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Abstract

Let X be an arrangement of n algebraic sets Xi in d-space, where the Xi are

either parameterized or zero-sets of dimension 0 � mi � d � 1. We study

a number of decompositions of d-space into connected regions in which the

distance-squared function to X has certain invariances. These decomposi-

tions can be used in the following of proximity problems: given some point,

�nd the k nearest sets Xi in the arrangement, �nd the nearest point in X

or (assuming that X is compact) �nd the farthest point in X and hence

the smallest enclosing (d� 1)-sphere. We give bounds on the complexity of

the decompositions in terms of n, d, and the degrees and dimensions of the

algebraic sets Xi.
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1 Introduction

Let X be the union of n algebraic sets Xi of dimension 0 � mi � d � 1

in d-space which are either de�ned by parametrizations or, more general,

as zero-sets. Given a point p 2 Rd with rational or, more general, with

algebraic number coordinates and a set of de�ning polynomials of X with

rational coe�cients, we would like to do the following:

1. �nd the k nearest sets Xi;

2. �nd the nearest point in X ;

3. and, provided that X is compact, �nd the farthest point in X (and

hence the smallest sphere with centre p enclosing X).

For all of these proximity problems it is convenient to decompose d-space into

certain connected regions, depending on X , in which the distance-squared

function to X has certain invariances. A number of such decompositions are

possible. Some decompositions have many invariants but also many regions,

and it is of interest to bound the number of regions in terms of n, d, and the

degrees and dimensions of the algebraic sets Xi. For example, the coarsest

decomposition considered below consists of the �rst-order Voronoi regions

and the �nest consists of the regions in the complement of the bifurcation

set of the family of all distance-squared functions on X . However, all the

decompositions studied here have the property that the proximity problems

above can be solved in O(logn) time (discarding the preprocessing time for

constructing the decomposition). Decompositions of d-space into regions

made of points having certain proximity properties with respect to some

collection of submanifolds of Rd have been studied both in computational

geometry and in singularity theory, but there hasn't been much interaction

between these �elds.

Most of the works in computational geometry either consider the clas-

sical, �rst-order, Voronoi diagram of sets of isolated points or extensions

to arrangements of linear subspaces of Rd. The relation between higher-

order Voronoi diagrams in Rd and arrangements in Rd+1 is investigated in

Edelsbrunner and Seidel [8]. A few works also consider Voronoi diagrams

of arrangements of curved objects. First-order Voronoi diagrams of disjoint

convex semi-algebraic sites in d-space are studied in the book of Sharir and

Agarwal [16]. Alt and Schwarzkopf [1] study �rst-order Voronoi diagrams

of parameterized (semi-algebraic) curve-segments and points in the plane.

These authors are also interested in the local geometry of Voronoi edges:

for example, they point out that end-points of self-Voronoi-edges (in the

singularity theory literature known as symmetry sets) correspond to centres

of osculating circles at curvature extrema of a planar curve and also to a

cusp singularity of the evolute (or focal set). The local geometry of such
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symmetry sets and of evolutes has been studied in great detail in a number

of singularity theory works.

One of the main topics of singularity theory is the classi�cation of stable

and unstable singularities of functions and maps, and of the bifurcation sets

in the parameter space of families of functions and maps. The bifurcation set

of a family of functions F : Rd�Rm ! Rd�R, (p; x) 7! (p; f(p; x)) consists

of all points p in parameter space Rd for which the function x 7! f(p; x)

has an unstable (degenerate) singularity. The family of distance-squared

functions from any point p 2 Rd to a parameterized m-dimensional surface

X in d-space is a particular example of such a family, and the bifurcation

set of this family is precisely the union of the evolute and the symmetry set

of X . Porteous [11, 12] has used the classi�cation of families of functions by

Thom (from the early 1960s) to study the relation between the geometry of

evolutes and the curvature of surfaces. Bruce et al. [4] have classi�ed the

singularities of symmetry sets of planar curves and of surfaces and space-

curves in R3, see also the recent paper by Bruce [3]. Symbolic algorithms for

computing bifurcation sets of families of projection maps have been studied

by Rieger in [14, 15] and these algorithms can be also used, with some

minor modi�cations, to compute other bifurcation sets, such as evolutes

and symmetry sets.

1.1 Assumptions and some notation

Let X :=
S
Xi � Rd be a collection of n closed algebraic sets Xi and set

mi := dimXi (0 � mi � d � 1) and m := supmi. For parameterized

algebraic mi-surfaces x 7! Xi(x) we denote the maximal degree of the d

component functions of Xi(x) by �i, and set � := sup �i (1 � i � n). For the

more general case of zero-sets Xi = h�1i (0), where hi := (h1i ; : : : ; h
d�mi

i ) :

Rd ! Rd�mi, we assume that Xi, or rather its complexi�cation, is a com-

plete intersection (i.e. its codimension is equal to the number of de�ning

equations) and set �i :=
Q

j deg h
j
i = degXi and � := sup�i (geometri-

cally, degXi is the number of real and complex intersection points of Xi and

a \generic" linear subspace of Rd of dimension d�mi).

The following notation will be used in this paper: Z(I) denotes the zero-

set of an ideal I , I(Z) the ideal of polynomials vanishing on Z, I : J the

ideal quotient and clZ denotes the closure of the set Z. The components of

a vector x = (x1; : : : ; xd) are denoted by superscripts, so that subscripts can

be used to enumerate elements of sets; and (xd)3 denotes the third power

of the dth component. A function f : Rd ! R, x := (x1; : : : ; xd) 7! f(x)

has an Ak-singularity at x = 0 if there exists a smooth coordinate change

h : Rd ! Rd, de�ned in the neighborhood of x = 0, such that f � h(x) =
c+(x1)k+1+

Pd
i=2 �i(x

i)2, where c is some constant and �i = �1. (Also, the
reader familiar with singularity theory will note that we abuse the notation

A�k slightly: here it denotes all classes of singularities in the closure of the
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Ak orbit, not just the A�k orbits.)

1.2 Content of following sections

In Section 2 we study the bifurcation set B of the family of distance-squared

functions on an arrangement of mi-surfaces in R
d which are parameterized

by polynomial maps. In particular, we give bounds for the number of regions

in the complement of B and describe certain invariants which characterize

these regions.

In Section 3 we consider the more general case of arrangements of alge-

braic zero-setsXi (note that most zero-sets do not have a global parametriza-

tion given as the image of some polynomial map). For zero-sets we exploit

the geometric characterization of the singularities of the distance-squared

function in terms of the contact order (or intersection multiplicity) of Xi

with certain (d�mi)-spheres, where mi = dimXi. This avoids the problem

of �nding local parametrizations of the Xi given by analytic maps (work-

ing with polynomials is much more convenient). The more classical case of

contact between hypersurfaces Xi and osculating circles is treated in Sub-

section 3.1; the more complicated case of contact between algebraic sets Xi

of codimension d�mi � 2 and (d�mi)-spheres is studied in Subsection 3.2.

