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Abstract

Let S be a set of n points in IRd and let t � � be a real number� A t�spanner
for S is a graph having the points of S as its vertices such that for any pair p� q
of points there is a path between them of length at most t times the Euclidean
distance between p and q�

An e�cient implementation of a greedy algorithm is given that constructs a
t�spanner having bounded degree such that the total length of all its edges is
bounded by O�logn� times the length of a minimum spanning tree for S� The
algorithm has running time O�n logd n��

Applying recent results of Das� Narasimhan and Salowe to this t�spanner
gives an O�n logd n� time algorithm for constructing a t�spanner having bounded
degree and whose total edge length is proportional to the length of a minimum
spanning tree for S� Previously� no o�n�� time algorithms were known for con�
structing a t�spanner of bounded degree�

In the 	nal part of the paper� an application to the problem of distance
enumeration is given�

� Introduction

Given a set S of n points in IRd and a real number t � �� a t�spanner for S is a graph
having the points of S as its vertices such that for any pair p� q of points there is a path
between them having total length at most t times the Euclidean distance between p
and q�
Much research has been recently done on the problem of e�ciently constructing

spanners that satisfy additional constraints� Quantities that are of interest are the
number of edges in the spanner� the maximumdegree� and the weight� which is de�ned
as the total length of all edges� It is clear that each t�spanner must have at least n� �
edges� Also� the weight must be at least equal to the weight of a minimum spanning
tree for S� We denote the latter by wt�MST 	�
We give a brief overview of known results on spanner constructions� See also
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degree weight time reference

O��	 � O�n� log n	 
��� ��

O��	 O�wt�MST 		 O�n� log n	 
�� �� �

� O�wt�MST 		 O�n log� n	 
�


O��	 O�wt�MST 		 O�n logd n	 this paper

Table �� Results for constructing a t�spanner for a set of n points in IRd� All constant
factors depend on t and d� A � indicates that the quantity can be very large�

Feder and Nisan gave a simpleO�n� log n	 time algorithm for constructing spanners
with bounded degree� �See 
��� ��
�	 However� these spanners can have a very large
weight�
Chandra et al�
�
 present a path greedy algorithm for constructing a spanner with

bounded degree� Recent results of Das et al� 
�� �
 prove that this spanner has weight
O�wt�MST 		� The algorithm of 
�
 has running time O�n� log n	�
Das and Narasimhan 
�
 present a fast implementation of a variant of the path

greedy algorithm using graph clustering techniques that runs in O�n log� n	 time�
Again applying the results of 
�� �
 shows that the resulting spanner has weight
O�wt�MST 		� Its degree� however� can be very large�
In 
��
� it is shown that there exists a t such that a t�spanner of degree four can be

constructed� In 
�
� the analogous result is proved for degree�� spanners� Hence� there
has been much interest in spanners of small degree�
In this paper� we present an O�n logd n	 time algorithm for constructing a bounded

degree spanner having weight O�wt�MST 		� The importance of this result lies in the
fact that this is the �rst algorithm that constructs such a spanner in o�n�	 time� In
fact� it is even the �rst o�n�	 time algorithm for constructing a spanner of bounded
degree�
A set of directed edges is said to possess the gap property if the sources and sinks of

any two edges in the set are separated by a distance at least proportional to the length
of the shorter of the two edges� Chandra et al�
�
 have shown that if the edges of a graph
can be partitioned into a constant number of subsets such that within each subset the
gap property holds� then the weight of the graph is bounded by O�wt�MST 	 log n	
and it has bounded degree�
The idea of the path greedy algorithm is to consider pairs of points in order of

increasing distance� adding an edge �p� q	 if and only if the partial spanner built until
then does not already contain a path between p and q of length at most t times
the distance between p and q� It is obvious that the resulting graph is a t�spanner�
Additionally� Chandra et al� prove that the edges in this spanner can be partitioned
into a constant number of subsets such that each subset satis�es the gap property�
Hence� it has bounded degree and weight O�wt�MST 	 log n	�
In this paper we show that we can in some sense reverse the emphasis of this greedy

strategy� We consider pairs of points in order of increasing distance� adding an edge
�p� q	 if and only if it does not violate the gap property� More precisely� the edges
of the partial spanner built until then can be partitioned into a constant number of
subsets such that within each subset the gap property holds� �We call this the gap
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greedy strategy	� It is obvious that the resulting graph has weight O�wt�MST 	 log n	
and bounded degree� We are able to show that this graph is also a t�spanner�
The major advantage of the gap greedy approach is that we can give an e�cient

implementation for a minor variant of it that runs in O�n logd n	 time� One of the
main ideas is that we do not have to consider the pairs in increasing order of their
exact distance� It su�ces to consider them in increasing order of their approximate
distance� If an edge �p� q	 is added to the spanner� then several points become �for�
bidden� as source or destination end points for later edges� Using range trees� we
can implicitly maintain the non�forbidden points and their approximate distances� In
each iteration� we then take a pair p� q of non�forbidden points having �minimal ap�
proximate� distance� add this pair as an edge to the graph� determine the points that
become forbidden and remove the approximate distances they induce from the data
structure�
Hence� inO�n logd n	 time� we construct a spanner of bounded degree having weight

O�wt�MST 	 log n	� By applying the results of 
�
 to this spanner� we get an O�n logd n	
time algorithm for constructing a spanner of bounded degree with weightO�wt�MST 		�
In the �nal part of this paper we show how spanners can be used to enumerate

distances e�ciently� More precisely� given the spanner that results from our algorithm�
we can enumerate the k smallest distances in the set S in sorted order� in time O�n�
k log k	� The value of k need not be known at the start of the enumeration� We show
similar results for enumerating approximate distances�
For the problem of enumerating the k smallest distances� the following was known�

Salowe 
��
 and Lenhof and Smid 
�
 achieve O�n log n � k	 time for any dimension�
but in both algorithms� the value of k must be known in advance and the distances are
not enumerated in sorted order� In the plane� Dickerson et al�
�
 show that given the
Delaunay triangulation� the k smallest distances can be enumerated in O�n� k log k	
time� In this algorithm� the value of k need not be known in advance and the distances
are enumerated in sorted order�
Hence our spanner can be regarded as an e�cient data structure that can be used

for distance enumeration�
The rest of this paper is organized as follows� In Section �� we de�ne the basic

geometric notions that are used in the paper and prove the main lemmas that we will
use in order to show that a graph is a spanner� In Section �� we give the simple gap
greedy algorithm� In Section �� we introduce cones and de�ne approximate distance
functions based on them� Using these� we give a variant of the algorithm of Section ��
In Section �� we give the e�cient implementation of this variant� Section � gives the
application of bounded degree spanners to the problem of distance enumeration� In
Section �� we conclude with some remarks and open problems�

