
MAX-PLANCK-INSTITUT
FOR

INFORMATIK

Experience with FSo as a framework

theory

MPI-I-92-214

Sean Matthews
Alan Smaill
David Basin

0

mPD

March 1992

________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbrucken

Germany

Experience with FSo as a framework

theory

MPI-1-92-214

Sean Matthews
Alan Smaill
David Ba.Sin

March 1992

Authors' Addresses

Sean Matthews,
Max-Planck-Institut Fiir Informatik, Saarbriicken,
Germany.
seantmpi-sb.mpg.de

Alan Smaill,
Department of Artificial Intelligence,
University of Edinburgh, Edinburgh, Scotland.
smaillGai.ed.ac.uk

David Basin
Max-Planck-Institut Fiir Informatik, Saarbriicken,
Germany.
basinQmpi-sb.mpg.de

Publication Notes

A version of this paper will appear as a chapter in the formal proceedings of the second Logical
Frameworks workshop, edited by Gerard Huet and Gordon Plotkin, to appear in 1992, published
by Cambridge University Press.

Acknowledgements

Part of this work was financed by a post-graduate grant from the Department of Education,
N othern Ireland

"Das diesem Bericb.t zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministers
fiir Forscb.ung und Technologie (Betreuungskennzeicb.en ITS 9102) geiordert. Die Verantwor
tung fiir den Inhalt dieser Veroffentlicb.ung liegt beim Autor."

Abstract

Feferman has proposed a system, FSo, as an alternative framework for encoding
logics and also for reasoning about those encodings. We have implemented a
version of this framework and performed experiments that show that it is prac
tical. Specifically, we describe a formalisation of predicate calculus and the
development of an admissible rule that manipulates formulae with bound vari
ables. This application will be of interest to researchers working with frame
works that use mechanisms based on substitution in the lambda calculus to
implement variable binding and substitution in the declared logic directly. We
suggest that meta-theoretic reasoning, even for a theory using bound variables,
is not as difficult as is often supposed, and leads to more powerful ways of
reasoning about the encoded theory.

Keywords

Theorem proving, Metatheory, Frameworks.

1 Introduction: why metamathematics?

A logical framework is a formal theory that is designed for the purpose of
describing other formal theories in a uniform way, and for making the work
of building proofs of theorems in those theories easy. Given a description T
of a theory in a framework, a proof of a proposition A in that theory becomes
a proof of a proposition in the framework theory that the encoding of A has
the property 'provable in T'. Such a proof is a meta-theorem, and a natural
question to explore is whether we can prove more general theorems in the
framework theory. Furthermore, how can such metamathematics be used to
increase the power and usability of theorem proving systems in practice?

1.1 The deduction theorem

A good example of the advantage that formal metamathematics can offer is
the deduction theorem [13] for a logic presented in a Hilbert style. H the
notation 1-T A means that A is provable in the object-theory T, and T[B] is
the theory T extended with the axiom B, then the deduction ·cheorem says

H 1-T[B] A, then 1-T B -+ A.

This is an interesting theorem for several reasons. First, it is an explicitly
meta-level result, relating a theory to an extended version of itself; it cannot
be stated for theory T inside theory T in a way so that it can be used there.
Secondly, it is a perfect example of a meta-theorem that makes work in
the object-theory easier- the deduction theorem is often the first theorem
proven about a logic (either that, or there is a proof that it does not hold).
Thirdly, proofs of theorems in the object-logic can be built in fewer steps
by exploiting the meta-theorem. We know that the object level proof can
be built if it is really needed, and that is enough; we do not usually have to
build it.

But usually there is no way of sharing the sort of knowledge embodied
in the deduction theorem properly with a proof development system (PDS)

for T . The most that is usually possible, if the PDS has a tactic facility,
is for the user to inspect the proof of the meta-theorem and build a tactic
that constructs corresponding object-level proofs. (Here the meta-theorem
amounts to the description and verification of an algorithm - a tactic -
that takes a proof of 1-T[B] A and transforms it into a proof of 1-T B -+ A.)
But this is unsatisfactory: the deduction theorem justifies a simple constant
time syntactic transformation on an object-level goal, but a corresponding
tactic will take time dependent on the size of the proof supporting that goal.

1

To be fair, the deduction theorem is a slightly artificial example, if only
because it is such a useful result that the logic of any PDS that is usable in
practice is presented in a way (sequent calculus or natural deduction) that
provides it as a basic rule. However, it does illustrate very effectively the
gains that meta-level reasoning can provide.

1.2 Possible advantages and disadvantages

The most obvious advantage of meta-theoretic extension then, is the speed
up that it can bring to practical theorem proving. The gain is not always
as dramatic as in the deduction theorem, but something is usually possible.

Another advantage is less obvious, but at least as important. Tactics
are informal, in that they have no associated formal specifications which
they can: be compared against. Instead, what they are expected to do is
an implicit side effect of the proof manipulations that they actually de
scribe. For instance, it woUld probably not be obvious from analysing a
tactic which implements the deduction theorem that the effect of running
it would be the effect that the deduction theorem describes .. This problem
with informal tactics is analogous to the general problem of understanding
unspecified code. Further, as tactics are combined together to build more
powerful tactics, holding on to any intuition for how they behave becomes
more difficult. To fix this, it is easy to imagine a system for verifying a tac
tic formally against a specification 1 . However, if a tactic has been verified
against a specification, why run it at all? Why not just check that the pre
conditions hold, then directly perform the transformation described by the
specification? This approach returns us to the sort of meta-level reasoning
that is discussed above.

