation of YAGO. Spass saturates YAGO in less than one hour.43

6 EngineeringIn order to adjust Spass to the new indexing te
hnique and the
al
ulus forBSHE, a lot of extra engineering had to be performed. We in
reased themaximal number of signature symbols that Spass
an handle to 19M. Theparsing module was modi�ed, so that originally quadrati
 manipulations onthe lists of input
lauses now only take linear time. Algorithms for manip-ulating
lause sets holding Spass's sear
h state, su
h as loading the usable
lauses, or sorting
lause lists, were sped up from O(n2) to O(n � log(n)).Hashmaps used in the
lausi�
ation pro
ess in Flotter had to be extendedto redu
e the number of hash-
on
i
ts. The stru
ture for storing supertermsin the sharing was
hanged from lists to maps. Newly derived
lauses arenow inserted at the �rst possible position with respe
t to weight in the listof usable
lauses, instead of also
onsidering sear
h spa
e depth. Finally,Spass-YAGO skips auto-
on�guration and instead uses a standard
omplete
ag setting in the input �les a

ording to our
al
ulus (Se
tion 4).There is still plenty of room for speed ups via further engineering. Ourmotivation was not on getting a mu
h faster system but to advan
e Spasssu
h that it
an
ope with the size of YAGO.

44

7 ExperimentsWe ran our experiments on a 4 x Intel Xeon Pro
essor X5560 (8M Ca
he, 2.80GHz) Debian Linux ma
hine with 48 GB RAM. We
ompared Spass-YAGOwith iProver version 0.7 [9℄, E version 1.1 [14℄, and Spass version 3.5 [26℄in
luding the before mentioned engineering improvements. The reason forthis
omparison is only to show that our new
al
ulus, �ltered
ontext treeindexing and improved implementation advan
es the state of the art in au-tomated reasoning on large ontologies. None of the above systems has beenspe
i�
ally designed to �t the BSHE theory
reated out of YAGO. All theprovers were re
ompiled for the above 64 bit ar
hite
ture to better
ope withthe large inputs.First we evaluated the task of showing satis�ability of (sli
es of) YAGOafter having removed all in
onsisten
ies by hand on the basis of Spass-YAGOruns. The examples are in favor of iProver, E, and Spass 3.5 as we didnot in
lude the unique name assumption units for those provers, whereasSpass-YAGO tests the
orresponding inferen
e rule. The results are givenin Figure 7.1.The se
ond
olumn shows the number of formulas (
lauses), the thirdthe time needed for saturation, and the fourth the number of additionallyeventually kept
lauses by Spass-YAGO. All other provers fail on showingany of the examples due to timing
onstraints of 60 min for the �rst 4 sli
esand due to running out of (internal) memory (ex
ept for Spass and E runningout of time) for S4 and the full set.Note that showing satis�ability is the more diÆ
ult problem
omparedto a
tually proving queries. All provers
an su

essfully solve queries withrespe
t to at least one of the S0-S4 sli
es.Sin
e none of the other provers
ould handle the overall
ore, we only
arried out the se
ond experiment on queries using Spass-YAGO. We eval-uated the following two queries on the saturated
ore of YAGO, where weapplied the now
omplete SOS strategy.45

Sli
es Input size [F℄ Time to saturate Output size [F℄ Other proversS0 136808 12.5 +1768 failS1 132080 9.7 +16060 failS2 96454 9.9 +1768 failS3 114527 10.6 +4769 failS4 4891235 37:11.1 +24123 failFull 9918933 1:03:24.0 +24123 failFigure 7.1: Saturating YAGOQ1 9x:politi
ian(x) ^ physi
ist(x) ^ bornIn(x;Hamburg) ^hasSu

essor(Helmut S
hmidt; x)Q2 9x; y; z:diedIn(x; y) ^ hasChild(x; z) ^ bornIn(z; y) ^lo
atedIn(y;New York)The results of the querying are shown in the table below.Query Derived Kept Proof length Reasoning TotalQ1 1 1 18 0:00.1 9:37.8Q2 9 0 6 0:00.1 9:38.3The table shows the number of derived, kept
lauses and the length ofthe proof found by Spass-YAGO. A
tually, almost all of the time is spent onloading the overall
lause set, the di�eren
e between total time and reasoningtime. The time for answering the queries is below one se
ond. The di�eren
ebetween derived/kept
lauses and proof length is the result of simpli�
ation,in parti
ular sort simpli�
ation exploring subsort relationships. Re
all thatin the saturated
ore not all ground
onsequen
es of YAGO are expli
itlyrepresented. So the involved reasoning goes beyond simple data base stylejoins but involves reasoning about transitivity and subsort relationships.
46

