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Abstract

This paper presents the synchronization in LFTHREADS, a thread library entirely
based on lock-free methods, i.e. no spin-locks or similar synchronization mech-
anisms are employed in the implementation of the multithreading. Since lock-
freedom is highly desirable in multiprocessors/multicores due to its advantages
in parallelism, fault-tolerance, convoy-avoidance and more, there is an increased
demand in lock-free methods in parallel applications, hence also in multiproces-
sor/multicore system services. This is why a lock-free multithreading library is
important. To the best of our knowledge LFTHREADS is the first thread library
that provides a lock-free implementation of blocking synchronization primitives
for application threads. Lock-free implementation of objects with blocking se-
mantics may sound like a contradicting goal. However, such objects have benefits:
e.g. library operations that block and unblock threads on the same synchronization
object can make progress in parallel while maintaining the desired thread-level
semantics and without having to wait for any “slow” operations among them.
Besides, as no spin-locks or similar synchronization mechanisms are employed,
processors are always able to do useful work. As a consequence, applications,
too, can enjoy enhanced parallelism and fault-tolerance. The synchronization in
LFTHREADS is achieved by a new method, which we callresponsibility hand-off
(RHO), that does not need any special kernel support.
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1 Introduction
Multiprogramming and threading allow the processor(s) to be shared by several
sequential threads of control efficiently. Although they are a fundamental part of
modern operating systems, their implementation are all themore important in the
context of multiprocessor or multicore systems. In this paper we study synchro-
nization algorithms for realizing standard thread-library operations and objects
(create, exit, yield and mutexes), in a thread library LFTHREADS, based entirely
on lock-freemethods. Lock-freedom implies that no spin-locks or similar locking
synchronization methods are used in the implementation of the operations/objects
and guarantees that in a set of concurrent operations at least one of them makes
progress every time there is interference and thus operations eventually complete.

The rationale in LFTHREADS is that processors should always be able to do
useful work when there are runnable threads available (i.e.not blocked by the
application), regardless of what other processors do; i.e.a processor is able to
continue doing useful work, despite other processors simultaneously accessing
shared objects related with the implementation of the LFTHREADS-library oper-
ations, and/or suffering stop failures or delays (e.g. fromI/O or page-fault inter-
rupts).

Note that even a lock-free thread library needs to provide blocking synchro-
nization objects, e.g. for mutual exclusion in legacy applications and for other
applications where threads might need to be blocked, e.g. tointeract with some
external device. Our new synchronization method in LFTHREADS implements
a mutual exclusion object with the standard blocking semantics for application
threads, but allows such application threads to be blockedwithout enforcing mu-
tual exclusion among the processorsexecuting the threads. This means that even
if a processor is stopped or delayed in the middle of a mutex operation, all other
processors are still able to continue performing operations,even on the same mu-
tex. We consider this an important part of the contribution in this paper. It enables
library operations blocking and unblocking threads on the same synchronization
object to make progress in parallel, while maintaining the desired thread-level
semantics, without having to wait for any “slow” operation among them to com-
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plete. To achieve this, we introduce a new synchronization method, which we
call responsibility hand-off(RHO), which may also be useful in other lock-free
synchronization constructions. Roughly speaking, the RHO method handles cases
where processors need to perform sequences of atomic actions on a shared object
in a consistent and lock-free manner, for example a combination of (i) checking
the state of a mutex, (ii) blocking if needed by saving the current thread state and
(iii) enqueuing the blocked thread on the waiting queue of the mutex; or a com-
bination of (i) changing the state of the mutex to unlocked and (ii) activating a
blocked process if there is any. “Traditional” ways to do thesame employ the use
of locks and are therefore vulnerable to processors failingor being delayed, which
the RHO method is not. The method is lock-free and manages thread execution
contexts without needing special kernel or scheduler support.

Related and motivating work

A special kernel-level mechanism, calledscheduler activations, has been pro-
posed and studied [2, 8], to enable user-level threads to offer the functionality of
kernel-level threads with respect to blocking and also leave no processor idle in the
presence of ready threads, which is also the goal of LFTHREADS. It was also ob-
served that application-controlled blocking and interprocess communication can
be resolved at the user-level without modifications to the kernel while achieving
the same goals as above, but multiprogramming demands and general blocking,
such as for page-faults, seem to need scheduler activations. The RHO method
and LFTHREADS complement these results, as they provide the threads with syn-
chronization operation implementations that do not block each other unless the
application blocks within the same level (i.e. user- or kernel-level). LFTHREADS

can be combined with scheduler activations for a hybrid thread implementation
with minimal blocking.

To make the implementation of blocking mutual exclusion more efficient, op-
erating systems that implement threads at the kernel level may split the imple-
mentation of the mutual exclusion primitives between the kernel and user-level.
This is done in e.g. Linux [9] and Sun Solaris [33]. This division allows the cases
where threads do not need to be blocked or unblocked, to be handled at the user-
level without invoking a system call and often in a way that isnon-blocking to
the threads and processors by using hardware synchronization primitives. How-
ever, when the calling thread should block or when it needs tounblock some other
thread, an expensive system call must be performed. Such system calls contain,
in all cases we are aware of, critical sections protected by spin locks.

Although our present implementation of LFTHREADS is done entirely at the
user-level, the algorithms used in it are also well suited for use in a kernel - user-
level divided setting. With our method a significant benefit would be that there
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is no need for spin locks and/or disabling interrupts in either the user-level or the
kernel-level part.

