“Blocking without Locking”
or LFTHREADS:. A lock-free
thread library

Anders Gidenstam
Marina Papatriantafilou

MPI-I-2007-1-003 October 2007

Authors’ Addresses

Anders Gidenstam
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Marina Papatriantafilou

Computer Science and Engineering
Chalmers University of Technology
SE 412 96 Goteborg

Sweden.

Abstract

This paper presents the synchronization irTHREADS, a thread library entirely
based on lock-free methods, i.e. no spin-locks or similackyonization mech-
anisms are employed in the implementation of the multitthrega Since lock-
freedom is highly desirable in multiprocessors/multisodeie to its advantages
in parallelism, fault-tolerance, convoy-avoidance andenthere is an increased
demand in lock-free methods in parallel applications, kesdso in multiproces-
sor/multicore system services. This is why a lock-free itiuktading library is
important. To the best of our knowledge LHFREADS is the first thread library
that provides a lock-free implementation of blocking symoctization primitives
for application threads. Lock-free implementation of @tgewith blocking se-
mantics may sound like a contradicting goal. However, sunpbats have benefits:
e.g. library operations that block and unblock threads ersétme synchronization
object can make progress in parallel while maintaining tesireéd thread-level
semantics and without having to wait for any “slow” operacamong them.
Besides, as no spin-locks or similar synchronization meishaare employed,
processors are always able to do useful work. As a conseguapeplications,
too, can enjoy enhanced parallelism and fault-tolerande Synchronization in
LFTHREADSIs achieved by a new method, which we aalsponsibility hand-off
(RHO), that does not need any special kernel support.

Keywords

lock-free, multithreading, multiprocessors, multicores, synchronization,
shared memory.

Contents

1 Introduction 2

2 Preliminaries 5

3 Detailed description of theLFTHREADS library 8
3.1 Datastructuresused in LHAREADS 8
3.2 Thread operationsin IIHREADS 10
3.3 Blocking thread synchronization in TRREADS and the RHO

method 10

4 Correctness of the synchronization inLFTHREADS 16
4.1 Lock-freedom 17
4.2 Linearizability 18
4.3 Mutual exclusion properties o 00 21

5 Experimental study 23

6 Conclusions 27

1 Introduction

Multiprogramming and threading allow the processor(s)dcshbared by several
sequential threads of control efficiently. Although theg arfundamental part of
modern operating systems, their implementation are alitbee important in the
context of multiprocessor or multicore systems. In thisgrape study synchro-
nization algorithms for realizing standard thread-ligraperations and objects
(create, exit, yield and mutexes), in a thread libraryTHREADS, based entirely
onlock-freemethods. Lock-freedom implies that no spin-locks or simdaking
synchronization methods are used in the implementationeodperations/objects
and guarantees that in a set of concurrent operations atdeaf them makes
progress every time there is interference and thus opasatieentually complete.

The rationale in LFHREADS is that processors should always be able to do
useful work when there are runnable threads available (ia.blocked by the
application), regardless of what other processors do;d.erocessor is able to
continue doing useful work, despite other processors sanebusly accessing
shared objects related with the implementation of the@ iREAD S-library oper-
ations, and/or suffering stop failures or delays (e.g. fténor page-fault inter-
rupts).

Note that even a lock-free thread library needs to providgekhg synchro-
nization objects, e.g. for mutual exclusion in legacy agailons and for other
applications where threads might need to be blocked, e.mtdoact with some
external device. Our new synchronization method inTHREADS implements
a mutual exclusion object with the standard blocking sermarior application
threads, but allows such application threads to be bloek#tbut enforcing mu-
tual exclusion among the processarsecuting the threads. This means that even
if a processor is stopped or delayed in the middle of a mutexaijon, all other
processors are still able to continue performing operatieven on the same mu-
tex We consider this an important part of the contribution is fhaper. It enables
library operations blocking and unblocking threads on #i@e synchronization
object to make progress in parallel, while maintaining tlesickd thread-level
semantics, without having to wait for any “slow” operatian@ng them to com-

plete. To achieve this, we introduce a new synchronizatiethod, which we
call responsibility hand-offRHO), which may also be useful in other lock-free
synchronization constructions. Roughly speaking, the RH@atehandles cases
where processors need to perform sequences of atomic sotmoa shared object
in a consistent and lock-free manner, for example a combmaif (i) checking
the state of a mutex, (ii) blocking if needed by saving theenirthread state and
(iif) enqueuing the blocked thread on the waiting queue efrtiutex; or a com-
bination of (i) changing the state of the mutex to unlocked €i) activating a
blocked process if there is any. “Traditional” ways to do shene employ the use
of locks and are therefore vulnerable to processors fadimgeing delayed, which
the RHO method is not. The method is lock-free and manageadheeecution
contexts without needing special kernel or scheduler suppo

Related and motivating work

A special kernel-level mechanism, calledheduler activationshas been pro-
posed and studied [2, 8], to enable user-level threads év thfé functionality of
kernel-level threads with respect to blocking and alsodeavprocessor idle in the
presence of ready threads, which is also the goal afHHEADS. It was also ob-
served that application-controlled blocking and integess communication can
be resolved at the user-level without modifications to the&lewnhile achieving
the same goals as above, but multiprogramming demands aredaddlocking,
such as for page-faults, seem to need scheduler activatibims RHO method
and LFTHREADS complement these results, as they provide the threads yith s
chronization operation implementations that do not bloa&heother unless the
application blocks within the same level (i.e. user- or kdievel). LFTHREADS
can be combined with scheduler activations for a hybridatirenplementation
with minimal blocking.

To make the implementation of blocking mutual exclusion enefficient, op-
erating systems that implement threads at the kernel leagl split the imple-
mentation of the mutual exclusion primitives between then&kand user-level.
This is done in e.g. Linux [9] and Sun Solaris [33]. This dieisallows the cases
where threads do not need to be blocked or unblocked, to bdidthat the user-
level without invoking a system call and often in a way thah@-blocking to
the threads and processors by using hardware synchramzaiimitives. How-
ever, when the calling thread should block or when it needsbdock some other
thread, an expensive system call must be performed. Sutdnsyslls contain,
in all cases we are aware of, critical sections protectegbylecks.

Although our present implementation of tRREADS is done entirely at the
user-level, the algorithms used in it are also well suitecle in a kernel - user-
level divided setting. With our method a significant benefivd be that there

3

is no need for spin locks and/or disabling interrupts inegitine user-level or the
kernel-level part.

Further research motivated by the goal to keep processsisdning useful
work and to deal with preemptions in this context includegchanisms to pro-
vide some form of control over the kernel/scheduler to avsidianted preemp-
tion (cf. e.g. [23, 21]) or the use of application-relatetbmrmation (e.g. period
and execution time bounds in real-time systems) to recawen it [7]; [4] and
subsequent results inspired by it, focusing on scheduliilg work-stealing, as
a method to keep processors busy by providing fast and cantuaccess to the
set of ready threads; [31] aims in a similar direction, ppg thread schedul-
ing that does not require locking (essentially using lodefqueuing) in a mul-
tithreading library called Lesser Bear. [40] studied methotischeduling to re-
duce the amount of spinning in multithreaded mutual exolusj41] focuses on
demands in real-time and embedded systems and studiesdsadtiroefficient,
low-overhead semaphores; [1] gives an insightful ovenaéwecent methods for
mutual exclusion. There has been other work at the operayisigm kernel level
[27, 26, 13, 14], where basic kernel data structures have teggaced with lock-
free ones with both performance and quality benefits. Thexealso extensive
interest and results on lock-free methods for memory manage (garbage col-
lection, memory allocation, e.g. [39, 29, 6, 28, 11, 12, 1T [5], the topic of
lock-free synchronization in multithreading librariesaddressed, too: it presents
a lock-free algorithm to replace mutually exclusive acdessulti-word objects,
where the access can consist of any side-effect-free fimgtioducing the new
object state.

The goal of LFHREADS s to implement a common library interface, includ-
ing operations with blocking semantics, in a lock-free namnrit is possible to
combine LEHREADS with lock-free and other non-blocking implementations of
shared objects, such as e.g. the NOBLE library [35] that plewimplementa-
tions of a large range of data structures using lock-freehods, or other con-
structions that aim to provide support for non-blockinggreonming, e.g. the
Software Transactional Memory package for C# [16] and theyman-blocking
STM algorithms in the literature, e.g. [19, 25, 32, 10].