There are disadvantages too in extending the system's strength by prov
ing meta-theorems rather than by verifying tactics. In the same way as
tactics can be subtle, difficult pieces of code, meta-level proofs can also be
subtle and difficult to construct. It can be difficult to find a formalisation
for the meta-theory of a typical logical system that is comfortable to work
in. In particular, there are often supposed to be problems with the formal
isation of bound variables. Even without such specific problems, it usually
takes longer to construct a formally verified program (which is what a meta
theorem resembles) than it does to construct the same program informally.
So a meta-theorem will not always be superior to a tactic. But when a tactic

1In fact, formal pre- and post- conditions could be exploited in various ways (such as
combining tactics by reasoning about the conditions, as Bundy suggests in [5]).

2

is less efficient than the implementation of a meta-theorem, or tries to do
something that is very subtle, or if it is used often, then there is a good case
for replacing it.

A second disadvantage of using a meta-theorem is often not so important
in practice: the speed up it can provide is because it removes the need actu
ally to construct a supporting object level object-level proof, instead, simply
guaranteeing that such a proof could be constructed if necessary. But there
are times when this proof is needed: if the witness term of a constructive
proof is to be extracted, or a transformation tactic (i.e., a tactic from proofs
to proofs, rather than from sequents to sequents) is to be applied, then it is
not enough simply to know that the proof exists. One possible solution to
this would be to have the meta-theory be constructive (as proposed in, e.g.,
[2]), then the actual proof could be reconstructed by examining the proof of
the meta-theorem.

In conclusion, if we are interested in provability, rather than in building
object-level proofs, and if we are prepared to do the work of verifying meta
level assertions, then the use of theorem proving in a framework theory gives
us a powerful and secure way to extend our capability to obtain results for
a declared theory.

1.3 Overview of paper and research contributions

In the remainder of this paper we will look at what is needed from a logical
framework if it is to be practically useful for formulating, proving, and using
meta-theorems. In §2 we motivate and present Feferman's system FS0 [8]
which we have implemented and in which we have performed a number of
experiments. FS0 is a theory of functions and classes of expressions embed
ded in second-order predicate calculus. The syntax and theories of formal
systems are presented in FSo using finitary inductive definitions. To illus
trate, we formalise a fragment of first-order predicate calculus. In §3 and
§4 we provide details on the practical aspects of doing metamathematics
in FS0 • In particular, we present an example of a specific meta-theorem
that we have proved: a prenex form theorem for the formalised fragment
of predicate calculus. We conclude by drawing lessons from our experience
and suggesting directions for future work.

Our emphasis throughout is on the practical side of meta-theory. In [8],
Feferman lays out FS0 as a theoretical framework for encoding and reasoning
about logics. But, as he himself points out, in the conclusion, that 'whether
implementation is feasible and what its value might be can only be judged

3

by actually trying to carry it out'. We have done just that and we think our
experiments (only one of which is reported here, others are summarised in
[14]) show that FSo in practice does provide a suitable basis for formalising
and using meta-theory. As far as we know2 ours is the first implementation
and use of the system.

More generally, we believe that our research provides further support to
the claim that meta-theoretic extensibility is practical and desirable. No
table examples of previous research in this area3 that come to mind are the
work of Aiello and Weyhrauch on algebraic simplification in FOL [1], the
work of Constable and Howe on term matching, rewriting, and simplifica
tion in Nuprl [12, 6], and the work of Boyer and Moore on metafunctions
in their theorem proving system [4]. But there has been little other exper
imental work in this area. One reason, we suspect, is that meta-theoretic
reasoning has a reputation for being difficult. For example, most other log
ical frameworks are based on type theory or some kind of higher-order logic
in which variable binding and substitution are intended to be captured by
lambda-abstraction and beta-reduction because it is believed to be difficult
to encode 'higher-order syntax,' and operations on this syntax, explicitly.
Our work indicates that this is not so. Our formalisation of predicate cal
culus, and the prenex normal form theorem, involved formalising notions
such as free and bound variables, alpha-convertibility, substitution, and the
like. These definitions were not difficult, and we needed only to restate def
initions found in standard logic texts as explicit inductive definitions. The
resulting admissible[19] inference rule can be applied more efficiently than
an equivalent tactic, and an application of the rule is itself the first step
to skolemisation and various normal forms, and, from there, to unification
procedures and other mechanised proof procedures.

2 Logical Frameworks for Metamathematics

Recent work in logical frameworks has focused on the use of frameworks for
constructing proofs rather than formally reasoning about such proofs in the
framework itself. In this paper we wish explore this second possibility, based
on Feferman's proposed framework logic.

2 And as far as Feferman knows (7]
3We are excluding research in theorem proving (some of it very notable, such as

Shanka.r's [17] and Berardi's (3]) in which the theorems proved happen to be of a meta
mathematical nature, but are not be used as theorem proving procedures in part of a
formalised meta-theory.

4

In most of the frameworks that have been suggested, e.g., ELF [11], Is
abelle [15], and Lambda-Prolog [10], the concern has been ease of proof in
the declared theory. For instance, identifying bound variables and substitu
tion with syntax and operations in the framework theory makes substitution
in declared logics easier to deal with; however, in this approach, bound vari
ables must be understood in terms of properties of the meta-logic, leading
to a less straightforward encoding. The theorems we present in this paper
would have to be understood similarly- the side conditions which we ex
plicitly formalise would have to be treated implicitly. In general, theorems
that mention binding structure explicitly, e.g., those depending on the num
ber of occurrences of named variables, are more easily treated using our.
approach.

Another reason for working with Feferman's theory is that it is strong
enough not only to encode the syntax and proof rules of logics but also to
support metatheoretic reasoning about these logics - e.g., we may prove
results by induction over object-level syntax. This is another area where the
above frameworks present problems. For instance, the ELF was designed
to be weak so that faithfulness of encoding could be demonstrated more
easily. Unfortunately it also means that proving general statements in the
meta-theory, as opposed to proving specific statements that correspond to
particular theorems in the declared theory, is difficult.

