On the Saturation of YAGO

Martin Suda and Christoph
Weidenbach and Patrick
Wischnewski

MPI-I-2010-RG1-001 February
2010

Authors’ Addresses

Christoph Weidenbach
Max-Planck-Institut fiir Informatik
Campus E1 4

66123 Saarbriicken

Germany

Patrick Wischnewski
Max-Planck-Institut fiir Informatik
Campus E1 4

66123 Saarbriicken

Germany

Martin Suda

Max-Planck-Institut fiir Informatik
Campus E1 4

66123 Saarbriicken

Germany

Publication Notes

This report is an extended version of an article intended for publication
elsewhere.

Abstract

YAGO is an automatically generated ontology out of Wikipedia and Word-
Net. It is eventually represented in a proprietary flat text file format and
a core comprises 10 million facts and formulas. We present a translation of
YAGO into the Bernays-Schonfinkel Horn class with equality. A new vari-
ant, of the superposition calculus is sound, complete and terminating for this
class. Together with extended term indexing data structures the new cal-
culus is implemented in SPASS-YAGO. YAGO can be finitely saturated by
SPASS-YAGO in about 1 hour. We have found 49 inconsistencies in the orig-
inal generated ontology which we have fixed. SPASS-YAGO is able to prove
non-trivial conjectures with respect to the resulting saturated and consistent
clause set of about 1.4 GB in less than one second.

Keywords

superposition, large finite domain reasoning, reasoning in large ontologies,
term indexing

Contents

1

2

Introduction

Preliminaries

Translation of YAGO into BSHE

A new Calculus for BSHE
4.1 The proof system L
4.2 Completeness, soundness, and termination

Term Indexing

5.1 Context Tree Indexing
5.1.1 Context Trees
5.1.2 Algorithms for Context Trees

5.2 Filtered Context Tree Indexing
5.2.1 Filtered Context Trees
5.2.2 Algorithms for Filtered Context Trees.
5.2.3 Implementation in SPASS-YAGO
5.2.4 Further Improvements

5.3 Summary
Engineering
Experiments

Conclusion

10
11

20
20
21
22
35
36
39
42
42
43

44

45

47

1 Introduction

YAGO (Yet Another Great Ontology) has been developed by our colleagues
from the database/information retrieval group at the Max Planck Institute
for Informatics [17]. It attracted a lot of attention in the information retrieval
community because it was the first automatically retrieved ontology with
both an accuracy of about 97% and a high coverage as it includes a unification
of Wikipedia and WordNet. It contains about 20 million “facts” of the YAGO
language. A detailed introduction to YAGO containing a comparison to other
well-known ontologies can be found in [18].

After a close inspection of the YAGO language it turned out that the
Bernays-Schoenfinkel Horn class with equality, abbreviated BSHE from now
on, is sufficiently expressive to cover a core of YAGO. In 2008 the idea was
born to write a translation procedure from YAGO into BSHE and then use
SPASS in order to find all inconsistencies in YAGO and to answer queries.
The translation procedure is described in Section 3. We then started running
SPASS on the resulting formulas in a kind of “test and refine” loop, eventually
leading to the SPASS-YAGO variant of SPASS, a new superposition calculus
for BSHE, an extension to context tree indexing, and this paper.

The first step was actually to make SPASS ready for handling really big
formula and clause sets. Some of this work went already into SPASs 3.5 [26],
the basis for SPASS-YAGO, but further refinements were needed in order to
actually start the experiments on YAGO. The engineering steps taken are
explained in Section 6.

After the first experiments on smaller fragments of YAGO it immediately
became clear that the standard superposition calculus does not work suf-
ficiently well on BSHE. We started searching for a calculus that is sound,
complete and terminating on BSHE and at the same time generates “small”
saturations. The YAGO language assumes a unique name assumption, i.e.,
all constants are different. This can be translated into first-order logic by enu-
merating disequations a % b for all different constants a, b. For several million
constants this translation is not tractable. Bonancina and Schulz [15] there-

fore suggested additional inference rules instead of adding the disequations.
We followed this approach and further refined one of their rules according
to the BSHE fragment and the rest of our calculus. The BSH fragment can
be decided by positive hyper resolution. Hyper resolution is a good choice
anyway, because it prevents the prolific generation of intermediate resolvents
of the form —A4; V... =A, V B that would be generated and kept by (ordered)
binary resolution if there are no resolution partners for some —A;. Experi-
ments showed that this works nicely for most types of clauses resulting from
the translation. For example, in YAGO a relation () can be defined to be
functional, translated into the clause =Q(z,y) V =Q(z, 2) V y ~ z. If hyper
resolution succeeds on generating a ground clause (y & z)o out of this clause,
it is either a tautology or the unique name assumption rule mentioned above
will refute the clause. The search space generated by hyper resolution out of
subsort definitions and transitive relations contained in YAGO turned out to
be too prolific. Therefore, we further composed our calculus by adding chain-
ing for transitive relations [3] and sort reasoning [25]. The latter is available
in SPASS anyway, whereas for chaining we added a novel implementation.
All details on the BSHE fragment generated out of YAGO and the eventual
calculus including proofs for completeness, soundness, and termination plus
implementation aspects are discussed in Section 4.

Thirdly, it turned out that the well-known indexing solutions for first-
order theorem proving [11] are too inefficient for the size and structure of
the YAGO BSHE fragment. The problem is that for example unifiability
queries with a query atom Q(x,a) need an index to both discriminate on
the signature symbols) and a without explicitly looking at all potential
partner atoms in the index. In Section 5 we present an extension to context
tree indexing [5] called Filtered Context Trees that discriminate for the above
example on () and a in logarithmic time in the number of symbols, i.e. in
logarithmic time the filtered context tree index gives access to a structure
that contains all potential partners containing these symbols. Context trees
are a generalization of substitution trees used in SPASS. In SPASS-YAGO the
context tree extension is finally implemented as an extension to substitution
tree indexing.

Eventually, SPASS-YAGO saturates the BSHE translation of YAGO in 1
hour, generating 26379349 clauses. The generated saturated clause set con-
sists of 9943056 clauses. We found 49 inconsistencies which we resolved by
hand. With respect to saturated clause set we can prove queries in less than
one second (Section 7). The paper ends with a summary of the obtained
results and directions for future work (Section 8). Detailed proofs and algo-
rithms are available in a technical report [20]. SPASS-YAGO and all input files
are available from the SPASS homepage http://www.spass-prover.org/ in

3

section prototypes and experiments.

2 Preliminaries

We follow the notation from [25]. A first-order language is constructed over a
signature Y. We assume ¥ to be a finite set of function symbols. In addition
to the signature ¥ we assume that there is an infinite set V' of variables.
The set of terms T (X, X) over a signature X and a set of variables X' with
X C V is recursively defined: X C T(X, X) and for every function symbol
f € ¥ with arity zero (a constant) f € T(X,X) and if f has arity n and
t1, ...ty € T(X,X) then also f(t1,...t,) € T(3,X). The variables V \ X
are used as meta variables in context tree indexing. Let vars(t) for a term
t € T(X, X) be the set of all variables occurring in ¢. If t = f(t4,...,t,) then
top(t) = f.

A substitution o : ¥V — T(XZ, X) is a mapping from the set of variables
into the set of terms such that zo # x for only finitely many x € V. The
domain of a substitution o is defined as dom(o) = {z | xo # x} and the
codomain is defined as cod(o) = {zo | o # x}. Substitutions are lifted to
terms as usual. Given two terms s and ¢, a substitution o is called a unifier if
so = to and most general unifier (mgu) if, in addition, for any other unifier 7
of s and ¢ there exists a substitution A with oA = 7. A substitution o is called
a matcher from s to t if so = t. The term s is then called a generalization of t
and t an instance of s. A substitution o is a unifier for substitutions 7 and p
if o is a unifier of z7 and zp for all x € dom(7). The definitions for matcher,
generalization and instance can be lifted to substitutions analogously. The
composition o o 7 of the two substitutions o and 7 is defined as (zo)7.

3 Translation of YAGO into
BSHE

From a logical perspective, YAGO [17, 18] consists of about 20 million ground
atoms of second-order logic. However, most of the second-order content is
actually “syntactic sugar” that can be eventually translated into first-order
logic.For example, subsort relations are represented as facts over the involved
sort predicates.

The YAGO ontology comprises facts of the form

argl rel arg2

where rel is a relation and argl, arg2 are either individuals or are relations.
For example, the following fact states that Albert Einstein is born in Ulm

AlbertEinstein bornln Ulm

where bornln is a relation, AlbertEinstein and Ulm are individuals. For the
translation of YAGO into BSHE, we transform each fact of this form, where
the arguments of a relation are entities, into a ground atom. The relation
becomes a binary predicate symbol and an individual becomes a constant.
We translate the above example into

bornIn(AlbertEinstein, Ulm)

The relation type of YAGO assigns a type to an individual or to an relation.
For example, the following says that Angela Merkel is a human

AngelaMerkel type human
The fact stating that the relation bornln is a function, is

type bornln yagoFunction

In the first case we translate the fact into a ground instance of the sort
predicate human as follows

human(AngelaMerkel)

The second case seems to be second-order but it is actually ”syntactic sugar”
for the following first-order constraint

=bornIn(x,y)V —bornIn(x,z) Vx = z

Likewise, the fact stating that a relation is of type yagoTransitiveRelation is
translated into the repsective first-order constraint. For example, the fact

locatedIn type yagoTransitiveRelation
is translated into the constraint
=locatedIn(z, y) V —locatedIn(y, z) V locatedIn(z, 2)

The last kind of facts that we consider for our translation are facts of
the relation subClassOf. The following example states that each human is a
mammal

human subClassOf mammal

From a logical point this also seems to be second-order because this fact states
over the sort predicates human and mammal. However, we can translate
this into the following subsort relation

—human(zx) V mammal(z)

The above kind of facts make up about half of YAGO, i.e., about 10 mil-
lion facts translated into ground atoms and clauses of the above form. The
translation results in first-order ground facts and non-unit clauses one half
each. For this report we left out YAGO facts about the source of information
as well as confidence values attached to the facts. For example, in YAGO for
each relation occurring in a YAGO fact there is also a fact relating it to the
link of the website it was extracted from as well as further facts relating to
links of other websites containing the same relation.

4 A new Calculus for BSHE

We translated YAGO into the Bernays-Schonfinkel Horn class with equality
where all the clauses are range restricted. This means that any clause has
the form C'V A or just C' with the following conditions satisfied

e Horn clauses: C' contains only negative literals and A is a positive
literal,

e range restricted: Var(A) C Var(C,), where C, is the subclause of C
consisting of all the non-equality atoms of C',

e Bernays-Schonfinkel: the signature 3 contains only constant symbols,
e equality (=) is present among the predicate symbols.

By using the unique name assumption, which is in our case imposed on
all the constant symbols from ¥, the given set of clauses can be further
simplified before starting the actual reasoning process. Each clause of the
form C'V a % b is a tautology and can therefore be removed. If it is of the
form C'V a % a the literal a % a can be deleted. Moreover, clauses of the
form C'Vx % t, for variable x and term ¢ (either a variable or a constant) can
be simplified to C[z < t]. Thus we may assume that the clause set does not
contain disequation literals. When we look at the positive occurrences of the
equality predicate, we can do yet another simplification: a clause of the form
C'Va = b can be simplified to C', because a ~ b is false in any interpretation
satisfying the unique name assumption. As noted in the introduction, we
used the refinement of the calculus presented in [15] to deal with the unique
name assumption.