The paper is organized as follows: first we present the systedel together
with some background information on lock-free synchrotiimaand the prob-
lem we focus on including the application programming ifatee of LFTHREADS
(Chapter 2); followed by a detailed description of the altjonic design (Chap-
ter 3); the correctness of the above (Chapter 4); some impittien-related
information and an experimental study (Chapter 5). We caleclo Chapter 6.

2 Preliminaries

System model

We consider shared memory multiprocessor systems, whesy#tem consists of
a set of processors, each having its own local memory as wékimg connected
to a shared memory through an interconnect network. Eactepsor executes
instructions sequentially at an arbitrary rate. The shanedhory might not be
uniform, that is, for each processor the latency to accese® start of the mem-
ory is not necessarily the same as the latency for any otloeepsor to access
that part of the shared memory. The shared memory suppansatead and
write operations of any single memory word, and also strosgegle-word syn-
chronization primitives, such as Compare-And-Swap (CAS)FRetdh-And-Add
(FAA) (see Figure 1) used in the algorithms in this paper.seh@rimitives are ei-
ther available or can easily be derived from other availghilaitives [22, 30] on
most contemporary microprocessor architectures. Theepsacs in the system
cooperate to run a set of application threads. Each threasists of a sequence
of operations; communication is accomplished via sharediory operations.

Lock-free synchronization

Lock-freedonjl5] is a type of non-blocking synchronization that guaesstthat
in a set of concurrent operations at least one of them malaggss and thus
eventually completes each time. Another type of non-bloglsynchronization
is wait-freedom[24], which guarantees tha&veryoperation finishes in a finite
number of its own steps regardless of the actions of concuoerations. In the
literature we also seebstruction-freedonfl8], a weak non-blocking synchro-
nization option, guaranteeing only that, at any point, adldrthat executesone
for a sufficiently large but bounded number of steps can cetapts operation.
Obstruction free algorithms are distinguished from loefand wait-free ones:
in the former, progress is not guaranteed in presence ofucrecy and opera-
tions may even abort.

Figure 1 The Compare-And-Swap (CAS) and Fetch-And-Add (FAA) atomic
primitives.

function CAS(address pointer to word;

oldvalue :word; newvalue :word) : boolean function FAA(addresspointer to integer;
atomic do increment:integer): integer
if *address = oldvaluéhen atomic do
*address := newvalue; ret := *address;
return true ; *address :=ret + increment;
else return false return ret;

The correctness condition for atomic non-blocking opereiislinearizabil-
ity [20]. An execution idinearizableif it guarantees that even when operations
overlap in time, each of them appears to take effect at aniatimme instant that
lies within its respective time duration, such that the @ffef each operation is
consistent with the effect of its corresponding operatioa sequential execution
in which the operations appear in the same order.

Non-blocking synchronization is attractive as it offersusnber of advantages
over lock-based synchronization: (i) it does not give riggtiority inversion;
(i) it avoids lock convoys; (iii) it provides better faulblerance (processor stop
failures will not corrupt shared data objects); and (iv)lilngnates deadlock sce-
narios involving two or more threads both waiting for eacheot Due to these
facts there is extended research literature on lock-freetspnization (c.f. [34]
for an overview) as well as oaniversal methods$o transform lock-based con-
structions into lock-free/wait-free ones (e.g. [3, 15,)38esides ensuring the
above qualitative properties, it has also been shown, usgigknown parallel
applications, thalock-freemethods imply at least as good performance as lock-
based ones in several applications, and often significdetier [34, 36]. Wait-
free algorithms, as they provide stronger progress guaganare inherently more
complex and more expensive than lock-free ones. Obstruttgedom implies
very weak progress guarantees and can be used e.g. fomadguarposes for
studying parallelization.

In LFTHREADS the focus is orock-free synchronizatiodue to its combined
benefits in progress, fault-tolerance and efficiency paknt

The problem and LFTHREADS'S API

The LFTHREADS library defines the following procedures for thread hangttin
procedure create(thread out thread_t; main in pointer to procedure);
procedure exit();

The interface we present here was chosen for brevity andisitgpOur actual implementa-
tion aims to provide a POSIX threads compliant (IEEE POSIB3LAc) interface.

6

procedureyield();

Procedurereate creates a new thread which will start in the procedure main.
Procedureexit terminates the calling thread and if this was the last thfabe
application/process the latter is terminated as well. &taceyield causes the
calling thread to be put on the ready queue and the (virtuvagssor that was
running it to pick a new thread to run from the ready queue.

For applications that need lock-based synchronizatiowdet threads the
thread library provides a mutex object. The mutex objecpsus the operations:
procedure lock(mutex :in out mutex_t)
procedure unlock(mutex :in out mutex_t)
function trylock(mutex :in out mutex_t):boolean

Procedurdock attempts to lock the mutex. If the mutex is locked already
the calling thread is blocked and enqueued on the waitingiejué the mutex.
Procedurainlock unlocks a mutex if there are no threads waiting in the mutex’s
waiting queue, otherwise the first of the waiting threadsraraoved from the
waiting queue and made runnable. That thread becomes theweer of the
mutex. Only the thread owning the mutex may cailock. Functiontrylock tries
to lock the mutex. If it succeeds (i.e. the mutex was unlotkee is returned,
otherwisefalse.

3 Detailed description of the
LFTHREADS library

3.1 Data structures used inLFTHREADS

In Figure 2 the data structures used in the implementatiohe®fLFTHREADS
library are presented. We assume that we have a data ¢tgpéext_t, where
the CPU context of an execution (i.e. thread) can be storecame operations
to manipulate such contexts. These operations, which cauy@orted by most
common operating systemsre:

(i) save(context) stores the state of the current CPU context in thplsd vari-
able and switches processor to a special system contexte iEhene such context
available for each processor. The return value feawve is true when the context
is stored andalse when the context is restored.

(i) restore(context) loads the supplied stored CPU context onto thegssmr.
The restored context resumes execution in the (old) caléte, returningfalse.
The CPU context that made the callrstore is lost (unless it was saved before
the call torestore).

(i) make_context(context,main) creates a new CPU context in the supplied vari
able. The new context will start in a call to the procedoenan when it is loaded
onto a processor witrestore.

Each thread in the system will be represented by an instahtteeahread
control block data typehread_t, which contains @ontext_t variable that stores
the thread’s state when it is not being executed on one ofribeepsors.

Further, we also assume that we have a lock-free queue datdause (like
e.g. [37]) for pointers to thread control blocks; the queugp®rts three lock-free

1For example in systems conforming to the Single Unix Spetifio v2 SUSV2, such
as GNU/Linux, they can be implemented froget cont ext (2), setcont ext (2) and
makecont ext (3) , while in other Unix systemset j unp(3) andl ongj np(3) or similar
could be used.

Figure 2 Thread context and thread queue operations used THREADS.

type context_tis record (implementation defined

function save(context out context_t):boolearn

[* Saves the current CPU context and switches to a

* system context. The call teave returnstrue when

* the context is saved arfdlsewhen it is restored. */

procedure restore(context in context_t);

/* Replaces the current CPU context with a

* previously stored CPU context.

* The current context is destroyed. */

procedure make_context(contextaut context_t;
main :in pointer to procedure);

/* Creates a new CPU context which will wakeup

*in a call to the procedure main when restored. */

type thread_ts record
uc : context_t;
/* Thread control block. */

type If_queue_is record (implementation defined

procedure enqueue(queuein out If_queue_t;
thread :in pointer to thread_t);
[* Appends the thread control blotkread to
* the end of the queue. */
function dequeue(queuein out If_queue_t;
thread :out pointer to thread_t):boolean
[* If the queue is not empty the firthread_t pointer
*in the queue is dequeued afrde is returned.
* Returnsfalseif the queue is empty. */
function is_empty(queuein out If_queue_t):boolearn
/* Returnstrue if the queue is empty, and
* falseotherwise. */

function get_cpu_id():cpu_id_t
/* Returns the ID of the current CPU (an integer). */

Figure 3 The basic thread operations and shared data THREADS.