In general, an explicit facility for constructing evaluable functions in a
framework theory is useful . . This can then be used to exploit meta-level
results directly. Again, Feferman's system lends itself to such an implemen
tation.

2.1 The theory FS0

Feferman's system was a result of his asking the question 'what is a formal
system?'. Earlier answers were supplied by Post [16] and Smullyan [18],
who looked at classes of strings closed under inductive definitions as the
generalised notion- in effect, the theory of recursively enumerable classes.
This is a very useful approach in some ways, but the versions presented
there suffer from the problem of being unusable in practice- when practice
means implementing the system on a computer and using it actually to prove
theorems in a declared theory. Thus it has been ignored as a possible basis
for a practical framework until recently. In the last few years however, a new
proposal in the same vein has been made by Feferman [8], as a competitor
to type theoretic frameworks.

5

Feferm.an 's theory differs from those of Post and Smullyan most impor
tantly in its basic data structure: strings have been abandoned in favour of
S-expressions4 • He has embedded this theory in a predicate calculus, and
extended it with primitive recursive functions on, and recursively enumer
able classes of, S-expressions. The most important feature of the system
is the ability to represent :finitary inductive definitions via these recursively
enumerable classes.

A more formal description of the system is as follows. The system con
sists of S-expressions, functions on S-expressions, functionals for combining
functions, and classes. There are also sorted variables over S-expressions,
functions and classes. The whole is embedded in the second order predicate
calculus (with quantification over classes and functions), with equality and
membership relations.

In what follows we use the following notational conventions: v, w, x,
y, z are variables in FS0 over S-expressions, j, g, h are variables in FSo
over funCtions, X, Y, Z are variables in FS0 over classes of S-expressions,
U, V are meta-level variables over formulae, F is a meta-level variable over
constant-valued functions in FS0 • Also notice that universal quantification
of variables that appear free in the statements of theorems or axioms is
implicit.

First there is the sort of S-expressions, S. There is only one explicitly
defined S-expression, which is 0 (but, below, we show how others are created
out of variables and function applications).

There are versions of the usual functions (all of type F = S -+ S) that
occur in a primitive recursive system, as follows. The comma itself is a
function, for pairing, which is defined together with the projection functions
1r1 and 1r2, where

(x,y) # 0

and
11"i(Xl, X2) =Xi·

These together allow arbitrary S-expressions made up of variables, Os and
other objects of sort S to be put together, so

0, ... , {0, {0, 0)), ... , ((x, 0), ({x, 0), y)), ... ,
4 He has been able to learn from the thirty years of experience with the Lisp program

ming language that has been accumulated by programmers. Lisp is based on S-expressions,
and is still, even after thirty years, one of the most popular languages for symbolic com
puting. This is a strong argument in favour of the powerful utility of such a data structure
in practice.

6

are all S-expressions (for convenience, in the rest of this paper the comma
is taken as associating to the left, so that (x, y, z) = ((x, y), z) rather than
(x, (y, z))). Then there is the identity t,

tX =X,

the functions Kx,

KxY = x,

and the compare function 6,

v = (w,x,y,z) ~ £ {
6v = y
v'IJ = z

ifw = x
ifw ;f x

(-dw 3x 3y 3z(v = (w, x, y, z))) ~ 6v = 0

(the last of these deals with the case where 6 is applied to a 'not well formed'
argument, i.e., one that cannot be resolved into a quadruple). Notice that,
since all functions take only one argument, function application is denoted
simply by juxtaposing the name of the function and the argument, though
sometimes brackets will be used for clarity. (In our implementation function
applications to ground S-expressions can be immediately reduced to normal
forms in the natural way without having to make direct use of these rules,
by an evaluation mechanism.)

These basic functions can be combined using the three second order
combinators C, P and 'R, w hi eh are all of type F x F ~ F. The first two of
these are composition and pairing of functions, so that:

C[f,g]x = f(gx),
P[f,g]x = (fx,gx).

The third is the combinator for structural recursion on S-expressions, and
is more complicated. It expects to be applied to a pair (x,y), where xis
a collection of parameters for the recursion, that remains constant as the
function descends through the S-expression, and y is the S-expression that
the recursion is upon. So the base and step cases are:

'R[f,g](a,O) = fa,
'R[f,g](a, (b, c)) = g(a, b, c, 'R[f,g](a,b), 'R[f,g](a, c)),

'R[/, g]O = 0.

7

(As with the definition of 8, the last of these deals with case when the
argument to the function is 'not well formed'.) Notice that the combinators
are second order only, so they cannot be applied to themselves, e.g., C[C, ??.]
is not well defined.

Again, for convenience, the composition of two projections 11'i(11';x) is
written 11'ijX. In the same way, P[f,g,h] = P[P[f,g],h], and C[/,g,h] =
C[C[/, g], h].

At this point, what has been defined is very similar to pure Lisp restricted
to primitive recursive functions: functions on S-expressions can be defined
and evaluated, but not reasoned about beyond that. Next the theory is
extended with classes of S-expressions (C), a membership relation E, and
various class constructor operations. The first of these is the base class {0},
where

X E {0} +-+X= 0.

There are, also, the intersection operations U and n of type (C x C -+ C)
which have their obvious axioms

xEXUY+-+xEXVxEY,

xEXnY+-+xEXAxEY,

and the function inverse operation --1 · of type F x C-+ C where

x E /-1 X +-+ fx E X.

These operations are enough between them to provide comprehension for
open formulae built from conjunctions, disjunctions and equality between
terms ofsort Sin FSo, as follows. Given such a formula U, with only one free
variable· over S-expressions, x, proceed as follows. While possible, replace
some term of the form (fx,gx) with P[f,g]x or some term of the form
f(gx) with C[f,g]x. Then replace each ofthe equalities ofthe form fx = gx
with P[/,g,K0,K(o,ol]x = 0 and then all equalities of the form fx = 0 or
0 = fx with x E /- {0}. Finally, repeatedly replace some term of the form
x E X V x E Y with x E X U Y or some term of the form x E X A Y
with x E X n Y. This will result in a formula U* of the form x E X where
1-Fso U* iff l-ps0 U.