Another key ingredient in the process of saturation of YAGO is the chain-
ing calculus, a refinement of superposition designed to deal efficiently with
transitive relations [3]. It is well known that the axiom stating that a relation
Q is transitive,

Qlz,y) AQ(y, 2) = Qz,2),

8

may be a source of non-termination in resolution proving. This is because the
transitivity axiom clause may be resolved with (a variant of) itself to yield
a new clause Q(z,y) A Q(y, 2) A Q(z,w) — Q(z,w). Evidently, such process
can be arbitrarily iterated. Even if we use selection of negative literals or
hyperresolution to block the self-inference, (hyper)resolution will eventually
explicitly compute the whole transitive closure of the relation Q).

The idea of chaining is to remove the prolific transitivity axiom from
the given clause set, and instead to introduce a couple of specialized infer-
ence rules that encode the logical consequences of transitivity in a controlled
way. The crucial restriction lies in requiring that the two literals Q(u,v)
and @Q(v,w) chain together only if v > u and v > w, where > is a standard
superposition term ordering. In order to show that such a restricted version
of the rule is still complete techniques from term rewriting are employed.

An important step in introducing the chaining calculus to a theorem
prover is the implementation of a new literal ordering. In the standard su-
perposition setting literal ordering is typically defined as the two-fold mul-
tiset extension of the term ordering on the so called occurrences of equa-
tions/atoms (see e.g. [25] for details). This, for instance, entails that =A > A
for any atom A, a property essential for the completeness of the calculus.
Unfortunately, however, stronger properties are required for the chaining to
work, namely to ensure that the chaining inferences are decreasing, i.e. that
the conclusion of an inference is always smaller than the maximal premise.
These properties are integrated under the notion of admussibility of the literal
ordering.

Definition 1. An ordering = on ground terms and literals is called admis-

sible [3] if
e it is well-founded and total on ground terms and literals,

e it is compatible with reduction on maximal subterms, i.e. L > L'
whenever L and L' contain the same transitive predicate symbol QQ, and
the mazimal subterm of L' is strictly smaller than the mazimal subterm
of L,

e it is compatible with goal reduction, 7.e.

— =A = A for all ground atoms A,

— —A > B whenever A is an atom Q(s,t) and B is an atom Q(s',t'),
such that Q is a transitive predicate and maz(s,t) = maz(s', 1),

— —A > =B whenever A is an atom Q(s, s) and B atom Q(s,t) or
Q(t,s), where Q is a transitive predicate and s > t.

9

An ordering on ground clauses is called admissible if it is the multiset
extension of an admissible ordering on literals.

In order to actually implement an admissible ordering on ground literals,
we can work as follows. We associate to each literal L a tuple (mazp, pr, miny,)
and compare these lexicographically, using the superposition term ordering
> in the first and last component, and the ordering 1 > 0 in the middle com-
ponent. The individual members of the tuple are defined as follows: If L is
of the form Q(s, t) for a transitive predicate @) we set maz, to the maximum
of s and t, and miny to the minimum of the two terms (with respect to >).
If L is of the form A or = A for some atom A the top symbol of which is not
a transitive predicate, we set mazry; = A and miny = T, where T is special
symbol minimal in the term ordering >. We set p;, = 1, if L is negative, and
0 otherwise.

We use > to denote both the standard term ordering, which is as usual
assumed to be total on ground terms, and the just described admissible
ordering on literals and clauses. Context should always make clear what
instance of > is meant.

Lifting the lexicographic ordering of the tuples to the non-ground level
is a non-trivial task. For instance, the maximum of s and ¢t may not be
unique, because the term ordering > cannot be total on non-ground terms.
Nevertheless, it is possible to proceed by simultaneously considering both
cases. Then it can happen that we produce a distinctive result, as opposed
to just reporting incomparability of the two literals in question, which is
always a sound solution, because it only means that more inference will
potentially have to be done. For example, comparing the two non-ground
literals Ly = —R(sy,t1) and Ly = R(s9,t3) where the term pairs sq,t, o, ta,
and t;, sy are incomparable respectively, but s; > s, and ¢; = t3, we can
report that Ly > Lo although we don’t know whether mazy, is s; or t;.
For the instances where mazy, is t; the pr-member of the tuple takes over.
Obviously, we try to identify as many such cases as possible, to be able to
restrict applicability of the inferences.

4.1 The proof system

Here we present the inference rules of our calculus. They are refinements of
calculi presented in [3] and [15] composed and specialized for BSHE. For the
chaining rules, we assume that () is a transitive predicate.
Ordered Chaining
QU s) Qt,r)

Ql,r)o

10

where o is the most general unifier of s and ¢, lo % so, and ro ¥ to.
Negative Chaining
Qls) DV-Q(tr)
DoV =Q(s,r)o
where o is the most general unifier of [and ¢, so ¥ lo, and ro # to, and

Q(l,s) DV-Q(tr)
Do Vv =Q(t,l)o

where o is the most general unifier of s and r, lo % so, and to ¥ ro.

Hyperresolution
A ... A, -BV...vV-B,VP
Po ’
where n > 1, Ay, ..., A, are unit clauses, P is a positive literal or false, and
o is the simultaneous most general unifier of A; and B; respectively, for all
ie{l,...n}.
OECut [15]
a~b
J_ Y

where a and b are two different constants.

In negative chaining, the case to = ro needs to be dealt with by only one
of the two negative chaining rules. We do not impose maximality restrictions
on the negative literal as this would cause incompleteness in the combination
with hyperresolution. Positive hyperresolution alone is known to decide Horn
function-free clauses, but with respect to YAGO the search space becomes
too prolific. Therefore, we developed the above calculus where transitivity is
replaced by the specific chaining rules.

4.2 Completeness, soundness, and termina-
tion

In this section we show that our calculus is complete, sound, and terminating
for the Bernays-Schonfinkel Horn class with equality with range restricted
clauses.

The completeness proof is based on the ideas from [3] adapted to our
special case. It incorporates the notion of redundancy, so the standard elim-
ination rules like subsumption and tautology deletion can be added to the
calculus. The model construction itself proceeds along standard lines. One
takes the set of all ground instances of the given saturated clause set, and

11

uses the clause ordering which is total and well-founded on the ground level
to inductively build partial interpretations. In order to satisfy all the clauses
in the final interpretation, some of the clauses are designated as productive,
which means they contribute with a positive atom to the interpretation. A
specialty of our case is that we additionally need to consider a closure of the
contributed atoms in order to obtain the right interpretation. Moreover, we
only allow positive unit clauses to potentially become productive (this can be
justified by viewing all the negative literals as implicitly selected). We now
build up the theory needed to establish the completeness theorem formally.

We assume a fixed theory TRANS of axioms stating transitivity for pred-
icates @1, ...,Q;, and a theory UNA = {a % bla # b,a € X,b € ¥} for the
unique name assumption. We define the following notions:

Definition 2. A chain is a finite sequence of atoms

Q(ZU; l1)7 Q(lla 12)7 ey Q(lnfla ln)

wheren > 1 and all terms ly, . .., 1, are ground and () is a transitive predicate.
The type of such a chain is the atom Q(ly,l,). A chain is called a proof in
a Herbrand interpretation I if all atoms Q(l;_1,1;) are true in I. We say
Q(lo, 1) is provable in I if there ezists a proof of type Q(lo,1,) in I.

Note that this notion of proof enjoys the subproof property (subsequence
of a proof is again a proof) and the subproof replacement property (whenever
we replace a subproof with another subproof of the same type, we again
obtain a proof).

Definition 3. The transitive closure of I (with respect to TRANS) is defined
as the set I plus all ground atoms Q(l,r) that are provable in I.

Observation 1 (Characterization of transitive closure). A Herbrand inter-
pretation I is a model of a set of transitivity axioms TRANS if and only if
it is identical to its transitive closure (w.r.t TRANS).

Proof. For one direction, use induction on the length of proofs to show that
whenever I is a model of TRANS, then it is identical to its transitive closure.
The other direction is straightforward. O

We now aim at defining rewrite proofs. We first fix a total well-founded
ordering > on ground terms, which allows us to classify proof steps Q(l,r)
according to the order relation between the two terms. We write:

o l=qrifl-r,

12

.l@Q’FifT‘}l,
Ql<:)>QTifl:7’.

The annotation () will be omited if it is clear from the context or inessential.
We can now distinguish special kinds of proofs:

Definition 4. Valley is a chain of the form
lo=lL..=2k<chi<...<1,

or
l():>l1...:>lk<:>lk+1<:...<:ln

Valleys are also called rewrite proofs. A two step chain | <=t = r is called
a peak. A chainl < 1 = r orl < r & r is called a plateau. A chain
l=lye & ..., =1 s called o plain if k& > 2.

Observation 2 (Characterization of a valley). A walley is a chain that con-
tains no peak, plateau or plain.

Definition 5. We write [U{g r to indicate that there exists a rewrite proof
of (type) Q(l,r) in I. We say that peak, plateau or plain commutes in I if
there exists a rewrite proof of the same type in I. A rewrite closure of I is

defined as T U{Q(l,r) : 1§ r}.

Note that rewrite closure is obviously contained in the transitive closure.
Definition 6 (Complexity of rewrite steps). We define

e the complezity of | =¢ r as the multiset {l},

o the complezity of | <¢ r as the multiset {r},

o the complezity of | < ¢ r as the multiset {l,r}.

The complexity of a chain is the multiset of the complexities of all its indi-
vidual steps.

We compare two chains by comparing their respective complexities in
the two-fold multiset extension of the ordering > and denote the resulting
ordering by >,. Such an ordering on proofs can be called proof ordering as
it satisfies the following properties:

e A proper subproof of a proof is smaller than the original proof.

13

e Replacement of any subproof by a smaller proof will result in a smaller
proof.

Definition 7. A proof of Q(I,r) in I is said to be minimal (w.r.t. »,) if
there exists no smaller proof of the same type in I.

Observation 3 (Characterization of minimal proofs). Let = be a well-
founded ordering on ground terms, . be the corresponding proof ordering,
and I be a Herbrand interpretation. If no peak, plateau, or plain in I is a
minimal proof, then all minimal proofs in I are rewrite proofs. Furthermore,
if a peak, plateau or plain commutes in I, then it is nonminimal.

Proof. Direct inspection shows that any rewrite proof is simpler (according
to >.) than any peak, plateau, or plain of the same type. If a proof contains
a peak, plateau, or plain as a subproof, then that subproof is nonminimal
and hence can be replaced by a simpler proof. The result is a simpler proof
of the same type, which implies that the original proof is nonminimal. Thus,
all minimal proofs must be rewrite proofs. U

Lemma 1 (Commutation). Let = be a well-founded ordering on ground
terms. The rewrite closure of I w.r.t. a set of transitivity laws TRANS
is a model of TRANS if and only if all peaks in I commute.

Proof. 1t can easily be seen that if the rewrite closure of I is a model of
TRANS, then all peaks in I commute. For the other direction, it is sufficient
by characterization of transitive closure to show that the rewrite closure of I
is the same as the transitive closure. Suppose all peaks in I commute. First,
note that if a proof contains at least two steps, then any one identity step can
be deleted, the result being a simpler (and shorter) proof of the same type.
This implies that no plateau or plain is minimal. By assumption, peaks
commute and hence are also nonminimal. We may use Characterization
of minimal proofs to infer that all minimal proofs are rewrite proofs. In
short, if an atom Q(l,r) is provable in I, then it also has a rewrite proof.
Consequently, the rewrite closure of I is the same as the transitive closure.

O

We say that a ground inference is decreasing with respect to a clause
ordering > if its conclusion is smaller than the maximal premise.