In Section 4 we give an outline of algorithms for determining the regions

in the complement of the bifurcation set B and certain other decompositions

of d-space into coarser regions. Using these decompositions, we describe

solutions to the proximity problems 1 to 3 stated at the beginning of this

introduction.

In Section 5 we present a few examples of these decompositions for curves

and points in the plane, which have been computed with the methods de-

scribed in Section 4.

Finally, in Section 6, we compare the combinatorial complexities of the

set of connected regions of Rd n B and of kth-order Voronoi diagrams.

2 The complement of the bifurcation set B of a

family of distance-squared functions

In the present section the algebraic mi-surfaces Xi of the arrangement are

parameterized by polynomial maps x 7! Xi(x), where x = (x1; : : : ; xmi) 2
Rmi. The necessary modi�cations in the (more general) case of zero-sets will

be brie
y sketched in Section 3. The family of distance-squared functions

on Xi is de�ned by

Fi : R
d�Rmi ! Rd�R; (p; x) 7! (p; fi(p; x) := kXi(x)� pk2):

Recall that an element of this d-parameter family of functions in mi vari-

ables is a Morse function if its critical points are non-degenerate (i.e. the
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corresponding matrix of second derivatives has maximal rank) and have dis-

tinct critical values. The bifurcation set Bi � Rd of the family Fi is the set

of \bad" parameters p for which x 7! fi(p; x) fails to be a Morse function.

The set Bi is the union of the local bifurcation set

Ei := fp 2 Rd : 9x : dfi(p; x) = 0; rank d2fi(p; x) < mig

and the level bifurcation set

Si := clfp 2 Rd : 9x 6= �x : dfi(p; x) = dfi(p; �x) = 0; fi(p; x) = fi(p; �x)g:

(The notation Ei and Si indicates that, from a classical di�erential geometry

point of view, the local and level bifurcation sets are evolutes and symmetry

sets, respectively | see Section 3.)

The bifurcation set B of the arrangement associated to X =
S
Xi is the

union of the bifurcation sets Bi of the Xi and the following inter-surface

level bifurcation sets

Si;j := fp 2 Rd : 9x; �x : dfi(p; x) = dfj(p; �x) = 0; fi(p; x) = fj(p; �x)g;

that is

B :=
[

1�i�n

Ei [
[

1�i�n

Si [
[

1�i<j�n

Si;j:

This de�nition of B asssumes that 1 � dimXi � d � 1, but it can be

easily extended to include isolated points Xi = fqig. For a point qi the sets
Ei and Si are de�ned to be empty, for a point pair qi, qj the set Si;j is de�ned
to be the hyperplane perpendicular to qj � qi through (qi + qj)=2 and for

surface-point pairs Xi (dimXi � 1), Xj = fqjg we de�ne

Si;j := fp 2 Rd : 9x : dfi(p; x) = 0; fi(p; x) = kqj � pk2g:

The de�nitions of the local bifurcation sets Bi and of the inter-surface

level bifurcation sets Si;j are fairly straightforward from a computational

point of view. The de�nition of the intra-surface level bifurcation sets Si is
less straightforward: the inequalities x 6= �x, together with the de�ning equa-

tions appearing in the de�nition, yield semi-algebraic sets S0i � Rd �R2mi

which are not closed. It is, however, possible to close-up the sets S0i by
adding a set of boundary points @S0i on the diagonal fx = �xg � R2mi (see

below). Furthermore, the closed sets ~Si := S0i [ @S
0
i can be de�ned by poly-

nomial equations (inequations are not required), which is a big advantage

from a computational algebra point of view.
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2.1 Proposition. (i) For all (p; x) 2 @S0i, the distance-squared function

x 7! fi(p; x) has an A�3-singularity at x. This implies that �(@S0i) � Bi,
where � : Rd�R2mi ! Rd denotes the projection onto the �rst factor. (ii)

The degree of @S0i is of order �
2mi+1
i and that of

S
@S0i of order n � �

2m+1.

Proof. (i) Replace the coordinates (x; �x) 2 R2mi by (x; y), where y :=

(�; a1; : : : ; ami�1) and �x := x + � � (a1; : : : ; ami�1; 1). The condition x 6= �x

in the old coordinate system corresponds, roughly speaking, to � 6= 0 in the

new one (note that �x� x 2 Pmi�1 n fami = 0g | in general two such a�ne

charts are required in order to obtain all possible points �x). We then claim

that the sets Si can be de�ned by the following three equations (omitting

the inequality � 6= 0): by dfi(p; x) = 0 (as before) and by

Ui(p; x; y) := ��1(dfi(p; �x)� dfi(p; x)) = 0

and

Vi(p; x; y) := ��3(fi(p; �x) � fi(p; x)� �dfi(p; x)

�
�2

2
hUi; (a

1; : : : ; ad�2; 1)i) = 0:

It is easy to see that, away from the diagonal fx = �xg, dfi(p; x) = Ui(p; x; y) =

Vi(p; x; y) = 0 and the original system dfi(p; x) = dfi(p; �x) = fi(p; x) �
fi(p; �x) = 0 de�ne the same zero-sets S0i � Rd � R2mi n fx = �xg. Fur-

thermore, the right-hand-sides of Ui and Vi are divisible by � and �3 (by

Taylor's theorem), hence dfi(p; x) = Ui(p; x; y) = Vi(p; x; y) = 0 de�nes a

closed algebraic variety ~Si := S0i [ @S
0
i � R

d�R2mi.

In fact, ~Si is the smallest closed set containing S0i and the boundary @S0i
of S0i in ~Si corresponds to A�3-singularities of the distance-squared function

x 7! fi(p; x). Taking the limit as � ! 0 (corresponding to the diagonal

fx = �xg) we get the following system:

dfi(p; x) = 0

lim
�!0

Ui =
1

2
d2fi(p; x)((a

1; : : : ; ami�1; 1)) = 0

lim
�!0

Vi =
1

6
d3fi(p; x)((a

1; : : : ; ami�1; 1)3) = 0:

This system \recognizes" an A�3-singularity of x 7! fi(p; x) at x | the

condition for an A�3-singularity is precisely that dfi = 0 and d2fi(v) = 0,

d3fi(v
3) = 0 for some non-zero vector v (see, for example, Porteous [13], p.

397).

(ii) The degree of the variety @S0i de�ned by the above \limiting system"

is at most of order �2mi+1
i (by Bezout's theorem), so that the degree of the
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union of n such varieties is of order
Pn

i=1 �
2mi+1
i � n � �2m+1. 2

2.2 Corollary. The level-bifurcation set of the distance squared-functions

of an arrangement of n plane algebraic curves of maximal degree � has at

most O(n � �3) endpoints. (Actually, there are at most O(n � �) endpoints.)