This.leaves only the constructor for recursively enumerable classes I 2 (of
type C x C -+ C) to be defined. This allows us to describe in FSo any class
Z, which can be informally defined as a base class X closed under a two
place rule

x E Z yE ZU()
Z

z,x,y
zE

8

(where U(z, x, y) is an open formula in FSo with free variables x, y and
z). Formally, if Y is a class such that (z, x, y) E Y +-+ U(z, x, y), then
Z :: I2(X, Y) and:

X EX - X E z,
3x 3y(x,y E Z A (z,x,y) E Y) - z E Z.

(which, with the induction rules described below, gives comprehension over
:E~ relations, or the recursively enumerable classes). FS0 only explicitly
allows inductive definitions with two dependents, but this is all that is needed
(as we explain in §2.2).

Now enough machinery has been described so that it is possible to do the
same sort of object-level theorem proving as is possible in systems like ELF,
though without the extra facilities that make ELF easy to use. An encoding
of a language can be defined using the inductive definition mechanism of FSo;
theories can be defined in the same way.

But it is not yet possible to prove the sorts of generalised statments about
defined theories which were mentioned earlier, which is our objective. To do
this we need to be able to prove general statements about classes, and for
this purpose there are also two induction axioms: induction over inductively
defined classes, and induction over S-expressions. Induction over inductively
defined classes is used to show that the defined class is a subset of some other
class, i.e., (if X C Y is an abbreviation for '</x(x E X - x E Y), where x
does not occur free in X or Y)

XC Z- '</w'</x'</y(x E Z- yE Z- (w,x,y) E Y- wE Z)
- I2(X, Y) C Z.

And induction over the S-expressions is just

0 EX- '</x'</y(x EX-yE X- (x,y) EX)- '</x(x EX).

2.2 How FS0 is used

While FSo classes are in principal enough to describe any formal system
arising in practice, it is not obvious that this system is actually usable. To
give some idea of how FS0 does work, below is a part of the definition of a
fragment of the language of first-order predicate logic.

We introduce further notational conventions at this point to allow us to
discuss the declared language. We ·take A, B, C to vary over formulae in
the language of first-order predicate logic, and a, b to vary over variables in

9

that language, and Q to vary over quantifiers in that language. A string in
double inverted commas, such as "var", is taken as the name of a defined
constant S-expression in FS0 , and an expression of the object language in
quotation marks r · , stands for the encoding of that expression in FS0 •

In this encoding the components of the language are all labeled with a
constant in the left hand part of the representing S-expression so that they
can be distinguished. For instance, the set of variables is defined as the class
of S-expressions which have the constant "var" (which in turn is defined as
an S-expression) in the left hand part, where anything can be placed in the
right hand part. So the definition can be thought of as the class

var: {("var",x) I x E S}

which, in the proper language of FSo, is the class comprehending all instances
y for which the formula

1r1 y = "var"

is provable.
Then, if the class of atomic predicates ap has been defined already, it

is possible to give a definition of the class of well formed formulae in the
language of predicate logic where the only propositional connectives are
disjunction and negation. First, new distinct constants have to be defined
for labeling the various components: "'V", "3", "V" and "-.". Then the rule
defining the language are given as the inductive definition:

wffe· A,) - ap(r A,).

wff(r A V B,) - wff(r A,) 1\ wff(r B,).

wff(r -.A,) - wff(r A,).

wff(rQaA,) - wff(r A,) 1\ var(ra,).

where the arrows indicate an inductive definition (see §2.3); so, for instance,
the first line says that A is in wff if A is an atomic predicate (i.e., in ap).

This is formalised in a way suitable for the inductive definition mecha
nism of FSo, as follows:

wffb - ap

wff! - {(("V",(x,y)),x,y)l x,yE S}

wff~ - {(("-.",x),x,y) I x,y E S}
wff~ - {((Q, (v, x)), x, y) I v E var, Q E {"3", "V"},x, yES}

10

(where the b and s subscripts indicate base and step cases - notice that
only wff! uses the y in the inductive definition; in the others it is ignored).
The class of formulae is the closure under the class of atomic predicates of
these definitions and can be written simply as

Then, for instance, the formula 'v'aA V -.(B V C) can be encoded as the
S-expression

However in future we usually take advantage of the notational convention
defined earlier, and write this instead as r'v'aA V -.(B V C),.

We also provide an abstract sequent calculus presentation of the logical
theory. A sequent (in this case with an single consequent) is defined simply
as a list of encoded formulae, so that the sequent A1 , ... , An 1- A is en
coded as (0, Ab ... , An, A) (the 0 on the left marks the end of the list, and
corresponds to the 'null' in Lisp).

Then a rule, which, in a sequent calculus, is of the form:

T1 1- Ab ... rn 1- An
TI-A

is defined as a relation between a list of sequents and a sequent. This relation
in turn can be conveniently represented as a non-empty list of sequents,
the head being the goal, and the tail the subgoals. So if the base class of
sequents, A 1- A, is defined

base = {(0, x, x) I x E wff}

then a schema for sequent calculus presentations in the language wff is the
closure of base under whatever the rules are. So we write it in 1:he schematic
form

SC(RSf:: I2(base, RS)

(where SC(RS) is a piece of syntactic sugar that abbreviates for the expres
sion on the the right and RS is the set of rules for the theory). Then a
presentation of first-order predicate logic using the language wff is a matter
of defining an appropriate set of rules RPK and then defining

11

Now a proposition A is provable in first-order predicate logic iff the encoding
off- A {the. sequent with an empty context and the consequent A) is in PK.
This definition of a schema for seqilent calculus presentations shows why
a constructor for inductive definitions with more than two dependents is
not needed: the inductive definition of lists of objects requires only two
dependents, and then inductive definitions dependent on arbitrary numbers
of dependents can be defined in terms of inductive definitions which are
dependent on a single list.