Lemma 2 (Decreasing inferences). If > is an admissible clause ordering (i.e.
the multiset extension of an admissible ordering on literals), then any ground
inference is decreasing w.r.t. >.

Proof. Let us consider the individual rules:

14

e Ordered Chaining: This follows from the compatibility with reduction
of maximal subterms.

e Negative Chaining 1: Consider a ground negative chaining inference

Q(l,s) DV-Q(,r)
DV =Q(s,r) ’

where [> s, [> r. Since > is compatible with reduction of maximal
subterms, we may infer that =Q(l,r) > —Q(s,r). The conclusion is
therefore smaller than the second premise.

Negative Chaining 2 is very similar, but also needs the property ”com-
patibility with goal reduction” point three, for the case where the neg-
ative transitive literal is of the form —Q(l,1).

e Hyperresolution: P is necessarily smaller than the nucleus =By, ...,~B,, P
as it is its sub-multiset.

o OECut: trivial.

O

We say that a ground clause C' is redundant with respect to N if there
exists a set {C1, ..., Ct} of ground instances of N such that C is true in every
model of {C},...,C,} and C > C}, for all j with 1 < j < k. A nonground
clause is called redundant if all its ground instances are.

A ground inference 7 is redundant with respect to N if either one of
its premises is redundant, or else there exists a set {C1,...,Cy} of ground
instances of N such that the conclusion of 7 is true in every model of
{C,...,Cx} and C = Cy, for all j with 1 < j <k, where C' is the maximal
premise of 7. A nonground inference is called redundant if all its ground
instances are redundant.

We say that a set of clauses N is saturated up to redundancy with respect
to some inference system, if all inferences from N are redundant.

Given a set of ground clauses N we define a corresponding Herbrand
interpretation I (a ”candidate model” for N) by induction on >.

Definition 8 (Candidate models). e For every clause C' in N let R¢ be
the set UC>D Ep and Io the rewrite closure of Re.

o If C is a unit clause P, where P is a positive literal and C' is false in
Ic then Ec = {P}. In this case we also say that C is productive (and
produces P). In all other cases, Ec = ().

15

e Finally, let R be the set |J, Ec and I the rewrite closure of I.

e We also use RC to denote the set RcUEq and I€ to denote the rewrite
closure of RC.

Lemma 3 (Productive clause). If C is a productive clause in N, then it is
true in 1€,

Lemma 4 (Monotonicity). Let = be an admissible ordering. If a ground
clause C' (which need not to be in N) is true in some interpretation Ip or
IP, where D = C, then it is also true in I and in all interpretations In and
I”", where D' = D (and D and D' are clauses in N).

Proof. Let C, D and D' be ground clauses, such that D' = D = C and D
and D’ are elements of N. From the above definitions, it can be seen that
Ip CIP C Ip C I C 1. Thus if a positive literal A in C' is true in Ip or
IP, then A (and hence C) is also true in Iy, IP" and I.

If, on the other hand, a negative literal =A in C' is true in Ip or I?, then
A is false in I or I”. We claim that A is also false in . Since the clause
ordering is admissible (i.e. the multiset extension of an admissible ordering
on literals), we know that if B is an atom produced by a clause greater than
or equal to D then B > —A. Since > is compatible with goal reduction, we
have =A > A and also =A > A’, for any atom A" = Q(l,r) for which Q(I,r)
may occur in a rewrite proof of type A. In other words, no atom B produced
by any clause greater than D can possibly be used in a rewrite proof of A.
This implies that A is false, and —A true, in I. We conclude that C' is true
in Iy and I”', as well as in 1.

O

The lemma is typically used in its contrapositive form to infer that C' is
false in the interpretations I and I¢ whenever it is false in I or I, for
some D' = C.

Lemma 5 (Model construction). Let > be an admissible ordering and N be
a set of ground Horn clauses that is saturated up to redundancy and does not
contain the empty clause. If I is the interpretation constructed from N then
for every clause C' in N we have:

1. If C is productive, then it s non-redundant.

2. Both I¢ and I are transitivity interpretations satisfying the unique
name assumption.

3. The clause C is true in I€.

16

Proof. The proof is by induction on >. Let C be a ground clause in /N, such
that assertions (1)-(3) are satisfied for all clauses in N that are smaller than

C.

1. We prove the contraposivite statement. Suppose C' is redundant in N;
that is, there exist smaller ground instances C',...,C,, of N such that
C' is true in every model of {C,...,C,}. We may use parts (2) and
(3) of the induction hypotheses and Monotonicity lemma to infer that
I is a model of {C,...,C,}. Therefore C' is true in I, which implies
it is non-productive.

2. The equation a =~ b can never be produced for two different constants
a and b, because otherwise there would be a one step OECut inference
turning the clause a &~ b into the empty clause, which we assume is not
in N (and which can never be redundant).!

By Commutation Lemma, it suffices now to prove that all peaks in
Re and RY, respectively, commute. Each peak in Ro is a peak in
R®, for some C" with C' > C", and commutes in R by the induction
hypotheses. Thus it also commutes in R¢.

If B is nonempty, then there may be peaks in R®, which are not prov-
able in R¢. In that case, C' is productive. Let | <=g t =¢ r be a peak
in RY. Then there exists a unit clause Q(/,t) that produces Q(l,1), and
another clause Q(t,r) that produces Q(¢,r). The two clauses are not
identical. Both clauses are nonredundant by part (1) of the induction
hypotheses, and the larger of the two is C'. From these two clauses we
obtain C" = Q(I,r) by ordered chaining. Since N is saturated up to re-
dundancy, there exists clauses C', ..., C, smaller than C', such that C'
is true in every model of {C},...,C,}. We may use the Monotonicity
lemma and parts (2) and (3) of the induction hypothesis to infer that
I is one such model. Thus, the clause C’ is true in I and therefore,
the atom Q(I,r) must be true in I, that is, [USC r, which indicates
that the peak commutes in R¢.

3. We already know that all ground instances of N that are smaller than
C are true in I¢ and that I is a transitivity interpretation satisfying
the unique name assumption. Therefore, if C' is redundant, it is true
in I¢. If C is productive, it is true in I¢ by definition. Suppose C' is
neither redundant nor productive. This means that C' is of the form

I As a side remark we note that we also never produce the equations of the form a ~ a,
simply because they are redundant. This has the nice consequence that any Herbrand
interpretation automatically has to be an interpretation of the equality predicate.

17

=By V...V-B,V P, where n > 1 and P is a positive unit clause or
the empty clause. Assume B; are true in I, P is false in I, otherwise
we are done.

If all the B; are directly produced by unit clauses, i.e. B; € R¢, then
we get the clause C' = P by hyperresolution. Since N is saturated up
to redundancy, (and B;’s are not redundant being productive — part (1)
of induction hypotheses), there exist clauses C1, . . ., C smaller than C,
such that C” is true in every model of {C1,...,Cx}. We may use the
induction hypotheses to infer that I is one such model. Necessarily
C" is not the empty clause, P is true in I, and hence C is true in 1¢,
which is a contradiction.

If some of B; ¢ R¢, it has to be an atom Q(I, r) with a rewrite proof of
at least two steps in Rc. Then there exists a productive clause Q(I, ')
(where [> [" and [’ USC r) or Q(r',r) (where r >~ r' and [USC r’). By
negative chaining we get —=By,...,—B; 1,=Q(l',r),~Bis1,...,7 By, P
or =By, ...,B; 1,7Q(l,7"), =B, ..., By, P. In either case we may
again use saturation up to redundancy to infer that inference conclu-
sion is true in I¢, but that means that either =Q(I’,) or respectively
=Q(l,r") is true in I¢, and hence C is true in 1%, again a contradiction.

O

Theorem 1 (Completeness). If a set of Horn clauses N is saturated up to
redundancy then the set N UTRANSUUNA s unsatisfiable if and only if N
contains the empty clause.

Proof. If N does not contain the empty clause, we claim that the Herbrand
interpretation I constructed from the set of all ground instances of N is a
model of N U TRANS U UNA. Via the usual lifting argument? the set of
all ground instances is saturated as well. By the model construction lemma,
every ground instance C' of a clause in N is true in I, and in addition [is a
transitivity interpretation and satisfies the unique name assumption. O

Theorem 2 (Soundness). The presented calculus is sound. Conclusion of
any inference is logically entailed by the premises of the inference and the

theory (TRANS U UNA).

Proof. The claim is obvious for hyperresolution, and also for the OECut rule,
where we use the unique name assumption. Finally, all the chaining rules

2Note that we only consider ground version of the OECut rule. Nevertheless, it does not
need to be lifted in our case. It is because our clauses are range restricted, and therefore
we can never generate a non-ground positive (unit) clause.

18

can be simulated as two resolution steps between the participating premises
and the appropriate transitivity axiom clause. O

Theorem 3 (Termination). The calculus terminates on the set of Horn
clauses from Bernays-Schonfinkel class.

Proof. No inference rule produces a longer clause than any of its premises.
There are only finitely many clauses of given length (up to variable renaming)
as all the function symbols are constants. O

19

5 Term Indexing

The invention of term indexing data structures has been pivotal for the suc-
cess of automated theorem proving. Likewise, it is vital to develop efficient
indexing mechanisms for the reasoning on huge sets of clauses such as the
clause set resulting from the translation of YAGO into the BSHE class. The
atoms occurring in these clauses are of the form: Q(a,b), Q(a,x), Q(z,b),
Q(z,y), S(a) and S(x), where @ is a binary predicate symbol, a, b are con-
stants and S is a monadic predicate (sort symbol) from the signature. In
order to perform retrieval operations on an index containing such atoms, we
have to discriminate efficiently on all occurring term positions. Therefore, we
develop a filtering mechanism for context tree indexing [5] which efficiently
filters out subtrees of the indexing that do not lead to a success with re-
spect to the current retrieval operation. The resulting new indexing is called
Filtered Context Tree indexing. The filtered context tree indexing enables
SPAss to efficiently reason about the clauses resulting from the translation
of the core of YAGO. Without the filtering SPASS was even unable to load
these clauses into the index.

In the first section, Section 5.1, we give a definition and the required
notions for context trees. After that we give a complete overview of the
algorithms for all the operations of the context tree indexing. These are the
algorithms for the retrieval operations (instance, unifier, generalization) as
well as the insertion and deletion operation of terms. Based on this notions
and algorithms we introduce filtered context tree indexing as an extension
to context tree indexing in Section 5.2. Also, we present details about the
integration of the filtering into SPASs and show further optimizations.

5.1 Context Tree Indexing

Context tree indexing [5] is a generalization of substitution tree indexing [7].
In order to be self-contained the following section shows the definitions of

20

Wo — Fl(wl,wQ)

‘ \
/U}Z}_)*l F1|—)g

wy = ok Fi—h
w2|—>b
/\ w1|—>*1 / \
F— F—
! ! 179 wy — b wy > ¥
Wo > a Wo > *9

Figure 5.1: Context tree

context tree indexing following notions from [7] as well as the algorithms
performing all the operations for term indexing structures. This section also
completes the introductory article of context tree indexing [5] which only
presents the algorithms for the retrieval of generalizations.

5.1.1 Context Trees

Let ti,...,t, be terms and P be a predicate symbol with arity n then
P(ty,...,t,) is an atom. An atom or its negation is called a literal. Com-
pared to substitution trees, context trees can additionally share common
subterms even if they occur below different function symbols via the intro-
duction of extra variables for function symbols. These variables are called
function variables. For example, the terms f(s,t) and g(s,t) can be repre-
sented as Fi(s,t) with children F; = f and F; = g. The function variable
Fi represents a single function symbol. In the context of deep terms, this
potentially increases the degree of sharing in an index structure.