Proof. For m = 1 and d = 2, the set
S
@S0i consists of isolated points

(pl; xl) 2 R2� R (this can be checked by a simple dimensional argument),

and there are at most O(n � �3) such endpoints by the proposition above.

The projections pl of these points into the plane are possible endpoints of

the level-bifurcation set S =
S
Si. (However, their projections xl onto R

correspond to curvature extrema of Xi and each curvature extremum cor-

responds to one endpoint. But X =
S
Xi has at most O(n � �) curvature

extrema.) 2

2.3 Proposition. For all points p in a single connected region of Rd nS
Ei the collection of distance-squared functions fx 7! fi(p; x) : 1 � i � ng

has a constant number, c, of critical points, where

n � c �
nX
i=1

(2�i � 1)mi � O(n � �m):

Proof. From the de�nition of the local bifurcation sets Ei we see that
the distance-squared functions x 7! fi(p; x) have isolated critical points (of

multiplicity 1) for all p 2 Rd n
S
Ei. Each fi is non-negative and has degree

2�i. Hence each fi has at least one local minimum and at most (2�i � 1)mi

critical points | this yields the desired bounds for c. 2

Remark. For arrangements of hypersurfaces Xi (i.e. mi = d � 1) the

number of critical points c has the following geometrical interpretation: it is

equal to the number of normal lines of X =
S
Xi passing through the point

p.

2.4 Proposition. The number of connected regions of RdnB is at most

of order n2d � �(2m+1)d. Furthermore, let p 2 Rd n B and let

�1;�1(p); �2;�2(p); : : : ; �c;�c(p)

denote the critical points �l;�l(p) of the collection of distance-squared func-

tions x 7! f�l(p; x), where �l 2 f1; : : : ; ng, ordered by increasing distance.

That is, f�l(p; �l;�l(p)) < f�l+1(p; �l+1;�l+1(p)). For all points p in a single

connected region of Rd n B we have the following: (i) the numbers �1; : : : ; �c
are invariant, and (ii) the maps p 7! �l;�l(p) are continuous for 1 � l � n.
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Proof. The bifurcation set B is a semi-algebraic subset of a closed real

algebraic set B̂ � Rd, and the number of connected regions cut out by B
is less than or equal to the number of regions cut out by B̂. The number

of connected regions of Rd n B̂ is equal to the (d � 1)st Betti number of

B̂ (see below), and the desired upper bound follows at once from a result

of Milnor [10] | which says that the sum of the Betti number of B̂ is of

order (deg B̂)d | and the bound for the degree of B̂ derived below. [The

reader who is familiar with some algebraic topology will note the following:

if Sd = Rd[ f1g and B̂c = B̂ [ f1g denote 1-point compacti�cations then
the following isomorphisms of (co-)homology groups hold

H0(S
d n B̂c) �= Hd(Sd; B̂c) �= Hd(Rd; B̂);

where the �rst isomorphism stems from the Lefschetz duality and the second

is induced from the inclusion of the pair (Rd; B̂) ,! (Sd; B̂c). Finally, from

the standard exact sequence of the pair (Rd; B̂), we see that Hd(R
d; B̂) �=

Hd�1(B̂). It now follows that the number of regions cut out by B̂ is equal

to bd�1(B̂).]
We claim that the degree of B̂ is of order n2�2m+1. The set B̂ is the union

of
�
n
2

�
(real algebraic) sets Ŝi;j, n sets Ŝi and n sets Êi. The orders of the

degrees of the Ŝi and the Êi are lower than those of the Ŝi;j , hence it su�ces to
estimate the degree of Ŝi;j . So let ~Si;j � Rd�Rmi+mj be the real algebraic set

de�ned by the de�ning equations of Si;j (omitting the existential quanti�er).
The restriction of the projection � : Rd � Rmi+mj ! Rd to ~Si;j yields the
semi-algebraic set Si;j . Complexifying the de�ning equations of ~Si;j and

taking the real part of the projection � onto C d of the resulting zero-set

yields a closed real algebraic set Ŝi;j � Rd which contains the semi-algebraic

set Si;j. Suppose that codimŜi;j = 1 (otherwise the complement of Ŝi;j is
connected, and we are done) and let L � Rd be any line. Now there are

two cases: (1) the set A := ��1(L) \ ~Si;j consists of isolated points (the

\generic case") and (2) dimA = e > 0. Let �� : Rd � Rmi+mj ! Rmi+mj

denote the projection onto the second factor, let �L � Rmi+mj be any linear

subspace of codimension e such that ���1( �L) is not contained in A and set
�A := A\���1( �L). The setsA, in case (1), and �A, in case (2), are discrete point

sets and the restriction of � to these point sets onto the set of intersection

points Ŝi;j \ L is surjective. The degree of Ŝi;j is therefore bounded by the

number of points of A (or �A in case (2)). Inspecting the de�ning equations

of these sets, we get from Bezout's theorem that

deg Ŝi;j � (2�i � 1)mi � (2�j � 1)mj � 2max(�i; �j)

(counting both real and complex roots with their multiplicities).

For the proof of the second part of the proposition, consider the following

real algebraic set:

�Fi := f(p; x) : dfi(p; x) = 0g � Rd�Rmi:
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The set �Fi is the critical set of the family Fi of all distance-squared func-

tions fi on Xi. The �bres �
�1(p)\�Fi of the projection � : Rd�Rmi ! Rd

correspond to the critical points of fi from p. The restriction of � to �Fi is

a covering map whose branch-locus is the (pre-image of the) evolute Ei and
which is �nite-to-one o� the branch-locus. The number of points in each

�bre ��1(p) \ �Fi is therefore �nite and constant for all points p in a con-

nected region of Rd n Ei. The same is true for the total number c of critical
points of a collection ffig1�i�n of distance-squared functions on X :=

S
Xi

for all p in a single connected region of Rd n
S
Ei. Furthermore, the indices

�1; : : : ; �c are invariant within a connected region of Rd n
S
Ei [

S
Si;j , be-

cause c is constant and permutations of indices can only occur along the

inter-surface level bifurcation sets Si;j . Finally, let U be any connected re-

gion of Rdn
S
Ei and consider the union of the n bundles

Sn
i=1 �

�1(U)\�Fi .