The definition of a rule can itself depend on complex inductive defini
tions, for instance the rule for right existential elimination depends on the
definition of substitution, i.e.,

would be defined in FS0 as

r f- A[tfa] 3_R
r f- 3aA

3-R = {{0, (x, y'), (x, ("3", (z, y)))) I (y', y, v, z) E subc}

(where x, y, y', v, z correspond tor, A, A[tfa], t, a). And then sub is the class
of four place relations between the result of a substitution, the formula to be
substituted into, a term to be substituted in, and a variable to be substituted
for. It is simply another inductively defined class.

sub(rQaA ', rQaA ', rt•, r a').
sub(rt•, ra•, rt•, ra•).

sub(ra•,ra•,rt•,rb•) ~ ra• # rb•.

sub(rQbA'', rQbA', rt•, ra•) ~ rb• # ra• A rb• not free in rt• A

sub(r A'', r A', rt•, ra•).

sub(rQb' A'', rQbA ', rt•, r a') ~ rb• # r a' A

rb• free in rt• A

rbh not free in rt, A., A

sub(r A"' r A' rbh rb•) A
' ' '

sub(r A'', r A"', rt•, ra•).

(notice that the definition renames variables to avoid capture- the com
plete definition can be found in any textbook) . There is no dispute that

12

this approach to substitution is not as convenient as what is used in other
frameworks, but it is certainly usable, and it has some advantages, which
we are able to exploit below.

It is easy to see that membership of groundS-expressions in sub is decid
able, and we constructed a tactic to verify membership when it holds5 • On
top of this it is easy to see that a rule application is also a decidable step.

Before moving on, we define a little more syntactic sugar that hides the
raw representations used in FSo for the sake of readability. Instead of writing
the encoding of 'r 1- A is provable in T' in FS0 as (r r,, r A,) E T, we will
write, simply, r r 1- A, E T.

2.3 What we have implemented

In the description above, there is little apparently in common between the
system that is described as FS0 , and what is used to show FS0 in use, though
hopefully it should be clear that the sugared version does not do anything
that is not possible in the original syntax.

In fact, to make FSo usable, we have implemented a tactic based theorem
prover for a sequent style presentation, inside a Prolog interpreter. We have
also implemented various facilities that translate between a version of the
notation used above and the 'raw' form of FSo. So we can automatically
define classes specified in the form

(where U is a formula in FSo, containing free variables x1 , ... Xn)· And also,
in the same manner, inductive definitions made up of clauses of the form

(with certain restrictions because only inductive definitions with two de
pen dents are explicitly allowed). The access to Prolog as a tactic language
means, too, that a lot of the work described in the rest of this paper has
been heavily automated.

In use the system looks as follows. When the system is used for proving
theorems in FS0 , the display looks like:

5It would be possible to provide a. function F tha.t satisfied the definition of sub so
tha.t (F(z, y, w), z, y, w) E sub, which would be a. one-step operation tha.t did not need to
invoke a. ta.ctic a.t all; such development is described in [14).

13

incomplete autotactic(idtac)
v6. (((O,(p2 of v1,p1 of v1),implies),sequent),provableseq

in proofsandlistsC)
==> \/(v20

by -

((v20,proof)in proofsandlistsC)#
((p2 of v20)

= (sequent,
(0,

(implies,(conj,(pn(1,1,1,1,2)of v2,
pn(1,1,2)of v1)),

pn(2,1,2)of v1)))))

This shows a step in the construction of a meta-theorem. The goal states
the existence of a proof object for a schematic object level goal, and the
hypothesis v6 is an induction hypothesis. The user can also see the object
level schematic sequent, in the language of the declared logic, as follows.

0 » (•object*(pn(1,1,1,1,2)of v2) 1:
•object*(pn(1,1,2)of v1)) =>

object(pn(2,1,2)of v1)

which, in terms of the notation used in this paper, is the goal

Currently the system is experimental, but demonstrates the feasibility of
these ideas. With additional work on the interface, it could form the basis
for a practical system.

3 How to do metamathematics in FSo

From the description given above it should be clear that FS0 theoretically
offers the capability to develop the sort of metamathematical extensions that
are discussed in the initial part of this paper. We now discuss more practical
details.

3.1 Formalising meta-theoretic extensions

When we extend a declared logic with an admissible inference rule, we want
the rule to function as a primitive rule of the original theory. That is, it

14

should have the form

r' 1- A'
r 1- A Rule

(in general, there may be several premisses). This may be expressed within
FSo as

DR(AR)::

(o,rr't- Ah,rr 1- A,) EAR---+ rr't- A, E PK---+ rr 1- A, E PK.

Here AR is a schematic variable ranging over relations between lists of se
quents- in this case, a singleton list- and a sequent.

However, in using this formulation to simulate an inference rule, we need
to supply both r F' 1- A,, and a proof that the antecedent of the schema
holds. Thus we have not yet achieved our goal of providing a new one-step
rule of inference.

One approach is to write a tactic that will carry out both of these tasks,
i.e., construct the new sequent, and generate a proof of the antecedent.
However, this is still not genuinely one-step, as the tactic may construct
arbitrarily large object-level derivations - indeed we have no guarantee
that the tactic will succeed.

The solution in FS0 is to provide a function F in FS0 so that

{(O,Fx,x) I x E wff} CAR

upon which DR(AR) is enough to show that Fx ET---+ x ET.
The definition of F is not usually . immediate. If it were, we could define

AR directly as the class

AR = {(Fx,x) I x E wff}.