� Preliminaries

In this section� we introduce the basic terminology and recall and prove some facts
that will be used in the rest of the paper�
Let S be a set of n points in IRd� We will consider graphs having the points of S

as their vertices� For convenience� we only consider directed graphs� The weight of an
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edge �p� q	 is de�ned as the Euclidean distance between p and q� The weight of a path
in a graph is de�ned as the sum of the weights of all edges on the path� If �p� q	 is an
edge� then p is called its source and q is called its sink�
The Euclidean distance between the points p and q in IRd is denoted by jpqj� We

denote by jpqj� the L��distance between p and q� i�e�� jpqj� � max��i�d jpi � qij�
Let t � �� A graph G � �S�E	 is called a t�spanner for S if for any pair p� q of

points of S there is a path in G from p to q having weight at most t times the Euclidean
distance between p and q� Any path satisfying this condition is called a t�spanner path
from p to q�

Remark � It is not a restriction to consider only directed graphs� Any directed t�
spanner can be converted into an undirected t�spanner by making the edges undirected�
Similarly� given an undirected t�spanner� we get a directed t�spanner by replacing each
undirected edge fp� qg by a pair �p� q	 and �q� p	 of directed edges�
Given a t�spanner G � �S�E	 and a point p of S� we de�ne the degree of p as the

sum of its in�degree and its out�degree in G� De�ne the weight of a set of edges as the
sum of the weights of all its elements� The weight of a t�spanner is the weight of its
edge set�
In order to estimate the weight of a t�spanner� Chandra et al�
�
 introduced the

gap property� Let w � �� A set E of directed edges satis�es the w�gap property if for
any two edges �p� q	 and �r� s	 in E� we have

min�jprj� jqsj	 � w �min�jpqj� jrsj	�
i�e�� the sources and sinks of any two edges are separated by at least w times the weight
of the shorter edge� Clearly� this implies that no two edges of E share a source� and
no two edges share a sink�

Lemma � �Chandra et al����� Let E be a set of directed edges that satis�es the w�
gap property� If w � �� then no two edges share a source� and no two edges share a
sink� Further� if w � �� then the weight of E is O����w	 log n	 times the weight of a
minimum spanning tree for S�

Let p and q be points in IRd� both not equal to the origin �� and let H be the
two�dimensional plane that contains p� q and �� �If p � q� then we take for H any

plane that contains p and ��	 Then the vectors
��
�p and

��
�q are both contained in H�

The angle between these vectors� which is a real number in the interval 
� � �
� is
denoted by angle �p� q	�
The following lemma enables us to prove that a graph is a t�spanner� Its proof is

closely related to the proof of Lemma ��� in Chandra et al�
�
� Intuitively the lemma
says that a graph is a spanner if for any edge e missing from the graph there is a
similarly�directed edge e� close by �relative to the length of e�	 with length not much
greater than e�

Lemma � Let t� � and w be real numbers such that � � � � ���� � � w � �cos � �
sin �	�� and t � ���cos ��sin ���w	� Let S be a set of points in IRd and let G � �S�E	
be a directed graph such that the following holds� For any two points p and q of S there
is an edge �r� s	 � E� such that
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�� angle �q � p� s� r	 � �� jrsj � jpqj� cos � and jprj � wjrsj�
�� or angle �p� q� r � s	 � �� jrsj � jpqj� cos � and jqsj � wjrsj�

Then the graph G is a t�spanner for S�

Proof	 We use induction on the rank of the interpoint distance� Let p� q be any pair
of points in S� If p � q� then there is nothing to show� So assume p �� q� Let �r� s	 be
the edge guaranteed by the lemma� We will prove that �i	 jprj � jpqj� �ii	 jsqj � jpqj�
and �iii	 there is a t�spanner path from p to q�
Assume that edge �r� s	 satis�es condition �� �The case that condition �� holds can

be treated by a symmetric argument�	 Since jrsj � jpqj� cos � and � � � � ���� we
have jrsj � jpqj � p�� Also� since w � ��� and jprj � wjrsj� we have jprj � jrsj���
Combining this gives jprj � jpqj � p��� � jpqj� which proves �i	�
To prove �ii	 and �iii	 we need to consider two cases� Let l be the ray that emanates

from r and that has the same direction as the vector ��pq � Let v be the point on l such
that jrvj � jpqj� Note that jprj � jvqj� Let u be the orthogonal projection of s onto
l� Let H be the two�dimensional plane that contains the ray l and the point s� Then
the points r� s� u and v are all contained in H� Let 	 be the angle between ��rs and
l� Then 	 � angle�q � p� s � r	 � �� sin	 � jsuj�jrsj and cos	 � jruj�jrsj� The two
cases depend on whether jruj � jrvj or jruj � jrvj� �See Figure ��	
Case �	 jruj � jrvj�
To show that jsqj � jpqj� we apply the triangle inequality and simplify�

jsqj � jsuj� juvj� jvqj
� jsuj� jrvj � jruj� jvqj
� jsuj� jpqj � jruj� jprj
� jrsj sin	 � jpqj � jrsj cos	 � wjrsj
� jrsj sin � � jpqj � jrsj cos � � wjrsj
� jpqj � jrsj�cos � � sin � � w	
 ��	

Since w � �cos � � sin �	��� we conclude that jsqj � jpqj� which proves �ii	�
It remains to prove �iii	� By the induction hypothesis� there are t�spanner paths

from p to r and from s to q� Consider the path that starts in p� takes the t�spanner
path to r� then takes the edge to s� and �nally takes the t�spanner path from s to
q� The weight W of this path is at most equal to tjprj � jrsj � tjsqj� Using ��	� the
assumptions of condition �� and simplifying we get

W � twjrsj� jrsj� tjpqj � tjrsj�cos � � sin � � w	

� tjpqj � jrsj�t�cos � � sin � � �w	� �	
� tjpqj


Hence the graph G contains a t�spanner path from p to q�
Case �	 jruj � jrvj�
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Figure �� Cases � and � in Lemma ��

As in Case �� we apply the triangle inequality and simplify�

jsqj � jsuj� juvj� jvqj
� jsuj� jruj � jrvj� jvqj
� jrsj sin	� jrsj cos	� jpqj� jprj
� jrsj�sin � � cos � � w	 � jpqj
� jrsj�sin � � w	 ��	

� jpqj
cos �

�
sin � �

cos � � sin �
�

�

�
�

�
jpqj�� � tan �	


Since � � � � ���� we have tan � � �� Therefore� jsqj � jpqj� which proves �ii	�
As in Case �� we prove that the path formed by combining the t�spanner path from

p to r� followed by the edge �r� s	� followed by the t�spanner path from s to q� is a
t�spanner path from p to q� This will prove �iii	 and complete the proof of the lemma�
Let W denote the weight of this path� Then W � tjprj � jrsj � tjsqj� Using ��	� the
assumptions of condition �� and simplifying we get