This is a semi-algebraic set consisting of c disjoint components of dimension

d, and these components are the graphs of continuous maps hj : U ! Rmi,

1 � j � c (these facts are established by arguments that are quite similar to

the proof of the First Main Structure Theorem in Chapter 2.2 of [2] | in

fact, most strati�cation schemes of semi-algebraic sets seem to be based on

some version of this theorem). The composition of the hj with the projection

�� : Rd�Rmi ! Rmi is a continuous map, which implies that the c critical

points of the collection of distance-squared functions x 7! fi(p; x), 1 � i � n,

vary continuously with p 2 U . The continuity of the maps p 7! �l;�l(p) for

all p within a single connected region of Rd nB then follows from the results

above and the fact that the permutation of the critical points of a single

function x 7! fi(p; x) can only occur on Si. 2

3 Contact of X with spheres and the de�nition of

B for zero-sets X

The �bres of the distance-squared function from a point p 2 Rd are (d �
1)-spheres of varying radius r, given by fx 2 Rd : kx � pk2 � r2 = 0g.
The conditions for an Ak-singularity of the distance-squared function, which

appear in the de�nition of the bifurcation set B, can be reformulated in

more geometric terms involving the contact between a family of such spheres

and a collection X =
S
Xi of algebraic sets. Using these more geometric

conditions, we can easily de�ne, and compute, the bifurcation set B in the

case of algebraic sets Xi given as zero-sets of polynomials h
j
i 2 Q[x] =

Q[x1; : : : ; xd], 1 � j � d�mi.

We �rst consider the special case of algebraic hypersurfaces (codimension

1) where the local and level bifurcation sets of the distance-squared func-

tion are the well-known evolutes and symmetry sets of classical di�erential

geometry (Section 3.1). In Section 3.2 we consider the more general case of
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arrangements of algebraic sets Xi of codimension 1 � d�mi � d� 1 which

are complete intersections (i.e. are de�ned by d � mi polynomials). Note

that the case of points Xi (of codimension d) can be handled as in Section

2.

3.1 Arrangements of hypersurfaces, evolutes and symmetry

sets

First, recall that a hypersurface Xi in d-space has d � 1 (not necessarily

distinct) principal curvatures �j and directions dj which are the eigenvalues

and eigendirections of the Weingarten map. (The Weingarten map Wp :

TpXi ! TpXi, v 7! �rvN measures the rate of change of the normal

direction N along a direction v in the tangent space of Xi at p.) A (d� 1)-

sphere is a curvature sphere at x 2 Xi if its centre lies on the normal line

through x and its radius r is the inverse of one of the principal curvatures

of Xi at x. The unique great circle in this curvature sphere whose tangent

line at x is oriented along the principal direction associated to 1=r is an

osculating circle. The evolute (or focal surface) Ei of Xi is the locus of

centres of such osculating circles and of the curvature spheres containing

them (for each surface patch of Xi there are generically d� 1 sheets of the

evolute, one for each principal curvature).

The distance-squared function from p 2 Rd to Xi has an Ak-singularity

(k � 1) at x 2 Rd if and only if there exists a circle with centre p having

(k + 1)-point contact with Xi at x. The order of contact is � 2 if p lies

on the normal line to Xi at x and � 3 if, in addition, the circle is an os-

culating circle. The local bifurcation set Ei consists of points p for which

the distance-squared function to Xi has an A�2-singularity, such points are

centres of osculating circles (and of curvature spheres) | the local bifurca-

tion set Ei is therefore the evolute of Xi. The relation between singularities

of the distance-squared function, normal singularities of submanifolds (i.e.

singularities of the exponential map of the normal bundle) and the possible

types of contact between these submanifolds and spheres have been �rst

studied by Porteous, see [11] and [12].

The intra- and inter-surface level bifurcation sets Si and Si;j are loci of
centres of bi-tangent spheres touching X =

S
Xi in two distinct points. If

both points of tangency lie on a single surface Xi then the centre belongs to

Si, otherwise it belongs to Si;j . Clearly, the distance-squared function from

a centre of a bi-tangent sphere has the two points of tangency as its critical

points, and the corresponding critical values are given by the square of the

radius of the bi-tangent sphere. The locus of centres of bi-tangent spheres

of a hypersurface is known as symmetry set in the di�erential geometry

literature, and the singularities of such symmetry sets of plane curves and

of surfaces in 3-space have been classi�ed by Bruce, Giblin and Gibson [4].

(In the pattern recognition literature, the symmetry set of a plane curve
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is also known under the names skeleton, medial axis and symmetric axis

transform.)

Using these geometrical descriptions of the local bifurcation sets Ei and of
the level-bifurcation sets Si and Si;j, we can now de�ne the bifurcation set of

the distance-squared functions for arrangements of algebraic hypersurfaces

given as zero-sets Xi = h�1i (0). Below, V kW denotes the condition that the

pair of vectors V;W in Rd is parallel (obviously, this condition involves the

vanishing of d � 1 functions involving the components of the vectors), and

S(p; x; r) := kx� pk2 � r2 de�nes a (d� 1)-sphere with centre p and radius

r. The fact that (at least) one of the principal curvatures of Xi at x is equal

to 1=r is equivalent to the vanishing of the following two equations:

Qi(x; u) := det

�
(d2hi(x)� u � I) dhi(x)

(dhi(x))
t 0

�

(where I denotes the d� d identity matrix) and

Ri(x; u; r) := u2r2 � kdhi(x)k
2:

(The condition Qi = Ri = 0 can be easily deduced from the standard formula

for the principal curvatures of a hypersurface de�ned as zero-set; see, e.g., p.

204 of Spivak [17]. Note that the derivation of this formula on pp. 202-204

of [17] is for hypersurfaces in 3-space, but the d-dimensional case (d � 2) is

analogous.)

Using this notation, the local bifurcation sets (evolutes) are de�ned as

follows

Ei := fp 2 Rd : 9x; u; r : hi(x) = S(p; x; r) = Qi(x; u) = Ri(x; u; r) = 0;

dhi(x)kdS(p; x; r) g:

The level bifurcation sets (symmetry sets) are given by

Si := clfp 2 Rd : 9x1 6= x2 : hi(xk) = 0; dhi(xk)k(xk � p); k = 1; 2;

kx1 � pk2 = kx2 � pk2 g

and

Si;j := fp 2 Rd : 9xi; xj : hk(xk) = 0; dhk(xk)k(xk � p); k = i; j;

kxi � pk2 = kxj � pk2 g:

The estimates in Propositions 2.1, 2.3 and 2.4 for arrangements of pa-

rameterized surfaces, in terms of n and �, have the following analogues,

(i)-(iii) of 3.1.1, in the case of (d� 1)-dimensional zero-sets.
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3.1.1 Proposition. Let B denote the bifurcation set of the family of

distance-squared functions on a collection X =
Sn

i=1Xi of algebraic hyper-

surfaces of maximal degree �. Then the following holds: (i) the degree ofS
@S0i is at most of order n ��d+3; (ii) the number of critical points of the

distance-squared function from any point p 2 Rd n
S
Ei to X is at most of

order n ��d; and (iii) the number of connected regions of Rd n B is at most

of order n2d ��2d2.