/* Global shared variables. */
Ready_Queue : If_queue_t;

/* Private per-processor persistent variables. */
Current, : pointer to thread_t;

* Local temporary variables. */
next : pointer to thread_t;
old_count :integer;

old : cpu_id_t;

procedure create(thread out thread_t;

main :in pointer to procedure)
Cl make_context(thread.uc, main);
C2 enqueue(Ready_Queue, thread);

procedureyield()

Y1 ifnot is_empty(Ready_Queu#)en

Y2 if save(Current.uc)then

Y3 enqueue(Ready_Queue, Curggnt
Y4 cpu_schedule();

procedure exit()

E1 cpu_schedule();

procedure cpu_schedule()

Cl1 loop
CI2 if dequeue(Ready_Queue, Curggrthen
CI3 restore(Curregtuc);

and linearizable operationgnqueue, dequeue andis_empty (each with its
intuitive semantics). The lock-free queue data structitesed as a building block
in the implementation of LFHREADS. However, as we will see in detail below,
additional synchronization methods are needed to makebpes involving more
than one queue instance lock-free and linearizable.

3.2 Thread operations inLFTHREADS

The general thread operations and variables used THREADS are shown in
Figure 3. The persistent global and per-processor vasatmasist of the global
sharedReady_Queue?, which contains all runnable threads not currently be-
ing executed by any processor, and the per-processor teatsiariableCurrent,
which contains a pointer to the thread control block of thedl currently being
executed on that processor.

The thread handling operations, whose required functitynahs introduced
in section 2, work as follows in LFHREADS:

(i) Operationcreate creates a new thread control block, initializes the context
stored in the block and enqueues the new thread on the read qu

(i) Operationexit terminates the thread currently being executed by thisgsroc
sor, which then picks another thread to run from the readyeue

(iif) Operationyield saves the context of the thread currently being executed by
this processor, enqueues this thread on the ready queudamgicks another
thread to run from the ready queue.

In addition to the publicreate, exit, yield operations, there is an internal
operation in LEFHREADS, namelycpu_schedule, which is used for selecting
the next thread to load onto the processor. If there are readlsr waiting for
execution in theReady Queue, the processor is idle and waits for a runnable
thread to appear.

3.3 Blocking thread synchronization InLFTHREADS
and the RHO method

To facilitate blocking synchronization among applicattbneads, LFHREADS
provides a mutex primitivemutex_t. While the operations on a mutekck,
trylock andunlock have their usual semantics for application threads, they ar
lock-free with respect to the processors in the system. ifhies improved
fault-tolerance properties against stop and timing fanltee system compared to
traditional spin-lock-based implementations, since af/a@rprocessor is stopped
or delayed in the middle of a mutex operation all other precesare still able to
continue performing operationsyen on the same muteldowever, note that an
individual application thread trying to lock a mutex will béocked if the mutex
has been locked by another application thread. A faultyiegibn can also dead-
lock its threads. It is the responsibility of the applicatiteveloper to prevent such

°The Ready_Queue here is a lock-free queue, but e.g. waakreig4] could be used.

10

situations®

Mutex operations in LFTHREADS

Themutex_t structure, shown in Figure 4, consists of three fields:

(i) an integer counter, which counts the number of threadsdhe in or want
to enter the critical section protected by the mutex;
(i) alock-free queue, where the thread control blocks otkéd threads want-
ing to lock the mutex when it is already locked can be storad; a
(iii) a hand-off flag, whose role and use will be described in detail below.

The operations on theutex_t structure are shown in Figure 4. In rough
terms, thdock operation locks the mutex and makes the calling thread iteeaw
If the mutex is already locked the calling thread is blocked #he processor
switches to another thread. The blocked thread’s contektbeiactivated and
executed later when the mutex is released by its previougiown

In the ordinary case a blocked thread is activated by theathreleasing
the mutex by invokingunlock, but due to fine-grained synchronization, it may
also happen in other ways. In particular, note that checkihgther the mutex
is locked and entering the mutex waiting queue are distitehe operations.
Therefore, the interleaving of thread-steps can causat&ns such that e.g. a
threadA finds the mutex locked, but by the time it has entered the mytiexie
the mutex has been released, heAcshould not remain blocked in the waiting
gueue. The “traditional” way to avoid this problem is to emesthat at most one
processor at a time modifies the mutex state, i.e. by enf@mintual exclusion
among the processors in the implementation of the mutexatipes, e.g. by
using a spin-lock. In the lock-free solution proposed hémne,synchronization
required for such cases is managed with a new method, whicball¢he re-
sponsibility hand-offRHO) method. In particular, the thread/processor that is
releasing the mutex is able, using appropriate fine-grasyadhronization steps,
to detect whether such a situation may have occurred andsponse, “hand-off”
the ownership (or responsibility) for the mutex to some pthesad/processor.

By performing aresponsibility hand-offthe processor executing ti@lock
operation can finish this operation and continue executirepds without needing
to wait for any concurreribck operations to finish (and vice versa). As a result,
the mutex primitive in LFHREADS tolerates arbitrary delays and even stop fail-
ures inside mutex operations without affecting the othecessors’ ability to do

3].e. here lock-free synchronization guarantees deadiwoidance among the operations that
are implemented in lock-free manner, butapplicationthat uses objects that have blocking se-
mantics (e.g. mutex) of course needs to take care to avoitlatga due tdnappropriate useof
blocking operations by its threads.

11

Figure 4 The lock-free mutex protocol in LFHREADS.

type mutex_tis record
waiting : If_queue_t;
count :integer :=0;
hand-off :cpu_id_t:=null;

procedure lock(mutex :in out mutex_t)
L1 old_count := FAA(&mutex.count]);
L2 if old_count# 0 then

/* The mutex was locked.

* Help or run another thread. */

L3 if save(Current.uc)then

L4 enqueue(mutex.waiting, Current

L5 Current, := null; /* The thread is now blocked. */
L6 old := mutex.hand-off;

L7 if old # null and not is_empty(mutex.waitingthen
L8 if CAS(&mutex.hand-off, oldnull) then

L9 dequeue(mutex.waiting, Curregnt

L10 restore(Curren); /* Done. */

L11 cpu_schedule(); /* Done. */

function trylock(mutex :in out mutex_t):boolean
TL1 if CAS(&mutex.count(, 1) then return true;
TL2 else ifGrabToken(&mutex.hand-offhen
TL3 FAA(&mutex.count,1);

TL4 return true ;

TL5 return false;

procedure unlock(mutex :in out mutex_t)
Ul old_count := FAA(&mutex.count-1);
U2 if old_count# 1 then
[* There is at least one waiting thread. */
u3 do_hand-off(mutex);

procedure do_hand-off(mutex in out mutex_t)
H1 loop /* We own the mutex. */

H2 if dequeue(mutex.waiting, nexten
H3 enqueue(Ready_Queue, next);
H4 return; /* Done. */
else /* The waiting thread is not ready yet! */
H5 mutex.hand-off ;= get_cpu_id();
H6 if is_empty(mutex.waitingthen

/* Some concurrent operation will see/or
* has seen the hand-off. */

H7 return; /* Done. */
H8 if not CAS(&mutex.hand-off, get_cpu_id@wull) then

/* Some concurrent operation acquired the mutex. */
H9 return; /* Done. */

function GrabToken(loc pointer to cpu_id_t) : boolean
GT1 old :=*loc;

GT2 if old = null then return false;

GT3 return CAS(loc, old,null);

12

useful work, including performing operations on the saméexu
The details of theesponsibility hand-ofimethod are given in the description
of the operations, below:

Thelock operation:

Line L1 atomically increases the count of threads that wargcdcess the mutex
using Fetch-And-Add. If the old value wasthe mutex was free and is now
locked by the thread. Otherwise the mutex is likely to be éstknd the current
thread has to block. Line L3 stores the context of the curttengiad in its TCB
and line L4 enqueues the TCB on the mutex’s waiting queue. Fr@mon, this
invocation oflock is not associated with any thread.

However, the processor cannot just leave and do sometlsegyet, because
the thread that owned the mutex might have unlocked it (simeeL1); this is
checked by line L6 to L8. If the token read fram.hand-off is not null then an
unlock has tried to unlock the mutex but found (at line U2) that altifiothere is
a thread waiting to lock the mutex, it has not yet appearetientaiting queue
(line H2). Therefore, thenlock has set thdéand-off flag (line H5). However, it
is possible that théand-off flag was set after the thread enqueued by libuk
(at line L4) had been serviced. Therefore, this processauldionly attempt to
take responsibility of the mutex if there is a thread avédai the waiting queue.
This is ensured by this_empty test at line L7 and the CAS at line L8 which only
succeeds if no other processor has taken responsibilityeafiutex since line L6.
If the CAS at line L8 succeedick is now responsible for the mutex again and
must find the thread wanting to lock the mutex. That threach{ght not be the
same as the one enqueued by tbik) is dequeued from thevaiting queue and
this processor will proceed to execute it (line L9 - L10).