Further research motivated by the goal to keep processors busy doing useful
work and to deal with preemptions in this context includes: mechanisms to pro-
vide some form of control over the kernel/scheduler to avoidunwanted preemp-
tion (cf. e.g. [23, 21]) or the use of application-related information (e.g. period
and execution time bounds in real-time systems) to recover from it [7]; [4] and
subsequent results inspired by it, focusing on scheduling with work-stealing, as
a method to keep processors busy by providing fast and concurrent access to the
set of ready threads; [31] aims in a similar direction, proposing thread schedul-
ing that does not require locking (essentially using lock-free queuing) in a mul-
tithreading library called Lesser Bear. [40] studied methods of scheduling to re-
duce the amount of spinning in multithreaded mutual exclusion; [41] focuses on
demands in real-time and embedded systems and studies methods for efficient,
low-overhead semaphores; [1] gives an insightful overviewof recent methods for
mutual exclusion. There has been other work at the operatingsystem kernel level
[27, 26, 13, 14], where basic kernel data structures have been replaced with lock-
free ones with both performance and quality benefits. There are also extensive
interest and results on lock-free methods for memory management (garbage col-
lection, memory allocation, e.g. [39, 29, 6, 28, 11, 12, 17]). In [5], the topic of
lock-free synchronization in multithreading libraries isaddressed, too: it presents
a lock-free algorithm to replace mutually exclusive accessto multi-word objects,
where the access can consist of any side-effect-free function producing the new
object state.

The goal of LFTHREADS is to implement a common library interface, includ-
ing operations with blocking semantics, in a lock-free manner. It is possible to
combine LFTHREADS with lock-free and other non-blocking implementations of
shared objects, such as e.g. the NOBLE library [35] that provides implementa-
tions of a large range of data structures using lock-free methods, or other con-
structions that aim to provide support for non-blocking programming, e.g. the
Software Transactional Memory package for C# [16] and the many non-blocking
STM algorithms in the literature, e.g. [19, 25, 32, 10].

The paper is organized as follows: first we present the systemmodel together
with some background information on lock-free synchronization and the prob-
lem we focus on including the application programming interface of LFTHREADS

(Chapter 2); followed by a detailed description of the algorithmic design (Chap-
ter 3); the correctness of the above (Chapter 4); some implementation-related
information and an experimental study (Chapter 5). We conclude in Chapter 6.
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2 Preliminaries

System model

We consider shared memory multiprocessor systems, where the system consists of
a set of processors, each having its own local memory as well as being connected
to a shared memory through an interconnect network. Each processor executes
instructions sequentially at an arbitrary rate. The sharedmemory might not be
uniform, that is, for each processor the latency to access some part of the mem-
ory is not necessarily the same as the latency for any other processor to access
that part of the shared memory. The shared memory supports atomic read and
write operations of any single memory word, and also stronger single-word syn-
chronization primitives, such as Compare-And-Swap (CAS) andFetch-And-Add
(FAA) (see Figure 1) used in the algorithms in this paper. These primitives are ei-
ther available or can easily be derived from other availableprimitives [22, 30] on
most contemporary microprocessor architectures. The processors in the system
cooperate to run a set of application threads. Each thread consists of a sequence
of operations; communication is accomplished via shared-memory operations.

Lock-free synchronization

Lock-freedom[15] is a type of non-blocking synchronization that guarantees that
in a set of concurrent operations at least one of them makes progress and thus
eventually completes each time. Another type of non-blocking synchronization
is wait-freedom[24], which guarantees thateveryoperation finishes in a finite
number of its own steps regardless of the actions of concurrent operations. In the
literature we also seeobstruction-freedom[18], a weak non-blocking synchro-
nization option, guaranteeing only that, at any point, a thread that executesalone
for a sufficiently large but bounded number of steps can complete its operation.
Obstruction free algorithms are distinguished from lock-free and wait-free ones:
in the former, progress is not guaranteed in presence of concurrency and opera-
tions may even abort.
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Figure 1 The Compare-And-Swap (CAS) and Fetch-And-Add (FAA) atomic
primitives.

function CAS(address :pointer to word ;
oldvalue :word; newvalue :word) : boolean

atomic do
if *address = oldvaluethen

*address := newvalue;
return true ;

else return false;

function FAA(address:pointer to integer;
increment:integer): integer

atomic do
ret := *address;
*address := ret + increment;
return ret;

The correctness condition for atomic non-blocking operations islinearizabil-
ity [20]. An execution islinearizableif it guarantees that even when operations
overlap in time, each of them appears to take effect at an atomic time instant that
lies within its respective time duration, such that the effect of each operation is
consistent with the effect of its corresponding operation in a sequential execution
in which the operations appear in the same order.

Non-blocking synchronization is attractive as it offers a number of advantages
over lock-based synchronization: (i) it does not give rise to priority inversion;
(ii) it avoids lock convoys; (iii) it provides better fault tolerance (processor stop
failures will not corrupt shared data objects); and (iv) it eliminates deadlock sce-
narios involving two or more threads both waiting for each other. Due to these
facts there is extended research literature on lock-free synchronization (c.f. [34]
for an overview) as well as onuniversal methodsto transform lock-based con-
structions into lock-free/wait-free ones (e.g. [3, 15, 38]). Besides ensuring the
above qualitative properties, it has also been shown, usingwell-known parallel
applications, thatlock-freemethods imply at least as good performance as lock-
based ones in several applications, and often significantlybetter [34, 36]. Wait-
free algorithms, as they provide stronger progress guarantees, are inherently more
complex and more expensive than lock-free ones. Obstruction freedom implies
very weak progress guarantees and can be used e.g. for reference purposes for
studying parallelization.

In LFTHREADS the focus is onlock-free synchronizationdue to its combined
benefits in progress, fault-tolerance and efficiency potential.

The problem and LFTHREADS’s API

The LFTHREADS library defines the following procedures for thread handling1:
procedurecreate(thread :out thread_t; main :in pointer to procedure);
procedureexit();

1The interface we present here was chosen for brevity and simplicity. Our actual implementa-
tion aims to provide a POSIX threads compliant (IEEE POSIX 1003.1c) interface.
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procedureyield();
Procedurecreate creates a new thread which will start in the procedure main.

Procedureexit terminates the calling thread and if this was the last threadof the
application/process the latter is terminated as well. Procedureyield causes the
calling thread to be put on the ready queue and the (virtual) processor that was
running it to pick a new thread to run from the ready queue.