Proof. Using the new de�nitions of the components of B above in the

proofs of Propositions 2.1, 2.3 and 2.4 yields the desired results. 2

3.2 Arrangements of algebraic sets of higher codimension

Let Xi = h�1i (0) be the mi-dimensional zero-set of a polynomial map hi :=

(h1i ; : : : ; h
d�mi

i ) : Rd ! Rd�mi. The distance-squared function from p to

Xi has an Ak-singularity at x if and only if there exists a (d �mi)-sphere

with centre p having (k + 1)-point contact with Xi at x. Algebraically, the

order of contact (or intersection multiplicity) between Xi and a (d � mi)-

sphere, with de�ning equations s1(�) = : : : = smi(�) = 0, at x is equal to

the dimension of the vector space

R[�]=hh1i(� � x); : : : ; hd�mi

i (� � x); s1(� � x); : : : ; smi(� � x)i:

It is easy to see that such a sphere has at least 2-point contact with Xi at x if

its centre p lies in the normal spaceNxXi = x+spanfdh1i (x); : : : ; dh
d�mi

i (x)g
of Xi at x (this assumes that x is a regular point of Xi, but the algebraic

de�nition of the intersection multiplicity above is also valid for the singular

locus of Xi).

We can now de�ne the local bifurcation set Ei for complete intersections
Xi and give an estimate for its degree. The point p lies in the normal

space of Xi at x if x � p 2 spanfdh1i (x); : : : ; dh
d�mi

i (x)g which means that

all (d �mi + 1) � (d � mi + 1) minors of

�
dhi(x)

x � p

�
have to vanish. Note

that only mi of these minors are independent and that each of them has

degree O(�i). Let Mi := (M1
i ; : : : ;M

mi

i ) : R2d ! Rmi be a polynomial

map whose component functions are such independent minors. Let 'i :=

(hi;Mi) : R
d � Rd ! Rd, (p; x) 7! 'i(p; x) denote the d-parameter family

of polynomials maps of Rd, depending on the parameter vector p. Using

the algebraic de�nition of the intersection multiplicity, one checks that the

simple roots in x of 'i correspond to points of Xi having 2-point contact

with (d�mi)-spheres with centre p through x. Roots of higher multiplicity

correspond to points x in which the order of contact is at least 3-point, hence

we de�ne

Ei := fp 2 Rd : 9x : 'i(p; x) = det d'i(p; x) = 0g:

12



The product of the degrees of these de�ning equations of Ei is at most

O(�
2(mi+1)
i ).

The level bifurcation set of the family of all distance-squared functions to

a pair of complete intersections Xi = h�1i (0) and Xj = h�1j (0) of dimension

mi and mj is given by

Si;j := fp 2 Rd : 9x; �x : 'i(p; x) = 'j(p; �x) = 0; kx� pk2 = k�x� pk2g

and has degree at most O(�mi+1
i �

mj+1

j ). The level bifurcation set of a

single set Xi is given by

Si := clfp 2 Rd : 9x 6= �x : 'i(p; x) = 'i(p; �x) = 0; kx� pk2 = k�x� pk2g

and has degree at most O(�
2(mi+1)

i ). Recall that Si is the projection of the

algebraic set ~Si := S0i[@S
0
i. The set

~Si is the closure of the di�erence of two
algebraic sets U n V , where U is the zero-set of the de�ning equations of Si,
omitting the inequations x 6= �x, and where V is de�ned by the equations of

Si and by x = �x. Hence ~Si = Z(I(U) : I(V )) is an algebraic set of degree at

most degU � O(�
2(mi+1)
i ) and its projection Si is a semi-algebraic subset

of an algebraic set of degree O(�
2(mi+1)

i ).

Next recall that the boundary S0i of ~Si is contained in the diagonal E :=

fx = �xg � R2d. The subspace E is linear which implies that deg ~Si \ E =

deg ~Si and that S0i � ~Si \E has degree at most O(�
2(mi+1)
i ).

Finally note that the number of critical points of the distance-squared

function from some �xed point p 2 RdnEi is �nite and bounded above by the

degree of the map 'i, which is O(�
mi+1
i ). Summing up we have the following

3.2.1 Proposition. Let B denote the bifurcation set of the family of

distance-squared functions on a collection X =
Sn

i=1Xi of algebraic sets of

maximal degree � and maximal dimension m. Then the following holds:

(i) the degree of
S
@S0i is at most of order O(�2(m+1)); (ii) the number of

critical points of the distance-squared function from any point p 2 Rd n
S
Ei

to X is at most of order n ��m+1; and (iii) the number of connected regions

of Rd n B is at most of order n2d ��2(m+1)d .

Note that the estimates (ii) and (iii) yield in the case of hypersurfaces

(m = d�1) the same estimates as in Proposition 3.1.1 (ii) and (iii). It is also
interesting to compare these estimates for arrangements of zero-sets with the

corresponding bounds in the special case of parameterized mi-surfaces given

in Section 2. Not surprisingly, the combinatorial complexities (�xing the de-

grees � or �) are the same. However, in terms of algebraic complexity, the

estimates in Propositions 2.1, 2.3 and 2.4 for arrangements of parameterized

surfaces are sharper than the corresponding ones in Proposition 3.2.1. This

can be seen using the following fact.

13



3.2 Lemma. The degree �i of a parameterized mi-surface Xi given by

x 7! Xi(x) := (X1
i (x); : : : ; X

d
i (x)); �i := sup

j

degX
j
i

is of order �mi

i (which implies, for arrangements of such surfaces, that

� � O(�m)).

Proof. Let L be a (d � mi)-dimensional linear subspace of Rd not

contained in Xi, and let L be given as zero-set of some linear map L =

(L1; : : : ; Lmi
) : Rd ! Rmi. By Bezout's theorem, L � Xi : R

mi ! Rmi

has at most �mi

i roots (counting multiplicities, complex roots and roots at

in�nity), hence jL \Xij � O(�mi

i ). 2

4 Determining the connected regions in the com-

plement of B

In the present section we sketch the steps of an exact symbolic algorithm

for computing the connected regions of Rd nB for arrangements of algebraic

sets de�ned by polynomials with rational coe�cients. This algorithm is

analogous to certain substeps of the view graph algorithms for algebraic and

semi-algebraic surfaces in [14] and [15], respectively. Roughly speaking, the

view graph is the dual of the bifurcation set of the family of all projections of

a surface onto planes | the similarity of the algorithms for these bifurcation

problems is therefore not too surprising. The bifurcation set B of the family

of distance-squared functions between points p 2 Rd and a collection of

algebraic sets is a semi-algebraic set which is the projection of a real algebraic

set ~B � Rd�Ra, where a � 2m (for parameterizedmi-surfaces, m := supmi)

or a = 2d (for zero-sets). The de�ning equations of the components of ~B are

polynomials with rational coe�cients, and the main steps of the algorithm

can be best explained by considering the following diagram:

~B � Rd�Ra??y�
B � B̂ � Rd

1. Eliminate x1; : : : ; xa between the de�ning equations of ~B. Result: the
de�ning equations of the real algebraic set B̂ � Rd.