If the conditions at line L7 are not met or the CAS at line L8 isweccessful,
the mutex is busy and the processor can safely leave to dowdrk (line L11).

To avoid ABA-problems (i.e. cases where CAS succeeds alththeyvariable
has been modified from its old value A to some value B and bask to.hand-off
should, in addition to the processor id, include a per-pscesequence number.
This is a well-known method in the literature, easy to impdanand has been
excluded from the presented code to make the presentatgarec!

The trylock operation:

The operation will lock the mutex and retutrue if the mutex was unlocked.
Otherwise it does nothing and returfasse. The operation tries to lock the mutex
by increasing the waiting count at line TL1. This will onlycaieed if the mutex
was unlocked and there were no ongolagk operations. If there are ongoing

13

lock operations or some thread has locked the mutigsock will attempt to
acquire thehand-off flag. This might succeed if the thread owning the mutex is
trying to unlock it and did not find any thread in the waitingege despite at least
one ongoingock operation. If thetrylock operation succeeds in acquiring the
hand-off flag it becomes the owner of the mutex and increases the waitant

at line TL3 before returningrue. Otherwiserylock returnsfalse.

The unlock operation:

If there are no waiting threadmlock unlocks the mutex. Otherwise one of the
waiting threads is made owner of the mutex and enqueued dRethdy Queue.

The operation begins by decreasing the waiting count atUibhewhich was in-
creased by this thread’s call knck or trylock. If the count become@, there are

no waiting threads and thenlock operation is done. Otherwise, there are at least
one thread wanting to acquire the mutex anddbehand-off procedure is used

in order to either find the thread or hand-off the respornigjtfibr the mutex.

If the waiting thread has been enqueued in the waiting queieedequeued
(line H2) and moved to th®eady_Queue (line H3) which completes than-
lock operation. Otherwise, the waiting queue is empty anditileck operation
initiates aresponsibility hand-offto get rid of the responsibility for the mutex
(line H5):

e The responsibility hand-off is successful and terminate§)i the waiting
gueue is still empty at line H6; in that case either the offegdhread has
not yet been enqueued there (in which case, it has not yeketiéor hand-
offs) or it has in fact already been dequeued (in which caseesother
processor took responsibility for the mutex); or if (ii) théempt to retake
the hand-off flag at line H8 fails, in which case, some other processor has
taken responsibility for the mutex. After a successful haffdhe processor
leaves theunlock procedure (line H7 and H9).

¢ Ifthe hand-off is unsuccessful, i.e. the CAS at line H8 sudsgthis proces-
sor is yet again responsible for the mutex and must repedathe-off pro-
cedure. Note that when a hand-off is unsuccessful, at least ®ther con-
currentlock operation made progress, namely by completing an enqueue
on the waiting queue (otherwise thislock would have completed at lines
H6 - H7). Note further that since the CAS at line H8 succeededgrof
the concurrentock operations have executed line L6-L8 since the hand-off
began.

14

Fault-tolerance

Regardingprocessor failuresthe procedures enable the highest achievable level
of fault-tolerance for a mutex. Note that even thougbracessor failurewhile
theunlock is moving a thread from then.waiting queue to thdReady Queue
(between line H2 and H3) could cause the loss of two threaglistfie current one

and the one being moved), the system behaviour in this casdisginguishable

from the case when the processor fails before line H2. In bates the thread
owning the mutex has failed before releasing ownership. llAdbtaer points a
processor failurecan cause the loss of at most one thread, namely the one whose
context is executing.

15

4 Correctness of the
synchronization in LFTHREADS

To prove the correctness of the synchronization in the thidasary we need to
show that the mutex primitive has the desired semantics. Wéinst show that
the mutex operations are lock-free and linearizable wipeet to the proces-
sors and then that the lock-free mutex implementationfgatithe conditions for
mutual exclusion with respect to the behaviour of the apgilbim threads.

First we define (i) some notation that will facilitate the geatation of the
arguments and (ii) establish some lemmas that will be usted ta prove the
safety, liveness, fairness and atomicity properties obatherithm.

Definition 1 A thread’s call to a blocking operation Op is said to bempleted
when the processor executing the call leaves the blockeddtared goes on to do
something else (e.g. executing another thread). The caligto haveeturned
when the thread (after becoming unblocked) continues itsutixa from the point
of the call to Op.

Definition 2 A mutexm is lockedwhenm.count > 0 and m.hand-off = null.
Otherwise it isunlocked

Definition 3 When a thread’s call to lock on a mutexm returns we say that
threadr haslockedor acquiredthe mutexm. Similarly, we say that thread has
lockedor acquiredthe mutexm when the thread’s call térylock on the mutexn
returns’'rue.

Further, when a thread- has acquired a mutem by alock or successful
trylock operation and not yet released it by callinglock we say that the thread
7 is theownerof the mutexn (or that 7 ownsm).

Lemma 1 The value of then.count variable is never negative and always greater
than zero when a threaownsthe mutexm.

16

Proof: Note thatm.count is increased by one for eadbck (line L1) and each
successfulrylock (line TL1 or TL3) operation and it is decreased by one for each
unlock operation (line U1). Thereforej.count cannot be zero unless the number
of calls tounlock is the same as the number of callddok and successful calls to
trylock together. In a correct application all threads must havetamrggunlock

call after eachock (or trylock) call and naunlock calls without a matchingpck
(ortrylock). For a thread to own the mutex it must have calléatk (or trylock)

but not (yet) calledunlock after that, son.count must be positive. Additionally
m.count cannot become negative since there can never be more caitdaick
than tolock (or successful ones toylock) . O

Lemma 2 If m.hand-off # null thenm.count > 0.

Proof: There is only one place in the mutex code whardand-off is set to
something# null, namely line H5 irdo_hand-off which is called fronunlock.

First observe that only a thread that owns the mutex is atiowesallunlock
and therefore by Lemmarh.count > 0 when anyunlock operation begins.

Let (x, y) denote the mutex stata.count = x, m.hand-off = y and assume
towards a contradiction that the stdte+ null) has been reached.

Consider thainlock, call it A, that setm.hand-off # null. Note that when it
executed line UIn.count > 1 or else it would never enteto _hand-off. There-
fore anothewnlock, B, must have decreasea.count afterwards. Thisinlock
could only be executed by a threadhat became owner of the mutex bloak or
trylock that took effect afterd released the mutex. There are two cases for how
7 could gain ownership: (i) thenlock A activatedr at line H3. This contradicts
the assumption thd reached line H5.

(i) The lock or trylock by 7 grabbed the hand-off token set byat line H5.
Since the only possible way can reset the hand-off token again requires that
successfully grabs its own hand-off token at line H8 thidss a contradictiont

4.1 Lock-freedom

The lock-free property of the thread library operationd Wwé established with

respect to the processors. An operation is lock-free ifgiaranteed to complete
in a bounded number of steps unless it is interfered with dounded number of

times by other operations and every time operations ineré least one of them
is guaranteed to make progress towards completion.

Theorem 1 The mutex operationsck, trylock andunlock are all lock-free.

17

Proof: The only instance of non-sequential code is the hand-off indo_hand-
off called by the operationnlock. The conditions that must hold for the proces-
sor to stay in the loop are:

(i) them.waiting queue is empty at line H2; and
(i) the m.waiting queue is non-empty at line H6; and
(i) the processor successfully captures thénand-off flag at line H8.
For both (i) and (ii) to hold, at least one other processortrhage completed an

engueue operation on tine.waiting queue between the execution of line H2 and
H6 and thus have made progréss. O

The lock-freedom ofrylock andunlock, with respect to application threads,
follows trivially from their lock-freedom with respect taqcessors, since there
are no context switches in them. The operafiock it is clearly neither non-
blocking nor lock-free with respect to application threagiace a thread calling
lock on a locked mutex should be blocked.