W � twjrsj� jrsj� tjrsj�sin � � w	

� tjpqj � tjpqj� jrsj�t�sin � � �w	 � �	
� tjpqj � tjrsj cos � � jrsj�t�sin � � �w	 � �	
� tjpqj � jrsj�t�cos � � sin � � �w	 � �	
� tjpqj�

i�e�� there is a t�spanner path in G from p to q�

Remark � Given t � �� let w and � be assigned any values consistent with the
expressions � � � � ���� � � w � �cos �� sin �	�� and t � ���cos �� sin �� �w	� The
undirected spanner built by the path greedy algorithm �see 
�
	 may be regarded as a
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directed spanner as indicated in Remark �� It has the following property� Given any
two edges �p� q	 and �r� s	 in the spanner� if the angle between them is at most �� then
they satisfy the w�gap property�
To show that this is true� assume w�l�o�g� that edge �r� s	 was added �rst to the

spanner� Then jrsj � jpqj� For the sake of contradiction� assume that the edges
�p� q	 and �r� s	 do not satisfy the w�gap property� Then jprj � wjrsj or jqsj � wjrsj�
Assume �rst that jprj � wjrsj� From the proof of Lemma �� we know that jprj � jpqj
and jsqj � jpqj� Consider the moment when �p� q	 is added to the spanner� Then the
pairs �p� r	 and �s� q	 have been tested already� so there are t�spanner paths from p to
r and from s to q� It follows from the proof of Lemma � that there must already be a
t�spanner path from p to q and� therefore� edge �p� q	 would not be added� The case
jqsj � wjrsj can be treated in a similar way�
Thus the path greedy spanner possesses the w�gap property for any pair of edges

with angle at most �� such that w and � are consistent with the above expressions�

� A greedy algorithm

In this section� we give a simple greedy algorithm for computing a spanner with
bounded degree and low weight� In later sections� we modify this algorithm such
that it can be implemented e�ciently�
Let S be a set of n points in IRd� The following algorithm gap greedy�S� �� w	

constructs a spanner for S� If w � �� then the edges of this spanner can be partitioned
into a constant number of subsets� such that within each subset the w�gap property
holds� This will guarantee that the spanner has bounded degree and low weight�
The algorithm considers all ordered pairs �p� q	 of points in increasing order of their

distances� The edge �p� q	 is added to the graph i� there is no edge �r� s	 in the current
graph such that �p� q	 and �r� s	 have roughly the same direction and the sources p and
r are close to each other� or �q� p	 and �s� r	 have roughly the same direction and the
sources q and s are close to each other�
A formal description of our algorithm is given in Figure �� We remark that for

w � �� this is exactly Feder and Nisan�s algorithm� �See 
��� ��
�	

Lemma 
 Algorithm gap greedy�S� �� w	 computes a t�spanner for t � ���cos � �
sin � � �w	�

Proof	 Consider the edge set E that is constructed by the algorithm� We prove that
this set satis�es the conditions of Lemma �� This will prove that the graph �S�E	 is
a t�spanner�
Let �p� q	 be any ordered pair of points of S� If �p� q	 is an edge of E� then the

conditions of Lemma � hold with r � p and s � q� Assume that �p� q	 is not contained
in E� Consider the iteration where the pair �p� q	 is inspected� We did not add �p� q	
to E because this set contained an edge �r� s	 such that �i	 angle�q� p� s� r	 � � and
jprj � wjrsj� or �ii	 angle �p � q� r � s	 � � and jqsj � wjrsj� Since �r� s	 is contained
in E at the moment when we inspect the pair �p� q	� we must have jrsj � jpqj� This
proves that jrsj � jpqj� cos �� Hence condition �� or �� of Lemma � is satis�ed�
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Algorithm gap greedy�S� �� w	
�� S is a set of n points in IRd� � � � � ���� � � w � �cos � � sin �	�� �	
begin

sort the �
�
n

�

�
ordered pairs of points according to their distances �ties are broken

arbitrarily	 and store them in a list L�
E �� ��
for all ordered pairs �p� q	 � L �� visit pairs in sorted order �	
do add �� true�

for each edge �r� s	 � E
do if angle�q � p� s� r	 � �

then add �� add 	 �jprj � wjrsj	
��
if angle�p � q� r� s	 � �
then add �� add 	 �jqsj � wjrsj	
�

od�
if add � true then E �� E 
 f�p� q	g �

od�
output the set E
end

Figure �� The greedy algorithm�
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Lemma � If w � �� then algorithm gap greedy�S� �� w	 computes a spanner of degree
at most O��c��	d��	� for a suitable constant c� Further� if w � �� then the weight
of this spanner is bounded by O��c��	d�����w	 log n	 times the weight of a minimum
spanning tree for S�

Proof	 Consider any two edges �p� q	 and �r� s	 of the spanner �S�E	 that is con�
structed by the algorithm� Assume that angle�q � p� s� r	 � �� Then also angle�p �
q� r � s	 � �� If �r� s	 was added to E before �p� q	 then it follows from our algorithm
that jrsj � jpqj� jprj � wjrsj and jqsj � wjrsj� If �p� q	 was added before �r� s	�
then we have jpqj � jrsj� jrpj � wjpqj and jsqj � wjpqj� Therefore� we must have
jprj � w � min�jpqj� jrsj	 and jqsj � w � min�jpqj� jrsj	� i�e�� the w�gap property holds
for the edges �p� q	 and �r� s	�
Consider a collection of O��c��	d��	 cones having their apex at the origin� one

having angular diameter at most �� such that the entire collection covers IRd� for a
suitable constant c� �In the next section� these notions are de�ned precisely�	 Number
these cones C�� C�� 
 
 
 � Cm� De�ne Ei �� f�p� q	 � E � q � p � Cig� � � i � m� Then
for each �xed i� the edges of Ei satisfy the w�gap property�
Lemma � implies that� if w � �� no two edges of Ei share a source� and no two

edges share a sink� Since the sets Ei� � � i � m� partition E� it follows that each point
of S has degree at most �m � O��c��	d��	� Also� if w � �� then Lemma � implies
that the total weight of Ei is bounded by ����w	 log n	 times the weight of a minimum
spanning tree for S� This proves that the total weight of the spanner is bounded by
��c��	d�����w	 log n	 times the weight of a minimum spanning tree for S�

We brie�y examine the question of what sorts of tradeo�s are possible between the
three quantities of interest for spanners� namely� the spanner constant t� the degree�
and the weight bound� For algorithm gap greedy� we can assign any values to � and
w such that � � � � ��� and � � w � �cos � � sin �	��� Assume that t � � is given�
If we want the best bound on the degree� then we must choose the largest possible
cone angle� Thus we must choose � such that t � ���cos � � sin �	� In this case� since
w � �� the weight bound can grow arbitrarily bad�
More interesting is the case of how to choose � and w to achieve the best weight

bound� Assume that we want a �� � �	�spanner where � is a small constant� We saw
in Lemma � that for w � �� the spanner produced by algorithm gap greedy�S� �� w	
has weight O��c��	d�����w	 log n	 times the weight of a minimum spanning tree for S�
Hence� in order to minimize the weight� we have to maximize �d��w� Since t � �� � �
���cos � � sin � � �w	� we get

w �
�

�

�
cos � � sin � � �

� � �

�



If � is small� then � will also be small� and we can approximate the expression for w
by

w � �

�
��� � � ��� �		

� �

�
��� �	
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Therefore� we have to maximize �d���� � �	� Di�erentiating and equating to zero
we �nd that this expression is maximum for � � �� � ��d	�� This gives w � ����d	�
The corresponding ��� �	�spanner has a weight that is bounded by C � log n times the
weight of a minimum spanning tree for S� where