Before inserting a term into the index, variables of the term are normal-
ized. The normalization is a renaming of the variables of the term which
increases the sharing. Assume a infinite set of variables V* which are totally
ordered with respect to a ordering <*. Let x; be the smallest element in V*.
A substitution ¢ is a normalization for a term t if o is a renaming for the
variables of ¢ and cod(o) = {1, ...,%,} and for each *;, %, € cod(o) there
is no *; € V* with #; <* x5 <* %;,4.

Figure 5.1 depicts a context tree containing the terms f(xy,a), (1, *2),
h(x1, 1), g(b,b), and g(*1, b).

Definition 9 (Function variables). We assume a set of function variables
U C V which is disjoint from the set of variables X. The set of terms
T(XUU,X) are terms build over the signature X, the function variables U
and the variables X. The notion of a substitution can be adapted accordingly.

21

Definition 10 (Index variables). Assume a set of index variables W C V
which is pairwise disjoint from X and U. Index variables are denoted by w;.
We also assume a set of index function variables which are denoted by F;.

Definition 11 (Context Tree). A context tree is a tree T = (V, E, subst, v,)
where V' is a set of vertexes, E C V x V s the edge relation, the function
subst assigns to each vertex a substitution, v, € V 1is the root node of T and
the following properties hold:

1. each node is either a leaf or an inner node with at least two children.

2. for every path vy . ..v, from the root (v = v,) to any node it holds:

dom(subst(v;)) N U dom(subst(v;)) =0

1<j<i
3. for every path vy ...v, from the root (vi = v,) to a leaf v,

vars(cod(subst(v) o - -+ o subst(v,))) C X

Each node in a context tree which is not a leaf node, must have at least
two subtrees due to the first condition. The second condition ensures that
each variable is bound at most once along a path. The third condition assures
that all terms represented by a path from the root to a leaf are from 7 (X, X).

A term that is stored in a context tree is represented by a path from the
root to a leaf. The respective term can be obtained by the composition of
the substitutions along this path. Therefore, we extend the definition of the
function vars returning the variables of a term, to the function returning the
variables occurring unbound on a path of a context tree.

Definition 12 (Variables of a path). Let vq,..., v, be a path from the root
of a context tree to a node v, then the set of variables of this path is

vars(vy, . .., U,) = U vars(cod(subst(v;))) \ U dom(subst (v;))

ie{l..n} ie{l..n}
Note, for a path v, = vy,...,v, of a context tree from the root v, to a leaf
v, we have that vars(xq, ..., z,) C X because of Condition 3 of Definition 11.

5.1.2 Algorithms for Context Trees

This section shows the algorithms for context trees implementing the stan-
dard operations for term indexing structures. The standard operations of

22

term indexing data structure can be separated into two categories. The first
are the retrieval algorithms. These operations query a context tree index for
unifiable terms, instantiations and generalizations of a given query term. In
the second category are the algorithms for updating a context tree indexing
structure. These are the algorithms for insertion of terms into the index and
deletion of terms from the index.

Retrieval algorithm

The query algorithms for unifiable terms, instantiations and generalization
are based on a common lookup procedure which traverses the tree and applies
to the substitution of each visited node the procedure Test. The procedure
Test is either the test for unifiability, the test for instantiation or the test for
generalization.

The query given to the lookup function is a query substitution containing
the query term rather than the query term itself. This means, if ¢ is the
query term, then the respective query substitution is {wq +— ¢} where {wy} =
dom(subst(v,.)).

Algorithm 1: Lookup
Input: context tree T' = (V, E, subst, v,.), v, € V, substitution p,

function Test

1 HITS = (;

2 foreach (v,v') € E do

3 if Test(subst(v'),p) = (true,o) then

4 if isLeaf(v') then HITS = HITS U {v'};

5 HITS = HITS U Lookup(T, ', p o o, Test);

6 end

7 end

8 return HITS,

Lookup The lookup procedure Lookup (Algorithm 1) expects a context
tree T', a node v,, a query substitution p and the test function Test. The
node v, is initially set to the root node of T and it is the current processed
node of T during the recursive application of Lookup. The substitution p is
an accumulator argument. It is the composition (line 5) of the initial query
substitution and all substitutions o computed in line 3 during the recursive
application of Lookup. The function Test is one of the functions UnifyTest
(Algorithm 6), GenTest (Algorithm 8) or InstTest (Algorithm 10) which tests

23

two substitutions for unifiability, generalization or instantiation, respectively.
Each path in a context tree from the root node to a leaf node corresponds
to a term stored in the index. The respective path is represented by its
leaf node and each leaf node maintains a reference to the term it represents.
Therefore, Lookup returns a set of leaf nodes rather than a set of terms.
The following theorem shows the correctness of the procedure Lookup for
the retrieval of terms that are unifiable with the given query. The correctness
of the remaining operations, generalization and instantiation, follows analo-
gously. The correctness proof of the retrieval operation for substitution trees
was originally given in [7] where we also refer to for the correctness proof
of the test for unification, generalization and instantiation. These original
proofs have to be adjusted slightly in order to be valid also for context trees.

Theorem 4 (Correctness of Lookup). Let t be a term, Test the test function
for unification, p = {wy — t} be the query substitution and

vn, € Lookup(T, v, p, UnifyTest). Then v, is a leaf node and there is a path
Upy U1, .. ., Up and a substitution o with dom(o) C X and

wo subst(vy) . .. subst(v,)o = wypo.

Proof. Let v, € Lookup(T,wv,, p, UnifyTest) and p the query substitution.
The function UnifyTest, applied in line 3, tests for two given substitutions

7 and p if there is a substitution o with Vo € dom(7).27pc = xzpo. Conse-
quently, because of the recursive structure of Lookup there is a path v, vy, ..., v,
such that for i € {1,...,n} and p; = p;_1 0 5;_; with py = p and oq =) the
following holds:

Jdo;.V2 € dom(subst(v;)). x subst(v;)p;0; = xp;0; (5.1)

Additionally, the node v, is a leaf node because of line 4. For the correctness
proof we show the following property by induction

Jdo,, .Yz € V.subst(v1), ..., subst(vy,) pmom = Tpmom (5.2)

For m =1 this follows immediately from (5.1). Now assume (5.2) holds for
m. From (5.1) and Definition 11 - 2 it follows

doy41.Vx € V.subst(vy) .. .subst(vy,) subst(Vm 1) PmOmOmi1 = TPmOmOm+1
(5.3)

24

The property follows for m + 1 with p,,11 = pm © 0. As a consequence
Jdo,.Vz € V.subst(v1),...,subst(v,)pnon, = Tpno, (5.4)

We have p, = pooy---00, 1 and from Definition 11 - 3 and v,, is a leaf it
follows that Vo € V.vars(x subst(v;)...subst(v,)) C X. As a result Jo with
wo subst(vy) . .. subst(v,)o = wepio and dom(o) C X.

U

Unification The unification test of two substitutions 7 and p tests if there
is a substitution o such that for all x € dom(7) it holds z7po = zpo. Note,
that p occurs on both sides of the equation. The substitution p works as an
accumulator argument of Lookup (Algorithm 1) and it may bind variables of
x7. These bindings also have to be respected in the test function. The re-
spective test procedure UnifyTest is depicted in Algorithm 6. The procedure
UnifyTest uses the procedure TermUnify (Algorithm 5) which checks for two
given terms s and ¢ whether they are unifiable, i.e. if there exists a substi-
tution o with so = to. The correctness proof of UnifyTest for substitutions
trees is given in [7]. This proof can easily be extended to context trees.

Generalization The test function for generalization GenTest (Algorithm 8)
checks for two given substitutions 7 and p if there exists a substitution ¢ such
that for all x € dom(r) : xT7po = xp. Note that p occurs on both sides be-
cause p is the accumulator argument of Lookup (Algorithm 1) and may bind
variables of x7. The implementation of this procedure is based on TermGen
(Algorithm 7) that tests for two given terms s and ¢ if s is a generalization of
t, i.e. if a substitution ¢ exist with so = ¢. The correctness proof of GenTest
for substitutions trees is given in [7]. This proof can easily be extended to
context trees.

Instance The test function for instantiation InstTest (Algorithm 10) checks
for two given substitutions 7 and p if there exists a substitution o such that
for all € dom(7) : z7po = zpo and dom(o) C vars(zp) UW. Note, that
o occurs here on both sides of the equation. During the recursive browsing
of the context tree it may become necessary for the retrieval that the sub-
stitution o binds index variables in x7p as well as in zp. This is because of
the fact, that a term in the context tree is represented by the composition of
the substitutions along a path from the root to a leaf. Condition 3 in Defi-
nition 11 ensures that the algorithm has found an instance of the query once
it has reached a leaf node. In the case of substitution trees we refer to [7]
for the correctness proof. This proof can easily be extended to context trees.

25

The implementation of the procedure InstTest is based on the procedure Ter-
mlnst (Algorithm 9) that tests for two given terms s and ¢ if s is an instance
of t, i.e. if a substitution o exist with so = to and dom(o) € vars(t) U W.

Update Algorithms

The procedures for inserting a term into a context tree and deleting a term
from a context tree require a check for variations. The terms s and ¢ are
variants if and only if they are equal up to variable renaming. Note that all
terms in a context tree are normalized. If ¢’ is the normalization of the term
t then the retrieval operation for variations of the term ¢ is the retrieval for
unifiable terms of the query substitution p = {wy — t'} such that for each
unifier 0 we have dom(o) N X = ().

With the variant test we can implement a procedure LookupVariant that
searches a given context tree for variations analogously to Lookup (Algo-
rithm 1). Initially p = {wy — t} where ¢ is the normalized query term. The
procedure LookupVariant returns a leaf node if ¢ is contained in the context
tree. Otherwise, it returns the node v, which is the first node along a
path from the root node to the node vy that is not a variant of the current
substitution p.

For the insertion of the term ¢ into the index, the subnodes of vy are
replaced by two new nodes. One node represents the former subtrees of vy
and the other is a new leaf node which represents ¢. The substitutions of the
modified node vy, and the two new subnodes are computed such that the
modified context tree fulfills Definition 11.

Considering the deletion of a term t from a context tree, a term ¢ is
contained in the context tree if and only if the procedure LookupVariant
returns a leaf node. Then this leaf node is removed from the index. Analogous
to the insertion of a term into a context tree, nodes are removed from the
index during the deletion of a term. The deletion operation also ensures that
the index fulfills Definition 11 after the deletion of a term.

The following section presents the procedure LookupVariant and the algo-
rithms which implement the insertion and deletion operation using Lookup-
Variant.

Variation The test procedure VariantTest (Algorithm 12) checks for a sub-
stitution 7 and a substitution p if for all z € dom(r) z7poc = zpo and
dom(o) € W. The implementation uses the procedure TermVariant (Algo-
rithm 11) which tests for two given terms s and ¢ if they are variations, i.e.
so = to and dom(o) C W. Because of the fact that a term in a context tree

26

Algorithm 2: LookupVariant
Input: Context tree T' = (V, E, subst, v,.), v, € V, substitution p

1 HIT = {);

2 BEST = NULL;

s foreach v' with (v,v') € F do

4 if VariantTest(subst(v'), p) = (true,o) then

5 if isLeaf(v') A vpest = NULL then return (v', NULL, po o);
6 (HIT, vpest, p') = LookupVariant(7, v', p o o, Variant Test);
7 if HIT then

8 | return (HIT, NULL, o)

9
10 else if Vx € dom(subst(v')) top(x subst(v')) = top(xzp) and

Vpest = NULL then

11 ‘ Vpest = vl;
12 end
13 end

14 return (v, Vpest , p);

is represented by a path from the root to a leaf, index variables are the only
variables that are allowed to be bound during the retrieval for variations.