4.2 Linearizability

Linearizability guarantees that the result of any conauregecution of operations
is identical to a sequential execution of the operationsre/kach operation takes
effect atomically at a single point in time (lisearization poinf referred to as LP
below) within its duration in the original concurrent exgou.

Theorem 2 Operationlock is linearizable.

Proof: A lock either can succeed to lock the mutex immediately withouthilay
or it has to block until the current owner of the mutex unloitk3’he LP oflock
is when the thread becomes the owner of the mutex.(tef) denote the mutex
statem.count = x, m.hand-off = y. There are two main cases for a calléck
by a threadr:

(I) The mutex is unlocked with no ongoing operatiofisnull). In this case
the LP of thelock is the FAA instruction at line L1. It atomically changes
the mutex state to locked, null). Thelock operation then returns to the
calling threadr.

(I There are other ongoing operations on the mutex, irtdat&dym.count >
0 at line L1. In this case the threadis blocked (line L3) and enqueued
on them.waiting queue (line L4). The processor then continues|diok
operation. There are two possible sub-cases:
(i) The CAS on line L8 is not reached or is unsuccessful. Thertlhead

'Note that condition (iii) is irrelevant for the proof of lodkeedom.

18

7 will be activated (and thus given an LP) by either a concureeriuture
unlock (seeunlock below) or another concurretck that successfully
passed line L8 (see sub-case (ii) below).
(i) The CAS at line L8 succeeds. This implies that this preoess now
responsible for the mutex and that there is a thread prasémem.waiting
queue. The latter is guaranteed by the fact that threadsigbe dequeued
from m.waiting by a processor owning the mutex and that the ownership
token cannot have changed between line L6 and L8 for the CASido s
ceed. Then the LP of theck operation of the thread’ dequeued at line
L9 (which may or may not be, see sub-case (i) above) is the LP of the
dequeue.

O

Theorem 3 Operationtrylock is linearizable.

Proof: A trylock can either lock the mutex in which case it retufysue or, if
the mutex is already locked, do nothing and retHirise.

() Thetrylock by a threadr returnsTrue. In this case either the CAS at line
TL1 or the CAS at GT3 (called from TL2) succeeded. It is easye® s
that the successful CAS changes the mutex state from unldokiedked
atomically and forms the LP dfylock.

(I Thetrylock by a threadr returnsFalse. In this case the LP is between the
CAS atline TL1 and the CAS at GT3 (called from TL2). Observe fvate
trylock returnsFalse it must be the case that.count # 0 at line LT1 and
thatm.hand-off = null or m.hand-off # old at line GT3. Letz, y) denote
m.count = z, m.hand-off = y. The cases are:

(i) m locked(> 0, null) atline TL1: then the LP is TL1,;
(i) m unlocked(> 0, # null) at line TL1 andm locked (> 0, null) at line
GT3: thenthe LP is GT3;
(iii) m unlocked(> 0,# null) at line TL1 andm unlocked(0, null) at
line GT3: in this case it follows from Lemma 2 that some othleeadr’
must have concurrently locked the mutéx 0,null), and subsequently
unlocked it when there were no waiting thregfsnull). Hence the LP is
in the interval between theck andunlock of 7/;
(iv) the CAS at GT3 fails due tm.hand-off having changed from one non-
null value to another since line GT1: in this case the LP imasase (iii),
since them.hand-off change implies that the mutex became locked and
then unlocked again.

O

Theorem 4 Operationunlock is linearizable.

19

Proof: An unlock operation by the tread can either unlock the mutem or
activate one thread waiting in the.waiting queue. Note that in the application,
7 must own the muter when callingunlock. There are two main cases:

(I) The unlock unlocks the mutexm. In this case there are two sub-cases
depending on the existence of concurreak operations (indicated by the
value ofm.count):

(i) No concurrentock, i.e. the mutex state id, null) before line Ul. The
CAS at line U1 changes the mutex staté@onull) and is therefore the LP.
(i) There is at least one concurrdotk, i.e. the mutex state is> 1, null)
before line U1l. In this case thenlock enters thalo_hand-off procedure
where H5 is the LP. Note that if the dequeue at line H2 or the CASne
H8 succeeds, thianlock will activate a thread instead of unlocking the
mutex. These cases are examined below.

(I The unlock activates the waiting thread. In this case the mutex state
before line U1 is{> 1, null) indicating that there are concurrdatk oper-
ations. Theunlock operation will enter thelo_hand-off procedure to find
the thread-’ to activate. There are three cases depending on the pragress
the concurrenliock operation:

() The threadr’ has been enqueued on threwaiting queue (line L4 in
lock) beforeunlock reaches line H2. In this case the LP forlock is the
LP of thedequeue on line H2.
(ii) The threadr’ is enqueued on tha.waiting queue (line L4 in lock) after
line H2 but before line H6. In this case tlse empty test on line H6 returns
False and theunlock will attempt to retake the hand-off token at line H8.
This will succeed if and only if no other operation (e.g. a@amentlock
or trylock) took the token in the meanwhile. If the CAS at line H8 fails
the unlock unlocked the mutex as per sub-case (ii) of case (I) above. If
the CAS at line H8 succeeded the LPurflock is the LP of thedequeue
called on line H2 in the next iteration of the loop. Note tHat toop can
only be repeated once since to repeatvaiting must be non-empty and
unlock must retake responsibility of the mutex.
(i) The threadr’ is enqueued on the.waiting queue (line L4 in lock)
after line H6. In this case@nlock unlocked the mutex at line H5 as per
sub-case (ii) of case (I) above.

0

20

4.3 Mutual exclusion properties

The mutual exclusion properties of the new mutex protocelestablished with
respect to application threads.

Theorem 5 (Safety) For any mutexm and at any timet there is at most one
threadr such thatr is the owner ofn at timet.

Proof: A threadr can become the owner of a mutexby alock operation or a
successfutrylock operation.

By Theorem 2, Theorem 3 and Theoremldgk, trylock and unlock are
linearizable. Therefore, in a set of concurrémtk andtrylock operations on
an unlocked mutex, exactly one of them will take effect fir&, by changing
the mutex state to locked, and the thread executing it besadhgeowner of the
mutex. When this thread unlocks the mutex byuwarock operation, then by
Theorem 4 the ownership is either transfered to the firsathie them.waiting
gueue, which is also activated, or, if there are no such tisietlie mutex state
changes to unlocked. O

Lemma 3 No thread is left blocked in the waiting queue of an unlockedermat
when all concurrent operations concerninghave completed.

Proof: Recall from Definition 2 that a mutex is locked if and only ifm.count >
0 andm.hand-off = null, so the mutex is unlocked m.count = 0 or m.hand-
off £ null.

If m.count = 0 then there clearly cannot be any waiting threads, sincertte fi
action of a thread trying to acquire a mutex usingk, is to increasen.count.

Assume, towards a contradiction, that there are no uncdetpleperations
and there is a thread left in the m.waiting queue m.count # 0 andm.hand-
off # null. Consider thdock operation by the thread. It cannot have been
the last operation to complete, becausenihand-off was+# null, the CAS at
L8 would have succeeded atatk would dequeue the threadavailable in the
m.waiting queue and activate it.

But if m.hand-off wasnull whenr’s lock operation completed, then there
must have been some other uncompleted operation activdeiashand-off loop
after that point, since that is the only placehand-off is set to something other
than null (at line H5). However, for that operation to leaigehand-off loop and
complete, it must find then.waiting queue empty after setting.hand-off (line
H6). This contradicts our assumption thag lock operation completed before
m.hand-off was set.

Thus, it is impossible that all operations oncompleted leavingn unlocked
and the thread in them.waiting queue. O

21

Lemma 4 A mutex is locked if and only if it swnedby a thread.

Proof: The lemma follows from the Theorems 2, 3 and 4, i.e. lineailitg of
lock, trylock andunlock. O

Lemma 5 A threadr waiting to acquire a mutern in a call to lock will at most
have to wait for the thread currently ownimg and all threads that have called
lock onm beforer’s call to lock enqueued on them.waiting queue.

Proof: Once the thread has been enqueued on tieewaiting queue (line L4)
it only needs to wait for the threads ahead of it in the queuaddition to any
current owner of the mutex before it will acquire the mutexisTis ensured by
theunlock protocol that will activate the first thread in thewaiting queue (lines
H2 - H4). Atrylock operation cannot bypass the waiting threads smamunt
is nonzero andinlock only sets then.hand-off if it finds the waiting queue to be
empty. O

Theorem 6 (Liveness I) A threadr waiting to acquire a mutem will eventually
acquire the mutex once iksck operation has enqueuedon them.waiting queue.