2. Decompose Rd into connected regions (of constant combinatorial com-

plexity) such that each such region lies in a single component of Rdn B̂
(and hence of Rd n B).
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3. Optional steps: (i) merge regions that lie in a single connected compo-

nent of Rdn B̂ and (ii) merge regions that are separated by a \branch"

of B̂ n B.

Remarks. (i) In practice it is better to carry out the elimination step

for each component ~Bl, 1 � l � 2n +
�
n
2

�
, separately. For parameterised

surfaces one has to eliminate mi (for ~Bl = ~Ei), 2mi (for ~Bl = ~Si) or mi+mj

variables (for ~Bl = ~Si;j). During the elimination, which can use either

multi-polynomial resultants (see, for example, [5]) or Gr�obner bases, one

can remove repeated factors, because the later steps of the algorithm only

require information about the radicals of the elimination ideals I(B̂l) :=

I( ~Bl) \ Q[p]. (Note that the worst case computation time is DO(v) for the

multi-polynomial resultant and D2O(v)
for Gr�obner bases, where D � � or

� is the maximal degree of the input polynomials and v = d+a the number

of variables.)

(ii) Suppose that the set B̂ is the union of the zero-sets of N polynomials

of maximal degree D and maximal bit length L. (Note that N � O(n2) and

that D � O(�2m+1) or O(�2(m+1)).) Here is a (far from complete) list of

algorithms for determining regions in the complement of Rd n B̂:

� The cylindrical algebraic decomposition of Collins [7] yields at most

(ND)2
d

d-cells in the complement ofRdnB̂. The cells are di�eomorphic
to open d-cubes (so that the number of lower dimensional cells in their

closure is independent ofN) and can be determined in L3(ND)2
d

time.

� Grigor'ev and Vorobjov [9] describe a singly exponential strati�cation

into at most (ND)d
2
d-cells which takes LO(1)(ND)O(d

2) time. It is

not clear whether the number of lower dimensional cells in the closure

of such a d-cell is independent of N .

� Chazelle et al. [6] (see also Theorem 8.23 in the book of Sharir and

Agarwal [16]) describe a strati�cation which yields d-cells whose clo-

sure contains a number of lower dimensional cells which does not de-

pend on N . Assuming that the maximal degree D and the bit lengths

of all polynomials arising during the computation are bounded by some

constant, this strati�cation consists of at most O(N2d�3+�) cells which

can be determined deterministically in O(N2d+1) time or by a ran-

domized algorithm in O(N2d�3+�) (expected) time (here � denotes an

arbitrarily small positive constant). Furthermore, given some point

p 2 Rd, the cell containing p can be determined in O(logN) time.

The drawback of this strati�cation procedure is that, considering the

degree D as a variable, the number of cells and the running time be-

come doubly exponential in d with base D.

� The complement ofRdnB̂ (and ofRdnB) consists of at mostO((ND)d)

regions. The algorithms in Rieger [14, 15] can be adapted to determine
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these regions. However, such a region will in general contain O(N)

\components" of B̂ in its closure.

It would be interesting to reduce the D2d-term in the complexity of

Chazelle et al. [6] to something singly exponential | or to check whether the

cells produced by the singly exponential strati�cation procedure of Grigor'ev

and Vorobjov [9] contain a number of lower dimensional cells in their closure

which is independent of N . The 2-D examples shown in the next section are

based on the cylindrical algebraic decomposition of Collins.

The above decompositions of d-space into regions in the complement of

the bifurcation set can be used to solve the following proximity problems

exactly (i.e. without numerical errors). Given a point p 2 Rd and a set of

de�ning polynomials of X with rational coe�cients we would like to do the

following:

1. �nd the k nearest sets Xi;

2. �nd the nearest point in X ;

3. and, provided that X is compact, �nd the farthest point in X (and

hence the smallest sphere with centre p enclosing X).

For all three problems we �rst decompose Rd into regions which lie in a single

connected component in the complement of
S
Si;j (or B or B̂ | the latter

two possibilities yield �ner decompositions but with the same \leading term"

w.r.t. the asymptotic complexity in the number of regions). For problem

1 we store for each region the k nearest Xi (for any sample point in the

region), for problem 2 the nearest Xi and for problem 3 the farthest. This

completes the preprocessing.

Now assume that the coordinates of p are either rational or algebraic

numbers p = (�1; : : : ; �d) (where each �j is encoded by some minimal

polynomial mj(t) = 0 and some isolating interval with rational endpoints).

Problem 1 then boils down to �nding the region in the decomposition which

contains p. Using the algorithm in [6], this can be done in O(logn) time |

assuming that the degrees and coe�cient sizes of the de�ning polynomials

of X and of the minimal polynomials mj are bounded by some constant.

For problems 2 and 3 one �rst determines the region containing p, this

yields the Xi containing respectively the nearest and farthest point q in X

from p and takes O(logn) time. In general, the coordinates of q are alge-

braic numbers (�1; : : : ; �d), and a possible representation of the result of

problems 2 and 3 consists of minimal polynomials and isolating intervals

of the coordinates of q. Once we know the region containing p and hence

Xi 3 q, we can forget all Xj , j 6= i, so that the combinatorial time com-

plexity of determining q is obviously O(1). However, in terms of algebraic

time complexity, the computations described next are quite expensive. From
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the discussion in the earlier sections of this paper we know that the criti-

cal points of the distance-squared function from p to Xi are either the real

roots of df1i (p; x) = : : : = dfmi

i (p; x) = 0, where df
j
i 2 Q(�

1; : : : ; �d)[x], (for

parameterized mi-surfaces Xi) or of '
1
i (p; x) = : : : = 'd

i (p; x) = 0, where

'
j
i 2 Q(�

1; : : : ; �d)[x], (for zero-sets Xi). The real roots �1; : : : ; �s of these

systems are isolated and have algebraic coordinates whose minimal poly-

nomials and isolating intervals can be determined by computing a diagonal

basis of the systems and by isolating the roots of univariate polynomials with

algebraic coe�cients (using primitive element methods and the modi�ed Us-

penski algorithm). For parameterized surfaces Xi we have to determine the

root �j , 1 � j � s, for which the algebraic number fi(p; �j) is minimal

(problem 2) or maximal (problem 3); and the result is q = Xi(�j) whose

coordinates are algebraic numbers. For zero-sets Xi we have to determine

the �j for which k�j � pk2 is minimal or maximal; and the result is q = �j .