The procedure LookupVariant (Algorithm 2) is invoked with a context
tree T', a node v,, and the query substitution p. Like in the case of Lookup
(Algorithm 1), the node v, is initially set to the root node of T" and it is
the current examined node of T" during the recursive application of Lookup-
Variant. The substitution p is an accumulator argument, initially set to
the substitution containing the term ¢ to be inserted. It is the composition
(line 6) of the initial query substitution and all substitutions o computed
in line 4 during the recursive application of LookupVariant. The procedure
LookupVariant traverses the context tree T" as long as the variant test (line 4)
is successful. The algorithm of VariantTest is given in Algorithm 12. If the
algorithm has found a leaf node (line 5) the recursion stops and it returns
this leaf node. If VariantTest fails then LookupVariant checks if the terms in
the codomain of the substitution of the current node and the substitution p
have the same top symbols (line 10). If they have the same top symbols then
LookupVariant remembers this node in vy.y. If no variant is found then the
algorithm returns v,.s. This node indicates a suitable position in the context
tree T where a new leaf node can be created which represents ¢.

27

Algorithm 3: EntryCreate
Input: Context tree T' = (V, E, subst, v,), term ¢

1 p={wy—t};

2 if —IsLeaf(v,) then

3 ‘ (v, Vpest, p') = LookupVariant (T, v,., p);

4 end

5 if IsLeaf(v) A vpesy = NULL then InsertReference(v, t) ;
6 else if vy, # NULL then

7 (01,02, 1) = mscg(subst (vpest), p');

8 V=V U{v, v}

9 foreach (vjes, v') € E do E = (E \ {(Vpest, v')}) U {(v1,0") };
10 | E=FEU{(Vest V1), (Vbest, V2) };
11 InsertReference(va, t);
12 subst (vVpest) = p;
13 subst(vy) = o7y;
14 subst(vy) = 09;
15 else
16 V=vVu{v};
17 E=FEU{(v,v")};
18 InsertReference(v', t);
19 end

Most specific common generalization When inserting a term ¢ into an
index which contains no variant of this term, the procedure LookupVariant
returns the node vy, which is the first node along a path from the root
node to the node v that is not a variant of the current substitution p. For
the insertion of the term ¢ into the index, the subnodes of v, are replaced
by two new nodes. One node represents the former subtrees of vy and
the other is a new leaf node which represents ¢. The computation of the
most specific common generalization yields the substitutions of the modified
Upest and the two new subnodes such that they fulfill Definition 11. If 7
and p are two substitutions and there exist substitutions o; and o, and p
such that pooy =7 and po oy, = p, then p is called common generalization.
Additionally, if there is a substitution ¢ for each other common generalization
v # psuch that y = vod, then p is called most specific common generalization
which is given by the function

mscg(7, p) := (01, 02, 1)

28

Insert The procedure EntryCreate inserts a term ¢ into a context tree 7.
Remember, we assume ¢ to be normalized. First the term ¢ is transformed into
a query substitution p = {wg + t}. Then EntryCreate calls LookupVariant
with T the root node v, and the query substitution p. Three cases can occur.
The first is that LookupVariant has found a leaf (line 5) which represents t.
Then a reference to t is inserted into the leaf node which is done by InsertRe-
ference. If there is no respective leaf node representing ¢ then LookupVariant
returns a node vy, if there is such a node. The node vy, indicates a suitable
insert position. In order to insert ¢ into the index, EntryCreate first com-
putes the mscg(subst(vpest), p) = (14, 01, 02). After that, the procedure creates
two new nodes vy, vo. All subnodes of vy, become subnodes of v; and are
deleted from the subnodes of vy.,;. Then vy and v, become the new subnodes
of Vpest ((Vpest; v1) € E and (vpesy, v2) € E). The substitutions of vges, v1 and
ve are set to the substitutions computed by mscg(subst(vpes), p) as follows:
subst(vy) = p, subst(vy) = oy and subst(vpes;) = o7. After that, the path
Up, . . ., Upests U1 Tepresents the same terms as the former path v,, ..., vpes. The
path v,., ..., Upest, U2 Tepresents the inserted term. Additionally, a reference to
t is inserted into the leaf node v5. The third case arises if none of the above
occurs. This means, neither ¢ has been inserted into the index before nor is
there a suitable insert position v.. Then a new leaf node is inserted below
v representing t.

Algorithm 4: EntryDelete
Input: Context tree T' = (V, F, subst, v,), substitution p
if IsLeaf(v,) then
| RemoveReference(T, v, p)
else
(v, vpest) = LookupVariant(7T,v', p);
if v' # () then RemoveReference(T, v, p);
end

[~ I S I

Delete The procedure EntryDelete (Algorithm 4) removes the term ¢ from
the context tree 7. Assume t is normalized than the query substitution is
p = {wg — t}. If v, is not a leaf node, EntryCreate applies LookupVariant in
order to obtain the leaf node representing ¢. If there is such a leaf node v in
T then EntryDelete performs RemoveReference which removes the reference
to t from v'.

We have modified the deletion operation of the original context trees in
such a way that EntryDelete does not remove nodes from the context tree
when deleting a term. Instead it removes the reference of the term from

29

the respective leaf node. It turned out that deleting nodes from the index
and ensuring that Definition 11 holds, is too expensive in our context. This
requires that we also modify the invariant of context trees such that a term
t is contained in a context tree if and only if the leaf node representing ¢
contains also a reference to t. For the original algorithm we refer to [7].

30

Algorithm 5: TermUnify

© 00 N O A W N =

NN N NN NN N e e e e e e e e e
N O A W= O © 0N TR W N = O
®

Input: term s, term ¢, substitution o
if s = then
if so =t then
return (true,o)
else if s ¢ dom(o) then
o=oco{s—t};
return (true,o);
else
| return (false,0);
end
else if ¢t = x then
if s =0 then
| return (true,o)
else if ¢ ¢ dom(o) then
o=oo{t s}
‘ return (true,o);
else
| return (false,0);
end
Ise if s = F(sy,...,8,) and t = f(t1,...,t,) then
foreach i € {1,...n} do
(r,0) = TermUnify(s;, t;, 0);
if r = false then return (false, 0);
end
if F € dom(o) A Fo # f then return (false,]);
if Fo = f then return (true,o) else return (true,o o {F — f});
end
return (false,);

Algorithm 6: UnifyTest

[N VU

Input: substitution 7, substitution p
foreach = € dom(r) do

(r,0) = TermUnify(z7,2p,p);

if r = false then return (false,o)
end
return (true,o);

31

Algorithm 7: TermGen

Input: term s, term ¢, substitution o
if s =z then return (true, {z — t});
if s=F(s1,...,8,) and t = f(t1,...,t,) then
foreach i € {1,...n} do

(r,0) = TermGen(s;, t;, 0);

if 7 = false then return (false, 0);
end
if F' € dom(c) A Fo # f then return (false,();
if Fo = f then return (true,o) else return (true,o o {F — f});
end
return (false,);

© 0w N O O W N =

[y
o

Algorithm 8: GenTest

Input: substitution 7, substitution p
1 foreach z € dom(7) U dom(p) do

2 (r,0) = TermGen(z7,2p,p);

3 if r = false then return (false,o)
4 end

5 return (true,o);

32

Algorithm 9: TermInst

Input: term s, term ¢, substitution o

1 if s € W then return (true, {s — t});

2 if t = z then return (true, {z — t});

3 if s=F(s1,...,8,) and t = f(t1,...,t,) then

4 foreach i € {1,...n} do

5 (r,0) = TermlInst(s;, t;, 0);

6 if 7 = false then return (false, 0);

7 end

8 if F' € dom(c) A Fo # f then return (false,();
9 if Fo = f then return (true,o) else return (true,o o {F — f});
10 end

11 return (false,);

Algorithm 10: InstTest

Input: substitution 7, substitution p
foreach = € dom(r) do

(r,0) = TermlInst(z7p,zp,p);

if » = false then return (false,o)
end
return (true,o);

[N U

33

Algorithm 11: TermVariant

Input: term s, term ¢, substitution o

1 if s =2 A s =t then return (true,o);

2 if s € W then

3 if sp =1t then

4 return (true,o)

5 else if s ¢ dom(o) then

6 oc=cU{s—t}

7 return (true, o);

8 else

9 | return (false, 0);

10 end

11 end

12 if s = F(s1,...,8,) and t = f(t1,...,t,) then

13 foreach i € {1,...n} do

14 (r,0) = TermVariant(s;, t;, 0);

15 if 7 = false then return (false, 0);

16 end

17 if F' € dom(c) A Fo # f then return (false,();
18 if Fo = f then return ({rue, o) else return (true,o o {F — f});
19 end

20 return (false, ();

Algorithm 12: VariantTest

Input: substitution 7, substitution p

foreach z € dom(7) do

end
return (true,o);

(S U VI

(r,0) = TermVariant(z7,zp,p);
if r = false then return (false, o)

34

To : {wo —> Fl(wl,wg)}

74 {wy — a
Tll{wgi—)a} F1|—>g

VAN IVAN

TQI{F1|—>f Tgi{Fth
wy — ¢} wy — d}

T53{F1*—>9

76t {wy — d} 7 s {wy — e}
Figure 5.2: Context Tree

5.2 Filtered Context Tree Indexing

When performing a retrieval operation, the procedure Lookup (Algorithm 1)
pursues paths that do not contribute to the current query. In the case of
SPASS-YAGO this approach is not feasible because one subnode may have
millions of subnodes and the term indexing is processed several thousand
times in a reasoning loop. Therefore, we develop in the following a mechanism
that efficiently filters out subtrees of a context tree indexing whose paths do
not contribute to the current query. Without this new filtering technique,
loading the clause set resulting from the translation of the core of YAGO
into the index of SPASS was already not possible in reasonable time.

The following example demonstrates a retrieval operation on a context
tree. The context tree of the example is a typical excerpt from the index
containing the terms resulting from translating YAGO into the BSHE class.

Example 1. Consider the context tree of Figure 5.2 and the retrieval of
terms unifiable with the term g(e,x). The query substitution p for g(e,x)
is p = {wo — g(e,x)}. The algorithm starts with the query substitution p
at the node whose substitution is 9. The substitution 1y is unifiable with
p using the substitution o = {w; — e,wy — z, F} — g}. Descending the
indexing further requires to check all subnodes. In this case, these are the
nodes containing T, T4 and Ts. Unifiable under the current substitution po o
are the substitutions T and 15. At first, the algorithm proceeds by inspecting
the subtree starting at the node with 7. The substitution T is unifiable with
poo using o' = {x — a}. Continuing with the subnodes, the algorithms
recognizes that neither T nor 13 are unifiable with poooa’. Then the algorithm
backtracks, proceeds with 15 and eventually finds a leaf where all substitutions
along the path 1y, 75, 77 are unifiable under the respective substitution p and
returns the desired term which is wyToTsTy.