C � O
�
�c��	d�����w	

�
� O

�
cd��
�d

�
��� ��d	��d���d

�
� O�dcd����d	


Since algorithm gap greedy inspects all pairs �p� q	 of points explicitly� its running
time is ��n�	� In the next section� we modify the algorithm� As we will see� the modi�
�ed version can be implemented such that its running time is bounded by O�n logd n	�

� Towards an e�cient implementation

We start by introducing the notion of cones� A �simplicial	 cone is the intersection of
d halfspaces in IRd� The intersection of the hyperplanes that bound these halfspaces is
called the apex of the cone� We always assume that a cone is closed and that its apex
is a point� In the plane� a cone having its apex at the point p is a wedge bounded by
two rays emanating from p that make an angle at most equal to ��
Let C be any cone in IRd having its apex at the point p� The angular diameter of

C is de�ned as the maximum value of angle�q� p� r� p	� where q and r range over all
points of C � IRd� For d � �� this is exactly the angle between the two rays that form
the boundary of C�
Let � be a �xed real number such that � � � � ���� Let C be a collection of cones

such that

�� each cone has its apex at the origin�

�� each cone has angular diameter at most ��

�� all cones cover IRd�

In 
��
� it is shown how such a collection C� consisting of O��c��	d��	 cones for a
suitable constant c� can be obtained� In the plane and for � � ��k� we just rotate the
positive x�axis over angles of i ��� � � i � �k� This gives �k rays� Each wedge between
two successive rays de�nes one cone of C�
For each cone C � C� let lC be a �xed ray that emanates from the origin and that

is contained in C�

After having introduced the terminology� we can modify algorithm gap greedy�
There are three major modi�cations� Consider again the formal description of the
algorithm� First� we replace the condition �angle �q � p� s � r	 � �� by �q � p and
s � r are contained in the same cone of C�� Clearly� the latter condition implies the
�rst one�
Second� we replace the condition �jprj � wjrsj� by �jprj� � �w�

p
d	jrsj�� i�e�� for

the pair p� r� we switch from the Euclidean metric to the L��metric� Note that all
points r for which jprj� � � are contained in the d�dimensional axes�parallel cube

��



centered at p having sides of length ��� Using range trees� we can �nd such points r
e�ciently� �Finding all points r such that jprj � �� takes much more time�	
Third� instead of inspecting all pairs in increasing order of their distances� we

inspect them in order of their approximate distances� to be de�ned below� As we will
see� in this way we do not have to inspect all pairs explicitly�

Let C be any cone of C and let p and q be two points in IRd� Let Cp �� C � p ��
fx� p � x � Cg� i�e�� Cp is the cone obtained by translating C such that its apex is at
p� Similarly� let lC�p �� lC � p� Then we de�ne

�C�p� q	 ��

��	
�

Euclidean distance between p and
the orthogonal projection of q onto lC�p if q � Cp


 if q �� Cp�

	

q

lC�pp

�C�p� q	

Figure �� The approximate distance �C�p� q	�

See Figure �� Note that �C is not a metric� The following lemma says that �C�p� q	
is a good approximation for the Euclidean distance between p and q� if q � Cp�

Lemma 
 Let p and q be points in IRd� If q � Cp� then jpqj cos � � �C�p� q	 � jpqj�

Proof	 Assume that q � Cp� Let H be the two�dimensional plane that contains the

point q and the ray lC�p� Note that H contains the vector
��pq � Let 	 be the angle

between lC�p and
��pq � �See Figure ��	 Then� � � 	 � � and cos	 � �C�p� q	�jpqj�

Hence� �C�p� q	 � jpqj cos	 � jpqj cos � and �C�p� q	 � jpqj cos	 � jpqj�

��



Algorithm gap greedy��S� �� w	
�� S is a set of n points in IRd� � � � � ���� � � w � �cos � � sin �	�� �	
begin
for each cone C
do for each r � S and s � S do dist�r� s	 �� �C�r� s	 od�

EC �� ��
while there are r �� s such that dist�r� s	 �

do choose r �� s such that dist�r� s	 is minimal�

EC �� EC 
 f�r� s	g�
for each p � S such that jprj� � �w�pd	jrsj
do for each q � S do dist�p� q	 ��
 od
od�

for each q � S such that jqsj� � �w�pd	jrsj
do for each p � S do dist�p� q	 ��
 od
od

od
od�
output the set E ��

S
C EC

end

Figure �� Towards an e�cient implementation of the greedy algorithm�

Now we can give the modi�ed algorithm� For each �xed cone C� we compute a set
EC of edges �p� q	 such that q � p � C� The union of all these sets will form the edge
set of our �nal spanner�
Consider a cone C� We �nd the pair �r� s	 of distinct points for which �C�r� s	 is

minimal and add the edge �r� s	 to EC� Having added the edge �r� s	� we do not want
to add edges �p� q	 such that q � p � C and the distance between p and r is small�
That is� after having added �r� s	� all points p that are �close� to r should not occur as
sources of edges that are added later� Similarly� after having added the edge �r� s	� all
points q that are �close� to s should not occur as sinks of edges that are added later�
That is� the addition of the edge �r� s	 causes certain points to become �forbidden�

as a source or a sink�
In the next iteration� we �nd the pair �r�� s�	 of non�forbidden points for which

�C�r�� s�	 is minimal and proceed in the same way�
The formal algorithm is given in Figure �� Consider the while�loop of this algo�

rithm� If the edge �r� s	 is added to EC � then the value of dist�r� s	 is set to 
 during
the same iteration of this loop� That is� during each iteration� the number of pairs p� q
for which dist�p� q	 �
 strictly decreases� This proves that the while�loop terminates�
Lemma � Algorithm gap greedy ��S� �� w	 computes a t�spanner for t � ���cos � �
sin � � �w	�
Proof	 The proof is similar to that of Lemma �� Consider the set E of edges that
is computed by the algorithm� Let �p� q	 be any ordered pair of points of S� If

��



�p� q	 � E� then the conditions of Lemma � hold� So� assume that �p� q	 is not contained
in E� Let C be a cone such that q � Cp� Consider the iteration during which
the edge set EC is constructed� At the start of this iteration� dist�p� q	 has a �nite
value� Since the edge �p� q	 is not added to EC � the value of dist�p� q	 changes to

 during some iteration of the while�loop� Let �r� s	 be the edge that is added to
EC during that iteration� At the start of it� we have dist�r� s	 � dist�p� q	 � 
�
dist�r� s	 � �C�r� s	 and dist�p� q	 � �C�p� q	� Moreover� we have jprj� � �w�pd	jrsj
or jqsj� � �w�pd	jrsj� We consider these two cases separately�
Case �	 jprj� � �w�pd	jrsj�
Then� jprj � p

d � jprj� � wjrsj� Since s � r and q � p are both contained in
C� we have angle �q � p� s � r	 � �� By Lemma �� we have jrsj � �C�r� s	� cos � and
�C�p� q	 � jpqj� Since �C�r� s	 � �C�p� q	� we conclude that jrsj � jpqj� cos �� Hence�
condition �� of Lemma � holds for the pair �p� q	�
Case �	 jqsj� � �w�pd	jrsj�
It follows in the same way as in Case � that jqsj � wjrsj� angle�p � q� r � s	 � �

and jrsj � jpqj� cos �� Hence� condition �� of Lemma � holds for the pair �p� q	�
To summarize� we have shown that for each pair �p� q	 of points one of the conditions

of Lemma � is satis�ed� This proves that the graph �S�E	 is a t�spanner�

Lemma � If w � �� then algorithm gap greedy��S� �� w	 computes a spanner of degree
at most O��c��	d��	� for a suitable constant c� Further� if w � �� then the weight
of this spanner is bounded by O��c��	d�����w	 log n	 times the weight of a minimum
spanning tree for S�

Proof	 Consider any cone C� We will prove that the edges of EC satisfy the �w�
p
d	�

gap property� Then� the claim follows from Lemma ��
Consider any two edges �p� q	 and �r� s	 of EC � Assume w�l�o�g� that �r� s	 was added

to EC before �p� q	� Then we must have jprj� � �w�
p
d	jrsj and jqsj� � �w�

p
d	jrsj�

�Otherwise� the algorithm would have set dist�p� q	 �� 
� Therefore� the pair �p� q	
would never have been chosen as a pair with minimal and �nite dist��� �	�value and�
hence� the edge �p� q	 would never have been added to EC�	 But this implies that

jprj � jprj� � �w�
p
d	jrsj � �w�

p
d	 �min�jpqj� jrsj	�

and
jqsj � jqsj� � �w�

p
d	jrsj � �w�

p
d	 �min�jpqj� jrsj	�

i�e�� the �w�
p
d	�gap property holds�

� An e�cient implementation

In this section� we show how to implement algorithm gap greedy � such that its running
time is bounded by O�n logd n	� The main idea is to use range trees �see 
��
	 for
maintaining the minimal value dist�r� s	 for all �non�forbidden� points r and s� The
technique is related to the ones in 
�� ��
 for maintaining the closest pair or k�point
cluster in a dynamically changing set of points�

��



Let C be any cone of C� Recall that C is the intersection of d halfspaces� Let
h�� h�� 
 
 
 � hd be the hyperplanes that bound these halfspaces� and let H��H�� 
 
 
 �Hd

be lines through the origin such that Hi is orthogonal to hi� � � i � d� We give the
line Hi a direction such that the cone C is �above� hi� Let L be the line that contains
the ray lC � We give L the same direction as lC� �See Figure ��	

p

h� � p

lC�p

h� � p

�L

H�

H�

Figure �� The directed lines H�� H� and L� and the translated cone Cp�

Let p be any point in IRd� We write the coordinates of p w�r�t� the standard
coordinate axes as p�� p�� 
 
 
 � pd� For � � i � d� we denote by p�i the signed Euclidean
distance between the origin and the orthogonal projection of p onto Hi� where the sign
is positive or negative according to whether this projection is to the �right� or �left�
of the origin� Similarly� p�d�� denotes the signed Euclidean distance between the origin
and the orthogonal projection of p onto L�
In this way� we can write the cone C as C � fx � IRd � x�i � �� � � i � dg� For

p � IRd� we can write the translated cone Cp with apex p as

Cp � fx � IRd � x�i � p�i� � � i � dg


We de�ne �Cp �� �C � p �� f�x� p � x � Cg� Then we have

�Cp � fx � IRd � x�i � p�i� � � i � dg


If q � Cp� then we have �C�p� q	 � q�d�� � p�d���

Let S be a set of n points in IRd� During our algorithm we will maintain a data
structure having the form of a �d��	�layered range tree� This data structure depends
on the cone C� We describe it in detail�

There is a balanced binary search tree storing the points of S in its leaves� sorted
by their p���coordinates� �Points with equal p

�
��coordinates are stored in lexicographical

��



order�	 Let v be any node of this tree and let Sv be the subset of S that is stored in
the subtree of v� Then v contains a pointer to the root of a balanced binary search
tree storing the points of Sv in its leaves� sorted by their p���coordinates� �Points with
equal p���coordinates are stored such that the points �p

�
�� 
 
 
 � p

�
d	 are in lexicographical

order�	 Any node w of this tree contains a pointer to the root of a balanced binary
search tree storing the points of w�s subtree in its leaves� sorted by their p���coordinates�
etc� At the d�th layer� there is a balanced binary search tree storing a subset of S in
its leaves� sorted by their p�d�coordinates� The binary tree that stores points sorted by
their p�i�coordinates is called a layer�i tree�
Before we can de�ne the last layer of the data structure� we need to introduce

some notation� Let u be any node of a layer�d tree� We inductively de�ne a sequence
ud� ud��� 
 
 
 � u� of nodes such that ui belongs to a layer�i tree� De�ne ud � u� Given
ui� walk to the root r of its layer�i tree� Then ui�� is the node of the layer��i� �	 tree
that contains a pointer ro r� �See Figure ��	
For � � i � d� let x�ui be the maximal p

�
i�coordinate that is stored in the left subtree

of node ui� Let xu be the point with coordinates x�u�� x
�
u�� 
 
 
 � x

�
ud� �Note that these

coordinates are w�r�t� the �axes� H��H�� 
 
 
 �Hd� In general� xu is not a point of S�	
Now we can de�ne the �d � �	�st layer of the data structure� Consider again any

node u of a layer�d tree� Let Sud be the subset of S that is stored in the subtree of u�
Consider the point xu� Let S

�
u�d�� be a subset of fp � Sud � p�i � x�ui� � � i � dg and

let S�u�d�� be a subset of fp � Sud � p
�
i � x�ui� � � i � dg� �The algorithm determines

the sets S�
u�d�� and S

�
u�d��� For the description of the data structure� we assume that

they are any subsets�	 Note that all points of S�
u�d�� and S

�
u�d�� are contained in the

cones Cxu and �Cxu� respectively�
Node u of the layer�d tree contains pointers to

�� a list L�
u�d�� storing the points of S

�
u�d��� sorted by their p

�
d���coordinates�

�� a list L�u�d�� storing the points of S
�
u�d��� sorted by their p

�
d���coordinates�

�� a variable 
d���u	 having value


d���u	 � minf�C�p� q	 � p � S�u�d��� q � S�
u�d��g�

�� and� in case� 
d���u	 �
� a pair of points that realizes 
d���u	�
These two lists are called layer��d��	 lists� If S�u�d�� or S

�
u�d�� is empty� then 
d���u	 �


� �In particular� this is true if u is a leaf�	 Otherwise� we have 
d���u	 � �C�p� q	 �
q�d�� � p�d��� where p and q are the maximal and minimal elements that are stored in
the lists L�u�d�� and L