For applications that need lock-based synchronization between threads the
thread library provides a mutex object. The mutex object supports the operations:
procedure lock(mutex :in out mutex_t)
procedureunlock(mutex :in out mutex_t)
function trylock(mutex :in out mutex_t):boolean

Procedurelock attempts to lock the mutex. If the mutex is locked already
the calling thread is blocked and enqueued on the waiting queue of the mutex.
Procedureunlock unlocks a mutex if there are no threads waiting in the mutex’s
waiting queue, otherwise the first of the waiting threads areremoved from the
waiting queue and made runnable. That thread becomes the newowner of the
mutex. Only the thread owning the mutex may callunlock . Functiontrylock tries
to lock the mutex. If it succeeds (i.e. the mutex was unlocked) true is returned,
otherwisefalse.
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3 Detailed description of the
LFTHREADS library

3.1 Data structures used inLFTHREADS

In Figure 2 the data structures used in the implementation ofthe LFTHREADS

library are presented. We assume that we have a data type,context_t, where
the CPU context of an execution (i.e. thread) can be stored andsome operations
to manipulate such contexts. These operations, which can besupported by most
common operating systems1, are:
(i) save(context) stores the state of the current CPU context in the supplied vari-
able and switches processor to a special system context. There is one such context
available for each processor. The return value fromsave is true when the context
is stored andfalse when the context is restored.
(ii) restore(context) loads the supplied stored CPU context onto the processor.
The restored context resumes execution in the (old) call tosave, returningfalse.
The CPU context that made the call torestore is lost (unless it was saved before
the call torestore).
(iii) make_context(context,main) creates a new CPU context in the supplied vari-
able. The new context will start in a call to the proceduremain when it is loaded
onto a processor withrestore.

Each thread in the system will be represented by an instance of the thread
control block data type,thread_t, which contains acontext_t variable that stores
the thread’s state when it is not being executed on one of the processors.

Further, we also assume that we have a lock-free queue data structure (like
e.g. [37]) for pointers to thread control blocks; the queue supports three lock-free

1For example in systems conforming to the Single Unix Specification v2 (SUSv2), such
as GNU/Linux, they can be implemented fromgetcontext(2), setcontext(2) and
makecontext(3), while in other Unix systemssetjump(3) andlongjmp(3) or similar
could be used.
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Figure 2 Thread context and thread queue operations used in LFTHREADS.

type context_tis record 〈implementation defined〉;

function save(context :out context_t):boolean;
/* Saves the current CPU context and switches to a
* system context. The call tosave returnstrue when
* the context is saved andfalsewhen it is restored. */
procedure restore(context :in context_t);
/* Replaces the current CPU context with a
* previously stored CPU context.
* The current context is destroyed. */
proceduremake_context(context :out context_t;

main : in pointer to procedure);
/* Creates a new CPU context which will wakeup
* in a call to the procedure main when restored. */

type thread_tis record
uc : context_t;

/* Thread control block. */

type lf_queue_tis record 〈implementation defined〉;

procedureenqueue(queue :in out lf_queue_t;
thread :in pointer to thread_t);

/* Appends the thread control blockthread to
* the end of the queue. */
function dequeue(queue :in out lf_queue_t;

thread :out pointer to thread_t):boolean;
/* If the queue is not empty the firstthread_t pointer
* in the queue is dequeued andtrue is returned.
* Returnsfalse if the queue is empty. */
function is_empty(queue :in out lf_queue_t):boolean;
/* Returnstrue if the queue is empty, and
* falseotherwise. */

function get_cpu_id():cpu_id_t
/* Returns the ID of the current CPU (an integer). */

Figure 3 The basic thread operations and shared data in LFTHREADS.

/* Global shared variables. */
Ready_Queue : lf_queue_t;

/* Private per-processor persistent variables. */
Currentp : pointer to thread_t;

/* Local temporary variables. */
next : pointer to thread_t;
old_count :integer;
old : cpu_id_t;

procedurecreate(thread :out thread_t;
main : in pointer to procedure)

C1 make_context(thread.uc, main);
C2 enqueue(Ready_Queue, thread);

procedureyield()
Y1 if not is_empty(Ready_Queue)then
Y2 if save(Currentp.uc) then
Y3 enqueue(Ready_Queue, Currentp);
Y4 cpu_schedule();

procedureexit()
E1 cpu_schedule();

procedurecpu_schedule()
CI1 loop
CI2 if dequeue(Ready_Queue, Currentp) then
CI3 restore(Currentp.uc);

and linearizable operations:enqueue, dequeue and is_empty (each with its
intuitive semantics). The lock-free queue data structure is used as a building block
in the implementation of LFTHREADS. However, as we will see in detail below,
additional synchronization methods are needed to make operations involving more
than one queue instance lock-free and linearizable.
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3.2 Thread operations inLFTHREADS

The general thread operations and variables used in LFTHREADS are shown in
Figure 3. The persistent global and per-processor variables consist of the global
sharedReady_Queue2, which contains all runnable threads not currently be-
ing executed by any processor, and the per-processor persistent variableCurrent,
which contains a pointer to the thread control block of the thread currently being
executed on that processor.

The thread handling operations, whose required functionality was introduced
in section 2, work as follows in LFTHREADS:
(i) Operationcreate creates a new thread control block, initializes the context
stored in the block and enqueues the new thread on the ready queue.
(ii) Operationexit terminates the thread currently being executed by this proces-
sor, which then picks another thread to run from the ready queue.
(iii) Operationyield saves the context of the thread currently being executed by
this processor, enqueues this thread on the ready queue and then picks another
thread to run from the ready queue.

In addition to the publiccreate, exit , yield operations, there is an internal
operation in LFTHREADS, namelycpu_schedule, which is used for selecting
the next thread to load onto the processor. If there are no threads waiting for
execution in theReady_Queue, the processor is idle and waits for a runnable
thread to appear.

3.3 Blocking thread synchronization inLFTHREADS

and the RHO method

To facilitate blocking synchronization among applicationthreads, LFTHREADS

provides a mutex primitive,mutex_t. While the operations on a mutex,lock ,
trylock andunlock have their usual semantics for application threads, they are
lock-free with respect to the processors in the system. Thisimplies improved
fault-tolerance properties against stop and timing faultsin the system compared to
traditional spin-lock-based implementations, since evenif a processor is stopped
or delayed in the middle of a mutex operation all other processors are still able to
continue performing operations,even on the same mutex. However, note that an
individual application thread trying to lock a mutex will beblocked if the mutex
has been locked by another application thread. A faulty application can also dead-
lock its threads. It is the responsibility of the application developer to prevent such

2The Ready_Queue here is a lock-free queue, but e.g. work-stealing [4] could be used.