Remark. The exact symbolic computation of the nearest and farthest

point q 2 X from p could also be replaced by some approximate numerical

computation. For example, one could determine one sample point p0 for

each region in the complement of B (or B̂) and the corresponding nearest

or farthest point q0 2 X . After determining the region containing p (as

before), one knows that any path in this region joining its sample point p0

with p corresponds to a unique path in X joining the corresponding near-

est/farthest points q0 and q. This follows from the fact that the critical

points of the distance-squared function are isolated in the complement of

B and the continuity of the map which assigns to p its nearest/farthest

point in X (Proposition 2.4). Note that a decomposition into regions in

the complement of
S
Si;j , which is su�cient for the exact symbolic method

described above, would not have this property and would be too coarse for a

numerical procedure which traces the curve from q0 to q. The combinatorial

complexities of such a numerical method and the symbolic method above

are the same but the algebraic complexity of the curve tracing procedure,

using some su�ciently large step size, should be much smaller.

5 Some examples for arrangements in the plane

The �rst example in Figure 1 consists of a pair of parabolas X1(x) = (x; x2�
1), X2(x) = (x; 1 � x2). The sets Ê1 and Ê2 are cubic curves with a cusp

singularity, and it turns out that in this example Êi = Ei, i = 1; 2. The sets

Ŝ1 and Ŝ2 are vertical lines through the origin, and the sets Si are half-lines
\inside" the cusp curves Ei. The set Ŝ1;2 consists of a horizontal line through
the origin and the zero-set Z of an irreducible (overQ) degree 12 polynomial.

The set Z has three real components: a compact curve with 6 cusps and

a pair of non-singular curves passing through the intersection points of the

parabolas. Figure 2 shows a cylindrical algebraic decomposition of of the
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Figure 1: The set B̂ for a pair of parabolas.

plane into regions in the complement of R2nB̂[X1[X2, which are arranged

in \vertical cylinders". The cylinders are bounded by vertical tangent lines

or by vertical lines passing through singular points. The regions within a

cylinder I �R, where I is an interval on the x-axis, are separated by non-

intersecting function graphs over I .

Figure 3 shows the set Ŝ1;2 for a parabola X1(x) = (x; x2) and a point

X2 = (1; 2). Note that the Voronoi diagram of X1, X2 consists of just

two regions: the region cut out by Ŝ1;2 containing the point X2 and the

complement of the closure of this region. The curve Ŝ1;2 has 2 cusps, which
correspond to centres of osculating circles of X1 which pass through the

point X2. Figure 4, which also shows the set Ê1 which contains the evolute,

illustrates this fact: the cusps of Ŝ1;2 lie on the evolute (and hence are centres
of osculating circles).

6 Regions of Rd n B and Voronoi regions

Most works on Voronoi diagrams of (semi)-algebraic sets assume that the

degrees of these sets are bounded by some constant and study the complex-

ity of the Voronoi diagram as a function of n and d only. In the present

section we shall therefore assume that the degrees of the algebraic sets in an

arrangement are bounded above by some constant and compare the combi-

natorial complexities of Rd n B and of kth-order Voronoi diagrams of such

arrangements.
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Figure 2: Cylindrical algebraic decomposition of B̂ and a pair of parabolas.
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Figure 3: The set Ŝ1;2 for a parabola X1 and the point X2 = (1; 2) (marked

by a cross).
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Figure 4: The sets Ŝ1;2 and Ê1 for a parabola X1 and the point X2 = (1; 2).

Sharir and Agarwal show in Appendix 7.1 of [16] that the �rst-order

Voronoi diagram of n disjoint convex semi-algebraic sets of \constant de-

scription size" (i.e. de�ned by O(1) polynomial (in)equations of bounded

degree and coe�cient size) in d-space has O(nd+�) regions (for any � > 0).

An open problem, in this context, is to prove or disprove that there are

actually at most O(nd�1) such regions. In the plane (d = 2), and under

slightly di�erent hypotheses, such a sharper bound has been established in

the following work. Alt and Schwarzkopf [1] study the �rst-order Voronoi

diagram of n points and parameterized algebraic curve segments in the plane

which has O(n) regions and can be constructed by a randomized algorithm

in O(n logn) (expected) time. Their algorithm concentrates on the com-

binatorial aspect of the problem and assumes that the semi-algebraic level

bifurcation sets Si and Si;j (in our notation) can be determined by some

(numerical) polynomial equation solver. We have seen in the previous cou-

ple of sections that the bifurcation sets Si and Si;j can also be determined

symbolically (i.e. by exact methods).

In terms of combinatorial complexity there are at mostO(n2d) connected

regions of Rd n B, i.e. many more regions than Voronoi regions. Note, of

course, that the constancy of the number of critical points of a collection

of distance-squared functions and of the ordering of these critical points

(expressed by the invariance of the indices �1; : : : ; �c) within a region of

Rd n B is much more than is required for supporting e�cient nearest-point

queries. For such queries it su�ces to stratify Rd into connected regions in

which �1 is invariant (and, for certain numerical applications, p 7! �1;�1(p)
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is continuous).

Even the problems of �nding the k-nearest sets Xi (for 1 � k � n �
1) and of �nding the farthest point in X =

Sn
i=1Xi (assuming that X

is compact) do not require all the invariance properties of the regions of

Rd n B. Note, for example, that all critical points corresponding to saddle

points are irrelevant for such proximity problems. The classical Critical

Point Theorem says that the Euler characteristic of a m-manifold is equal

to
Pm

j=0(�1)
jIj , where Ij is the number of Morse critical points of some

generic distance-squared function on X of index j (i.e. whose matrix of

second derivatives has j negative eigenvalues) | the critical points of index

0 and m are minima and maxima, all other critical points are saddle points.

However, in terms of combinatorial complexity, the number of saddle-points

of some distance-squared function on X is O(n). The di�erence in the

combinatorial complexities of Rd n B and of the �rst-order (and also the

higher-order) Voronoi diagram | O(n2d) versus O(nd+�) | has other causes

(see below).

First, we �x some notation. Let Vk denote the boundary of the regions

of the kth-order Voronoi diagram and set Y :=
S
1�i<j�n Si;j . Denote the

locus of centres of r-tangent spheres of X by L(Ar
�1) (note that the distance-

squared function from such a centre to X has r A�1-singularities) and the

locus of centres of s distinct, at least bi-tangent spheres of X by L(sA
�2
�1),

and let N (Y ) denote the set of non-immersive points of Y . The singular

locus of Y consists of the following components:

Sing(Y ) := L(A�3�1) [ L(�2A
�2
�1)[ N (Y ):

Next, we de�ne subsets Yk � Vk of Y as follows. Let B(Y ) denote the set

of connected (d� 1)-dimensional components (\branches") of Y n L(A�3�1).