In practice, it is easier to work with an intermediate relational definition,
which allows us to separate what we want to do from how we will go about
doing it. This is particularly convenient in FSo since it is designed to be
good at working with recursively enumerable classes, not recursive functions,
and its function construction and reasoning facilities are (we have found in
practice) trickier, and more frustrating, to use than those for recursively
enumerable classes - not least because they are based on primitive recur
sion. Moreover, the specification of AR will usually translate naturally into
a recursively enumerable class. The same, translated into a computationally
efficient primitive recursive function, may not be so comprehensible.

15

4 Doing metamathematics in FS0

Now we present a particular example of what has been described above in
general form; the example we have chosen is the definition and construction
of a rule for quantifier prenex form for predicate logic. The rule is pro
vided for the theory PK defined above, where the only connectives are the
quantifiers, disjunction and negation. The prenex form theorem says:

For any formula A in classical first-order predicate logic P K there
exists another formula A*= Qa1 ••• Qo.nB where each ai is dis
tinct from the others, each Q is a universal or existential quan
tifier, B is open, and such that 1- A +-+ A*. From this, the
admissible rule r 1- A iff r 1- A* follows.

4.1 Defining the relation

Below we define a relation between A and a corresponding prenex form. The
relation we formalise is designed to suggest a subsequently defined function
that computes normal forms. The definition here deals only with a fragment
of the language of PK, so it is not possible to use DeMorgan's laws for
instance. The details are as follows:

pf(r A,, r A,) -- ap(r A,).

pf(rQaA,,rQaA*,) -- pf(rA,,rA*,).

pj(r-.A,, r B,) f-- pf(r A,, r A*,) I\ pni(r A*,, r B,).

pf(r A VB,, re,) -- pf(r A,, r A*,) I\ pf(r B,, r B*,) I\

joinor(r A*,, r B*,, re,).

where the subsidiary definitions are:

and

pni(rA,,r_,A,) f-- rA,-:j;rQaC,.

pni(rQaA,, rQaA*,) -- pni(r A,, r A*,).

joinor(r A,, r B,, r A VB,) -- r A,# rQae, I\ r B, -:j; rQae'"l.

joinor(rQaA,, r B,, rQa*e,) -- joinor(r A[a* far, r B,, re,)
1\ra*, ~ r A,, r B,.

joinor(r B,, r A,, re,) -- joinor(r A,, r B,, re,).

16

(Here the notation Q just means 'the other quantifier than Q', e.g., V= 3,
and r a, ~ r A, means that a does not occur free in A; pf stands for
'predicate form' and pni for 'push negation in'). These definitions can
easily be converted into the definitions of recursively enumerable sets in
FSo, in the same way as wff earlier; so (like with wff) classes of the form
pfb,pf!, ... ,joinorb, ... etc. will actually be built by the system.

4.2 Verifying the relation pf

Since this is supposed to correspond to an admissible rule, we will want to
prove an instance of DR(·), but first we show that

where the usual syntactic abbreviations for the various connectives hold,
i.e.,

A+-+ B - (A--+ B) A (B--+ A),

A AB - -{-·A V -,B),

A --+ B - -,A V B.

4.2.1 An appropriate form of the goal

Since pf has been defined by inductive definition, the obvious way to prove
(*) is by induction over classes, but this is not yet possible; the goal has first
to be rewritten to

pf C 'P[Ko, iffpr1 PK (*')

with the definitions:

iffp = C[andp, P[impp,C[impp, revp]]],

andp C[negp, orp, P[C[negp, 1r1],C[negp, 1r2]]],
impp = C[orp, P[C[negp, 1r1], 1r2]],

orp = P[K"v",t],
negp = P[K"-.", t],
revp = 'P[7r2, 11"1].

Then it is fairly easy to see, by simplifying the function applications, that
(*) if (*'). I.e.,

pf c P[Ko, iffpr1 PK +-+ Vx(x E pf--+ x E P[Ko, iffpr1 PK)

17

and

and, from the definitions above,

'P[Ko, iffF]x

= (0, iffFx)

= (0, andF(impFx, impF(revFx)))

= (0, andF(OrF((negF(11"1X), 11"2X), (negF(11"2X), 11"1X))))
= (0, andF(r -,11"1X V 11"2X,, r -,11"2X V 1l"lx,))
= (0, andF(r11"1X-+ 11"2X,, r11"2X-+ 11"1X,))

Notice that there is a slight abuse here of the conventions we have defined:
terms of FS0 such as variables and their projections appear as part of the
notation for encoded sequents of the declared theory. In fact x is an FS0

variable ranging over pairs of formulae in the declared language. This is
how schematic formulae are represented in our system. Fortunately, this
reduction does not need to be done by hand, since the machine is able to
take care of the messy details.

Then applying induction over the classes defined in §4.1 to (*')generates
two subgoals:
the base case

and the step case

f-Fso x E 'P[Ko, iffFr1 PK-+

4.2.2 The base case

YE 'P[Ko, iffFr1 PK-+

(w,x,y) E p/6 -+

w E 'P(Ko, iffFr1 PK.

The base case is easy; the definition of pf b given above is translated auto
matically into a formula equivalent to x E pfb +-+- (1r1X = 1r2x 1\ 1r1x E ap),

18

so the base case simplifies to

which follows trivially.

4.2.3 The step case

The step case is, naturally, more difficult: here there are three sub-cases,
depending on whether the outermost connective is a quantifier, a disjunction
or a negation. Assuming that the step case has been reduced to a subgoal
for each ofthese cases, we will work through the first (for the case where the
quantifier is "'v'"), since it is the easiest and makes all the important points
without obscuring details. The goal that has to be proven then, reduces by
thinning, simplification, and rules available in RPK to:

r11"1X r11"2x,,r1r2X f-1r1X, E PK, z E varl-ps0 r'v'z(1r1X) 1- 'v'z(1r2x), E PK.