10



situations.3

Mutex operations in LFTHREADS

Themutex_t structure, shown in Figure 4, consists of three fields:
(i) an integer counter, which counts the number of threads that are in or want

to enter the critical section protected by the mutex;
(ii) a lock-free queue, where the thread control blocks of blocked threads want-

ing to lock the mutex when it is already locked can be stored; and
(iii) a hand-off flag, whose role and use will be described in detail below.

The operations on themutex_t structure are shown in Figure 4. In rough
terms, thelock operation locks the mutex and makes the calling thread its owner.
If the mutex is already locked the calling thread is blocked and the processor
switches to another thread. The blocked thread’s context will be activated and
executed later when the mutex is released by its previous owner.

In the ordinary case a blocked thread is activated by the thread releasing
the mutex by invokingunlock , but due to fine-grained synchronization, it may
also happen in other ways. In particular, note that checkingwhether the mutex
is locked and entering the mutex waiting queue are distinct atomic operations.
Therefore, the interleaving of thread-steps can cause situations such that e.g. a
threadA finds the mutex locked, but by the time it has entered the mutexqueue
the mutex has been released, henceA should not remain blocked in the waiting
queue. The “traditional” way to avoid this problem is to ensure that at most one
processor at a time modifies the mutex state, i.e. by enforcing mutual exclusion
among the processors in the implementation of the mutex operations, e.g. by
using a spin-lock. In the lock-free solution proposed here,the synchronization
required for such cases is managed with a new method, which wecall the re-
sponsibility hand-off(RHO) method. In particular, the thread/processor that is
releasing the mutex is able, using appropriate fine-grainedsynchronization steps,
to detect whether such a situation may have occurred and, in response, “hand-off”
the ownership (or responsibility) for the mutex to some other thread/processor.

By performing aresponsibility hand-off, the processor executing theunlock
operation can finish this operation and continue executing threads without needing
to wait for any concurrentlock operations to finish (and vice versa). As a result,
the mutex primitive in LFTHREADS tolerates arbitrary delays and even stop fail-
ures inside mutex operations without affecting the other processors’ ability to do

3I.e. here lock-free synchronization guarantees deadlock-avoidance among the operations that
are implemented in lock-free manner, but anapplicationthat uses objects that have blocking se-
mantics (e.g. mutex) of course needs to take care to avoid deadlocks due toinappropriate useof
blocking operations by its threads.
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Figure 4 The lock-free mutex protocol in LFTHREADS.

type mutex_tis record
waiting : lf_queue_t;
count : integer := 0;
hand-off :cpu_id_t := null ;

procedure lock(mutex :in out mutex_t)
L1 old_count := FAA(&mutex.count,1);
L2 if old_count6= 0 then

/* The mutex was locked.
* Help or run another thread. */

L3 if save(Currentp.uc) then
L4 enqueue(mutex.waiting, Currentp);
L5 Currentp := null ; /* The thread is now blocked. */
L6 old := mutex.hand-off;
L7 if old 6= null and not is_empty(mutex.waiting)then
L8 if CAS(&mutex.hand-off, old,null ) then
L9 dequeue(mutex.waiting, Currentp);
L10 restore(Currentp); /* Done. */
L11 cpu_schedule(); /* Done. */

function trylock(mutex :in out mutex_t):boolean
TL1 if CAS(&mutex.count,0, 1) then return true ;
TL2 else ifGrabToken(&mutex.hand-off)then
TL3 FAA(&mutex.count,1);
TL4 return true ;
TL5 return false;

procedureunlock(mutex :in out mutex_t)
U1 old_count := FAA(&mutex.count,−1);
U2 if old_count6= 1 then

/* There is at least one waiting thread. */
U3 do_hand-off(mutex);

proceduredo_hand-off(mutex :in out mutex_t)
H1 loop /* We own the mutex. */
H2 if dequeue(mutex.waiting, next)then
H3 enqueue(Ready_Queue, next);
H4 return ; /* Done. */

else /* The waiting thread is not ready yet! */
H5 mutex.hand-off := get_cpu_id();
H6 if is_empty(mutex.waiting)then

/* Some concurrent operation will see/or
* has seen the hand-off. */

H7 return ; /* Done. */
H8 if not CAS(&mutex.hand-off, get_cpu_id(),null ) then

/* Some concurrent operation acquired the mutex. */
H9 return ; /* Done. */

function GrabToken(loc :pointer to cpu_id_t) : boolean
GT1 old :=* loc;
GT2 if old = null then return false;
GT3 return CAS(loc, old,null );
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useful work, including performing operations on the same mutex.
The details of theresponsibility hand-offmethod are given in the description

of the operations, below:

The lock operation:

Line L1 atomically increases the count of threads that want to access the mutex
using Fetch-And-Add. If the old value was0 the mutex was free and is now
locked by the thread. Otherwise the mutex is likely to be locked and the current
thread has to block. Line L3 stores the context of the currentthread in its TCB
and line L4 enqueues the TCB on the mutex’s waiting queue. Fromnow on, this
invocation oflock is not associated with any thread.

However, the processor cannot just leave and do something else yet, because
the thread that owned the mutex might have unlocked it (sinceline L1); this is
checked by line L6 to L8. If the token read fromm.hand-off is not null then an
unlock has tried to unlock the mutex but found (at line U2) that although there is
a thread waiting to lock the mutex, it has not yet appeared in the waiting queue
(line H2). Therefore, theunlock has set thehand-off flag (line H5). However, it
is possible that thehand-off flag was set after the thread enqueued by thislock
(at line L4) had been serviced. Therefore, this processor should only attempt to
take responsibility of the mutex if there is a thread available in the waiting queue.
This is ensured by theis_empty test at line L7 and the CAS at line L8 which only
succeeds if no other processor has taken responsibility of the mutex since line L6.
If the CAS at line L8 succeeds,lock is now responsible for the mutex again and
must find the thread wanting to lock the mutex. That thread (itmight not be the
same as the one enqueued by thislock ) is dequeued from thewaiting queue and
this processor will proceed to execute it (line L9 - L10).