Proof: The theorem follows from Lemma 1, Lemma 3, Lemma 4 and Lemma 5.
O

Theorem 7 (Liveness Il) A threadT wanting to acquire a mutes can only be
starved if there is an unbounded numbeildafk operations orm performed by
threads on other processors.

Proof: The theorem follows from the lock-free nature of thavaiting queue and
Theorem 6.

We know from Theorem 6 that once the thread has enqueuefl drsehe
m.waiting queue it will not starve, so to starve it must not succeed terghe
m.waiting queue, that is, its enqueue operation must never complete.

Each time two or more operations on the lock-free queuefarewith each
other, at least one of them make progress, so for one pradessever complete
its operation, it will have to be interfered with by a con@ntsuccessful operation
every time it tries to progress. O

Theorem 8 (Fairness) A threadr wanting to acquire a mutex will only have to
wait for the threads whodeck operation enqueued them on tmewaiting queue
beforer was enqueued there.

Proof: The theorem follows from Lemma 5. O

22

5 EXxperimental study

The primary contribution of this work is to enhance quaiNg&properties of thread
library operations, such as the tolerance to delays anepsoc failures. However,
since lock-freedom may also imply performance/scalgbiiénefits with increas-
ing number of processors, we also wanted to observe thisispthe impact of
the lock-free mutex implementation. We made an implemamtaif the mutex
object and the thread operations on the GNU/Linux operaystem. The imple-
mentation is written in the C programming language and wa émntirely at the
user-level using “cloned’processes asrtual processorgor running the threads.
The implementation uses the lock-free queue in [37] for thexwaiting queue
and theReady Queue. To ensure sufficient memory consistency for synchro-
nization variables, memory barriers surround all CAS and FAgiructions and
the writes at lines L6 and H5. The lock-based mutex objectempntation uses
a test and test-and-set type spin-lock to protect the musgg.sUnlike the use
of spin-locks in an OS kernel, where usually neither pre@nptnor interrupts
are allowed while holding a spin-lock, our virtual processcan be interrupted
by the OS kernel due to such events. This behaviour matclkeasynchronous
processors in our system model well.

The experiments were run on a PC with two Intel Xeon 2.80GHzgssors
(acting as 4 due to hyper-threading) using the GNU/Linuxrafpeg system with
kernel version 2.6.9. The microbenchmark used for the éxertal evaluation
consists of a single critical section protected by a mutekaset of threads that
each try to enter the critical section a fixed number of tinfdge contention level
on the mutex was controlled by changing the amount of workedautside the
critical section.

We evaluated the following thread library configurationpexmentally:

e The lock-free mutex using the protocol presented in thisepaysing 1, 2,

4 and 8 virtual processors to run the threads.

1“Cloned” processes share the same address space, fileptestable and signal handlers etc
and are also the basis of Linux’s native pthread library enggntation.

23

Figure 5 Mutex performance in LFHREADS and pthreads at high contention.

Lock—based vs lock—free mutex (2x2 IA32 CPUs, high contention).

10 r T T T T T T
—oe— spin—lock based (1 CPU)
—— lock—free (1 CPU) 1
O -- spin—lock based (2 CPUSs)|
x--- lock—free (2 CPUs) {
— ©— spin—lock based (4 CPUs)
I — = — lock—free (4 CPUs))
— G- - spin—lock based (8 CPUs)| |
—»—--lock—free (8 CPUs)
—+— pthread mutex
10°¢

L——

Critical sections per second

‘x
K
LY
%\%;(§ ; > ; 32 ; ; X x X X - Ed
— —% < — - - = — X — X — % — — — — — X — - — — — * — — — — — % — — — — —
8 oOTR OO 0O O O o © [} o o e} o
L -6 ©-6Go6-G--6G--6--6--6————— S - - - - - & ——---- S - - —
e s R D S - s
105 1 1 1 1 1 1
10 20 30 40 50 60

Number of threads

Figure 6 Mutex performance in LFHREADS and pthreads at low contention.

Lock—based vs lock—free mutex (2x2 IA32 CPUs, low contention).

= = =190 =g =—
—-o-fF e 000 e %L
3.8 7
10 S 4
1A%
& BB s S 5 5 5
103.7 n
=}
§ —o— spin—lock based (1 CPU)
2 —=— lock—free (1 CPU)
@ ©O--- spin—lock based (2 CPUs)
% x-- lock—free (2 CPUs)
S 36 — ©— spin-lock based (4 CPUs)
g 107 - = — lock—free (4 CPUS)
% — O - spin—lock based (8 CPUs)
=2 — - lock—free (8 CPUs)
S —+— pthread mutex
103.5
WU 1 1 1 1 1 1
10 20 30 40 50 60

Number of threads

24

e The spin-lock based mutex, using 1, 2, 4 and 8 virtual praweds run the
threads.

e The platform’s standard pthreads library and a standarde@th mutex.
The pthreads library on GNU/Linux use kernel-level “clohptbcesses as
threads, which are scheduled on all available processersthie pthreads
are at the same level as the virtual processors inHHEADS. This differ-
ence in scheduling makes it difficult to interpret the pthiseeesults with
respect to the others; i.e. the pthreads results should m&d=yed to be
primarily for reference.

Each test configuration was ru0 times. The diagrams present the mean of

theselO runs.

High contention

In Figure 5 we show the microbenchmark results when all wedoine inside the
critical section, that is, the contention on the mutex idhig this case the desired
result would be that the throughput, i.e. the number ofaaltsections executed
per second, for an implementation stays the same regaroledbe number of
threads or virtual (processors). This should imply thatsyrechronization scales
well. However, in reality the throughput decreases withreéasing number of
virtual processors, mainly due to preemptions inside titecal section (but for
spin-locks also inside mutex operations) and synchrooizatverhead. Further,
going from a single processor to more than one processoruiothoead library
implies a cost since with more than one processor the threatéxts will have to
be stored and restored much more often due to threads beiciggiol on the mutex.
(Note that threads currently use non-preemptive scheglidiour implementation
so with only one virtual processor the threads will run to ptetion one after the
other without any extra blocking.) The results indicatet tih@ lock-free mutex
has less overhead than the lock-based one in similar coafigos.

Low contention

In Figure 6 we show the results from a microbenchmark wheedhheads per-
form 1000 times more work outside the critical section than insidekimgthe
contention on the mutex low. With the majority of the work side the criti-
cal section, the expected behaviour is a linear throughprease over threads
until all (physical) processors are in use by threads, #ftgeconstant through-
put as the processors are saturated with threads runnisgleuhe critical sec-
tion. The results agrees with the expected behaviour; welsgdrom one to
two virtual processors the throughput doubles in both tbk-foee and spin-lock
based cases. (Recall that the latter is a test-and-tessetdshsed implementa-

25

tion, which is favoured under low contention). Note that gtep to 4 virtual
processors does not double the throughput — this is due terftiapeading, there
are not 4 physical processors available. Similar behawauralso be seen in the
pthread-based case. Further, the lock-free mutex showlasonhigher through-
put than the spin-lock-based one for the same number ofiprocessors; it also
shows comparable and even better performance than thegthesed case when
the number of threads is large and there are "enough” virtealssors (i.e. more
than the physical processors).

Summarizing, we observe that the T READSthread library’s lock-free mu-
tex protocol implies comparable or better throughput thenlock-(test-and-test-
and-set-)based implementation, both in high- and in lomteotion scenaria for
the same number of virtual processors, besides offeringuhétative advantages
in tolerance against slow, delayed or crashed threads sasstied earlier in the
paper.

26

6 Conclusions

In this paper we have presented theTliREADS library and the first lock-free im-
plementation of a blocking synchronization primitive; astmf this contribution
we have introduced the responsibility hand-off (RHO) syonairation method.
Besides supporting a thread-library interface with faaletance properties, we
regard the RHO method as a conceptual contribution, whictbearseful in mul-
tiprocessors and multicore systems in general.