�
u�d��� respectively�

During our algorithm� the layer�i trees for � � i � d do not change� except for
certain 
�variables that are de�ned below� For each node u of a layer�d tree� the
corresponding layer��d� �	 lists initially store the sets fp � Sud � p�i � x�ui� � � i � dg
and fp � Sud � p�i � x�ui� � � i � dg� During the algorithm� elements will be deleted
from these lists�
In order to speed up searching during the algorithm� we store all points of S in a

dictionary� With each point p� we store

��



u�

x�u� x�u�


��u	


��u	

h� � xu

lC�xu

h� � xu

L�
u��

L�u��
u� � u

xu

Figure �� Illustration of the �d � �	�layered data structure for d � �� The points in
the cone Cxu belong to the set S

�
u��� those in the cone �Cxu belong to S

�
u���

�� a list of pointers to the positions of the occurrences of p in all lists L�
u�d��� and

�� a list of pointers to the positions of the occurrences of p in all lists L�u�d���

We are almost done with the description of the data structure� We saw that for
each layer��d��	 structure there is a corresponding 
d���value� Let � � i � d and let
v be any node of a layer�i tree� If v is a leaf then v stores a variable 
i�v	 having value

� If v is not a leaf� then let vl and vr be the left and right sons of v� respectively�
Also� let 
i���v	 be the variable that is stored with the layer��i � �	 structure that
corresponds to v� Then node v stores a variable 
i�v	 having value


i�v	 � min�
i�vl	� 
i�vr	� 
i���v		� ��	

��



and� in case 
i�v	 �
� a pair of points that realizes 
i�v	�
This concludes the description of our �d � �	�layered data structure� Recall that

the entire structure depends on the cone C�

Let q be any point of S� We can delete q from all lists L�
u�d�� in which it occurs

and update the entire data structure� as follows� Search for q in the dictionary� and
follow the pointers to the positions of all occurrences of q in the lists L�

u�d��� For each
such u� do the following�

�� Delete q from L�
u�d��� If the list L

�
u�d�� is empty� then we are done� Otherwise�

let p be the maximal element of L�u�d��� Go to ��

�� If q was not the minimal element of L�
u�d��� then we are done� If q was the only

element in its list� then we set 
d���u	 �� 
� Otherwise� if q was not the only
element in its list� then let r be the new minimal element of L�

u�d��� Then� set

d���u	 �� �C�p� r	 � r�d�� � p�d��� and store the pair �p� r	�

Now� all layer��d��	 structures are updated correctly� To update the rest of the data
structure� we do the following� We search for q in the layer�� tree� For each node on
the path� we search for q in the corresponding layer�� tree� etc�� until we have located
q in all layer�d trees that contain this point� Then we walk back along all these paths�
During the walk� we update the values 
i��	 according to ��	�
It is easy to see that the entire operation can be performed in time O�logd n	� In

a completely symmetric way� we can delete a point p from all lists L�u�d�� and update
the entire data structure�

Now we can give the e�cient implementation of algorithm gap greedy �� As before�
we consider all cones separately� If C is the current cone� then we maintain besides
the above �d � �	�layered data structure two d�layered range trees storing subsets of
S according to their standard coordinates p�� p�� 
 
 
 � pd� Recall that such a range tree
can be used to �nd all points that are contained in a d�dimensional rectangle having
sides that are parallel to the standard axes� A complete description of the algorithm
is given in Figure ��

Lemma � Consider the iteration for the cone C� During the execution of this itera�
tion� if 
 �
� then


 � minf�C�p� q	 � p � RTsource � q � RTsink � p �� qg


Proof	 Since all 
i�variables� � � i � d� �� either have value 
 or �C�p� q	 for some
p � RTsource and q � RTsink � it is clear that


 � minf�C�p� q	 � p � RTsource � q � RTsink � p �� qg
 ��	

If RTsource or RTsink is empty� then 
 �
� which is a contradiction to our assumption
that 
 � 
� Hence� both these structures are non�empty� Let r � RTsource and
s � RTsink such that

�C�r� s	 � minf�C�p� q	 � p � RTsource � q � RTsink � p �� qg


��



Algorithm gap greedy���S� �� w	
�� S is a set of n points in IRd� � � � � ���� � � w � �cos � � sin �	�� �	
begin
for each cone C
do store the points of S in the �d � �	�layered data structure T de�ned above�
the two layer��d� �	 lists of each node u of each layer�d tree of T store
the sets S�u�d�� � fp � Sud � p�i � x�ui� � � i � dg and
S�
u�d�� � fp � Sud � p

�
i � x�ui� � � i � dg�

store the points of S in two d�layered range trees RTsource and RTsink

according to their standard coordinates�
EC �� ��

 �� value stored with the root of the layer�� tree of T �
while 
 �

do let �r� s	 be a pair such that 
 � �C�r� s	�

EC �� EC 
 f�r� s	g�
for each p � RTsource such that jprj� � �w�pd	jrsj
do delete p from RTsource �
delete p from all lists L�u�d��� and update T and

 as described in the text

od�

for each q � RTsink such that jqsj� � �w�pd	jrsj
do delete q from RTsink �
delete q from all lists L�

u�d��� and update T and

 as described in the text

od
od

od�
output the set E ��

S
C EC

end

Figure �� The e�cient implementation of the greedy algorithm�
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If we can show that there is a node u in some layer�d tree of T such that 
d���u	 �
�C�r� s	� then we must have


 � minf�C�p� q	 � p � RTsource � q � RTsink � p �� qg


This will prove the lemma�
Consider the layer�� tree of T � Let u� be the highest node in this binary tree such

that r and s are contained in di�erent subtrees of u�� Let � � i � d and assume that
u�� u�� 
 
 
 � ui�� have been de�ned already� and that ui�� is a node of a layer��i � �	
tree� Then� let ui be the highest node in the layer�i tree that corresponds to ui�� such
that r and s are contained in di�erent subtrees of ui� In this way� we get a sequence
of nodes u�� u�� 
 
 
 � ud such that

� u� is a node of the layer�� tree of T �

� ui is a node of the layer�i tree that corresponds to ui��� � � i � d�

� r and s are contained in di�erent subtrees of ui� � � i � d�

We claim that 
d���ud	 � �C�r� s	� which will complete the proof�
Let u � ud and consider the point xu as de�ned in the description of T � �The

nodes ud� ud��� 
 
 
 � u� de�ned in the description of T are exactly the nodes that we
just de�ned� The di�erence is that they are de�ned in the reversed order�	 Since

 � 
� ��	 implies that �C�r� s	 � 
� Hence s � Cr� This shows that s�i � r�i for
� � i � d� Since r and s are in di�erent subtrees of ui� we know that x�ui separates
the coordinates r�i and s�i� Therefore� we must have r

�
i � x�ui � s�i for � � i � d�

Since r � RTsource and s � RTsink � it follows that r and s are contained in the lists
L�u�d�� and L�

u�d��� respectively� But then� since �C�r� s	 is minimal� we must have

d���u	 � �C�r� s	�

We now prove that algorithms gap greedy � and gap greedy�� compute the same
graph �S�E	� Assume for the sake of analysis� that we run both algorithms in parallel�
Consider a cone C� After the initialization of the iteration for C� we have

fdist�r� s	 � r � S� s � S� r �� s� dist�r� s	 �
g �
f�C�r� s	 � r � RTsource � s � RTsink � r �� s� �C�r� s	 �
g
 ��	