If the conditions at line L7 are not met or the CAS at line L8 is unsuccessful,
the mutex is busy and the processor can safely leave to do other work (line L11).

To avoid ABA-problems (i.e. cases where CAS succeeds although the variable
has been modified from its old value A to some value B and back toA) m.hand-off
should, in addition to the processor id, include a per-processor sequence number.
This is a well-known method in the literature, easy to implement and has been
excluded from the presented code to make the presentation clearer.

The trylock operation:

The operation will lock the mutex and returntrue if the mutex was unlocked.
Otherwise it does nothing and returnsfalse. The operation tries to lock the mutex
by increasing the waiting count at line TL1. This will only succeed if the mutex
was unlocked and there were no ongoinglock operations. If there are ongoing
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lock operations or some thread has locked the mutex,trylock will attempt to
acquire thehand-off flag. This might succeed if the thread owning the mutex is
trying to unlock it and did not find any thread in the waiting queue despite at least
one ongoinglock operation. If thetrylock operation succeeds in acquiring the
hand-off flag it becomes the owner of the mutex and increases the waiting count
at line TL3 before returningtrue. Otherwisetrylock returnsfalse.

The unlock operation:

If there are no waiting threadsunlock unlocks the mutex. Otherwise one of the
waiting threads is made owner of the mutex and enqueued on theReady_Queue.
The operation begins by decreasing the waiting count at lineU1, which was in-
creased by this thread’s call tolock or trylock . If the count becomes0, there are
no waiting threads and theunlock operation is done. Otherwise, there are at least
one thread wanting to acquire the mutex and thedo_hand-off procedure is used
in order to either find the thread or hand-off the responsibility for the mutex.

If the waiting thread has been enqueued in the waiting queue,it is dequeued
(line H2) and moved to theReady_Queue (line H3) which completes theun-
lock operation. Otherwise, the waiting queue is empty and theunlock operation
initiates aresponsibility hand-offto get rid of the responsibility for the mutex
(line H5):

• The responsibility hand-off is successful and terminates if: (i) the waiting
queue is still empty at line H6; in that case either the offending thread has
not yet been enqueued there (in which case, it has not yet checked for hand-
offs) or it has in fact already been dequeued (in which case, some other
processor took responsibility for the mutex); or if (ii) theattempt to retake
thehand-off flag at line H8 fails, in which case, some other processor has
taken responsibility for the mutex. After a successful hand-off the processor
leaves theunlock procedure (line H7 and H9).

• If the hand-off is unsuccessful, i.e. the CAS at line H8 succeeds, this proces-
sor is yet again responsible for the mutex and must repeat thehand-off pro-
cedure. Note that when a hand-off is unsuccessful, at least some other con-
currentlock operation made progress, namely by completing an enqueue
on the waiting queue (otherwise thisunlock would have completed at lines
H6 - H7). Note further that since the CAS at line H8 succeeded, none of
the concurrentlock operations have executed line L6-L8 since the hand-off
began.
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Fault-tolerance

Regardingprocessor failures, the procedures enable the highest achievable level
of fault-tolerance for a mutex. Note that even though aprocessor failurewhile
theunlock is moving a thread from them.waiting queue to theReady_Queue
(between line H2 and H3) could cause the loss of two threads (i.e. the current one
and the one being moved), the system behaviour in this case isindistinguishable
from the case when the processor fails before line H2. In bothcases the thread
owning the mutex has failed before releasing ownership. At all other points a
processor failurecan cause the loss of at most one thread, namely the one whose
context is executing.
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4 Correctness of the
synchronization in LFTHREADS

To prove the correctness of the synchronization in the thread library we need to
show that the mutex primitive has the desired semantics. We will first show that
the mutex operations are lock-free and linearizable with respect to the proces-
sors and then that the lock-free mutex implementation satisfies the conditions for
mutual exclusion with respect to the behaviour of the application threads.

First we define (i) some notation that will facilitate the presentation of the
arguments and (ii) establish some lemmas that will be used later to prove the
safety, liveness, fairness and atomicity properties of thealgorithm.

Definition 1 A thread’s call to a blocking operation Op is said to becompleted
when the processor executing the call leaves the blocked thread and goes on to do
something else (e.g. executing another thread). The call issaid to havereturned
when the thread (after becoming unblocked) continues its execution from the point
of the call to Op.

Definition 2 A mutexm is lockedwhenm.count > 0 and m.hand-off = null.
Otherwise it isunlocked.

Definition 3 When a threadτ ’s call to lock on a mutexm returns we say that
threadτ haslockedor acquiredthe mutexm. Similarly, we say that threadτ has
lockedor acquiredthe mutexm when the thread’s call totrylock on the mutexm
returnsTrue.

Further, when a threadτ has acquired a mutexm by a lock or successful
trylock operation and not yet released it by callingunlock we say that the thread
τ is theownerof the mutexm (or that τ ownsm).

Lemma 1 The value of them.count variable is never negative and always greater
than zero when a threadownsthe mutexm.
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Proof: Note thatm.count is increased by one for eachlock (line L1) and each
successfultrylock (line TL1 or TL3) operation and it is decreased by one for each
unlock operation (line U1). Therefore,m.count cannot be zero unless the number
of calls tounlock is the same as the number of calls tolock and successful calls to
trylock together. In a correct application all threads must have a matchingunlock
call after eachlock (or trylock ) call and nounlock calls without a matchinglock
(or trylock ). For a threadτ to own the mutex it must have calledlock (or trylock )
but not (yet) calledunlock after that, som.count must be positive. Additionally
m.count cannot become negative since there can never be more calls tounlock
than tolock (or successful ones totrylock ) . 2

Lemma 2 If m.hand-off 6= null thenm.count > 0.

Proof: There is only one place in the mutex code wherem.hand-off is set to
something6= null, namely line H5 indo_hand-off which is called fromunlock .