In this example, after processing the node containing the substitution 7,

35

To : {wo —> ‘Fl(wl,wg)}

la,d, g]
[a,c,d, f,h] 71 {wr = a b,d, e, qg]
T1'{w21—>a} F1'—>g T52{F1l—>g
. wgl—>b}

/ \ wy — d}
[c, f] [d, h] [d] / \ €]

TQZ{FIP—)f TgI{FIHh

’wll—>C} w1|_>d} TG:{led}TF/Z{’LUll—)e}

Figure 5.3: Filtered Context Tree

the retrieval procedure proceeds by examining all subnodes. These subnodes
are the nodes containing the substitutions 7y, 74 and 75. Looking at the
query the symbol ¢ has to occur in a substitution of some node along a
successful path. However, if we inspect the subtree starting at the node
with the substitution 7; we recognize that the symbol g does not occur in
any substitution of this subtree. Consequently, this subtree does not have
a successful path and can be excluded from further processing. It can be
filtered by only looking at the occurring function symbols.

In the following, we introduce this new filtering technique in detail and
show the respective retrieval operations. In Section 5.2.1, we introduce fil-
tered context trees and in Section 5.2.2 we present the algorithms for the
retrieval operations of filtered context trees. Additionally, we proof the cor-
rectness and completeness of these algorithms. Details about the implemen-
tation of filtered context trees in SPASS can be found in Section 5.2.3 and
further potential improvements in Section 5.2.4.

5.2.1 Filtered Context Trees

In this section, we first define the characteristic function for a substitution o
as the set of top symbols occurring in some term of cod(c). We call the result
of applying the characteristic function to a substitution ¢ the characteristic
of 0. Once we have defined the characteristic function for a substitution we
can define Filtered context trees as an extension of context trees. Filtered
context trees contain additionally a mapping function M. The function M
of a filtered context tree FT" maps to each node v and each symbol s € ¥
the set of subnodes of v such that v; € M (v, s) if and only if v; is a subnode
of v and there is a path v{,...,v, in FT such that there is a node v; on this
path with s is in the characteristic of subst(v;).

Additionally, we change the lookup procedure Lookup (Algorithm 1) such

36

that it applies the function M on the current node v, and on each symbol
in the characteristic of p. The results from M are the subnodes of v, that
have a subtree which is compatible to p with respect to the characteristic
function. This means that the symbols in the characteristic of p also occur
in the characteristic of a substitution of a node in the subtree starting at
vp. The subtrees compatible with p, are potentially successful with respect
of the current retrieval operation. As a consequence, all other nodes can be
excluded from further processing.

Example 2. Reconsider FExample 1 with the unification retrieval operation
for the query substitution p = {wy — g(e,x)}. Figure 5.8 depicts the filtered
context tree obtained by extending Figure 5.2 such that at each node v those
symbols are indicated that occur as top symbols in a term of the codomain of a
substitution along a path starting at v. This represents the function M of the
filtered context tree. The retrieval algorithm applied to Figure 5.3 examines
the node containing the substitution y. The substitution 1y is unifiable with p
using the unifier o = {wy — e, ws — x, F — g}. As we have seen, only those
subtrees can contribute to the current retrieval operation that contain g in a
term of the codomain of the substitution of any of its nodes. In our example
these are the subtrees starting at the nodes containing the substitution 74 and
75. Consequently, the node containing the substitution 71 does not need to be
considered during the retrieval.

A mapping mechanism has also been used for discrimination tree index-
ing. In discrimination tree indexing the mapping assigns to a given label the
respective successor node of the discrimination tree. For example, this has
been added to the indexing of the theorem prover E [14].

As mentioned before, we define the characteristic function for a substitu-
tion as the set of top symbols occurring in its codomain. If there are only
variables in the codomain of a substitution o, we define the characteristic of
o as the set { L} where L is a symbol with | ¢ ¥.

Because of condition 2 of Definition 11 each index variable occurs at most
once on a path of a context tree. For this reason, we restrict the substitution
p when computing the characteristic function as depicted in the following
example.

Example 3. Consider Example 2 with the query substitution p = {wy —
gle,x)}. Assume the retrieval procedure descends to the node with 5. The
new p becomes p = poo = {wy — g(e,x),wy — e,wy — x, F; — g}. The
variables wy and Fy have already been bound in 15. Consequently, the only
variables that can be bound in the substitution of a node occurring below 5 in
the context tree is wy. Therefore, we only need to compute the characteristic

37

function of {wy +— x}. The result of the characteristic function is {1}
because x is a variable.

As a result we define the characteristic function with respect to a set
of variables O. In the improved lookup procedure FilteredLookup (Algo-
rithm 13) the set O is instantiated with vars(v,,...,v,) for a path v,,..., v,
of a filtered context tree FT. These are exactly these index variables that
are bound below v,, in FT.

Definition 13 (Characteristic function). Let o be a substitution and O be a
set of variables. The set of top symbols of o and O 1is defined as

ts(o,0) ={f | 3z € dom(o) N O withxo = f(...)}

The characteristic function chr(o, O) of a substitution o with respect to the
set of variables O 1is defined as follows:

(ts(0,0) if ts(o,0) #0

chr(o, O) = (¢ (1 if ts(o,0) =0 A3z € dom(o) with
ro € XVaeoceTUX)Vre X

L 0 otherwise

Note that this definition also includes the cases where zo is a constant
or zo is a function symbol mapped from a function variable.

Example 4. Reconsider the query substitution p = {wy — g(e,z)} of Fz-
ample 1. The characteristic function of p is chr(p,{wo}) = {g}. Note that
g s the only symbol of the characteristic function of p because this is the
top symbol of the term g(e,x). A term that is unifiable with g(e,x) is of the
form g(y,x), where y is either a variable or the constant e. Consequently,
the symbol g is the only symbol characterizing p.

Once we have defined the characteristic function for a substitution, we
can extend the definition of context trees with a function M that assigns to
a given node v and a symbol s a set of successor nodes. For each node v’ in
the set of successor nodes it holds that there is a node on a path, starting
at v, which contains the symbol s in the characteristic of its substitution.
This lifts the characteristic function of a substitution of one node to the
characteristic of a subtree of a context tree.

Definition 14 (Filtered Context Tree). A filtered context tree
FT = (V,E,subst,v,, M) is a context tree (V, E, subst,v,) together with

38

Algorithm 13: FilteredLookup
Input: FT = (V, E,subst,v,., M), v, € V, substitution p,
function Test

1 HITS = (;
/* v, =vy,...,v, path from the root v, to v, x/
2 C' = chr(p, vars(v,, ..., Un));
3 if C ={L} then N= {v|(v,,v) € E};
4 else if C' # () then N =J, o1y M(vn, 5);

else N = 0;
foreach v € N do
if Test(subst(v'), p) = (true,o) then
if isLeaf(v') then return {v'};
HITS = HITS U FilteredLookup(FT,v', p o o, Test);
10 end

© 0 N o o

11 end
12 return HITS

a function M : V x (S U{L}) — 2V from nodes and function symbols
to a subset of V' such that vy, € M(vg,s) if and only if there is a path
Vly oy Uky Ukt ls - - - , Up wWhere vy s the root node v, with

s € U chr(subst(v;), vars(vy, ..., vg))

5.2.2 Algorithms for Filtered Context Trees

The procedure FilteredLookup (Algorithm 13) depicts the function perform-
ing the lookup operation on a given filtered context tree F'T, a starting
node v,, a query substitution p and a function Test. The node v, is the
current processed node of FT during the recursive application of Filtered-
Lookup. Initially, the node v, is the root node v,. The function Test is either
UnifyTest(Algorithm 6), GenTest (Algorithm 8) or InstTest (Algorithm 10).
These are the standard algorithms for the test functions shown in Section 5.1
which are independent from the underlying indexing. This is because they
expect only two substitutions as their argument. As a result, the standard
algorithms can also be used for filtered context trees.

In line 2 FilteredLookup (Algorithm 13) computes the characteristic func-
tion of p with respect to the set of variables that have not yet occurred in
the domain of a substitution of a node on the path v,,...,v,. If the char-
acteristic function returns {_L} then the loop in line 6 inspects all subnodes

39

of the given node v,. Otherwise, the algorithm looks for the symbols in M
and considers only those nodes which are returned by M (line 4). Begin-
ning with line 6, FilteredLookup is exactly the same algorithm as Lookup
(Algorithm 1). Computing the characteristic of the substitution p in line 2
is in time O(|dom(p)|), where |dom(p)| is the number of elements of the
domain of p. As a result, obtaining the set N from M in line 4 is in time
O(] dom(p)| = log |X|) where |X| is the number of symbols in the signature.
Hence, the overhead for the filtering is in O(|dom(p)| % log |Z|).

The algorithms for insertion EntryCreate (Algorithm 3) and deletion En-
tryDelete (Algorithm 4) use the procedure LookupVariant (Algorithm 2).
The procedure LookupVariant has to be modified analogously to Filtered-
Lookup (Algorithm 13) due to the fact that LookupVariant is a variation of
Lookup (Algorithm 1).

Additionally, the procedure EntryCreate (Algorithm 3) has to maintain
the map M when inserting a term into the indexing. If the procedure inserts
a new inner node in line 6 - 14 then the function M has to be updated in
order to meet the properties required in Definition 14. All nodes v; along the
path v,,...,v; have to be updated as follows

Vs € chr(oy, vars(vy, ..., v;)).M(v;, s) = M (v, s) U {vis1}

The nodes along the path v,, ..., v, have to be updated analogously.

The function M is realized via a mapping and can, therefore, be accessed
in O(log|X|) where |X| is the number of signature symbols. As a result,
updating the nodes along a path with length n is in

O(n * (| chr(o, W)| + | chr(o2, W)|) * log |X])

In the context of YAGO the characteristic functions of o; and o9 have
size at most two and the index has depth at most three. So, maintaining M
is very cheap.

Remember, that we have modified the original procedure for deleting
terms from an context tree. Nodes are not deleted from a context tree during
the deletion of a term ¢ from the context tree because this is not feasible in
the context of YAGO. Instead the term ¢ is deleted from the context tree by
removing the reference to ¢ from the leaf node representing t. Consequently,
we have changed the invariant such that a term ¢ is contained in an context
tree if and only if there is a leaf node in the context tree that represents ¢ and
has a reference to t. As a consequence, the function M of a filtered context
tree is not updated when deleting a term and the complexity for EntryDelete
of filtered context trees is the same as for LookupVariant.

Theorem 5 (Correctness). FilteredLookup is correct.

40

Proof. Since, the algorithm only restricts the number of nodes in the con-
text tree which are considered for testing, the correctness follows from the
correctness of Lookup (Theorem 4). O

In the following, we proof the completeness of FilteredLookup (Algo-
rithm 13) for the retrieval of substitutions that are unifiable with the query
substitution. The proof for the retrieval of substitutions with respect to in-
stantiation and generalization is analogous. Since LookupVariant is a slight
modification of Lookup, the completeness proof for LookupVariant for fil-
tered context trees is also analogous.

Lemma 6. Let FT = (V, E,subst, v, M) be a filtered context tree, p be a sub-
stitution, v' € V' a node, (v',v) € E, T = subst(v) and O = vars(v,,...,v).
If 3oVx.xpo = xTpo then Is € chr(p, O) with v € M(v',s) or chr(r, 0) =
{L} or chr(p, ©) = {L}.

Proof. Assume doVzr.xpo = xrpo. If 3z € dom(p) NONW with zp = f(...)
(this also includes F)p = f with F' € U) then the following two cases have to
be considered:

o If Vw; € dom(7) it holds that wir € X then chr(r,O) = L by Defini-
tion 13

e Else, Jw; € dom(7) such that wir ¢ X, then by Definition 14 and
Definition 12 w; € dom(7) or there is a node v” that is in a subtree
of v and w; € dom(subst(v")). If w; € dom(7) then there exist a

substitution o with w;po = w;7po by assumption. Consequently, f €
chr(p, ©), f € chr(r,O) and by Definition 14 v € M (', f).