8 Con
lusionThe saturation of large ontologies is a
hallenge for �rst-order reasoning.The
ore of the YAGO ontology
an be saturated by Spass-YAGO in about1 hour (Se
tion 7) due to a new
omplete, sound, and terminating variantof the superposition
al
ulus (Se
tion 4) a

ompanied by �ltered
ontexttree indexing (Se
tion 5) and improved implementations (Se
tion 6). Spass-YAGO signi�
antly advan
es the state of the art in theorem proving on largeontologies (Se
tion 7). It
omplements other e�orts in this dire
tion. Theyearly CASC division on ontology reasoning [21℄ as well as approa
hes on
ombining theorem provers with other sour
es of knowledge [19℄
on
entrateon �nding proofs (answers,
ontradi
tions), not saturations, i.e. models of anoverall ontology as we have studied in this paper for a
ore of YAGO. Oneof the �rst
ontributions on applying theorem proving to large ontologies is[8℄ where a number of engineering questions are dis
ussed.Most importantly, we showed that standard automated reasoning toolssu
h as Spass are able to
ope with large ontologies su
h as a
ore of YAGOif the
al
ulus and implementation are adopted a

ordingly. Currently, ourimplementation does not dire
tly give answers but shows proofs. This
anbe straightforwardly extended to an answer me
hanism. The queries we
on-sidered are solely existentially quanti�ed. This
an be extended to arbitraryquanti�er pre�xes, be
ause we are
onsidering a �nite domain only. How-ever, it needs further resear
h in order to
ope with the potential sear
h spa
espanned by su
h a query. Here an even more re�ned
al
ulus, e.g. by inte-grating
haining dire
tly into the hyper resolution inferen
e is instrumental.Finally, reasoning with respe
t to the
on�den
e values atta
hed to fa
ts inYAGO that are ignored for this paper
ould be added to the
al
ulus, e.g.in the style of a multi-valued logi
 aggregating formulas at their respe
tive
on�den
e values.
47

Bibliography[1℄ L. Ba
hmair and H. Ganzinger. Rewrite-based equational theorem prov-ing with sele
tion and simpli�
ation. J. Log. Comput., 4(3):217{247,1994.[2℄ L. Ba
hmair and H. Ganzinger. Rewrite te
hniques for transitive re-lations. In Pro
. 9th IEEE Symposium on Logi
 in Computer S
ien
e,pages 384{393. IEEE Computer So
iety Press, 1994. Short version ofTR MPI-I-93-249.[3℄ L. Ba
hmair and H. Ganzinger. Ordered
haining
al
uli for �rst-order theories of transitive relations. Journal of the ACM (JACM),45(6):1007{1049, 1998.[4℄ C. G. Ferm�uller, A. Leits
h, U. Hustadt, and T. Tammet. Resolutionde
ision pro
edures. In A. Robinson and A. Voronkov, editors, Handbookof Automated Reasoning, volume 2, pages 1791{1849. Elsevier S
ien
ePublishers B. V., Amsterdam, The Netherlands, The Netherlands, 2001.[5℄ H. Ganzinger, R. Nieuwenhuis, and P. Nivela. Context trees. In Gor�eet al. [6℄, pages 242{256.[6℄ R. Gor�e, A. Leits
h, and T. Nipkow, editors. Automated Reasoning,First International Joint Conferen
e, IJCAR 2001, Siena, Italy, June18-23, 2001, Pro
eedings, volume 2083 of LNCS. Springer, 2001.[7℄ P. Graf. Term Indexing, volume 1053 of LNCS. Springer, 1996.[8℄ I. Horro
ks and A. Voronkov. Reasoning support for expressive ontologylanguages using a theorem prover. In J. Dix and S. J. Hegner, editors,FoIKS: Foundations of Information and Knowledge Systems, Budapest,Hungary, volume 3861 of LNCS, pages 201{218. Springer, 2006.48