The goal here is very similar in form to a goal in the declared theory, as
described earlier in this paper, except that it is schematic; x varies over
pairs of formulae in the object language, and z over variables in the object
language. This does not stop us treating it like an ordinary object-level
goal though, so long as we realise that some of the housekeeping that is
automatically checked when the goal is ground will instead have to be dealt
with separately. The proof follows by eliminating the quantifier on the right
using an instance of z. This can be done because z does not appear free on
the hypothesis list. Then, by the fact that 1r2x[zj z] = 1r2x, the consequent
is reduced to 1r2x. Then eliminating the quantifier of the formula on the left
in the same way reduces the goal to one of the hypotheses, and the result
follows.

What is most remarkable about this proof is how much of it can be done
in much the same way as an ordinary object-level proof. The important
difference is that some of the theory of the binding mechanism has to be
developed, since some of the side conditions which, for ground terms, are
decidable propositions, have now to be proven by appeal to lemmas (e.g.,
that fact that identity substitution is an identity operation). In fact, as
long as some care is taken in their construction, FS0 tactics designed for
encoded object level proofs for PK are usable for more general reasoning,
e.g., schematic PK formulae, as in this example.

19

4.3 The new derived rule

Given the proof of (*) we can now prove the appropriate instance of the
DR(·} schema. First it is necessary to construct an appropriate relation
between a list of sequents and a sequent, which can be easily defined as

Pf(rr~A*,,rr~A,) +- pf(rA,,rA*,),

(where Pf stands simply for 'sequent predicate form') then ~FSo DR(Pf}
quickly reduces, after simplification, and cutting in (*), to:

r T ~A, E PK, r ~A +-+-A*, E PK ~Fso r T ~A*, E PK

which is easily proved by a tactic for PK proofs.
Now we have achieved the first part of what is described in §3.1. So

we could build a tactic that would take any r r ~ A, E PK, construct an
appropriate r r ~A*,, and then construct a proof disposing of the resultant
subgoaJ.

4.4 Constructing and verifying the function

But if we stop here, we still need, each time, to prove the subgoal; we still
do not have a one-step derivation at the user interface. To fix this, the next
part of the development is the construction of a function pf F that can be
verified to perform the transformation automatically, inside FSo.

The definition of pf itself corresponds to an algorithm, but the algorithm
is not encodable directly in FS0 : the only computation facility available
directly in FSo is primitive recursion on S-expressions. We have implemented
a facility that is able to solve specifications for functions that use course of
values recursion on S-expressions, and is easily able to deal with functions
for pf and pni defined as follows:

PfF(r A VB,) = joinorF(PfF(r A,),PfF(rB,)),

PfF(r...,A,) = pniF(Pf F(r A,)),

pf F(rQaA,) = rQa(pf F(r A,)p,

PfF(r A,) = rA,,

pniF(rQaA,) = rQa(pniF(r A ,)p,
pni F(r A V B,) r...,(A V B),,

pniF(r...,A,) = r A,,

pniF(r A,) = r...,A,.

20

(It should be noted that the branches are assumed to be tested in order,
so that the last branch of, for instance, pf F above, is the 'otherwise' case
- it is assumed implicitly that none of the possibilities above it in the list
hold). The definition of joinorp presents greater difficulties though, since its
definition is not course of values. But the definition can be rewritten using
course of values recursion if a secondary function is used.

joinorp(rQaA,, r B,) = rQa*(joinorp(Sub(ra*,, ra,, r A,), r B,)),

where r a*, = nfip(r A, B,)

joinorp(r A,, r B,) = joinorp(r A,, r B,)

joinorp(r A,, rQaB,) = rQa*(joinorp(r A,, Sub(ra*,, ra,, r B,))),

where r a*, = nfip(r A, B,)

joinorp(rA,,rB,) = rA VB,

We now show how to prove that the relation

pfF= {(x,y) I x E wff,y = pfpx}

is a subrelation of pf, i.e., that

pfFC pf.

This cannot be done in the same way as in the proof of the apparently
similar (*') because pfF is not given as an inductively defined class. Since we
are trying to verify a function, we want to use induction over S-expressions,
which we can do, indirectly, as follows: pfF is defined as a primitive recursive
class, and therefore its complement pfF is definable in FS0 as

So, since (**) is a consequence of

X~ pfFV X E pf

~ X E pfF V X E pf

~ X E pfFUpf

and the last of these can be tackled easily by a course of valu~s induction
on S-expressions (the path of the proof simply follows the structure of the
definition of the relation), the result follows.

21

Then, if PJF is defined as

P/F(r T 1- A"',, r r 1- A,) f-- pfF(r A,, r A"',),

it is easy to show that DR(PfF) implies

where r A*, is pfF(r A,). This is a genuine one-step deduction, since the
normalisation of pf(A) can be done by the PDS itself.

At this stage we have constructed a function that transforms a formula
in the language of wff into its prenex form, in one step, inside FS0 • Further
more, we have proved formally, in FS0 , that this transformation is admissible
in the theory PK, i.e., that

is valid for PK, which is what we wanted to do.

5 Conclusions and further work

We have described work showing that Feferman's proposed system FSo is a
practical option for a framework theory, and further that it is possible to
use FS0 to prove meta-level theorems that can be used to extend a declared
logic safely and efficiently. Specifically, we have shown that it is not difficult
to reason about formal theories that use bound variables, and to derive
admissible rules, such as the prenex example.

The total specifications for the language and theory used in the example
described here consisted of about a thousand lines of definitions, but a lot
of this was basic definitions and the substitution mechanism. It was also
the first large definition that has been constructed with the current support
facilities. A reconstruction of the same work would, w~ think, be smaller,
and would also be more modular - as the specification is at the moment it
is difficult to see which definitions are specific to the definition of PK and
which are more general. The specification of (a slightly more sophisticated
form of) the normal form theorem consisted of about a hundred lines of
code, and the two parts of the proof (showing that the relation is valid,
and constructing a function that satisfies the relation) took about a day to
construct each.