We have implemented the THREADS library on a PC multiprocessor plat-
form with two Intel Xeon processors running the GNU/Linuxeogting system
and using processes as virtual processors. The implerentkies not need any
modifications to the operating system kernel. Although aesent implementa-
tion is done entirely at the user-level, the tHREADS algorithms are well suited
for use also in a kernel - user-level divided setting. With method a significant
benefit would be that there is no need for spin-locks and&atiing interrupts in
either the user-level or the kernel-level part.

This implementation constitutes a proof-of-concept of lilek-free imple-
mentation of the blocking primitive introduced in the paped serves as basis
for an experimental study of its performance. The expertalestudy performed
here, using a mutex-intensive microbenchmark, showsipegerformance fig-
ures. Moreover, this implementation can also serve as lasisirther devel-
opment, for porting the library to other multiprocessors amiperimenting with
parallel applications such as the Spark98 matrix kerne&ppfications from the
SPLASH-2 suite.

27

Bibliography

[1] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memowual exclu-
sion: major research trends since 19B&tributed Computingl6(2-3):75—
110, 2003.

[2] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Sched\davations:
Effective Kernel Support for the User-Level Managementafafelism. In
ACM Transactions on Computer Systepages 53—79, 1992.

[3] G. Barnes. A method for implementing lock-free shareddatuctures. In
Proceedings of the 5th Annual ACM Symposium on Parallel Atlgos and

Architectures pages 261-270. SIGACT and SIGARCH, 1993. Extended

abstract.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreadedhputa-

tions by work stealing,. IfProceedings of the 35th Annual Symposium on

Foundations of Computer Science (FOQ&ges 356—-368, 1994.

[5] B. Chen. Multiprocessing with the exokernel operatingtegs Master’s
thesis, Massachusetts Institute of Technology, 2000.

[6] D. L. Detlefs, P. A. Martin, M. Moir, and J. Guy L. Steele.otk-free ref-

erence counting. IfProceedings of the 20th annual ACM Symposium on

Principles of distributed computingages 190-199. ACM Press, 2001.

[7] U. Devi, H. Leontyev, and J. Anderson. Efficient synchiration under
global edf scheduling on multiprocessors. Rroceedings of the 18th Eu-
romicro Conference on Real-Time Systempages 75-84. IEEE Computer
Society, 2006.

[8] M. J. Feeley, J. S. Chase, and E. D. Lazowska. User-leveats and in-
terprocess communication. Technical Report TR-93-02-03yddsity of
Washington, Department of Computer Science and Engineetr#8§.

28

[9] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes anmdificks: Fast
userlevel locking in linux. IProceedings of the Ottawa Linux Symposium
pages 479-494, 2002.

[10] K. A. Fraser.Practical lock-freedomPhD thesis, University of Cambridge,
2004.

[11] A. Gidenstam, M. Papatriantafilou, H. Sundell, and Rgads. Practical and
efficient lock-free garbage collection based on referemusting. InPro-
ceedings of the 8th International Symposium on ParallehAectures, Al-
gorithms, and Networks (I-SPAN)ages 202 — 207. IEEE Computer Society,
2005.

[12] A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Adlbtg memory in a
lock-free manner. IProceedings of the 13th Annual European Symp. on
Algorithms (ESA)pages 329 — 242. Springer Verlag, 2005.

[13] M. Greenwald and D. R. Cheriton. The synergy between rlooking syn-
chronization and operating system structure Olperating Systems Design
and Implementatiorpages 123-136, 1996.

[14] M. B. Greenwald. Non-blocking synchronization and system desi§hnD
thesis, Stanford University, 1999.

[15] M. Herlihny. A methodology for implementing highly congent data
objects. ACM Transactions on Programming Languages and Systems
15(5):745-770, 1993.

[16] M. Herlihy. Software transactional memory package fo#, 2006.
http://www.cs.brown.edu/people/mph/home.html.

[17] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonlidking memory
management support for dynamic-sized data structuk€\ Transactions
on Computer System®3(2):146—196, 2005.

[18] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-gesynchronization:
Double-ended queues as an example Pioceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICD@&je 522.
IEEE Computer Society, 2003.

[19] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, .Ill Software
transactional memory for dynamic-sized data structurefrbceedings of
the 22nd Annual ACM Symposium on Principles of Distributed fiigimg
(PODC), pages 92-101. ACM Press, 2003.

29

[20] M. P. Herlihy and J. M. Wing. Linearizability: A corraeéss condition
for concurrent objectsACM Transactions on Programming Languages and
Systemsl2(3):463—-492, 1990.

[21] P. Holman and J. H. Anderson. Locking under pfair sciaduACM Trans-
actions Computer Systen#1(2):140-174, 2006.

[22] P. Jayanti. A complete and constant time wait-free anpgntation of CAS
from LL/SC and vice versa. IRroceedings of the 12th International Sym-
posium on Distributed Computing (DIS@ages 216—-230. Springer Verlag,
1998.

[23] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. ch&duler-
conscious synchronizatioMCM Transactions Computer SysterhS(1):3—
40, 1997.

[24] L. Lamport. On interprocess communication—part i: Bdsrmalism, part
ii: Algorithms. Distributed Computingl:77-101, 1986.

[25] V. J. Marathe, W. N. S. lll, and M. L. Scott. Adaptive sefire transactional
memory. InProceedings of the 19th International Conference on Distebl
Systems (DISCpages 354—-368. Springer, 2005.

[26] H. Massalin.Synthesis: An Efficient Implementation of Fundamental ©Oper
ating System ServiceRhD thesis, Columbia University, 1992.

[27] H. Massalin and C. Pu. A lock-free multiprocessor OS kérrlrechnical
Report CUCS-005-91, 1991.

[28] M. Michael. Scalable lock-free dynamic memory allocat In Proceed-
ings of SIGPLAN 2004 Conference on Programming Languageigbaad
ImplementationACM SIGPLAN Notices. ACM Press, 2004.

[29] M. M. Michael and M. L. Scott. Correction of a memory maeagent
method for lock-free data structures. Technical Report TREBfversity
of Rochester, Computer Science Department, 1995.

[30] M. Moir. Practical implementations of non-blockingreshronization prim-
itives. InProceedings of the 16th annual ACM Symposium on Principles of
Distributed Computingpages 219-228, 1997.

[31] H. Oguma and Y. Nakayama. A scheduling mechanism fd«-foee opera-
tion of a lightweight process library for SMP computers.Pimceedings of
the 8th International Conference on Parallel and Distribdit8ystems (IC-
PADS) pages 235-242, 2001.

30

[32] N. Shavit and D. Touitou. Software transactional meynbr Proceedings of
the 14th ACM Symposium on Principles of Distributed Compy#®@DC),
pages 204-213. ACM Press, 1995.

[33] Multithreading in the solaris operating environmeifiechnical report, Sun
Microsystems.

[34] H. Sundell. Efficient and Practical Non-Blocking Data Structure®hD
thesis, Chalmers University of Technology, 2004.

[35] H. Sundell and P. Tsigas. NOBLE: A non-blocking inteogess communi-
cation library. InProceedings of the 6th Workshop on Languages, Compilers
and Run-time Systems for Scalable Computpsinger Verlag, 2002.

[36] P. Tsigas and Y. Zhang. Evaluating the performance oflmocking syn-
chronisation on shared-memory multiprocessor®rbteedings of the ACM
SIGMETRICS 2001/Performance 20@ages 320-321. ACM press, 2001.

[37] P. Tsigas and Y. Zhang. A simple, fast and scalable fooking concurrent
fifo queue for shared memory multiprocessor system®rtéweedings 13th
ACM Symposium on Parallel Algorithms and Architectupesges 134-143.
ACM Press, 2001.

[38] J. Turek, D. Shasha, and S. Prakash. Locking withoutkahg: making
lock based concurrent data structure algorithms nonkihgckn Proceedings
of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Princgdles
Database Systemgages 212-222. ACM Press, 1992.

[39] J. D. Valois. Lock-free linked lists using compare-aswlap. InProceed-
ings of the 14th ACM Symposium on Principles of Distributed @idging
(PODC), pages 214-222. ACM, 1995.

[40] J. Zahorjan, E. D. Lazowska, and D. L. Eager. The effédcsameduling
discipline on spin overhead in shared memory parallel mpewes. IEEE
Transactions on Parallel and Distributed Syste@&):180-198, 1991.