Consider one iteration of the while�loop of both algorithms and assume that ��	 holds
at the beginning of these iterations� Algorithm gap greedy� takes a pair �r�� s�	 for
which dist�r�� s�	 is a minimal element in the set on the left�hand side� By Lemma ��
algorithm gap greedy �� takes a pair �r��� s��	 for which �C�r��� s��	 is a minimal element
in the set on the right�hand side� Hence we have dist�r�� s�	 � �C�r��� s��	� Note that
the sets in ��	 may have several minimal elements� In that case� we force algorithm
gap greedy � to choose the same pair as gap greedy ��� We denote the chosen pair by
�r� s	� Both algorithms add the edge �r� s	 to their edge sets EC � Then gap greedy �

updates certain dist �values and gap greedy �� updates the structures RTsource � RTsink and
T � By comparing the algorithms� it follows immediately that ��	 still holds after the
iteration�

��



This proves that algorithms gap greedy� and gap greedy�� compute the same edge
set E� We proved in Lemmas � and � that gap greedy� always produces a t�spanner
of bounded degree and� if w � �� its weight is at most O�log n	 times the weight of a
minimum spanning tree for S� Hence� the same is true for algorithm gap greedy���
We analyze the complexity of our algorithm� Consider one cone C� The �d � �	�

layered structure T has sizeO�n logd n	 and can be built in timeO�n logd n	� The struc�
tures RTsource and RTsink have size O�n log

d�� n	 and can be built in timeO�n logd�� n	�
By applying dynamic fractional cascading �
��
	 and observing that we only delete
points� their amortized deletion time is bounded by O�logd�� n	� and their query time
is bounded by O�logd�� n	 plus the number of reported points� Since each point of S is
reported in at most one query for each RT �structure� the total query time is bounded
by O�n logd�� n	�
Consider one point p of S� It is deleted at most once from RTsource � taking

O�logd�� n	 amortized time� If it is deleted from RTsource � then we delete p from
all lists L�u�d�� and update T and 
� We saw already that this takes O�log

d n	 time�

Hence for each point p of S� we spend O�logd n	 time for updating RTsource and T �
The same bound holds for updating RTsink and T � It follows that the entire algorithm
has running time O�n logd n	� This proves�

Theorem � Let t� � and w be real numbers such that � � � � ���� � � w �
�cos � � sin �	�� and t � ���cos � � sin � � �w	� Let S be a set of n points in
IRd� In O��c��	d��n logd n	 time and using O��c��	d��n � n logd n	 space� algorithm
gap greedy ���S� �� w	 computes a t�spanner for S such that each point of S has degree
at most O��c��	d��	� for some suitable constant c� If w � �� then the weight of this
t�spanner is at most O��c��	d�����w	 log n	 times the weight of a minimum spanning
tree for S�

Corollary � Let t and � be real numbers such that � � � � ��� and t � ���cos � �
sin �	� Let S be a set of n points in IRd� In O��c��	d��n logd n	 time and using
O��c��	d��n� n logd n	 space� we can compute a t�spanner for S such that each point
of S has degree at most O��c��	d��	 and the weight of this t�spanner is at most a
constant times the weight of a minimum spanning tree for S�

Proof	 Let �� be such that � � �� � ��� and
p
t � ���cos ���sin ��	� Let G be the pt�

spanner that is constructed by algorithm gap greedy ���S� ��� �	� Das and Narasimhan 
�

show how to compute in O�n log� n	 time a

p
t�spanner G� of G� Clearly� G� is a t�

spanner for S� Also� since G� is a subgraph of G� it has bounded degree� Das and
Narasimhan partition the edges of G� into two sets E� and E�� The total weight of the
edges in E� is bounded by the weight of a minimum spanning tree for S� The edges
in E� satisfy the so�called leap�frog property� Recent results of 
�� �
 show that the
leap�frog property implies that the total weight of the edges in E� is proportional to
the weight of a minimum spanning tree for S�

� Application to distance enumeration

Salowe �
��� ��
	 has suggested the use of Dijkstra�s algorithm with bounded degree
spanners for interdistance enumeration� Let S be a set of n points in IRd and let k be

��



an integer between � and
�
n

�

�
� Then we want to enumerate the k smallest distances�

sorted in non�decreasing order� The value of k may or may not be known in advance�
In Section ���� we show that we can use any bounded degree spanner to enumerate

the k smallest interpoint distances approximately in O�n� k log k	 time� not including
the time to construct the spanner� In Section ���� we show that we can also do exact
enumerations using any bounded degree spanner in O��n � k	 log n	 time� Finally� in
Section ���� we show how to improve the time bound for exact enumeration to O�n�
k log k	 by exploiting special properties of the bounded degree spanner constructed in
this paper�

��� Approximate interdistance enumeration

Let G � �S�E	 be any t�spanner for S having bounded degree� Although we describe
our algorithm for an undirected spanner� the enumeration technique can also be used
on a directed spanner of bounded out�degree� Let p and q be two points of S� The
weight of this pair is de�ned as the Euclidean distance between p and q� and its pseudo�
weight is de�ned as the Euclidean length of a shortest path in G between p and q�
The algorithm for approximate distance enumeration is similar to that of Dickerson

et al�
�
� We initialize a priority queue with all pairs of points corresponding to the
edges of G� with priority given by the pseudo�weight of the pair� In each iteration�
we extract the pair p� q with smallest priority and report it together with its weight�
For each edge �q� r	 of G� we compute the priority of the pair p� r as the sum of the
priority of the pair p� q and the weight of the edge �q� r	� We insert the pair p� r into
the priority queue if it has not already been reported and if it is not already in the
queue with a smaller priority� We do the symmetrical thing with all edges �p� s	 of G�
It is easy to see that this algorithm is running Dijkstra�s shortest path algorithm

simultaneously from all the points of S and that the pairs are reported in order of non�
decreasing pseudo�weight� Our claim is that this implies that the pairs are reported
approximately in order of non�decreasing weight� We make this precise in the following
lemma�

Lemma � Consider the t�spanner G � �S�E	� Arrange all pairs of points in order
of non�decreasing weight and assign an index to each pair based on its rank in this
sequence� Let wi and w�i denote the weight and pseudo�weight of the pair with index
i� respectively� Let � be a permutation of the pairs that orders them on the basis
of non�decreasing pseudo�weight� i�e�� w����� � w����� � w����� � 
 
 
 Then for any i�

� � i �
�
n

�

�
�

wi

t
� w��i� � twi ��	

and
wi � w���i� � twi
 ��	

Proof	 It follows from the de�nition of a t�spanner that for any i

wi � w�i � twi
 ��	

��



First we show that ��	 and ��	 together imply ��	� Applying ��	 with ��i	� we see
that w��i� � w���i�� By ��	� w