[9℄ K. Korovin. iProver - An Instantiation-Based Theorem Prover for First-Order Logi
 (System Des
ription). In A. Armando, P. Baumgartner,and G. Dowek, editors, IJCAR: The International Joint Conferen
e onAutomated Reasoning, volume 5195 of LNCS, pages 292{298. Springer,2008.[10℄ T. Neumann and G. Weikum. Rdf-3x: a ris
-style engine for rdf.PVLDB, 1(1):647{659, 2008.[11℄ I. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. InRobinson and Voronkov [13℄, pages 1853{1964.[12℄ J. Rao and K. A. Ross. Making B+-trees
a
he
ons
ious in main mem-ory. In ACM SIGMOD International Conferen
e on Management ofData, pages 475{486, 2000.[13℄ J. A. Robinson and A. Voronkov, editors. Handbook of Automated Rea-soning (in 2 volumes). Elsevier and MIT Press, 2001.[14℄ S. S
hulz. E - a brainia
 theorem prover. AI Communi
ation, 15(2-3):111{126, 2002.[15℄ S. S
hulz and M. P. Bona
ina. On Handling Distin
t Obje
ts in the Su-perposition Cal
ulus. In B. Konev and S. S
hulz, editors, Pro
. of the 5thInternational Workshop on the Implementation of Logi
s, Montevideo,Uruguay, pages 66{77, 2005.[16℄ J. R. Slagle. Automati
 theorem proving with built-in theories in
ludingequality, partial ordering, and sets. J. ACM, 19(1):120{135, 1972.[17℄ F. M. Su
hanek, G. Kasne
i, and G. Weikum. Yago: A Core of Semanti
Knowledge. In 16th international World Wide Web
onferen
e (WWW2007), pages 697{706, New York, NY, USA, 2007. ACM Press.[18℄ F. M. Su
hanek, G. Kasne
i, and G. Weikum. YAGO: A Large Ontologyfrom Wikipedia and WordNet. J. Web Sem., 6(3):203{217, 2008.[19℄ M. Suda, G. Sut
li�e, P. Wis
hnewski, M. Lamotte-S
hubert, andG. de Melo. External sour
es of axioms in automated theorem prov-ing. In B. Merts
hing, M. Hund, and M. Z. Aziz, editors, KI 2009:Advan
es in Arti�
ial Intelligen
e, 32nd Annual German Conferen
e onAI, Paderborn, Germany, September 15-18, 2009. Pro
eedings, volume5803 of LNCS, pages 281{288. Springer, 2009.49

[20℄ M. Suda, C. Weidenba
h, and P. Wis
hnewski. On the Saturation ofYAGO. Resear
h Report MPI-I-2010-RG1-001, Max-Plan
k-Institut f�urInformatik, Saarbr�u
ken, 2010.[21℄ G. Sut
li�e. The 4th IJCAR Automated Theorem Proving System Com-petition - CASC-J4. AI Communi
ation, 22(1):59{72, 2009.[22℄ T. Tammet. Chain resolution for the semanti
 web. In D. A. Basin andM. Rusinowit
h, editors, IJCAR, volume 3097 of LNCS, pages 307{320.Springer, 2004.[23℄ T. Tammet and V. Kadarpik. Combining an inferen
e engine withdatabase: A rule server. In M. S
hroeder and G. Wagner, editors,RuleML, volume 2876 of LNCS, pages 136{149. Springer, 2003.[24℄ A. Voronkov. Merging relational database te
hnology with
onstraintte
hnology. In D. Bj�rner, M. Broy, and I. V. Pottosin, editors, ErshovMemorial Conferen
e, volume 1181 of LNCS, pages 409{419. Springer,1996.[25℄ C. Weidenba
h. Combining superposition, sorts and splitting. InA. Robinson and A. Voronkov, editors, Handbook of Automated Rea-soning, volume 2,
hapter 27, pages 1965{2012. Elsevier, 2001.[26℄ C. Weidenba
h, D. Dimova, A. Fietzke, M. Suda, and P. Wis
hnewski.SPASS Version 3.5. In R. A. S
hmidt, editor, 22nd International Confer-en
e on Automated Dedu
tion (CADE-22), volume 5663 of LNAI, pages140{145. Springer, 2009.