First observe that only a thread that owns the mutex is allowed to callunlock
and therefore by Lemma 1m.count > 0 when anyunlock operation begins.

Let 〈x, y〉 denote the mutex statem.count = x, m.hand-off = y and assume
towards a contradiction that the state〈0, 6= null〉 has been reached.

Consider theunlock , call it A, that setm.hand-off 6= null. Note that when it
executed line U1m.count > 1 or else it would never enterdo_hand-off . There-
fore anotherunlock , B, must have decreasedm.count afterwards. Thisunlock
could only be executed by a threadτ that became owner of the mutex by alock or
trylock that took effect afterA released the mutex. There are two cases for how
τ could gain ownership: (i) theunlock A activatedτ at line H3. This contradicts
the assumption theA reached line H5.
(ii) The lock or trylock by τ grabbed the hand-off token set byA at line H5.
Since the only possible wayA can reset the hand-off token again requires thatA

successfully grabs its own hand-off token at line H8 this is also a contradiction.2

4.1 Lock-freedom

The lock-free property of the thread library operations will be established with
respect to the processors. An operation is lock-free if it isguaranteed to complete
in a bounded number of steps unless it is interfered with an unbounded number of
times by other operations and every time operations interfere, at least one of them
is guaranteed to make progress towards completion.

Theorem 1 The mutex operationslock, trylock andunlock are all lock-free.
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Proof: The only instance of non-sequential code is the hand-off loop in do_hand-
off called by the operationunlock . The conditions that must hold for the proces-
sor to stay in the loop are:

(i) them.waiting queue is empty at line H2; and
(ii) the m.waiting queue is non-empty at line H6; and

(iii) the processor successfully captures them.hand-off flag at line H8.
For both (i) and (ii) to hold, at least one other processor must have completed an
enqueue operation on them.waiting queue between the execution of line H2 and
H6 and thus have made progress.1

2

The lock-freedom oftrylock andunlock , with respect to application threads,
follows trivially from their lock-freedom with respect to processors, since there
are no context switches in them. The operationlock it is clearly neither non-
blocking nor lock-free with respect to application threads, since a thread calling
lock on a locked mutex should be blocked.

4.2 Linearizability

Linearizability guarantees that the result of any concurrent execution of operations
is identical to a sequential execution of the operations where each operation takes
effect atomically at a single point in time (itslinearization point, referred to as LP
below) within its duration in the original concurrent execution.

Theorem 2 Operationlock is linearizable.

Proof: A lock either can succeed to lock the mutex immediately without blocking
or it has to block until the current owner of the mutex unlocksit. The LP of lock
is when the thread becomes the owner of the mutex. Let〈x, y〉 denote the mutex
statem.count = x, m.hand-off = y. There are two main cases for a call tolock
by a threadτ :

(I) The mutex is unlocked with no ongoing operations〈0, null〉. In this case
the LP of thelock is the FAA instruction at line L1. It atomically changes
the mutex state to locked〈1, null〉. The lock operation then returns to the
calling threadτ .

(II) There are other ongoing operations on the mutex, indicated bym.count >
0 at line L1. In this case the threadτ is blocked (line L3) and enqueued
on them.waiting queue (line L4). The processor then continues thelock
operation. There are two possible sub-cases:
(i) The CAS on line L8 is not reached or is unsuccessful. Then the thread

1Note that condition (iii) is irrelevant for the proof of lock-freedom.
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τ will be activated (and thus given an LP) by either a concurrent or future
unlock (seeunlock below) or another concurrentlock that successfully
passed line L8 (see sub-case (ii) below).
(ii) The CAS at line L8 succeeds. This implies that this processor is now
responsible for the mutex and that there is a thread present in them.waiting
queue. The latter is guaranteed by the fact that threads can only be dequeued
from m.waiting by a processor owning the mutex and that the ownership
token cannot have changed between line L6 and L8 for the CAS to suc-
ceed. Then the LP of thelock operation of the threadτ ′ dequeued at line
L9 (which may or may not beτ , see sub-case (i) above) is the LP of the
dequeue.

2

Theorem 3 Operationtrylock is linearizable.

Proof: A trylock can either lock the mutex in which case it returnsTrue or, if
the mutex is already locked, do nothing and returnFalse.

(I) The trylock by a threadτ returnsTrue. In this case either the CAS at line
TL1 or the CAS at GT3 (called from TL2) succeeded. It is easy to see
that the successful CAS changes the mutex state from unlockedto locked
atomically and forms the LP oftrylock .

(II) The trylock by a threadτ returnsFalse. In this case the LP is between the
CAS at line TL1 and the CAS at GT3 (called from TL2). Observe thatsince
trylock returnsFalse it must be the case thatm.count 6= 0 at line LT1 and
thatm.hand-off = null or m.hand-off 6= old at line GT3. Let〈x, y〉 denote
m.count = x, m.hand-off = y. The cases are:
(i) m locked〈> 0, null〉 at line TL1: then the LP is TL1;
(ii) m unlocked〈> 0, 6= null〉 at line TL1 andm locked〈> 0, null〉 at line
GT3: then the LP is GT3;
(iii) m unlocked〈> 0, 6= null〉 at line TL1 andm unlocked〈0, null〉 at
line GT3: in this case it follows from Lemma 2 that some other threadτ ′

must have concurrently locked the mutex〈> 0, null〉, and subsequently
unlocked it when there were no waiting threads〈0, null〉. Hence the LP is
in the interval between thelock andunlock of τ ′;
(iv) the CAS at GT3 fails due tom.hand-off having changed from one non-
null value to another since line GT1: in this case the LP is as in case (iii),
since them.hand-off change implies that the mutex became locked and
then unlocked again.