If w; € dom(subst(v”)) then v € M(v', f) follows inductively.

If there is no w; € dom(p) N O NW with w;p = f(...) then Vz € dom(p) N
O NW one of the following holds:

ercX
e xpc X
e zpeT(UX)
For all of these cases chr(p, O) = {L}. O

Theorem 6 (Completeness). Let p be a substitution and T = (V, E, subst, v;)
a context tree. If Lookup (Algorithm 1) applied to T and p returns a non-
empty set of leaf nodes L then FilteredLookup (Algorithm 13) returns the
same set L when applied to p and the filtered context tree FT = (V, E, subst, v,, M).

41

Proof. Assume v,v" € V| E(v',v), 7 = subst(v), O = vars(v,,...,v") and
JoVz.xpo = x7po. We have to show that v is in /V in line 6 of Algorithm 13.
From Lemma 6 we have to consider three cases:

e If chr(p, ©) = {L} then v € N because of line 3.
e If chr(7,0) = {L} then v € N because of line 4.
e If Js € chr(p, O) with v € M(v', s) then v € N because of line 4.

Then, the theorem follows by induction on the path length. O

5.2.3 Implementation in Spass-YAGO

Since context trees are a generalization of substitution trees and SPASS has an
implementation of substitution tree indexing, our implementation of SPASS-
YAGO contains the substitution tree indexing of SPASS together with the
above described filtered techniques.

In SpASs, symbols are internally represented as integers. Consequently,
they can be compared with respect to their integer value. So, we implemented
the lookup function M using CSB*-trees [12] , a cache conscious variant of
B-trees.

The implementation of the set of variables of a path vars(v, = vy,...,v,)
is realized via a marking mechanism. Each time a substitution 7 of a node is
compatible with the current query p all index variables of dom(7) are marked.

Since, one node of a filtered context tree could be reached via several
symbols from its parent node, we mark each visited node in order to avoid
multiple inspections of the same node.

For each of the retrieval operations (unification, instantiation and gener-
alization) we have implemented a separate version of the procedure Filtered-
Lookup (Algorithm 13) because this allows a more efficient implementation
for each individual retrieval operation. More subnodes of a given filtered
context tree may be filtered. For example, assume the retrieval for instances
of the substitution {w; — ¢(x)}. In this case, nodes that solely contain sub-
stitutions of the form {w; — x} do not contribute and can be excluded from
further processing. A similar argument holds for generalizations.

5.2.4 Further Improvements

There are further opportunities to improve our current implementation of
SPASS-YAGO. For example, the occur check for the unification operation
can be omitted.

42

In the context of YAGO, the notion of function variables provides a mech-
anism to query for term symbols. For example, we can query the index for
terms that contain the symbol a as its second argument. The respective
query term is F'(z,a). Applying this query to the context tree given in
Figure 5.2 returns the terms f(c,a) and h(d,a). So, an implementation of
filtered context trees in SPASS-YAGO provides these features.

We can also use context trees to index each term stored in the context
tree by each of its symbols. For example, consider the term f(c,a) which
is stored in the context tree of Figure 5.2. Following the path from the
root to the leaf we find the substitutions 7 and 7 with f(c,a) = worom 7e.
The order of the application of the substitutions 7 and 7 to w7y does not
matter. As a result, worom 72 = f(¢,a) = woroTeTi. If we store both paths in
the context tree we can choose the path that is more efficient for the current
retrieval operation. For example, consider the query term F'(x,a). Here the
only symbol occurring is a. To restrict the search space we first discriminate
on a with the help of 7. If we consider the query term f(z,¢) it is more
efficient to first consider 7 because this discriminates on f. Although, this
approach increases the size of the filtered context tree exponentially, it is
feasible in the case of YAGO. This is because a filtered context tree storing
terms obtained from the translation of YAGO has depth at most three. This
approach provides a very efficient retrieval mechanism. A similar idea is
used for the implementation of relational data base systems, where an index
is created for each of its arguments. For example, the tuple (a, b, c) can be
obtained by querying the indexing of the first argument for a, querying the
indexing of the second argument for b or querying the indexing for the third
argument ¢. An implementation of this can be found, for example, in [10].

5.3 Summary

Filtered context trees are a powerful term indexing structure for storing large
sets of terms and for efficiently performing unification, instantiation and
generalization queries. In particular for the set of terms resulting from the
translation of YAGO into BSHE, filtered context tree indexing enables the
retrieval operations to avoid inspecting unsuccessful subtrees of the indexing.
Consequently, our algorithms of the retrieval operations perform a more goal
oriented search on the term index. In the beginning, SPASS was not able to
load YAGO into its index within 24 hours. Now, with the integration of the
new filtered context tree indexing, SPASS is able to load YAGO into its index
and also to efficiently perform reasoning tasks on the clause set resulting from
the translation of YAGO. SprAss saturates YAGO in less than one hour.

43

6 Engineering

In order to adjust SPASS to the new indexing technique and the calculus for
BSHE, a lot of extra engineering had to be performed. We increased the
maximal number of signature symbols that SPASs can handle to 19M. The
parsing module was modified, so that originally quadratic manipulations on
the lists of input clauses now only take linear time. Algorithms for manip-
ulating clause sets holding SPASSs’s search state, such as loading the usable
clauses, or sorting clause lists, were sped up from O(n?) to O(n * log(n)).
Hashmaps used in the clausification process in FLOTTER had to be extended
to reduce the number of hash-conflicts. The structure for storing superterms
in the sharing was changed from lists to maps. Newly derived clauses are
now inserted at the first possible position with respect to weight in the list
of usable clauses, instead of also considering search space depth. Finally,
SPASS-YAGO skips auto-configuration and instead uses a standard complete
flag setting in the input files according to our calculus (Section 4).

There is still plenty of room for speed ups via further engineering. Our
motivation was not on getting a much faster system but to advance SPASS
such that it can cope with the size of YAGO.

44

7 Experiments

We ran our experiments on a 4 x Intel Xeon Processor X5560 (8M Cache, 2.80
GHz) Debian Linux machine with 48 GB RAM. We compared SPASS-YAGO
with iProver version 0.7 [9], E version 1.1 [14], and SPASS version 3.5 [26]
including the before mentioned engineering improvements. The reason for
this comparison is only to show that our new calculus, filtered context tree
indexing and improved implementation advances the state of the art in au-
tomated reasoning on large ontologies. None of the above systems has been
specifically designed to fit the BSHE theory created out of YAGO. All the
provers were recompiled for the above 64 bit architecture to better cope with
the large inputs.

First we evaluated the task of showing satisfiability of (slices of) YAGO
after having removed all inconsistencies by hand on the basis of SPASS-YAGO
runs. The examples are in favor of iProver, E, and SpAss 3.5 as we did
not include the unique name assumption units for those provers, whereas
SPASS-YAGO tests the corresponding inference rule. The results are given
in Figure 7.1.

The second column shows the number of formulas (clauses), the third
the time needed for saturation, and the fourth the number of additionally
eventually kept clauses by SPASS-YAGO. All other provers fail on showing
any of the examples due to timing constraints of 60 min for the first 4 slices
and due to running out of (internal) memory (except for SPAsS and E running
out of time) for S, and the full set.

Note that showing satisfiability is the more difficult problem compared
to actually proving queries. All provers can successfully solve queries with
respect to at least one of the S-Sy slices.

Since none of the other provers could handle the overall core, we only
carried out the second experiment on queries using SPASS-YAGO. We eval-
uated the following two queries on the saturated core of YAGO, where we
applied the now complete SOS strategy.

45

Slices |Input size [F]|Time to saturate |Output size [F]|Other provers
So 136808 12.5 +1768 fail
Sy 132080 9.7 +16060 fail
Sa 96454 9.9 +1768 fail
Ss 114527 10.6 +4769 fail
Sa 4891235 37:11.1 +24123 fail
Full 9918933 1:03:24.0 +24123 fail

Figure 7.1: Saturating YAGO

Q1 x.politician(x) A physicist(x) A bornIn(z, Hamburg) A
hasSuccessor(Helmut_Schmidt, x)
Q- Az, y, z.diedIn(x,y) A hasChild(z,z) N bornIn(z,y) A

locatedIn(y, New_York)
The results of the querying are shown in the table below.

Query | Derived | Kept | Proof length | Reasoning| Total

o} 1l 1 18| 0:00.1]9:37.8
Q- 9| 0 6 0:00.1]9:38.3

The table shows the number of derived, kept clauses and the length of
the proof found by SPAss-YAGO. Actually, almost all of the time is spent on
loading the overall clause set, the difference between total time and reasoning
time. The time for answering the queries is below one second. The difference
between derived /kept clauses and proof length is the result of simplification,
in particular sort simplification exploring subsort relationships. Recall that
in the saturated core not all ground consequences of YAGO are explicitly
represented. So the involved reasoning goes beyond simple data base style
joins but involves reasoning about transitivity and subsort relationships.

46

8 Conclusion

The saturation of large ontologies is a challenge for first-order reasoning.
The core of the YAGO ontology can be saturated by SPASS-YAGO in about
1 hour (Section 7) due to a new complete, sound, and terminating variant
of the superposition calculus (Section 4) accompanied by filtered context
tree indexing (Section 5) and improved implementations (Section 6). SPASS-
YAGO significantly advances the state of the art in theorem proving on large
ontologies (Section 7). It complements other efforts in this direction. The
yearly CASC division on ontology reasoning [21] as well as approaches on
combining theorem provers with other sources of knowledge [19] concentrate
on finding proofs (answers, contradictions), not saturations, i.e. models of an
overall ontology as we have studied in this paper for a core of YAGO. One
of the first contributions on applying theorem proving to large ontologies is
[8] where a number of engineering questions are discussed.

Most importantly, we showed that standard automated reasoning tools
such as SPASS are able to cope with large ontologies such as a core of YAGO
if the calculus and implementation are adopted accordingly. Currently, our
implementation does not directly give answers but shows proofs. This can
be straightforwardly extended to an answer mechanism. The queries we con-
sidered are solely existentially quantified. This can be extended to arbitrary
quantifier prefixes, because we are considering a finite domain only. How-
ever, it needs further research in order to cope with the potential search space
spanned by such a query. Here an even more refined calculus, e.g. by inte-
grating chaining directly into the hyper resolution inference is instrumental.
Finally, reasoning with respect to the confidence values attached to facts in
YAGO that are ignored for this paper could be added to the calculus, e.g.
in the style of a multi-valued logic aggregating formulas at their respective
confidence values.

47

Bibliography

1]

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. J. Log. Comput., 4(3):217-247,
1994.

L. Bachmair and H. Ganzinger. Rewrite techniques for transitive re-
lations. In Proc. 9th IEEE Symposium on Logic in Computer Science,
pages 384-393. IEEE Computer Society Press, 1994. Short version of
TR MPI-1-93-249.

L. Bachmair and H. Ganzinger. Ordered chaining calculi for first-
order theories of transitive relations. Journal of the ACM (JACM),
45(6):1007-1049, 1998.

C. G. Fermiiller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution
decision procedures. In A. Robinson and A. Voronkov, editors, Handbook

of Automated Reasoning, volume 2, pages 1791-1849. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2001.

H. Ganzinger, R. Nieuwenhuis, and P. Nivela. Context trees. In Goré
et al. [6], pages 242-256.

R. Goré, A. Leitsch, and T. Nipkow, editors. Automated Reasoning,
First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings, volume 2083 of LNCS. Springer, 2001.