Let L be the set of strata of the following strati�cation of L(�2A
�2
�1): start

with the smallest s > 1 such that L(sA
�2
�1) is non-empty and take as strata

the connected components of L(sA
�2
�1) (note: for a generic arrangement

X , s = d yields point-strata), then, for s � 1 � i � 2, take as strata

the connected components of L(iA
�2
�1) n L(i+1A

�2
�1). Below, we shall impose

certain conditions on X which ensure that the strati�cation L enjoys certain

desirable properties | without such conditions the strata may not even be

manifolds. For any l 2 L, let lk denote the set of branches b 2 B(Y ) passing

through l which correspond to the k smallest bi-tangent spheres with centre

in l; for supfi : l � L(iA
�2
�1)g < k the set lk contains all i branches through

l. We can now de�ne

Y n Yk := fb 2 B(Y ) : 9l 2 L : l � clb; b =2 lkg:

The following result sheds some light on the di�erence in the combina-

torial complexities of the sets of regions of Rd n B and of kth-order Voronoi
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regions.

6.1 Proposition. For any arrangement of parameterized or implicitely

de�ned algebraic sets (whose degrees are bounded by some constant) in d-

space consisting of n elements of any positive codimension the following

holds:

(i) Vk � Yk � Y � B, 1 � k � n� 1.

(ii) Rd n Yk has at most O(max(nd+1;min(n2k; n2d))) connected regions.

(iii) The combinatorial complexity of L(dA
�2
�1) is

Qd
j=1

�
n
2

�
� O(n2d) and

represents the \leading term" in the combinatorial complexity of RdnB.

Proof. (i) simply follows from the de�nitions of these sets. For the

proof of (ii) and (iii) it is convenient to distinguish \generic" and \non-

generic" arrangements X , which are de�ned as follows. Let X be the space

of arrangements X � Rd of n zero-sets Xi of codimension ci and maximal

degree � (or of n mi-surfaces Xi parameterized by polynomials of degree

� �). X can be identi�ed with the �nite dimensional space of coe�cients ofPn
i=1 ci polynomials in d variables of degree � � (or of nd polynomials inPn
i=1mi variables of degree � �). Now de�ne the following sets

W1 := fX 2 X : 9r � 2 : dimL(Ar
�1) > d� r+ 1g

and

W2 := fX 2 X : 9s � 1 : dimL(sA
�2
�1) > d� sg:

(Note that X denotes both a subset of Rd as well as a point of X , but
the meaning of X should be clear from the context.) One shows, using the

de�ning equations of the sets L(�), that W1 [W2 is a Zariski closed subset

of X . We shall therefore say that an element X in X nW1 [W2 is generic

and one in W1 [W2 non-generic.

First, assume that X is generic. Consider the following strati�cation

of d-space. As 0-dimensional strata we either take L(Ad+1
�1 ) [ L(dA

�2
�1) (for

k � d) or just L(Ad+1
�1 ) (for k < d). The strata of dimension 1 � d�i � d�2

are either

L(Ai+1
�1 ) [ L(iA

�2
�1) n L(A

i+2
�1 ) [ L(i+1A

�2
�1)

(for k � i) or

L(Ai+1
�1 ) n L(A

i+2
�1 )
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(for k < i). Finally, we take either Yk n L(A
3
�1) [ L(2A

�2
�1) (for k � 2)

or Yk n L(A3
�1) (for k = 1) as (d � 1)-dimensional strata, and Rd n Yk as

d-dimensional strata. Letting ei denote the number of i-dimensional strata

of this strati�cation, we want to estimate ed. The combinatorial complex-

ity of L(Ar
�1) is

�
n
r

�
and that of L(sA

�2
�1) is

Qs
i=1

�
n
2

�
� O(n2s). Taking a

1-point compacti�cation Sd = Rd[ f1g and considering the induced strat-

i�cation in the d-sphere, we see that the alternating sum of the ei is equal

to the Euler characteristic �(Sd) = 1 + (�1)d. The combinatorial com-

plexities of the sets L(�) above imply that, for this induced strati�cation,

ei � O(max(nd+1;min(n2k; n2d))) for 0 � i � d � 1. It now follows that ed
is bounded above by O(max(nd+1;min(n2k; n2d))), which implies statement

(ii). Under the hypothesis that X is generic, there are no points in the bi-

furcation set B which are centres of more than d distinct bi-tangent spheres

of X . One checks that L(dA
�2
�1) is a subset of strata of B having the highest

combinatorial complexity, namely O(n2d), which implies (iii).

For non-generic arrangementsX 2 W1[W2, we consider a \linear defor-

mation" Xt, t 2 (��;+�), of X = X0 such that X0 is the only non-generic

element | linear in the sense that t 7! Xt de�nes a line in the space of

coe�cients which can be identi�ed with X . (Such a deformation can be

obtained, for example, by constructing a strati�cation of the semi-algebraic

set W1 [W2 and by restricting a line in the normal space of the stratum

containing X to some su�ciently small open neighborhood.) Consider the

union U of any of the semi-algebraic sets Ut = Bt or Yt or (Yk)t associated
to Xt, U is a semi-algebraic subset of Rd � (��;+�). We claim that the

combinatorial complexity of the number of regions in the complement of Ut

is lower semi-continuous in t, which implies that the bounds in the generic

case (t 6= 0) are also valid in the non-generic case (t = 0). This claim follows

from the following argument. Let � > 0 be small enough such that U is

transverse to all hyperplanes t = c, for any constant jcj < �, except t = 0

(U is a, in general, singular semi-algebraic set, and transverse means that

the hyperplane in question is transverse to all the strata of a suitable strat-

i�cation of U , e.g. a strati�cation satisfying the Whitney condition (b)).

So the number of regions in the complement of Ut are locally constant for

t 2 (��; 0) and t 2 (0; �), denote these numbers by r� and r+ respectively.

Setting H� := Rd� (��; 0), the number of regions of H� n U \H� is equal

to r�. Finally, note that the number of regions of Rd n U0 is less than or

equal to the number of regions of H� n U \ H� (the former regions being

contained in the closures of the latter). 2

Remark. In the case where k is bounded by some constant (independent

of d), the bound in 6.1 for the number of regions of Rd n Yk is unlikely to

yield a reasonably tight bound for the number of kth-order Voronoi regions.

The bounds in [1] and in [16] for k = 1 (and slightly di�erent \sites" in the
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arrangement X) suggest that the nd+1-term could be lowered to nd or even

nd�1. The obstruction to an O(nd) bound for the number of regions in the

complement of Y1 (and hence of V1 � Y1) is the combinatorial complexity

of L(Ad+1
�1 ), and to an O(nd�1)-bound that of both L(Ad+1

�1 ) and L(Ad
�1).

Note, for example, that

L(Ad+1
2m ) [ fp 2 L(Ad+1

2m+1) : X \B(p) 6= ;g 6� V1;

where B(p) denotes the interior of the (d+1)-tangent sphere with centre p. It

would be good to know whether the combinatorial complexity of L(Ad+1
�1 )\V1

is of order nd.
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