2

Theorem 4 Operationunlock is linearizable.
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Proof: An unlock operation by the treadτ can either unlock the mutexm or
activate one thread waiting in them.waiting queue. Note that in the application,
τ must own the mutexm when callingunlock . There are two main cases:

(I) The unlock unlocks the mutexm. In this case there are two sub-cases
depending on the existence of concurrentlock operations (indicated by the
value ofm.count):
(i) No concurrentlock , i.e. the mutex state is〈1, null〉 before line U1. The
CAS at line U1 changes the mutex state to〈0, null〉 and is therefore the LP.
(ii) There is at least one concurrentlock , i.e. the mutex state is〈> 1, null〉
before line U1. In this case theunlock enters thedo_hand-off procedure
where H5 is the LP. Note that if the dequeue at line H2 or the CAS on line
H8 succeeds, thisunlock will activate a thread instead of unlocking the
mutex. These cases are examined below.

(II) The unlock activates the waiting threadτ ′. In this case the mutex state
before line U1 is〈> 1, null〉 indicating that there are concurrentlock oper-
ations. Theunlock operation will enter thedo_hand-off procedure to find
the threadτ ′ to activate. There are three cases depending on the progressof
the concurrentlock operation:
(i) The threadτ ′ has been enqueued on them.waiting queue (line L4 in
lock) beforeunlock reaches line H2. In this case the LP forunlock is the
LP of thedequeue on line H2.
(ii) The threadτ ′ is enqueued on them.waiting queue (line L4 in lock) after
line H2 but before line H6. In this case theis_empty test on line H6 returns
False and theunlock will attempt to retake the hand-off token at line H8.
This will succeed if and only if no other operation (e.g. a concurrentlock
or trylock ) took the token in the meanwhile. If the CAS at line H8 fails
the unlock unlocked the mutex as per sub-case (ii) of case (I) above. If
the CAS at line H8 succeeded the LP ofunlock is the LP of thedequeue
called on line H2 in the next iteration of the loop. Note that the loop can
only be repeated once since to repeatm.waiting must be non-empty and
unlock must retake responsibility of the mutex.
(iii) The threadτ ′ is enqueued on them.waiting queue (line L4 in lock)
after line H6. In this caseunlock unlocked the mutex at line H5 as per
sub-case (ii) of case (I) above.

2
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4.3 Mutual exclusion properties

The mutual exclusion properties of the new mutex protocol are established with
respect to application threads.

Theorem 5 (Safety) For any mutexm and at any timet there is at most one
threadτ such thatτ is the owner ofm at timet.

Proof: A threadτ can become the owner of a mutexm by a lock operation or a
successfultrylock operation.

By Theorem 2, Theorem 3 and Theorem 4,lock , trylock and unlock are
linearizable. Therefore, in a set of concurrentlock and trylock operations on
an unlocked mutex, exactly one of them will take effect first,i.e. by changing
the mutex state to locked, and the thread executing it becomes the owner of the
mutex. When this thread unlocks the mutex by anunlock operation, then by
Theorem 4 the ownership is either transfered to the first thread in them.waiting
queue, which is also activated, or, if there are no such threads, the mutex state
changes to unlocked. 2

Lemma 3 No thread is left blocked in the waiting queue of an unlocked mutexm
when all concurrent operations concerningm have completed.

Proof: Recall from Definition 2 that a mutexm is locked if and only ifm.count >
0 andm.hand-off = null, so the mutex is unlocked ifm.count = 0 or m.hand-
off 6= null.

If m.count = 0 then there clearly cannot be any waiting threads, since the first
action of a thread trying to acquire a mutex usinglock , is to increasem.count.

Assume, towards a contradiction, that there are no uncompleted operations
and there is a threadτ left in the m.waiting queue,m.count 6= 0 andm.hand-
off 6= null. Consider thelock operation by the threadτ . It cannot have been
the last operation to complete, because ifm.hand-off was 6= null, the CAS at
L8 would have succeeded andlock would dequeue the threadτ available in the
m.waiting queue and activate it.

But if m.hand-off wasnull whenτ ’s lock operation completed, then there
must have been some other uncompleted operation active inside a hand-off loop
after that point, since that is the only placem.hand-off is set to something other
than null (at line H5). However, for that operation to leave its hand-off loop and
complete, it must find them.waiting queue empty after settingm.hand-off (line
H6). This contradicts our assumption thatτ ’s lock operation completed before
m.hand-off was set.

Thus, it is impossible that all operations onm completed leavingm unlocked
and the threadτ in them.waiting queue. 2
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Lemma 4 A mutex is locked if and only if it isownedby a thread.

Proof: The lemma follows from the Theorems 2, 3 and 4, i.e. linearizability of
lock , trylock andunlock . 2

Lemma 5 A threadτ waiting to acquire a mutexm in a call to lock will at most
have to wait for the thread currently owningm and all threads that have called
lock onm beforeτ ’s call to lock enqueuedτ on them.waiting queue.

Proof: Once the threadτ has been enqueued on them.waiting queue (line L4)
it only needs to wait for the threads ahead of it in the queue inaddition to any
current owner of the mutex before it will acquire the mutex. This is ensured by
theunlock protocol that will activate the first thread in them.waiting queue (lines
H2 - H4). A trylock operation cannot bypass the waiting threads sincem.count
is nonzero andunlock only sets them.hand-off if it finds the waiting queue to be
empty. 2

Theorem 6 (Liveness I) A threadτ waiting to acquire a mutexm will eventually
acquire the mutex once itslock operation has enqueuedτ on them.waiting queue.

Proof: The theorem follows from Lemma 1, Lemma 3, Lemma 4 and Lemma 5.
2

Theorem 7 (Liveness II) A threadτ wanting to acquire a mutexm can only be
starved if there is an unbounded number oflock operations onm performed by
threads on other processors.

Proof: The theorem follows from the lock-free nature of them.waiting queue and
Theorem 6.

We know from Theorem 6 that once the thread has enqueued itself on the
m.waiting queue it will not starve, so to starve it must not succeed to enter the
m.waiting queue, that is, its enqueue operation must never complete.

Each time two or more operations on the lock-free queue interfere with each
other, at least one of them make progress, so for one processor to never complete
its operation, it will have to be interfered with by a concurrent successful operation
every time it tries to progress. 2

Theorem 8 (Fairness)A threadτ wanting to acquire a mutexm will only have to
wait for the threads whoselock operation enqueued them on them.waiting queue
beforeτ was enqueued there.