P. Graf. Term Indexing, volume 1053 of LNCS. Springer, 1996.

I. Horrocks and A. Voronkov. Reasoning support for expressive ontology
languages using a theorem prover. In J. Dix and S. J. Hegner, editors,
FolIKS: Foundations of Information and Knowledge Systems, Budapest,
Hungary, volume 3861 of LNCS, pages 201-218. Springer, 2006.

48

[9]

[10]

[11]

[12]

[13]

[14]

K. Korovin. iProver - An Instantiation-Based Theorem Prover for First-
Order Logic (System Description). In A. Armando, P. Baumgartner,
and G. Dowek, editors, IJCAR: The International Joint Conference on
Automated Reasoning, volume 5195 of LNCS, pages 292-298. Springer,
2008.

T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf.
PVLDB, 1(1):647-659, 2008.

[. V. Ramakrishnan, R. C. Sekar, and A. Voronkov. Term indexing. In
Robinson and Voronkov [13], pages 1853-1964.

J. Rao and K. A. Ross. Making BT -trees cache conscious in main mem-
ory. In ACM SIGMOD International Conference on Management of
Data, pages 475-486, 2000.

J. A. Robinson and A. Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

S. Schulz. E - a brainiac theorem prover. AI Communication, 15(2-
3):111-126, 2002.

S. Schulz and M. P. Bonacina. On Handling Distinct Objects in the Su-
perposition Calculus. In B. Konev and S. Schulz, editors, Proc. of the 5th

International Workshop on the Implementation of Logics, Montevideo,
Uruguay, pages 6677, 2005.

J. R. Slagle. Automatic theorem proving with built-in theories including
equality, partial ordering, and sets. J. ACM, 19(1):120-135, 1972.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic
Knowledge. In 16th international World Wide Web conference (WWW
2007), pages 697-706, New York, NY, USA, 2007. ACM Press.

F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A Large Ontology
from Wikipedia and WordNet. J. Web Sem., 6(3):203-217, 2008.

M. Suda, G. Sutcliffe, P. Wischnewski, M. Lamotte-Schubert, and
G. de Melo. External sources of axioms in automated theorem prov-
ing. In B. Mertsching, M. Hund, and M. Z. Aziz, editors, KI 2009:
Advances in Artificial Intelligence, 32nd Annual German Conference on
Al Paderborn, Germany, September 15-18, 2009. Proceedings, volume
5803 of LNCS, pages 281-288. Springer, 2009.

49

[20]

[21]

[22]

[25]

[26]

M. Suda, C. Weidenbach, and P. Wischnewski. On the Saturation of
YAGO. Research Report MPI-I-2010-RG1-001, Max-Planck-Institut fiir
Informatik, Saarbriicken, 2010.

G. Sutcliffe. The 4th IJCAR Automated Theorem Proving System Com-
petition - CASC-J4. AI Communication, 22(1):59-72, 2009.

T. Tammet. Chain resolution for the semantic web. In D. A. Basin and
M. Rusinowitch, editors, IJCAR, volume 3097 of LNCS, pages 307—-320.
Springer, 2004.

T. Tammet and V. Kadarpik. Combining an inference engine with
database: A rule server. In M. Schroeder and G. Wagner, editors,
RuleML, volume 2876 of LNCS, pages 136-149. Springer, 2003.

A. Voronkov. Merging relational database technology with constraint
technology. In D. Bjgrner, M. Broy, and I. V. Pottosin, editors, Ershov
Memorial Conference, volume 1181 of LNCS, pages 409-419. Springer,
1996.

C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume 2, chapter 27, pages 1965-2012. Elsevier, 2001.

C. Weidenbach, D. Dimova, A. Fietzke, M. Suda, and P. Wischnewski.
SPASS Version 3.5. In R. A. Schmidt, editor, 22nd International Confer-
ence on Automated Deduction (CADE-22), volume 5663 of LNAI, pages
140-145. Springer, 2009.

50

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available via WWW using the URL http://www.mpi-inf.mpg.de. If you have any questions concern-
ing WWW access, please contact reports@mpi-inf.mpg.de. Paper copies (which are not necessarily free
of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fur Informatik

Library

attn. Anja Becker

Stuhlsatzenhausweg 85
66123 Saarbriicken
GERMANY

e-mail: library@mpi-inf.mpg.de

MPI-1-2009-RG1-002

MPI-I-2009-5-006

MPI-1-2009-5-004

MPI-1-2009-5-003

MPI-I-2008-RG1-001

MPI-1-2008-5-004

MPI-I-2008-5-003

MPI-I-2008-5-002

MPI-1-2008-5-001

MPI-1-2008-4-003

MPI-I-2008-4-002

MPI-I1-2008-1-001

MPI-1-2007-RG1-002

MPI-1-2007-5-003

MPI-1-2007-5-002

MPI-I1-2007-5-001

MPI-1-2007-4-008

MPI-1-2007-4-007

MPI-1-2007-4-006

MPI-1-2007-4-005
MPI-1-2007-4-004

MPI-1-2007-4-003

. Wischnewski, C. Weidenbach

. Bedathur, K. Berberich, J. Dittrich,
. Mamoulis, G. Weikum

P
S
N
N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

T

. Neumann, G. Weikum

A. Fietzke, C. Weidenbach
F. Suchanek, M. Sozio, G. Weikum

F.M. Suchanek, G. de Melo, A. Pease
T. Neumann, G. Moerkotte

F. Suchanek, G. Kasneci,
M. Ramanath, M. Sozio, G. Weikum

T. Schultz, H. Theisel, H. Seidel

W. Saleem, D. Wang, A. Belyaev,
H. Seidel

D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

T. Hillenbrand, C. Weidenbach

F.M. Suchanek, G. Kasneci,
G. Weikum

K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

. Herzog, V. Havran, K. Myszkowski,
. Seidel

. Dyken, G. Ziegler, C. Theobalt,
. Seidel

. Schultz, J. Weickert, H. Seidel

. Stoll, E. de Aguiar, C. Theobalt,

R
H
C
H
T
C
H. Seidel
R

. Bargmann, V. Blanz, H. Seidel

Contextual rewriting

Scalable phrase mining for ad-hoc text analytics

Coupling knowledge bases and web services for active
knowledge

The RDF-3X engine for scalable management of RDF
data

Labelled splitting

SOFT: a self-organizing framework for information
extraction

Integrating Yago into the suggested upper merged
ontology

Single phase construction of optimal DAG-structured
QEPs

STAR: Steiner tree approximation in
relationship-graphs

Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

Estimating complexity of 3D shapes using view
similarity

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

Superposition for finite domains

Yago : a large ontology from Wikipedia and WordNet
A time machine for text search

NAGA: searching and ranking knowledge

Global stochastic optimization for robust and accurate
human motion capture

Global illumination using photon ray splatting

GPU marching cubes on shader model 3.0 and 4.0

A higher-order structure tensor

A volumetric approach to interactive shape editing

A nonlinear viseme model for triphone-based speech
synthesis

MPI-1-2007-4-002

MPI-1-2007-4-001

MPI-1-2007-2-001

MPI-1-2007-1-003
MPI-1-2007-1-002

MPI-I-2007-1-001

MPI-1-2006-5-006

MPI-1-2006-5-005

MPI-1-2006-5-004

MPI-1-2006-5-003

MPI-I-2006-5-002

MPI-1-2006-5-001

MPI-1-2006-4-010

MPI-1-2006-4-009

MPI-1-2006-4-008

MPI-1-2006-4-007

MPI-1-2006-4-006

MPI-1-2006-4-005
MPI-1-2006-4-004

MPI-1-2006-4-003

MPI-1-2006-4-002

MPI-1-2006-4-001

MPI-1-2006-2-001

MPI-1-2006-1-007
MPI-1-2006-1-006

MPI-I-2006-1-005
MPI-1-2006-1-004
MPI-1-2005-5-002

MPI-1-2005-4-006

MPI-1-2005-4-005

MPI-1-2005-4-004

MPI-1-2005-4-003

<

> Uz 2o

J.

C.

. Langer, H. Seidel

. Gall, B. Rosenhahn, H. Seidel

. Podelski, S. Wagner

. Gidenstam, M. Papatriantafilou
. Althaus, S. Canzar

. Berberich, L. Kettner

. Kasnec, F.M. Suchanek,

Weikum

. Angelova, S. Siersdorfer

. Suchanek, G. Ifrim, G. Weikum

Scholz, M. Magnor

. Bast, D. Majumdar, R. Schenkel,
. Theobald, G. Weikum

. Bender, S. Michel, G. Weikum,
. Triantafilou

. Belyaev, T. Langer, H. Seidel

Gall, J. Potthoff, B. Rosenhahn,
Schnoerr, H. Seidel

I. Albrecht, M. Kipp, M. Neff,

H.
0.

< » za

n o

EERE P33 RAFEQCH

=T Yol l--Yo!

Seidel
Schall, A. Belyaev, H. Seidel

. Theobalt, N. Ahmed, H. Lensch,
. Magnor, H. Seidel

. Belyaev, H. Seidel, S. Yoshizawa
. Havran, R. Herzog, H. Seidel

de Aguiar, R. Zayer, C. Theobalt,

. Magnor, H. Seidel

Ziegler, A. Tevs, C. Theobalt,
Seidel

Efremov, R. Mantiuk,
Myszkowski, H. Seidel

Wies, V. Kuncak, K. Zee,

. Podelski, M. Rinard

Bast, I. Weber, C.W. Mortensen

. Kerber

. Eigenwillig, L. Kettner, N. Wolpert
. Funke, S. Laue, R. Naujoks, L. Zvi
. Siersdorfer, G. Weikum

. Fuchs, M. Goesele, T. Chen,

Seidel

. Krawczyk, M. Goesele, H. Seidel

. Theobalt, N. Ahmed, E. De Aguiar,
. Ziegler, H. Lensch, M.A. Magnor,

Seidel

. Langer, A.G. Belyaev, H. Seidel

Construction of smooth maps with mean value
coordinates

Clustered stochastic optimization for object recognition
and pose estimation

A method and a tool for automatic veriication of region
stability for hybrid systems

LFthreads: a lock-free thread library

A Lagrangian relaxation approach for the multiple
sequence alignment problem

Linear-time reordering in a sweep-line algorithm for
algebraic curves intersecting in a common point

Yago - a core of semantic knowledge

A neighborhood-based approach for clustering of linked
document collections

Combining linguistic and statistical analysis to extract
relations from web documents

Garment texture editing in monocular video sequences
based on color-coded printing patterns

IO-Top-k: index-access optimized top-k query
processing

Overlap-aware global df estimation in distributed
information retrieval systems

Mean value coordinates for arbitrary spherical polygons
and polyhedra in R?

Interacting and annealing particle filters: mathematics
and a recipe for applications

Gesture modeling and animation by imitation

Feature-preserving non-local denoising of static and
time-varying range data

Enhanced dynamic reflectometry for relightable
free-viewpoint video

Skeleton-driven laplacian mesh deformations

On fast construction of spatial hierarchies for ray
tracing

A framework for natural animation of digitized models
GPU point list generation through histogram pyramids

Design and evaluation of backward compatible high
dynamic range video compression

On verifying complex properties using symbolic shape
analysis

Output-sensitive autocompletion search

Division-free computation of subresultants using bezout
matrices

Snap rounding of Bézier curves
Power assignment problems in wireless communication

Automated retraining methods for document
classification and their parameter tuning

An emperical model for heterogeneous translucent
objects

Photometric calibration of high dynamic range cameras

Joint motion and reflectance capture for creating
relightable 3D videos

Analysis and design of discrete normals and curvatures

MPI-1-2005-4-002 0. Schall, A. Belyaev, H. Seidel Sparse meshing of uncertain and noisy surface scattered
data