50

Below you �nd a list of the most re
ent te
hni
al reports of the Max-Plan
k-Institut f�ur Informatik. Theyare available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions
on
ern-ing WWW a

ess, please
onta
t reports�mpi-inf.mpg.de. Paper
opies (whi
h are not ne
essarily freeof
harge)
an be ordered either by regular mail or by e-mail at the address below.Max-Plan
k-Institut f�ur InformatikLibraryattn. Anja Be
kerStuhlsatzenhausweg 8566123 Saarbr�u
kenGERMANYe-mail: library�mpi-inf.mpg.deMPI-I-2009-RG1-002 P. Wis
hnewski, C. Weidenba
h Contextual rewritingMPI-I-2009-5-006 S. Bedathur, K. Berberi
h, J. Dittri
h,N. Mamoulis, G. Weikum S
alable phrase mining for ad-ho
 text analyti
sMPI-I-2009-5-004 N. Preda, F.M. Su
hanek, G. Kasne
i,T. Neumann, G. Weikum Coupling knowledge bases and web servi
es for a
tiveknowledgeMPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for s
alable management of RDFdataMPI-I-2008-RG1-001 A. Fietzke, C. Weidenba
h Labelled splittingMPI-I-2008-5-004 F. Su
hanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for informationextra
tionMPI-I-2008-5-003 F.M. Su
hanek, G. de Melo, A. Pease Integrating Yago into the suggested upper mergedontologyMPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase
onstru
tion of optimal DAG-stru
turedQEPsMPI-I-2008-5-001 F. Su
hanek, G. Kasne
i,M. Ramanath, M. Sozio, G. Weikum STAR: Steiner tree approximation inrelationship-graphsMPI-I-2008-4-003 T. S
hultz, H. Theisel, H. Seidel Crease surfa
es: from theory to extra
tion andappli
ation to di�usion tensor MRIMPI-I-2008-4-002 W. Saleem, D. Wang, A. Belyaev,H. Seidel Estimating
omplexity of 3D shapes using viewsimilarityMPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,S. Toledo Chara
terizing the performan
e of Flash memorystorage devi
es and its impa
t on algorithm designMPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenba
h Superposition for �nite domainsMPI-I-2007-5-003 F.M. Su
hanek, G. Kasne
i,G. Weikum Yago : a large ontology from Wikipedia and WordNetMPI-I-2007-5-002 K. Berberi
h, S. Bedathur,T. Neumann, G. Weikum A time ma
hine for text sear
hMPI-I-2007-5-001 G. Kasne
i, F.M. Su
hanek, G. Ifrim,M. Ramanath, G. Weikum NAGA: sear
hing and ranking knowledgeMPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,H. Seidel Global sto
hasti
 optimization for robust and a

uratehuman motion
aptureMPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,H. Seidel Global illumination using photon ray splattingMPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,H. Seidel GPU mar
hing
ubes on shader model 3.0 and 4.0MPI-I-2007-4-005 T. S
hultz, J. Wei
kert, H. Seidel A higher-order stru
ture tensorMPI-I-2007-4-004 C. Stoll, E. de Aguiar, C. Theobalt,H. Seidel A volumetri
 approa
h to intera
tive shape editingMPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A nonlinear viseme model for triphone-based spee
hsynthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Constru
tion of smooth maps with mean value
oordinatesMPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered sto
hasti
 optimization for obje
t re
ognitionand pose estimationMPI-I-2007-2-001 A. Podelski, S. Wagner A method and a tool for automati
 verii
ation of regionstability for hybrid systemsMPI-I-2007-1-003 A. Gidenstam, M. Papatrianta�lou LFthreads: a lo
k-free thread libraryMPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approa
h for the multiplesequen
e alignment problemMPI-I-2007-1-001 E. Berberi
h, L. Kettner Linear-time reordering in a sweep-line algorithm foralgebrai