Proof: The theorem follows from Lemma 5. 2
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5 Experimental study
The primary contribution of this work is to enhance qualitative properties of thread
library operations, such as the tolerance to delays and processor failures. However,
since lock-freedom may also imply performance/scalability benefits with increas-
ing number of processors, we also wanted to observe this aspect of the impact of
the lock-free mutex implementation. We made an implementation of the mutex
object and the thread operations on the GNU/Linux operatingsystem. The imple-
mentation is written in the C programming language and was done entirely at the
user-level using “cloned”1 processes asvirtual processorsfor running the threads.
The implementation uses the lock-free queue in [37] for the mutex waiting queue
and theReady_Queue. To ensure sufficient memory consistency for synchro-
nization variables, memory barriers surround all CAS and FAAinstructions and
the writes at lines L6 and H5. The lock-based mutex object implementation uses
a test and test-and-set type spin-lock to protect the mutex state. Unlike the use
of spin-locks in an OS kernel, where usually neither preemptions nor interrupts
are allowed while holding a spin-lock, our virtual processors can be interrupted
by the OS kernel due to such events. This behaviour matches the asynchronous
processors in our system model well.

The experiments were run on a PC with two Intel Xeon 2.80GHz processors
(acting as 4 due to hyper-threading) using the GNU/Linux operating system with
kernel version 2.6.9. The microbenchmark used for the experimental evaluation
consists of a single critical section protected by a mutex and a set of threads that
each try to enter the critical section a fixed number of times.The contention level
on the mutex was controlled by changing the amount of work done outside the
critical section.

We evaluated the following thread library configurations experimentally:
• The lock-free mutex using the protocol presented in this paper, using 1, 2,

4 and 8 virtual processors to run the threads.

1“Cloned” processes share the same address space, file descriptor table and signal handlers etc
and are also the basis of Linux’s native pthread library implementation.
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Figure 5 Mutex performance in LFTHREADS and pthreads at high contention.
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Figure 6 Mutex performance in LFTHREADS and pthreads at low contention.
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• The spin-lock based mutex, using 1, 2, 4 and 8 virtual processors to run the
threads.

• The platform’s standard pthreads library and a standard pthread mutex.
The pthreads library on GNU/Linux use kernel-level “cloned” processes as
threads, which are scheduled on all available processors, i.e. the pthreads
are at the same level as the virtual processors in LFTHREADS. This differ-
ence in scheduling makes it difficult to interpret the pthreads results with
respect to the others; i.e. the pthreads results should be considered to be
primarily for reference.

Each test configuration was run10 times. The diagrams present the mean of
these10 runs.

High contention

In Figure 5 we show the microbenchmark results when all work is done inside the
critical section, that is, the contention on the mutex is high. In this case the desired
result would be that the throughput, i.e. the number of critical sections executed
per second, for an implementation stays the same regardlessof the number of
threads or virtual (processors). This should imply that thesynchronization scales
well. However, in reality the throughput decreases with increasing number of
virtual processors, mainly due to preemptions inside the critical section (but for
spin-locks also inside mutex operations) and synchronization overhead. Further,
going from a single processor to more than one processor for our thread library
implies a cost since with more than one processor the thread contexts will have to
be stored and restored much more often due to threads being blocked on the mutex.
(Note that threads currently use non-preemptive scheduling in our implementation
so with only one virtual processor the threads will run to completion one after the
other without any extra blocking.) The results indicate that the lock-free mutex
has less overhead than the lock-based one in similar configurations.

Low contention

In Figure 6 we show the results from a microbenchmark where the threads per-
form 1000 times more work outside the critical section than inside, making the
contention on the mutex low. With the majority of the work outside the criti-
cal section, the expected behaviour is a linear throughput increase over threads
until all (physical) processors are in use by threads, thereafter constant through-
put as the processors are saturated with threads running outside the critical sec-
tion. The results agrees with the expected behaviour; we seethat from one to
two virtual processors the throughput doubles in both the lock-free and spin-lock
based cases. (Recall that the latter is a test-and-test-and-set-based implementa-
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tion, which is favoured under low contention). Note that thestep to 4 virtual
processors does not double the throughput — this is due to hyper-threading, there
are not 4 physical processors available. Similar behaviourcan also be seen in the
pthread-based case. Further, the lock-free mutex shows similar or higher through-
put than the spin-lock-based one for the same number of virtual processors; it also
shows comparable and even better performance than the pthread-based case when
the number of threads is large and there are "enough" virtual processors (i.e. more
than the physical processors).

Summarizing, we observe that the LFTHREADS thread library’s lock-free mu-
tex protocol implies comparable or better throughput than the lock-(test-and-test-
and-set-)based implementation, both in high- and in low-contention scenaria for
the same number of virtual processors, besides offering thequalitative advantages
in tolerance against slow, delayed or crashed threads, as discussed earlier in the
paper.
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6 Conclusions
In this paper we have presented the LFTHREADS library and the first lock-free im-
plementation of a blocking synchronization primitive; as part of this contribution
we have introduced the responsibility hand-off (RHO) synchronization method.
Besides supporting a thread-library interface with fault-tolerance properties, we
regard the RHO method as a conceptual contribution, which canbe useful in mul-
tiprocessors and multicore systems in general.

We have implemented the LFTHREADS library on a PC multiprocessor plat-
form with two Intel Xeon processors running the GNU/Linux operating system
and using processes as virtual processors. The implementation does not need any
modifications to the operating system kernel. Although our present implementa-
tion is done entirely at the user-level, the LFTHREADS algorithms are well suited
for use also in a kernel - user-level divided setting. With our method a significant
benefit would be that there is no need for spin-locks and/or disabling interrupts in
either the user-level or the kernel-level part.

This implementation constitutes a proof-of-concept of thelock-free imple-
mentation of the blocking primitive introduced in the paperand serves as basis
for an experimental study of its performance. The experimental study performed
here, using a mutex-intensive microbenchmark, shows positive performance fig-
ures. Moreover, this implementation can also serve as basisfor further devel-
opment, for porting the library to other multiprocessors and experimenting with
parallel applications such as the Spark98 matrix kernels orapplications from the
SPLASH-2 suite.
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