[41] K. M. Zuberi and K. G. Shin. An efficient semaphore impkmation
scheme for small-memory embedded systemsProceedings of the 3rd
IEEE Real-Time Technology and Applications Symposium $RTpages
25-37. IEEE, 1997.

31

Below you find a list of the most recent technical reports @& kax-Planck-Institut fur Informatik. They are
available via WWW using the URht t p: / / ww. pi - i nf . npg. de. If you have any questions concerning
WWW access, please contactport s@mpi -i nf. npg. de. Paper copies (which are not necessarily free of
charge) can be ordered either by regular mail or by e-malilettidress below.

Max-Planck-Institut fir Informatik
Library
attn. Anja Becker

Stuhlsatzenhausweg 85

66123 Saarbrucken

GERMANY

e-mail:l i brary@mpi -i nf. npg. de

MPI-1-2007-RG1-002

MPI-1-2007-5-002

MPI-1-2007-5-001

MPI-1-2007-4-006
MPI-1-2007-4-005
MPI-1-2007-4-004
MPI-1-2007-4-003

MPI-1-2007-4-002
MPI-1-2007-4-001

MPI-1-2007-2-001

MPI-1-2007-1-002

MPI-1-2007-1-001

MPI-1-2006-5-006
MPI-1-2006-5-005

MPI-1-2006-5-004

MPI-1-2006-5-003

MPI-1-2006-5-002

MPI-1-2006-5-001

MPI-1-2006-4-010

MPI-1-2006-4-009

MPI-1-2006-4-008
MPI-1-2006-4-007

MPI-1-2006-4-006

MPI-1-2006-4-005
MPI-1-2006-4-004

T. Hillenbrand, C. Weidenbach

K. Berberich, S. Bedathur, T. Neumann,
G. Weikum

G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

C. Dyken, G. Ziegler, C. Theobalt, H. S2id
T. Schultz, J. Weickert, H. Seidel

C. Stoll

R. Bargmann, V. Blanz, H. Seidel

T. Langer, H. Seidel
J. Gall, B. Rosenhahn, H. Seidel

A. Podelski, S. Wagner

E. Althaus, S. Canzar

E. Berberich, L. Kettner

G. Kasnec, F.M. Suchanek, G. Weikum

R. Angelova, S. Siersdorfer

F. Suchanek, G. Ifrim, G. Weikum

V. Scholz, M. Magnor

H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

M. Bender, S. Michel, G. Weikum,
P. Triantafilou

A. Belyaev, T. Langer, H. Seidel

J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

I. Albrecht, M. Kipp, M. Neff, H. Seidel
O. Schall, A. Belyaev, H. Seidel

C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

A. Belyaev, H. Seidel, S. Yoshizawa
V. Havran, R. Herzog, H. Seidel

Supeifian for Finite Domains
A Time Machine for Text Search

NAGA: Searching and Ranking Knowledge

GPU Marching Cubes on Shader Model 3.0 and 4.0
A Higi@rder Structure Tensor
A Volumetric Approach to Interactive Shape Editing

A Nonling@seme Model for Triphone-Based Speech
Synthesis

Construction of Snioltaps with Mean Value Coordinates

Clust&@tochastic Optimization for Object Recognition and
Pose Estimation

A Method and a TaolAutomatic Veriication of Region
Stability for Hybrid Systems

A Lagrangian refexeaapproach for the multiple sequence
alignment problem

Linear-Time Reering in a Sweep-line Algorithm for
Algebraic Curves Intersecting in a Common Point

YagdGore of Semantic Knowledge

A NeighbartieBased Approach for Clustering of Linked
Document Collections

Combiningduistic and Statistical Analysis to Extract
Relations from Web Documents

Garment Texture Huitin Monocular Video Sequences based
on Color-Coded Printing Patterns

10-Top-k: Index-access Optimized Top-k Query Processing

Overlap-Aware Global df Estimation in Distributed Infornaati
Retrieval Systems

Mean \@lDoordinates for Arbitrary Spherical Polygons and
Polyhedra irR3

Interacting and Annealing Particle Filters: Mathematicd an
Recipe for Applications

Gaure Modeling and Animation by Imitation

Featpreserving Non-local Denoising of Static and
Time-varying Range Data

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

Statedriven Laplacian Mesh Deformations

On Fast €nrction of Spatial Hierarchies for Ray Tracing

MPI-1-2006-4-003

MPI-1-2006-4-002
MPI-1-2006-4-001

MPI-1-2006-2-001

MPI-1-2006-1-007
MPI-1-2006-1-006

MPI-1-2006-1-005
MPI-1-2006-1-004
MPI-1-2005-5-002

MPI-1-2005-4-006
MPI-1-2005-4-005
MPI-1-2005-4-004

MPI-1-2005-4-003
MPI-1-2005-4-002
MPI-1-2005-4-001

MPI-1-2005-2-004

MPI-1-2005-2-003
MPI-1-2005-2-002
MPI-1-2005-2-001
MPI-1-2005-1-008

MPI-1-2005-1-007

MPI-1-2005-1-003

MPI-1-2005-1-002
MPI-1-2005-1-001

MPI-1-2004-NWG3-001

MPI-1-2004-NWG1-001

MPI-1-2004-5-001

MPI-1-2004-4-006
MPI-1-2004-4-005

E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

G. Ziegler, A. Tevs, C. Theobalt, H. S¢ide

A. Efremov, R. Mantiuk, K. Myszkowski,
H. Seidel

T. Wies, V. Kuncak, K. Zee, A. Podelski,
M. Rinard

H. Bast, I. Weber, C.W. Mortensen
M. Kerber

A. Eigenwillig, L. Kettner, N. Wolpert
S. Funke, S. Laue, R. Naujoks, L. Zvi
S. Siersdorfer, G. Weikum

C. Fuchs, M. Goesele, T. Chen, H. Seidel
G. Krawczyk, M. Goesele, H. Seidel

C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

T. Langer, A.G. Belyaev, H. Seidel
O. Schall, A. Belyaev, H. Seidel
M. Fuchs, V. Blanz, H. Lensch, H. Seidel

Y. Kazakov

H.d. Nivelle
P. Maier, W. Charatonik, L. Georgieva
J. Hoffmann, C. Gomes, B. Selman

C. Gotsman, K. Kaligosi, K. Mehlhorn,
D. Michail, E. Pyrga

I. Katriel, M. Kutz
S. Baswana, K. Telikepalli

I. Katriel, M. Kutz, M. Skutella
D. Michail
M. Magnor

B. Blanchet
S. Siersdorfer, S. Sizov, G. Weikum

K. Dmitriev, V. Havran, H. Seidel

I.P. Ivrissimtzis, W.-. Jeong, S. Lee,.Y.ae,
H.-. Seidel

A Framework for Natural Animation of Digitized Models

GPU Point List Generation through Histogram Pyramids

Design and Evaluation of Backward Compatible High Dynamic
Range Video Compression

On Verifying Complex Properties using Symbolic Shape
Analysis

OutBensitive Autocompletion Search

Division-Free Computation oftBesultants Using Bezout
Matrices

@p Rounding of Bézier Curves
Powssignment Problems in Wireless Communication

Automated Ratrgg Methods for Document Classification and
their Parameter Tuning

EMmperical Model for Heterogeneous Translucent Objects
PhottrimeCalibration of High Dynamic Range Cameras

Joint Motion and Reflectance Capture for Creating Religktab
3D Videos

Anadyand Design of Discrete Normals and Curvatures
SparsesMeg of Uncertain and Noisy Surface Scattered Data

fleetance from Images: A Model-Based Approach for Human
Faces

A Framework of Refutational Bhem Proving for
Saturation-Based Decision Procedures

Using Resolution as a DemisProcedure
Bded Model Checking of Pointer Programs
Bottleneekaior in CNF Formulas
Cycle Bases of Graphs and Sampled Manifolds

A Faster Algorithm faComputing a Longest Common
Increasing Subsequence

Improved Algbms for All-Pairs Approximate Shortest Paths
in Weighted Graphs

Reach#tyi Substitutes for Planar Digraphs
Rank-Maximal through Maximum Wt Matchings

Axisymmetric Reconstructiamde8D Visualization of Bipolar
Planetary Nebulae

Automatic Proof of Strongc8=y for Security Protocols

Goaénted Methods and Meta Methods for Document
Classification and their Parameter Tuning

FastenR&Eacing with SIMD Shaft Culling

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