22

5.1 The implementation

One obvious question to ask is 'how important is the fact that we have
implemented our system directly in Prolog?'; i.e., would FS0 be a usable
system if it was instead implemented using another framework such as Is
abelle or the ELF? We would argue that such an implementation would
probably not be very useful for the following reason: FS0 is itself intended
as a framework theory, so if it were implemented on top of another system
then any work done in a logic declared in it would have to work through
two levels of encoding to get to the machine level. Further, special care was
taken to provide an efficient evaluation mechanism for function applications,
and this might not be available in other approaches.

5.2 :EUrther work, and other considerations

One distinctive feature of FS0 is that its proof-theoretic strength is very
low (identical to PRA- primitive recursive arithmetic). This restricts the
class of theorems that can be proven. (the problem is particularly significant
for meta-theory, which does sometimes need to appeal to stronger forms
of induction than is available in PRA). The reason that Feferman gives for
this restriction is ' ... to have a formulation of Go del's second incompleteness
theorem which applies to systems containing PRA in one way o~ another'[7],
which would be a challenging further piece of work. This would in turn
introduce the possibility of using reflection principles to increase the proof
strength of the system. Indeed, the idea that reflection be exploited in FSo
is implicit, if not explicit, in another strand of his work, for instance in his
recent paper [9].

Less ambitiously, it is clear from what is described above that the abil
ity to define functions is important when working in FS0 • In principle, the
functions that the system allows to be defined are enough to allow anything
that is feasibly computable to be computed. However, using only the facili
ties that are directly available, defining an appropriate function can be very
difficult in practice. The development of (conservative) extensions to the
function definition facilities, to make this easier would be a very worthwhile
step.

Another direction of research that seems to offer possibilities not so easily
available in other frameworks is the notion of schematic presentations of
theories. An examination of the formal proof of the theorem presented in
this paper shows that, for instance, wherever the theory PK = SC{RPK) is
used, it would be easily possible instead to prove a version of the theorem

23

abstracted over a class EX, that used the theory P'K = SC(RPK U EX),
thus proving that the rule is admissible in any extension of PK. This might
offer very general facilities for sharing meta-theoretic results; but we have
barely started to consider the implications of this.

References

[1] Aiello, L. and Weyhrauch, R. {1980). Using meta-theoretic reasoning
to do algebra, in 5th International Conference On Automated Deduc
tion, (Les Arcs, France).

[2] Ba.Sin, D. and Constable, R. (1991). Metalogical frameworks, in Pro
ceedings of the Second Workshop on Logical Frameworks, (Edinburgh,
Scotland).

[3] Berardi, S. (1991). Girard normalization proof in LEGO, in Proceed
ings of the Second Workshop on Logical Frameworks, (Edinburgh,
Scotland).

[4] Boyer, R. and Moore, J. (1981). Metafunctions: proving them correct
and using them efficiently as new proof procedures, in The Correctness
Problem in Computer Science, pages 103-184, {Academic Press).

[5] Bundy, A. (1988). The use of explicit plans to guide inductive proofs,
in 9th International Conference On Automated Deduction, pages 111-
120 (Argonne, lllinois).

[6] Constable, R. and Howe, D. (1990). Implementing metamathematics
as an approach to automatic theorem proving, in A source book of
formal approaches to A.I., ed. R.B. Banerji (North Holland, Amster
dam).

[7] Feferman, S. (1991). Private Communication.

[8] Feferman, S (1989). Finitary inductively presented logics, in Logic Col
loquim '88 (North-Holland, Amsterdam).

[9] Feferman, S. (1992). Reflecting on incompleteness, Journal of Symbolic
Logic, 56, 1-49.

[10] Felty, A. and Miller, D. (1988). Specifying theorem provers in a higher
order logic programming language, in 9th International Conference On
Automated Deduction, (Argonne, lllinois) .

24

[11] Harper, H. and Honsell, F. and Plotkin, G. (1987). A framework for
defining logics, in The Second Annual Symposium on Logic in Com
puter Science, pages 193-204 (IEEE).

[12] Howe, D. (1988) Computational metatheory in Nuprl, in 9th Interna
tional Conference On Automated Deduction, pages 238-257 (Argonne,
Illinois).

[13] Kleene, S. (1952). Introduction to Metamathematics (Van Nostrand,
New York).

[14] Matthews, S. (1992). Meta Level and Reflexive Extension in Mechan
ical Theorem Proving, University of Edinburgh, Ph.D. thesis (to ap
pear).

[15] Paulson, L. (1986). Natural deduction proof as higher-order resolution,
Journal of Logic Programming, 3, 237-258.

[16) Post, E. (1943). Formal reductions of the general combinatorial deci
sion problem, Amer. J. Math, 65, 197-214.

[17) Shankar, N. (1985). Towards mechanical metamathematics. Journal
of Automated Reasoning, 1, 407-434.

[18] Smullyan, R. (1961). Theory of Formal Systems (Princeton University
Press, New York).

[19] Troelstra, A.S. (1973). Metamathematical Investigation of Intuitionis
tic Arithmetic and Analysis (Springer-Verlag, New York).

25

	92-214_Cover
	92-2140002
	92-2140003
	92-2140004
	92-2140005
	92-2140006
	92-2140007
	92-2140008
	92-2140009
	92-2140010
	92-2140011
	92-2140012
	92-2140013
	92-2140014
	92-2140015
	92-2140016
	92-2140017
	92-2140018
	92-2140019
	92-2140020
	92-2140021
	92-2140022
	92-2140023
	92-2140024
	92-2140025
	92-2140026
	92-2140027
	92-2140028
	92-2140029
	92-2140030