�
��i� � twi� Hence� w��i� � twi� which proves the right

inequality of ��	� Again applying ��	 with ��i	� we get w��i� � w���i��t� which by ��	 is
at least equal to wi�t� This proves the left inequality of ��	�
Thus it remains to prove ��	� We �rst show that wi � w���i�� There are two cases

to consider� First assume that ��i	 � i� Then w��i� � wi� Using ��	 with ��i	� this
implies the desired result� Next assume that ��i	 � i� Since � is a one�to�one function�
there is a j� � � j � i� such that ��j	 � i� �Otherwise� all values ���	� ���	� 
 
 
 � ��i	
would belong to the set f�� �� 
 
 
 � i � �g�	 Since j � i� we have w���j� � w���i�� Also�
since ��j	 � i� we have w��j� � wi� Applying ��	 with ��j	� we see that w

�
��j� � w��j��

Combining these inequalities� we get wi � w��j� � w���j� � w���i�� which is the desired
result�
To show that w���i� � twi� we again consider two cases� First assume that ��i	 � i�

Then w��i� � wi� Applying ��	 with ��i	 gives w���i� � tw��i�� Hence� w
�
��i� � twi�

Next assume that ��i	 � i� Since � is a one�to�one function� there is a j� j � i�

such that ��j	 � i� �Otherwise� all values ��l	� i � l �
�
n

�

�
� would belong to the set

fi � �� i � �� 
 
 
 �
�
n

�

�
g�	 Since j � i� we have w���j� � w���i�� Also� since ��j	 � i� we

have w��j� � wi� Applying ��	 with ��j	� we see that w���j� � tw��j�� It follows that
w���i� � w���j� � tw��j� � twi� This completes the proof�

The algorithm described above reports the sequence

w����� w����� 
 
 
 � w��k�


The right inequality in ��	 implies that this sequence approximates the true k smallest
distances�
We estimate the running time of the algorithm� Assume that k is known in advance�

To improve the e�ciency of the priority queue� we maintain only k pairs in it� The
time to initialize the priority queue is O�n	� Since the spanner G has bounded degree�
the queue is updated O�k	 times� Each operation on the priority queue takes O�log k	
time� Therefore� the total running time is bounded by O�n � k log k	�
If k is not known� then we proceed as follows� First� we initialize the priority

queue with the O�n	 pairs that correspond to the edges of G� Then we take an initial
constant value k� and run the above algorithm� If we have reported k� pairs� then
we undo all operations we performed so far� i�e�� until we have our initial priority
queue again� and repeat the same procedure with value �k�� We keep on doing this
until we have reported k pairs� The running time of this algorithm is bounded by
O�n �

P
i�� k��

i log k	 � O�n� k log k	�

��� Exact interdistance enumeration

Consider again an arbitrary undirected t�spanner G � �S�E	 of bounded degree�
�Again� the enumeration technique can also be used on a directed spanner of bounded
out�degree�	 We can enumerate the k exact smallest distances� using basically the
same algorithm as in Section ���� There are two di�erences� First� the priority queue
is maintained at full size� i�e�� we do not prune it to keep only k pairs� Second� we

��



do not immediately report the pairs as they are extracted from the queue� instead we
keep track of the k closest pairs seen so far� We continue to run the algorithm until the
pseudo�weight of the pair extracted from the queue is larger than t times the weight
of the k�th closest pair seen so far� At termination the k closest pairs seen by the
algorithm are reported�
We prove the correctness of this algorithm� Let x be the weight of the k�th closest

pair reported by the algorithm� We claim that any pair not seen by the algorithm has
weight at least equal to x� This will prove that the algorithm correctly reports the k
closest pairs of S�
Since pairs are enumerated in order of non�decreasing pseudo�weight� any pair not

seen by the algorithmmust have pseudo�weight at least equal to tx� Using the notation
of Lemma �� let i be the index of such a pair� Then w�i � tx� Then ��	 implies that
wi � w�i�t � x� which establishes the correctness of the algorithm�
Before we analyze the running time of the algorithm� we prove the following claim�

The algorithm terminates as soon as it extracts a pair from the queue with index i
such that wi � twk� �Note that during its execution� the algorithm does not know
wk�	
To prove this� consider such a pair with index i� Note that w�i � wi� which implies

that w�i � twk� Since the algorithm extracts pairs in order of non�decreasing pseudo�
weight� it must already have extracted all pairs with pseudo�weight at most equal to
twk� It follows from ��	 that if a pair has weight at most wk� then it has pseudo�weight
at most twk� Thus� all pairs with weight at most wk have been extracted already�
Therefore� at the moment when the pair with index i is extracted� wk is the weight
of the k�th closest pair seen so far� Hence� the algorithm terminates at this moment�
proving the claim�
Now we estimate the running time� The number of pairs extracted from the queue

is at most equal to the number of pairs having weight at most twk� In 
�� ��
� it is
shown that the latter is bounded byO�n�k	� Hence� after initializing the queue� which
takes O�n	 time� the algorithm performs O�n�k	 queue operations� �This follows from
the fact that the spanner G has bounded degree�	 Since each queue operation takes
O�log n	 time� the entire running time is bounded by O��n � k	 log n	�

��� Improved solution for exact interdistance enumeration

We can improve the time bound of Section ��� by using the bounded degree spanner
that is constructed by algorithm gap greedy���S� �� w	 for � � � � ��� and w � �� To
enumerate the k exact closest pairs� we run the same algorithm as in Section ���� with
one change� The priority of a pair of points is given by its weight�
The running time of this algorithm is clearly the same as that of Section ���� it

is bounded by O�n � k log k	� We give an inductive proof that the algorithm outputs
the k closest pairs in order of non�decreasing weight�
Consider the closest pair p� q in S� Since p and q are connected by an edge in the

spanner� this pair is put into the priority queue in the initialization step� Hence� it is
the �rst pair to be reported�
Let � � m � k� and assume that the m� � closest pairs have been reported by the

algorithm� Let p� q be the m�th closest pair in S� We show that this pair is the next

��



one to be reported� If p and q are connected by an edge in the spanner� then we are
done� because then this pair was put into the queue in the initialization step� Hence�
now this pair has smallest priority in the queue� and it will be reported�
Assume that p and q are not connected by an edge� Then it follows from the proof

of Lemma � that �i	 there is a point s � S such that �p� s	 is an edge and jsqj � jpqj�
or �ii	 there is a point r � S such that �q� r	 is an edge and jprj � jpqj� Assume �rst
that �i	 holds� Then s� q must be one of the m� � closest pairs� At the moment when
this pair was reported� the algorithm inserted the pair p� q into the queue� Hence�
after m� � pairs have been reported� the pair p� q has minimal priority in the queue�
Hence� it is the next pair to be reported� Case �ii	 can be treated similarly�

� Concluding remarks

We have given an O�n logd n	 time algorithm that constructs a t�spanner of bounded
degree having a weight that is proportional to the weight of a minimum spanning tree
for the n points�
After the �rst version of this paper was written� the authors� together with Das�

Mount� and Salowe� gave an O�n log n	 time algorithm that is based on completely
di�erent techniques to construct a bounded degree spanner having weight propor�
tional to the weight of a minimum spanning tree� See 
�
�
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