urves interse
ting in a
ommon pointMPI-I-2006-5-006 G. Kasne
, F.M. Su
hanek,G. Weikum Yago - a
ore of semanti
 knowledgeMPI-I-2006-5-005 R. Angelova, S. Siersdorfer A neighborhood-based approa
h for
lustering of linkeddo
ument
olle
tionsMPI-I-2006-5-004 F. Su
hanek, G. Ifrim, G. Weikum Combining linguisti
 and statisti
al analysis to extra
trelations from web do
umentsMPI-I-2006-5-003 V. S
holz, M. Magnor Garment texture editing in mono
ular video sequen
esbased on
olor-
oded printing patternsMPI-I-2006-5-002 H. Bast, D. Majumdar, R. S
henkel,M. Theobald, G. Weikum IO-Top-k: index-a

ess optimized top-k querypro
essingMPI-I-2006-5-001 M. Bender, S. Mi
hel, G. Weikum,P. Trianta�lou Overlap-aware global df estimation in distributedinformation retrieval systemsMPI-I-2006-4-010 A. Belyaev, T. Langer, H. Seidel Mean value
oordinates for arbitrary spheri
al polygonsand polyhedra in R3MPI-I-2006-4-009 J. Gall, J. Pottho�, B. Rosenhahn,C. S
hnoerr, H. Seidel Intera
ting and annealing parti
le �lters: mathemati
sand a re
ipe for appli
ationsMPI-I-2006-4-008 I. Albre
ht, M. Kipp, M. Ne�,H. Seidel Gesture modeling and animation by imitationMPI-I-2006-4-007 O. S
hall, A. Belyaev, H. Seidel Feature-preserving non-lo
al denoising of stati
 andtime-varying range dataMPI-I-2006-4-006 C. Theobalt, N. Ahmed, H. Lens
h,M. Magnor, H. Seidel Enhan
ed dynami
 re
e
tometry for relightablefree-viewpoint videoMPI-I-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa Skeleton-driven lapla
ian mesh deformationsMPI-I-2006-4-004 V. Havran, R. Herzog, H. Seidel On fast
onstru
tion of spatial hierar
hies for raytra
ingMPI-I-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,M. Magnor, H. Seidel A framework for natural animation of digitized modelsMPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,H. Seidel GPU point list generation through histogram pyramidsMPI-I-2006-4-001 A. Efremov, R. Mantiuk,K. Myszkowski, H. Seidel Design and evaluation of ba
kward
ompatible highdynami
 range video
ompressionMPI-I-2006-2-001 T. Wies, V. Kun
ak, K. Zee,A. Podelski, M. Rinard On verifying
omplex properties using symboli
 shapeanalysisMPI-I-2006-1-007 H. Bast, I. Weber, C.W. Mortensen Output-sensitive auto
ompletion sear
hMPI-I-2006-1-006 M. Kerber Division-free
omputation of subresultants using bezoutmatri
esMPI-I-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert Snap rounding of B�ezier
urvesMPI-I-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi Power assignment problems in wireless
ommuni
ationMPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated retraining methods for do
ument
lassi�
ation and their parameter tuningMPI-I-2005-4-006 C. Fu
hs, M. Goesele, T. Chen,H. Seidel An emperi
al model for heterogeneous translu
entobje
tsMPI-I-2005-4-005 G. Kraw
zyk, M. Goesele, H. Seidel Photometri

alibration of high dynami
 range
amerasMPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,G. Ziegler, H. Lens
h, M.A. Magnor,H. Seidel Joint motion and re
e
tan
e
apture for
reatingrelightable 3D videosMPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and design of dis
rete normals and
urvatures

MPI-I-2005-4-002 O. S
hall, A. Belyaev, H. Seidel Sparse meshing of un
ertain and noisy surfa
e s
attereddata

